
The CryptSums utility checksums the Mach segments of an application at compile time and inserts encrypted 
checksums into the binary so the application can verify at startup that it hasn't been damaged or tampered with.

Once properly installed, it allows you to simply do 'make secure' to create a secure version of you 
application.    You'll still be able to do standard 'make' and 'make debug' without interference from the 
checksum test.    CryptSums provides a simple routine that your application can call at startup/runtime to check 
that the segments in memory still result in the same checksum as the file at compile time.    You select which 
Mach segments and sections to verify.

Installation

You need the following files to use the CryptSums utility:

Makefile.p*amble -- These files can be copied or linked if you don't already have Makefile.p*amble files 
for your application.    If you do, you'll need to edit the contents of these files into yours.    If you're not 
using a InterfaceBuilder generated Makefile, you can use the example entry in the Makefile in this 
directory as an example of how to compile a secure application.    The only change you have to make to 
these files is setting a new value for CS_PASSWORD at the top of Makefile.preamble.

cryptsum.h -- You'll need to include this file in your *_main file for an InterfaceBuilder generated application 
or in whatever file in which you call cs-checkkey(), usually the same file that defines main().    You 
should copy or link this file to one of your include directories or the same directory as your application 
source.

cryptsums -- This program generates the encryted checksum table for the application binary.    It needs to be 
somewhere on your search path (eg. the directory where you're compiling or /usr/local/bin).

dummy.cryptsums -- This is a dummy encrypted checksum table that gets compiled into your application on 
the first pass so that the segment that holds the checksums will exist when the Makefile inserts the 



actual table into the application binary via segedit.    You should copy or link this file to the same 
directory as your application source.

libcryptsum.a -- This is the library the contains the cs_checkkey() function that your main() routine 
calls.    You should copy or link this file to one of your library directories or the same directory as your 
application source.

Example_main.m -- In addition to the above files, you'll need to modify the *_main.m file that InterfaceBuilder 
generated to be similar to this file.    Make sure to turn off the 'Generate main file' switch in the Attributes 
box of the Project Inspector panel of InterfaceBuilder that prevents it from overwritting the *_main.m file 
on subsequent saves.    If you are not compiling an InterfaceBuilder-based application, you can use the 
example main() routine in the file example.c in this directory as a guide.

The sources for the CryptSums utility are also included so you can modify it to suit your needs.

Usage

Once you've installed the Makefile.p*amble, cryptsum.h, cryptsums, dummy.cryptsums, 
libcryptsum.a files and modified your *_main.m file, you should be able to generate a secure version of 
your application via 'make secure'.    It will leave the result in $(NAME).secure (similar to $
(NAME).debug when you do 'make debug'.    You can run the *.secure application directly or rename it.    
You should also be able to 'make' and 'make debug' without interference from the checksum utility.    Doing 
a 'make secure' also creates a $(NAME).unsecure file, the unsecure_obj directory and the file $
(NAME).cryptsums.    These files will be removed by a 'make clean'.    Make sure not to delete the 
dummy.cryptsums file as it will be needed for subsequent remakes.

The Makefile.preamble file defines the symbol SECURE when you do 'make secure'.    You can use this 
with an #ifdef conditional in your code as is done in the Example_main.m and example.c example files.    



The routine that your code calls at startup/runtime is:

int cs_checkkey(const char *segment, const char *section, const char *key)

Where segment is the name of the segment in which the section you want to check resides, eg. "__TEXT", 
section is the name of the section, eg. "__text" and key is the password that the checksums were 
encrypted with.    With the files provides, this is set in the Makefile.preamble file and available to the 
program as the defined symbol PASSWORD since it is also needed by the Makefile.postamble file to 
generate the original checksum table.

The return values for cs_checkkey() are defined in the file cryptsum.h:

CS_SUCCESS = 0 The checksum is valid.
CS_NOMATCH The encrypted checksums didn't match.
CS_NOSECTION There is no such segment/section in memory.
CS_NOCHECKSUM The checksum table segment is missing.
CS_NOENTRY There is no checksum in the table for the given segment/section.
CERROR (-1, defined in <c.h>) A Unix system call error occurred in cs_checkkey().

If a secure application is launched, and the checksums are correct, you can have it continue as usual.    If the 
checksums are incorrect, you get back an error code and can act appropriately.    The Example_main.m file, 
opens an NXAlertPanel on a checksum error and the process exits with an error.

How it works

When you do a 'make secure', the Makefile.postamble file first does (the equivalent of) a 'make 
unsecure' to generate a compiled version of your application with the SECURE flag defined and a dummy 
checksum table stored in a Mach segment.    It then runs the cryptsums program on the unsecure binary to 



generate the $(NAME).cryptsum file.    This file has one segment/section pair per line along with the 
combination password/checksum encryption using standard Unix routines.    This information is spliced into the 
binary using the segedit utility and the result is placed in the $(NAME).secure file.

At startup/runtime, when the cs_checkkey() routine is called, another checksum is done on the memory 
image of the segment/section being tested.    This is encrypted with the same password and tested against the 
matching entry in the checksum table in the file binary.    The result of that comparison is returned.

Notes

There are various segments/sections that you might want to checksum, eg. __TEXT/__text to see if the 
compile code has been damaged/changed, __TEXT/__cstring to check the strings, etc.    You can also 
check __NIB/$(NAME).nib to verify the InterfaceBuilder data though this is usually a reasonable section for 
users to modify to suit their needs/tastes.    The cryptsums program generates encrypted checksums for all 
the sections at compile time but not all can be successfully verified at startup/runtime since some are 
legitimately changed at load/run time.    Call cs_checkkey() on static sections that are vital to proper program 
behavior.

Make sure to set the CS_PASSWORD variable in Makefile.preamble to your own value.    For security 
purpose, you should set it to a random string or something similar to what the Unix strings command 
generates when run on your application, eg. 'lockFocus', so that the password will difficult to determine via 
examining the binary.

The checksum routine defined in the cryptsum.c file is simple, though the encryption is complex.    If you want 
a more sophisticated checksum, you can modify the routine cs_checksum() in the cryptsum.c file:

unsigned short cs_checksum(unsigned short checksum, unsigned char byte)

This function takes the current checksum, and a new byte to factor in and returns the updated checksum.



Since cs_checkkey() has to read an entire section to checksum it, you'll be loading that section into virtual 
memory, possibly unnecessarily for execution purposes, possibly into a different space (data vs. code).    If your 
application is very, very large this could be of concern so you might want to only do cs_checkkey() when the 
application runs the first time and installs itself, and bypass the call for subsequent startups.    For programs that 
already do initializations on the initial execution, adding the checksum call as an additional step should be 
trivial.

If your application has more than ~200 separate sections    (InterfaceBuilder has 172), you may overflow the 
checksum table.    To get around this, pad the dummy.cryptsums file (eg. duplicate the first line multiple times) 
until it exceeds 8192 bytes in length and change the constant MAXBSIZE in cs_checkkey() to be 2 * 
MAXBSIZE.    That should approximately double the number of sections you can checksum.

CryptSums isn't compatible with the -object flag to ld which suppresses Mach segments.

References

Mach-O (5), segedit (1), size (1), getsectdata(3), crypt(3)    UNIX Programmer's Manual

/NextLibrary/Documentation/NextDev/DevTools/08_MachO


