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Chapter 1 Introduction

Introduction

Nowadays the use of computerized symbolic manipulation meth-
ods is becoming more and more popular. The advantages offered
by the automatic derivation of formulae are indeed great, not only
for the very large formula crunching, but also for commonday
‘small’ problems. It can be expected that in the future tables of
integrals may become superfluous in the same way that numerical
programs and calculators made tables of logarithms superfluous.
The field of formula manipulation is however split in two parts.
On the one hand there is the class of small knowledge oriented
problems for which the computer is very handy and time saving.
On the other hand there are the very large problems that couldn’t
possibly be solved without lengthy computerized manipulations.
This split is also reflected in the design of the symbolic manipu-
lation programs. The ‘well-known’ popular programs are usually
designed around a sophisticated set of instructions, some of which
can only be executed properly if the entire formula exists inside the
memory of the computer. This limits the size of those formulae.
With such a program it is very easy to reduce the effective power
of a computer to nearly zero when the formulae exceed a ‘critical’
size. Programs like Macsyma, Reduce, Maple and Mathematica
fall in this class.

Programs that are designed for virtually infinite formulae use a
completely different management of their memory. In those pro-
grams some sophisticated statements may be missing, although
the tools may be present to execute the equivalent of such in-
structions on a step by step basis. The best known program of
this type is Schoonschip which was designed to combine a very
general basic instruction set and the power to deal with large for-
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Chapter 1 Introduction

mulae. FORM belongs also to this class of programs. Its design
allows it to work with formulae that contain millions of terms.
On the other hand it has a reasonably extended instruction set so
that it is also very convenient for many ‘small’ problems.

The basic philosophy and many of the instructions are derived
from the model that Schoonschip provides. For years Schoonschip
has been the only program that could deal with the demands
posed by the large radiative correction computations in high en-
ergy physics. When it was programmed its author was envis-
aging formulae with about a hundred thousand terms. This is
reflected in the fact that when the formulae become rather large
Schoonschip will continue, but execution becomes much slower
than necessary!. One of the new features of FORM is the man-
agement of really large formulae in a very efficient way. This is
reflected in the impressive results of some speed tests.

FORM has been written in C to allow for easy installation on a
large variety of systems. It will run both on personal workstations
and large mainframe computers. This way the user may select
the environment that suits his problem best. Normally the main
limitation for very large programs will be the size of the available
diskspace.

The syntax of FORM is a mixture of elements taken from
Schoonschip, Fortran, C, Reduce and new inventions. The whole
is designed to give an instruction set that is rather easy to remem-
ber. When the capacities of FORM are taken to their limits the
user is advised to study the technical notes in the chapter on the
setup file, as a knowledge of some of the internal workings allows
the user to structure his programs such that they are performed
in the fastest way. For casual use this will rarely be necessary.

The first version of FORM doesn’t contain all planned instruc-
tions yet. It has been provided with the most needed instructions

1Recently this behaviour has been improved considerably.
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and the mechanisms to make user libraries. Many big problems
can be solved with it, even though the user may be required to
think about the algorithms he should use. The examples section in
this manual shows some algorithms that are particular to symbolic
manipulations. This is anyway an important part of the manual.
Symbolic programs like FORM are at their best when the intel-
ligence of the user is combined with the power of the computer.
In practice it is nearly impossible to provide algorithms that can
always see the special cases that apply to a given problem. This
holds especially for large research problems.

The manual is split in three parts. The first part is a tutorial
in which the user is introduced in the language of FORM by
means of a number of rather easy examples. The middle part
contains the precise definitions of the language and the technical
information that is needed to configure FORM to one whishes.
The final part contains the more advanced examples that show
the user a number of algorithms. This may enable him to work
efficiently.

The author hopes to have contributed with FORM to the
solution of many problems in the fields of mathematics, physics
and engeneering.

Aknowledgements.
It has been a pleasure to enjoy the support of J.Smith, M.van der
Horst and G.J.van Oldenborgh in various stages of the project.
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Chapter 2 Tutorial

Tutorial

As the best education is by means of examples we will start with
a tutorial that contains a number of examples that will be simple
at the beginning and rather involved as we use more features of
FORM.

2.1 The first program

Tutorials of many languages start nowadays with a little program
that prints the string ‘Hello world’. The equivalent of this in
formula manipulation is the evaluation of (a + b)?. The FORM
program for this is:

Symbols a,b;

Local f = (a+b)~2;
Print;

.end

Let us discuss the statements in order:

The first line of this little program is a declaration. It declares
the objects a and b to be symbols. Symbols are the simplest ob-
jects in symbolic manipulation. They commute and they can have
a power. In all respects they are scalar objects. Next we notice
that the declaration was made with the word ‘Symbols’. This
doesn’t mean that ‘Symbols’ is a protected word. FORM doesn’t
have any protected words. Each word that is legally formed can
serve as a variable. The statements are formed by a keyword
and then a follow up depending on the keyword. In this case the
keyword ‘Symbols’ indicates that there will be a list of symbols.
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Tutorial The first program

The statement is concluded by a semicolon. The symbols can
be separated by a comma or by blanks or by a combination of
both. FORM considers blanks as relevant and replaces them by
a comma, unless they are adjacent to a character that would indi-
cate a separation already. Therefore the blank between ‘Symbols’
and ‘a’ might just as well have been a comma. On the other hand
the blanks around the equals sign in the next line are irrelevant
and serve for decoration purposes only. The last thing to be no-
ticed in the first line is that ‘Symbols’ starts with a capital. This
has been done to make the program look pretty. FORM is case
insensitive with respect to its keywords and built in objects. It is
on the other hand case sensitive with respect to the user defined
quantities allowing the user full creativity when he chooses names.
We will come back on this in the next section.

The second statement starts with the keyword ‘Local’ which
indicates that f will be a ‘local expression’. Expressions are the
objects that are manipulated by FORM. They are individual for-
mulae that contain terms. The observation that addition and
subtraction are special commutative and associative operations
allows us to define the concept of a ‘term’. In the representation
that it has at a given moment a term cannot be written as the
sum or the difference of two or more constituents without split-
ting up the numerical coefficient of the term. Therefore 2 * a can
be a single term but a + a is not. The sum of all terms make
up an expression and expressions that can be manipulated are
called active expressions. There can be many active expressions
simultaneously as we will see in later sections. For the moment we
have just one expression which is called ‘f’. After the definition of
an expression one has to tell FORM the starting contents of this
expression, which is the formula we want to work out. One may
note that a power is indicated by a carat: ~ as in many computer
languages these days. The older Fortran notation of two stars **
is also accepted. When a formula is typed in one can use the rules
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Tutorial The first program

that are in use in all the major calculational languages, so there
are no special rules with respect to the use of regular parentheses.

When the expression ‘f” is being processed all parentheses will
be evaluated. This means in our case that the square will be
worked out. To make the result visible the user tells FORM that
all expressions should be printed with the ‘Print’ command. If
there are several expressions and the user wants to see only one
of them it is possible to specify the expressions that should be
printed after the keyword ‘Print’ (and a comma or a blank). In
the current program that would be superfluous.

The final statement is not so much a statement but a directive.
It tells FORM that there are no more statements and that exe-
cution can begin. There are several types of these directives that
force execution of the statements that were given thus far. They
all start with a period, followed by a keyword. Anything follow-
ing the keyword is considered to be commentary, so a semicolon
is not needed (it won’t harm either). The allowable keywords are
‘sort’, ‘store’, ‘global’ and ‘end’. Each of these statements that
start with a keyword indicate the end of a ‘module’. All state-
ments in a module are translated first and then they are executed
together. In our case there is only one module and since it is the
last module its keyword is ‘end’. When FORM encounters it it
starts executing our little program.

The next complication is how to get FORM so far as to accept
the above program. FORM is not interactive as many other sym-
bolic systems. It is therefore necessary to prepare the program in
a text editor. Suppose that we have done so and that the program
has been put in a file examplel. We can get FORM to execute
this program by the simple command

form examplel

This tells the operating system to start executing FORM and
FORM will then recognize that its program should be found in
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the file ‘examplel’. The result will be:

Symbols a,b;
Local f = (a+b)~2;

Print;
.end
Time = 0.06 sec Generated terms = 3
f Terms left = 3
Bytes used = 54
f =

a“2 + 2*axb + b72;

The input is echoed which can be handy when the user wants
to know what the program is doing (and for error messages). Then
the run time statistics are printed. These include the execution
time thus far (which depends of course on the computer), the
number of terms that were generated, the number of terms in
the output and the space these terms occupy together. Then the
output is printed as we included a print statement. It is possible
to tell FORM that it should not print the run time statistics but
for the moment we will leave this option on. It allows us to see a
little bit what is happening. When running large programs these
statistics are quite vital because often it is possible to see from
them that some mistake must have been made and the user can
then kill the program, thereby saving much computer time.

It is now very simple to alter the little program somewhat to
obtain the following;:

Symbols a,b;

Local f = (a+b)~20;
Print;

.end
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Time = 0.24 sec Generated terms = 21
f Terms left = 21
Bytes used = 442
f =
a”20 + 20*a”19%b + 190*a~18%b~2 + 1140*a~17%b"3
+ 4845%a~16*xb"4 + 15504*a”~15%b~5 + 38760*a”~14*b"6
+ 77520%a"13%b"7 + 125970%a”12%b~8 + 167960*a"~11*b~9
+ 184756*a”10*%b~10 + 167960*a~9*b~11
+ 125970%a"8%b~12 + 77520*%a"7*b~13 + 38760*a~6*xb~ 14
+ 15504*%a~5*xb~15 + 4845%xa~4*xb~16 + 1140*%a”~3*xb~17
+ 190*a”2%b~18 + 20*a*xb~19 + b~20;

This example shows one of the main applications of computer
algebra: working out formulae that are beyond what is done easily
by hand even though some people may write down the above result
in less time than that it takes to type in the program that was
used to generate this formula.

Let us study a few more variations of example 1:

Symbols a,b;
Local f = (atb)*(at+b);
Print;
.end
Time = 0.07 sec Generated terms = 4
f Terms left = 3
Bytes used = 54
f =

a“2 + 2*axb + b72;

In this case the answer is the same of course but because the
input is given as the product of two subexpressions (formulae be-
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tween parentheses), rather than a power of a single subexpression
the number of generated terms is 4 rather than three. If we would
do this with 20 brackets there would be 2720 generated terms,
even though the answer would have no more than 21 terms. One
could argue that this is not efficient and indeed this is the case for
this example. It comes in rather handy though when dealing with
noncommuting objects. As a rule FORM never tries to interpret
the right hand side of a statement until it needs it and even then
it is inserted in its proper place before any interpretation takes
place. At times this turns out to be enormously useful. If the
user prefers the efficiency of the use of binomial coefficients he
should use the notation with the power. Not using the power in-
dicates that he doesn’t want to use it and correspondingly FORM
isn’t going to use it anyway. This is one of the main properties of
the language of FORM: ”what you ask for is what you get”.

The use of binomials in a power expansion is not an iron rule.
The presence of noncommuting objects may prevent FORM from
being too careless:

Functions a,b;
Local f = (a+b)"2;

Print;
.end
Time = 0.03 sec Generated terms = 4
f Terms left = 4
Bytes used = 66
f =

axa + axb + bxa + bxb;

In this example a and b have been declared as functions. Nor-
mally functions will have arguments, but that is not necessary. A
general property of regular functions is that they don’t commute.
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As no special precautions have been taken a and b should not
commute and the binomial expansion cannot be used. The rule
that is used by FORM is that the binomial expansion is used
when there is at most one noncommuting object involved. This is
demonstrated in the following example:

Symbols a,b,c;
Functions A,B,C;

Local f1 = (atb+c)”5;
Local f2 = (a+b+C)"5;
Local £f3 = (a+B+C)"5;
Local f4 = (a+(B+C))"5;

.end
Time = 0.13 sec Generated terms = 21
f1 Terms left = 21
Bytes used = 434
Time = 0.22 sec Generated terms = 21
f2 Terms left = 21
Bytes used = 510
Time = 1.04 sec Generated terms = 243
£3 Terms left = 63
Bytes used = 1786
Time = 1.28 sec Generated terms = 63
f4 Terms left = 63
Bytes used = 1786

The first and the second expressions can be evaluated with
the binomial expansion. In the third expression this would cause
errors as B and C should not commute. In the fourth expression
we have helped FORM a little bit: by placing the parentheses the
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object (B+C) becomes a single noncommuting object when the
outer brackets are evaluated. these can then be evaluated with
the binomial expansion. Then the powers of (B+C) are evaluated
by brute force multiplication because this involves at least two
noncommuting objects. It would of course be possible for FORM
to place parentheses in the third expression, thereby economizing
a great deal, but that would violate the principle of not touching
the input. If the user likes to economize he can help FORM by
placing the parentheses himself.
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Tutorial More types of variables

2.2 More types of variables

In the previous section we encountered symbols and functions.
One may wonder what other types of variables there exist in
FORM. First of all there is a class of functions that commute
with everything. These are the ‘commuting functions’, indicated
either by ‘commuting’ or by ‘cfunctions’. A typical example of
such a function is a factorial, or more general any function that
results in a numerical value. When such a function has no argu-
ments it behaves very much like a symbol. There is one exception:
when functions are printed they have no power so the commut-
ing function ‘f” to the power 4 is printed as f*f*f*f. Functions
can have any number of arguments. Arguments are separated by
comma’s:

CFunctions f,g,h;
Symbols x,y;
Local F =

+ g(x)*f (y)

- £((x+y)"2,%,y)

+ h(x,,y);
Print;
.end
Time = 0.10 sec Generated terms = 6
F Terms left = 3
Bytes used = 222
F =

- £(x"2 + 2xxxy + y°2,x,y) + £(y)*g(x) + h(x,0,y);

We may notice here several things: First FORM has changed
the order in which we specified the terms. This is a necessary
property: in order to make sure that no term occurs twice the

FORM 15



Tutorial More types of variables

output is brought into a unique form. It may happen that this
form is not what the user expected. We will see later how we can
exercise a little control over the exact form of the output.

The square inside the first argument of f has been worked out.
This is why there are 6 generated terms in the statistics. Terms
that are generated inside function arguments are also counted for
generation purposes. They are not counted in the ‘terms left’
category.

Also the order of f and g has been changed to obtain the second
term in the output. This can be done because the functions have
been declared as commuting functions.

The empty argument in h has been replaced by a zero. In
FORM empty arguments and arguments that are zero are iden-
tical. This may not be very elegant from the mathematical view-
point but it should not cause any serious problems.

The two occurrences of f have a different number of arguments.
This is a general feature: there is no check on the type and the
number of the arguments of a function until something has to
be done with the function. When such is the case only those
occurrences that have the right number and the right types of
arguments will be processed. The rest will be left untouched.

Many computations in science involve messy vector and ten-
sor manipulations. To speed such computations up FORM is
equipped with the variable types ‘Index’ and ‘Vector’. Indices are
quantities that can either be a formal integer number like ‘1’ or
'2’, or a symbolic index like ‘mu’. Vectors can occur as an object
with an index like in ‘p(mu)’, a function argument or in so called
dotproducts. Let us look at some examples:

Indices mu,nu;
Index alpha;
Vectors p,q;
CFunction f;
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L F1 = (p(mu)+q(mu))*(p(nu)+q(nuw));
L  F2 = (p(mu)+q(mu))*(p(mu)+q(mu));
L F3 = f(alpha,q+p)*p(alpha);

print;
.end
Time = 0.11 sec Generated terms = 4
F1 Terms left = 4
Bytes used = 82
Time = 0.13 sec Generated terms = 4
F2 Terms left = 3
Bytes used = 56
Time = 0.15 sec Generated terms = 3
F3 Terms left = 1
Bytes used = 64
F1 =

p(mu)*p(nu) + p(mu)*q(nu)
+ p(nu)*q(mu) + q(mu)*q(au) ;

F2 =
p.p + 2%p.q + q.q;

F3 =
f(p,p + @3

In the first expressions we see that the output contains vec-
tors of mu and nu. In the second expression FORM made an
assumption which is called the ‘Einstein summation convention’:
indices that occur twice inside the same term are considered to
be summed over. In the case of p(mu)*p(mu) that means that
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we obtain the dotproduct p.p. The order of the vectors in a dot-
product is considered to be unimportant. FORM assumes that
vectors are commuting. Therefore p.q and q.p have been added.
When the user doesn’t like this he can use functions that don’t
commute. The penalty for the use of functions is a considerable
slowdown of the execution.

In the third expression we see that the second argument of f has
been rearranged again. We see also that alpha has disappeared
from the expression altogether. When an index is summed over
and in one of its occurrences it is the argument of a vector we may
as well put the vector at the place of the other occurrence. This
is called ‘Schoonschip notation’. We may loose some information
this way because we cannot tell from the output whether f is linear
in its first argument because there used to be a contracted index.
On the other hand: this is usually clear from its use.

There is something more to be noticed in this program: The
declaration of the indices was done once with the keyword ‘Indices’
and once with the keyword ‘Index’. This is a property of all
declarations: both the plural and the singular is accepted. There
is actually an even greater freedom in the use of keywords: most
keywords are already recognized if the first one or two characters
are given. This means that FORM would have recognized ‘I’ as
‘Indices’, ‘S’ as ‘Symbols’ and ‘L.’ as ‘Local’. For the clarity of the
examples we will not use this abbreviated form of the commands
in the tutorial part of the manual. In the later parts we will use
it regularly. The user may notice that he himself will start doing
this too by the time he gets some experience.

Index mu;

CFunction f;

Vector p;

Local F = p(mu)*p(1)
+f(p,mu,1);
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print;
.end
Time = 0.07 sec Generated terms = 2
F Terms left = 2
Bytes used = 82
F =

p(*p(mu) + £(p,mu,1);

In this example we see the use of the ‘fixed index’ 1. A fixed
index is an index that will not be summed over. It has a numerical
representation that must be integer, nonnegative (zero is allowed)
and less than a given maximum (usually 128). This maximum
can be altered if the need arises (see the chapter on the setup
file). There is one problem with respect to fixed indices: It is
impossible to see whether the third argument of f is a fixed index
or a regular number. Usually this causes no problems as long as
the user doesn’t define f in such a way that both numbers and
indices can occur at the same position in the argument field of a
function.

One may have noticed also that we haven’t specified whether
indices are upper or lower indices. This has a profound reason:
As long as there are no external indices left after a computation
all indices have been contracted. In that case one index must
have been an upper index and the other a lower index and no
harm is done. Things become more dangerous when the user
defines quantities as (p(mu)) ~2 which would be replaced by p.p.
In this case the user played a dirty trick with the notations if
indeed he meant two upper or two lower indices. Until we start
using conjugations there should be no problems with the choice
of the metric as long as the user gives a proper input. It should
then also be clear what the type of the index in the output is.
In the case that things become too complicated there are always
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(less efficient) solutions: using f (mu,up) and f (mu,down) with up
and down two symbols and using upper and lower case characters
for the vectors, depending on whether their indices are upper or
lower indices gives all the notational freedom that is needed. From
now on we will ignore the problem of the metric as for nearly all
computations the FORM conventions are metric independent.

Symbols x,n;

Index mu=0,nu,la=3,ka=n;
Vector p;

F = p(mu)*p(mu)
d_(mu,mu)

d_(nu,nu) *x
d_(la,la)*x"2
d_(ka,ka)*x"3;

print;

.end

+ + + +

]
(¢

0.07 sec Generated terms
F Terms left
Bytes used = 90

Time

1]
9]

x"3*%n + 3*%x"2 + 4*x + p(mu)*p(mu) + d_(mu,mu);

In the above example we see how we can manipulate the di-
mension over which an index is summed. The dimension can be
specified by the ‘=dimension’ in the declaration after the name of
the index. Any nonnegative integer less than the maximum num-
ber (usually 10000) is allowed. In addition the name of a symbol
is allowed. When the dimension is given as zero the index will
not be summed over. To demonstrate this we have introduced
the built in object d_ which is the Kronecker delta. Its properties
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are known to FORM, so when an index is summable and occurs
more than once of which at least once in a Kronecker delta there
will be some action. When both occurrences are inside the same
delta the delta will be replaced by the dimension of the object.
This is 3 for ‘la’, n for ‘ka’ and 4 for ‘nu’, because 4 is the default
dimension. No replacement is made for d_(mu,mu) because mu
isn’t summable. It is assumed that all vectors have the default
dimension. This default dimension can be changed:

Dimension 3;
Indices mu,nu=4,ka;
Symbol x;
LF-=
d_(mu,mu)
+ d_(nu,nu)*x
+ d_(mu,nu)*d_(mu,nu) *x"2
+ d_(nu,ka)*d_(nu,ka)*x"3;

print;
.end
Time = 0.07 sec Generated terms = 4
F Terms left = 4
Bytes used = 58
F =

3 + 3*%x73 + 4*%x72 + 4%*x;

The dimension statement allows the user to set the default
dimension to any value that is allowed as a dimension (so also to
a symbol). We see this clearly in the summation over mu and
nu. The last two terms show a problem with respect to working
with mixed dimensions. There is no check on whether the indices
in a Kronecker delta have the same dimension. The final value
of the x“2 and x~3 depends on the order in which the indices
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were declared! One could argue that FORM should give an error
message here, but there are cases in which —with the right amount
of care— it can be very handy to allow such ambiguous notation.

The last type of variables is the ‘set’. We will discuss it when
we need it, because for a profitable use of it we need some more
capabilities of FORM.

We will finish this section with defining what is a proper name.
A name can have any number of characters and should be com-
posed of alphanumeric characters of which the first must be an
alphabetic character. Underscores, dollar signs etc are not al-
lowed in user defined names. The built in names all end in an
underscore, which means that there cannot be a conflict in the
choice of names. In addition to this regular type of names there
is a second type of names which was suggested by E.Remiddi: A
name can consist of a matching pair of straight braces [ ] with
any characters in between as long as these characters don’t upset
the fact that the outer braces match. This means that [$~*7=+]
is a legal name. Also [x+a] is a legal name for FORM. To us this
name may have some extra meaning but for FORM it is just a
name as would be the name xplusa. This name convention has
the great benefit of allowing FORM to work with single objects
while it is clear for the user that this object stands in reality for
something much more complex.

There is one exception to the rule that names can have an
arbitrary number of characters: names of expressions are limited
to 16 characters at most.

Symbol [p.p+m~2] ,m;
Vector p;

Local F1 = m/[p.p+m~2];
Local F2 = m/(p.p+m~2);
print;

.end
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Time = 0.04 sec Generated terms = 1
F1 Terms left = 1
Bytes used = 22
Time = 0.06 sec Generated terms =
F2 Terms left = 1
Bytes used = 60
F1 =
[p.ptm~2] "-1%m;
F2 =

1/(m"2 + p.p)*m;

If we are not planning on doing much with the denominator
in the above example it is much easier to define it as a single
symbol. The statistics show that FORM has to generate more
terms internally to work with F2 in which the contents of the
denominator are not kept hidden from FORM. In general it is
much faster to work with denominators that are single symbols
and specify the relevant operations when they are needed than to
let FORM have a go at them with general algorithms. Actually
version 1.0 doesn’t contain any algorithms at all to work with
composite denominators. It just tolerates their presence.
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2.3 The first substitutions

In the previous examples we saw the definition of expressions, but
nothing was done with them. Symbolic manipulation would not
be of much use if we would not have some way of altering formulae
by means of operations and substitutions. Let us look at some of
those:

In the first example we have a quadratic polynomial and de-
mand that this polynomial and its derivative have common solu-
tions. The condition that should be fulfilled such that two polyno-
mials have common solutions has been written down by Sylvester
in the form of a single determinant of size (m+n) in which m and
n are the degrees of the two polynomials:

This means that we have to compute a determinant (3 by 3 in
this example)

*
* Condition for the simultaneous solution of
* a quadratic equation and its derivative.

* The equation is a2*x"2+al*x1+a0 = 0

*

* We need:

* | a0 a1l a2 |

* | al 2%¥a2 O |

* | 0 al 2xa2 | = 0

*

Symbols x,a0,al,a2;

CFunction M;

Indices ml1,m2,m3;

Local F = e_(1,2,3)*e_(m1,m2,m3)*
M(1,m1)*M(2,m2)*M(3,m3);
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contract;
print;
.sort
Time = 0.16 sec Generated terms =
F Terms left =
Bytes used =
F =

662

M(1,1)*M(2,2)*M(3,3) - M(1,1)*M(2,3)*M(3,2) - M(1
,2)%M(2,1)*M(3,3) + M(1,2)*M(2,3)*M(3,1) + M(1,3)

*M(2,1)*M(3,2) - M(1,3)*M(2,2)*M(3,1);

id M(1,1) = a0;
id M(1,2) = ai;
id M(1,3) = a2;
id M(2,1) = al;
id M(2,2) = 2*a2;
id M(2,3) = 0;
id M(3,1) = 0;
id M(3,2) = ail;
id M(3,3) = 2*a2;

print;
.end
Time = 0.40 sec Generated terms =
F Terms left =
Bytes used =
F =

4xa0*a2”2 - al"2+*a2;

42

The determinant is computed by noticing that determinants
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are basically obtained via contractions of Levi-Civita tensors. A
Levi-Civita tensor is a totally anti-symmetric tensor with values
1,0,-1. It is represented in FORM by the commuting function e_.
The operation ‘contract’ causes the rewriting of a pair of Levi-
Civita tensors into sums and products of Kronecker delta’s. After
the indices m1, m2, m3 have been summed over we have the proper
determinant left as is shown in the printout. The contract state-
ment contracts one pair of Levi-Civita tensors only in each term
(unless there are none of course). The pair that is contracted
is the pair that results in the fewest number of terms after the
contraction. In other words: the most complicated contraction
is kept for the last. This results in the greatest speed. If there
is more than one pair of Levi-Civita tensors there is no need to
work with several consecutive ‘contract’ statements. If the con-
tract statement is followed by a number FORM keeps contracting
pairs of Levi-Civita tensors until there are the specified number
of tensors left (or one more of course). So the statement ‘contract
0’ will contract all Levi-Civita tensors. There are more options
but for them the user should consult the chapter on Levi-Civita
tensors.

There is also a directive which we hadn’t used thus far. This
is the ‘.sort’ directive. It tells FORM that this is the end of
the current module and that we want it executed. We are not
terminating the program however and we want to continue with
the current expression(s). What it means basically is that FORM
should execute all the specified statements and sort the resulting
terms so that the output is in a unique form. After that we may
continue with the next module. In the current program the reason
that we used the ‘.sort’ was that we wanted to show that the trick
with the Levi-Civita tensors did indeed give the determinant of
the 3 by 3 matrix M.

Next we want to tell FORM what the components of M are in
terms of the coefficients of the polynomial that we started with.
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This is done with the ‘id’ statement. ‘id’ stands for identify and
the ‘id’ statement is the most important statement in symbolic
manipulation. It allows the user to compose complicated opera-
tions by successive substitutions. In the current program we don’t
want to do anything fancy. We just want to replace the matrix
elements by their ‘values’. Having done so, FORM reworks the
output and gives the final result.

It would be too ambitious to show the full syntax of the ‘id’
statement right away. Because it is so important it has several
options and there can be many ‘patterns’ on the left hand side
of the equals sign. We define a pattern as a left hand side of
an id-statement. FORM should try to match patterns with the
contents of each of the individual terms of the current expression.
There is one strict rule: patterns may contain only one term and
their coefficients must be equal to one.

The above example shows also how commentary is included in
a program. Each line that starts with the character * in column 1
is considered to be commentary. This commentary is allowed to be
between the various lines that make up a complicated expression.

In the next example we will look at the differentiation of a
product of noncommuting functions. This will involve a new tech-
nique: the use of wildcards. Wildcards are generic objects that
are used in patterns and that can then match a class of objects.

Functions gl,g2,g3,g4,dx,g;
Symbols x,n;
Local F = g1(0,x)*g2(0,x)*g3(0,x)*g4(0,x);
Multiply,left,dx;
repeat;

id dxxg?(n?,x) =

g(n+l,x) + g(n,x)*dx;

endrepeat;
id dx = 0;

FORM 27



Tutorial The first substitutions

print;
.end
Time = 0.20 sec Generated terms = 8
F Terms left = 4
Bytes used = 514
F =

g1(0,x)*g2(0,x)*g3(0,x)*g4(1,x) + gl1(0,x)*
g2(0,x)*g3(1,x)*g4(0,x) + g1(0,x)*g2(1,x)*
g3(0,x)*g4(0,x) + g1(1,x)*g2(0,x)*g3(0,x)*
g4(0,x);

We have chosen a notation in which the first argument of our
functions indicates the level of the derivative. so g2(3,x) would
indicate the third derivative of g2. The multiply statement has
three varieties: ‘Multiply,left’, ‘Multiply,right” and just ‘Multiply’.
In the last case FORM will figure out what is fastest. In our case
we want to work the dx through from the left to the right so we
multiply the expression at the left side by dx. Any legal expression
could be used in the multiply statement.

The next new statement is the repeat statement. It has to be
matched by an endrepeat statement and its working is that the
block of statements in between are executed as a block until they
cause no more action. The main restriction is that all statements
inside the repeat/endrepeat including the repeat and endrepeat
statements themselves must be inside the same module. In the
current program this means that the id-statement is executed until
it has no effect any more.

This leaves us with the id-statement itself. It contains two so
called wildcards: g? and n?. The first one means ‘any function’
because g is a function. The second one stands for ‘any symbol,
number or argument with a scalar nature’. This means that when
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dx is left of the function gl g will match the gl and in the right
hand side of the id-statement g will be replaced by gl. n will
match the zero and so in the right hand side n will be replaced by
0. If there would be another number or a symbol or an expression
n would take the identity of that object as is shown in the next
example:

Functions gl,g2,dx,g;
Symbols x,n,m;
Local F = g1(0,x)*g2(m,x);
Multiply,left,dx*dx*dx;
repeat;
id dxxg?(n?,x) =
g(n+l,x) + g(n,x)*dx;

endrepeat;
id dx = 0;
print;
.end
Time = 0.58 sec Generated terms = 82
F Terms left = 4
Bytes used = 370
F =

gl1(0,x)*g2(3 + m,x) + gl(3,x)*g2(m,x) + 3*gl(2,x)
*g2(1 + m,x) + 3*gl(1,x)*g2(2 + m,x);

The integration of polynomials becomes also easy when wild-
cards are used:

Symbols x,j,dx,n;

Local F = sum_(j,0,10,x7j);
multiply,dx;

id dx*x"n? = x"(n+1)/(n+1);
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format 56;
print;
.end
Time = 0.25 sec Generated terms = 53
F Terms left = 11
Bytes used = 178
F =

1/11*x”~11 + 1/10*%x"10 + 1/9%x”9 + 1/8%x"8 + 1/7%*
X~7 + 1/6%x"6 + 1/5%x"5 + 1/4%x"4 + 1/3*x"3 + 1/2
*xX"2 + X;

To generate a rather lengthy polynomial we have used the sum_
function which has either 4 or 5 arguments. The first argument
is the summation parameter, the second the first value, the third
the last value. If there are 5 arguments the fourth argument is
the increment. If there are four arguments the increment is taken
to be one. The last argument is the object to be summed. By
now the id-statement should be clear: we take x to any power and
n takes the value of that power. Can the reader tell what went
wrong in the next program?

Symbols x,j,dx,n;
Local F = sum_(j,-5,5,x7j);
multiply,dx;
id dx*x"n? = x"(n+1)/(n+1);
print;
.end

Division by zero during normalization

We see here an example of a run time error. Errors can occur
in many different ways and not all ways are caught properly by
FORM. Usually it will sense an error condition and give the user
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some idea where to look. This is particularly the case when it
turns out that one of its buffers is not large enough. There are
several types of errors: errors in the syntax and errors during
execution. The errors in the syntax can be directly fatal or they
can allow FORM to proceed with checking the rest of the syntax.
The execution time errors can be rather soft, in which case they
result in a warning only and execution continues, or as in the
above case execution had to be halted because any answer would
have been incorrect.

For the reader to try:

1: There is a different way to generate determinants with vec-
tors rather than with a function as was done in the first example.
When one uses the products of e_(p1,p2,p3) and e_(q1,92,93)
the various dotproducts that occur after the contraction are equiv-
alent to the matrix elements. Write a program that solves the first
problem this way.

2: Use the repeat statement to generate the 9-th and the 10-th
Fibonacci numbers. Why is this method not really very efficient?

3: Repair the last example in this section (ie make it give the
proper integral).
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2.4 Some more wildcards

In the previous examples we saw some rather simple uses of wild-
cards. There are however much more complicated possibilities,
supporting the thesis that the id-statement is the most important
statement in symbolic manipulation. In principle each occurrence
of a symbol, index, vector or function can be wildcarded unless
they are part of a composite function argument. We will see some
examples:

Vectors,p,q,r,s;

Indices,mu,nu,rho;

CFunction,g;

Nwrite statistics;

Local F = p(mu)*q.r*p(rho)
+ q(mu) *p.r*q(rho)
+ r(mu)*p.qg*r(rho);

id,p(mu?) = s(mu);

print;

.sort

F =
q(mu) *q(rho) *p.r + r(mu)*r(rho)*p.q + s(mu)
*s(rho) *q.r;

id,p?(rho) = p.p*p(rho);
print;
.sort
F =
q(mu) *q(rho) *p.r*q.q + r(mu)*r(rho)*p.qg*r.r

+ s(mu)*s(rho)*q.r*s.s;

id,p?.r = p.p*p.r;
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print;
.sort

F =
q(mu) *q(rho) *p.p*p.r*q.q + r(mu)*r(rho)*p.q
*r.r"2 + s(mu)*s(rho)*q.qg*q.r*s.s;

id,q?7.q97 = 1;
print;
.sort

F =
q(mu) *q(rho)*p.r + r(mu)*r(rho)*p.q + s(mu)
*xs(rho)*q.r;

id,p?.q9? = g(p,q);
print;
.sort

F =
g(p,q)*r(mu)*r(rho) + g(p,r)*q(mu)*q(rho)
+ g(q,r)*s(mu)*s(rho) ;

id,p?(mu) *p?(nu?) = g(p,mu,nu);
print;
.end

F =
g(p,q)*g(r,m1,rho) + g(p,r)*g(q,mu,rho) +
g(q,r)*g(s,mu,rho);

The above is an exercise in wildcarding modes of vectors with
indices and dotproducts. In addition there is the ‘nwrite statistics’
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statement which turns off the writing of the run time statistics.
This allows us to concentrate our attention to the interplay be-
tween wildcards and output. When a wildcard occurs twice in the
left hand side as in q7.q? both occurrences have to match the
same object. Therefore q7.q7 will match p.p but it won’t match
p-q as can be seen in the output. It is of course also possible to
have wildcard powers of dotproducts containing wildcard vectors.
In that case there is no match when the power would become
zero. This should be rather understandable as there is no vector
to substitute for the wildcard vector and FORM cannot construct
a proper right hand side if this contains this vector. When dot-
products don’t contain wildcard vectors their wildcard power can
indeed become zero.
With functions things become more complicated:

Symbols,a,b,c;

CFunctions,f,g,h;

Nwrite statistics;

Local expr =
f(a,b)+g(b,c)+h(c,a);

id,£7(b,c)=2*f (a,b);

print;

.sort

expr =
f(a,b) + 2xg(a,b) + h(c,a);

id,f(c?,b) = c*f(c+1,b);
print;

.sort
expr =

f(1 + a,b)*a + 2xg(a,b) + h(c,a);
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id,f(c?,b) = c*xf(c+1,b);
print;
.end

expr =
£f(2 + a,b)*a”2 + £(2 + a,b)*a + 2xg(a,b) +
h(c,a);

The first wildcard substitution involved the function itself, so
it would only match a function with the given fixed argument
field. The second substitution had ‘c’ match the first argument
of f if the second would be ‘b’. When a symbol is used as a
wildcard argument it will match a full argument if this argument
isn’t an index or a vector (or vectorlike). This is exemplified in
the last substitution. This property can be used profitably when
expanding compactified notations:

Symbols,n,x;
CFunctions,Pochhammer;
Nwrite statistics;
Local expr =
Pochhammer (x,4) ;
repeat;
id,Pochhammer (x?7,0) = 1;
id,Pochhammer (x?,n?)=x*Pochhammer (x+1,n-1);
endrepeat;
print;
.end

expr =
X"4 + 6%xx73 + 11*%x"2 + 6%Xx;

It should not be difficult to use the above example to figure
out what the definition of the Pochhammer function is.
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If x? (with x a symbol) can pick up any argument that isn’t an
index or vectorlike, how then do we pickup these other arguments?
The answer should be clear: with indices and vectors. There are
some subtleties though:

Indices,mu,nu,alfa,beta;
Vectors,p,q,r,s;
CFunction,f;
Nwrite statistics;
Local,expr =

f (mu,p+q) ;
id,f(mu,r?) = f(r,mu);
print;
.sort

expr =
f(p + q,mu);

id,f (nu?,mu) = f(mu,nu);
print;
.end

expr =
f(mu,p) + £(mu,q);

In this example we see that in the first substitution r replaces
the vectorlike argument p+q. In the second substitution we have
an index wildcard. This indicates to FORM that if a vector is
found in this position its occurrence is due to the compactified
notation for summed over indices. Therefore there must have been
an index at this position and the composite vector was outside
the function. So the function must be linear in this argument and
this property is used. Therefore we have two terms in the output
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rather than f (mu,p+q). If the user doesn’t want this linearization
he should use a wildcard vector.

At times it is very useful to have a single wildcard for a group
of function arguments, regardless the number of arguments that
is involved. Such a wildcarding is also available. There are 10
wildcard variables that can serve as such. On the left hand side
they are indicated with one to 10 question marks. On the right
hand side they are used with one to 10 dots in succession. Three
dots match the variable with three question marks. Below is a
very simple example:

Symbols,a,b,c;

CFunctions,f,g,h;

nwrite statistics;

Local,expr =
f(a)+f(a,b)+f(a,b,c);

id £(77) = g(..)+h(..);

format 50;

print;

.end

expr =
g(a) + g(a,b) + g(a,b,c) + h(a) + h(a,b) +
h(a,b,c);

We have used the variable with the two question marks, so on
the right hand side we need the variable with the two dots. We
can see here clearly that any argument field has been good for a
match, independent of the number of arguments. It is of course
possible to make much more meaningful examples:

Indices,ml,m2,m3,m4,m5,m6,m7,m3;
Symbols,al,a2,a3,a4,ab,a6,a7,a8;
CFunction,M;
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nwrite statistics;

Local expr =
+ M(m1,m2,al) * M(m3,m4,a3)
* M(m5,m6,a5) * M(m7,m8,a7)
* M(m2,m3,a2) * M(m4,m5,ad)
* M(m6,m7,a6) * M(m8,m1,a8);

repeat;
id,M(m1,m27,77)*M(m27,m37,777)

= M(m1,m3,..,...);

endrepeat;

format 50;

print;

.end

expr =
M(ml,ml,al,a2,a3,ad,ab,a6,a7,a8);

We have used M as a matrix of which the first two arguments
indicate the row and the column, and the rest of the arguments
indicate dependencies. Assuming that we are summing over all the
indices we want to write the whole expression as a single trace.
Now this argument field wildcarding comes in very handy. Any
product that has the proper common index is strung together,
independent of what the other arguments are, and independent
of how many there are. There are some limitations of course:
There may be only one argument field wildcard per occurrence
of a function in the left hand side, because if there were more of
them inside a single function the matching becomes at the best
inefficient and at the worst ambiguous. This kind of wildcarding
can be used for nearly any type of function. Only the built in
functions d_, e- and g_ are excluded from this rule. d. is the
Kronecker delta, e_ is the Levi-Civita tensor and g- is the gamma
matrix (see later in this manual).
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There is one type of wildcarding which is currently forbid-
den: patterns like f (a+x?) are not allowed. Allowing wildcarding
inside composite function arguments can become so complicated
that no attempt has been made to implement it thus far. This
rule holds also for elements of composite denominators and of ex-
ponent functions that cannot be evaluated immediately, due to a
noninteger power.

There is one more simple pattern which can also be wildcarded.
If we substitute just a vector, all the occurrences of this vec-
tor inside vectors-with-arguments, dotproducts and the special
functions e_ (Levi-Civita tensor) and g_ (gamma matrices) are
replaced:

Vectors,p,q,r,s;
Indices,mu,nu;
CFunction,h;
nwrite statistics;
Local expr =
p(mu) *p.qg+e_(p,q,mu) +h(mu,p);
id p = (r+s)/2;
print;
.end

expr =
1/4*r(mu) *q.r + 1/4*r(mu)*q.s + 1/4*s(mu)*
q.r + 1/4*s(mu)*q.s - 1/2*%e_(q,r,mu) - 1/2%
e_(q,s,mu) + h(mu,p);

The example shows that all p’s were substituted except for the
one inside the argument of the function h. It is also possible to
use p? in the left hand side of the id-statement. This is rarely
useful though.
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The last example is more for fun. We see here a new type of
instruction though. When an instruction starts with the character
# it is meant for the preprocessor. The preprocessor deals with
the input before the actual algebraic part of FORM gets to see
it. We will see more examples of preprocessor instructions in later
sections. Here we see the do-loop: a capacity that allows us to
repeat a given number of input lines. These lines may include any
type of statements, including end-of-module statements. The user
should try the following example by himself:

CFunction o;
Local 0O = o;
#do i = 1,9
id,o(??) = o0(o(..),..);
#enddo
print;
.end

Before running it one should make a file named ‘form.set’ with
the following lines in it:

LargeSize O

ScratchSize 17000
MaxTermSize 17000
WorkSpace 130000

The keywords in this file should start in column 1. This file
allows FORM to choose a different layout of its buffer space that
is more suitable for this problem. With these parameters one can
have the do-loop in the program deal with up to 10 repetitions.
The result is an example of a fractal in the shape of a formula.
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2.5 Sets and wildcarding

The wildcarding we have seen thus far involved wildcards that
would match any variable of the right type. This is often more
than that we want. To avoid such general nature there are two
ways. 1: write many statements without wildcards, so that only
those objects that we want to replace are indeed replaced. 2: In-
troduce a new type of variables that are called ‘sets’ which contain
elements with which the wildcard is allowed to match. This sec-
ond way is clearly superior as long as we can introduce an elegant
notation for it.

Symbols a,b,c,d,e,f;

Set half:a,c,e;

CFunction H,M;

nwrite statistics;

Local expr =
H(a)+H(b)+H(c)+H(d)+H(e)+H(f);

id, H(a%half) = M(a);

print;

.end

expr =
H(b) + H(d) + H(f) + M(a) + M(c) + M(e);

Each set has to be declared and per statement one can only
declare one set. The set has a name which should be followed by
a colon after which there follow the elements. All elements must
be of the same type. For the type of the elements commuting
functions and noncommuting functions are considered to have the
same type. The commutational properties are considered to be
secondary variations. In the id-statement the name of the set is
appended to the question mark. This means that a?half must be
an element of the set ‘half’.
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How great a help these sets can be becomes clear once we try
to integrate some complicated expressions.

nwrite statistics;
Symbols  x,n,y, [log(x)],dx;
Set fromx:x,[log(x)];
Local expr =
(x+[log(x)]1)"2;
*
* Now we want to integrate:
*
multiply,dx;
id,select,fromx,dx*x"n? = x~(n+1)/(n+1);
id,select,fromx,dx*x " n7*[log(x)] =
x~ (n+1) / (n+1)*([Llog(x)]1-1/(n+1));
id,select,fromx,dx*x" n7*[log(x)]"2 =
x"(n+1)/ (n+1)*([log(x)]1"2-2%[log(x)]/(n+1)
+2/(n+1)72);
print;
.end

expr =
1/3%x73 + x"2%[log(x)] - 1/2%x"2 + xx*
[log(x)]~2 - 2xx*[log(x)] + 2%x;

The select option of the id-statement shows us several things.
1: id-statements can have options. 2: They are inserted between
the id and the left hand side. The ‘select’ should be followed by
the names of one or more sets. The substitution will be made only
if no elements of the sets that were mentioned are left as individual
elements. This last thing means that individual powers of symbols
cannot be left, but if the symbol is an argument of a function it
can be left. This restriction may be lifted in future versions. In
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the current example it forced us to write the log(x) as a symbol,
using the notation with the straight braces.

The advantage of the select option is here that we don’t have
to worry so much about the order of the statements. Had we not
used this option, then the answer would have been different:

nwrite statistics;
Symbols  x,n,y, [log(x)],dx;
Set fromx:x,[log(x)];
Local expr =

(x+[log(x)]1)"2;
multiply,dx;
*

* Don’t use ‘select’

*
id,dx*x"n? = x"(n+1)/(n+1);
id,dx*x"n7*[log(x)] =

x"(n+1)/ (n+1)*([log(x)]1-1/(n+1));
id,dx*x"n7*[log(x)]"2 =
x"(n+1)/ (n+1)*([Log(x)]"2-2*[log(x) ]/ (n+1)
+2/(n+1)"2);
print;
.end

expr =
1/3%x"3 + x"2x[log(x)] + x*[log(x)]"2;

This answer is wrong. In this case we would have to be metic-
ulous about the order of the statements:

nwrite statistics;

Symbols  x,n,y, [log(x)],dx;
Set fromx:x,[log(x)];

Local expr =
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(x+[log(x)]1)"2;
multiply,dx;
*
* Don’t use ‘select’
*
id,dx*x"n7*[log(x)]"2 =
x"(n+1)/ (n+1)*([Log(x)]"2-2*[log(x) ]/ (n+1)
+2/(n+1)72);
id,dx*x"n7*[log(x)] =
x"(nt+1)/(n+1) *([log(x)]1-1/(n+1));
id,dx*x"n? = x" (n+1)/(n+1);
print;
.end

expr =
1/3*xx"3 + x"2x[log(x)] - 1/2%x"2 + x*
[log(x)]"2 - 2xx*[log(x)] + 2%x;

When the integrations become more complicated it may be-
come very difficult to keep track of the proper order of the state-
ments, hence the ‘select’ option.

During the wildcarding sets can also be used a little bit as
arrays:

nwrite statistics;
Symbols al,a2,a3,bl,b2,b3,x,n;

Set aa:al,a2,a3;
Set bb:bl,b2,b3;
CFunctions gl,g2,g3,g;

Set gg:gl,82,g3;

Local expr =
g(a1)+g(a2)+g(a3d)+g(x);

id,g(x%aaln]) = gglnl (bb[nl);
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print;
.end

expr =
gl(bl) + g2(b2) + g3(b3) + g(x);

The notation is here that x must belong to the set aa and
that n becomes the number of the element in the set to which x
matched. This number can then be used in the right hand side
as if it is a normal symbol or to indicate an element of a set.
No arithmatic can be done to compute other elements of a set as
would be the case in bb[n+1]. If the user would like such a thing
he should define another set of which the elements are shifted by
one.

Array elements can also be used with a numerical argument
in the input. In that case one should realize that the counting of
array elements starts at one:

nwrite statistics;

Symbols al,a2,a3;

Set aa:al,a2,a3;

CFunction g;

Local expr =
g(aal1])+g(aal2])+g(aal3]);

print;

.end

expr =
glal) + g(a2) + g(al);

This can be of importance when we use preprocessor variables

like the do-loop parameter to indicate set elements. More about
this later.

FORM 45



Tutorial Sets and wildcarding

There is another way to map the elements of one set onto those
of another set:

nwrite statistics;

Symbols al,a2,a3,bl,b2,b3,x;
Set aa:al,a2,a3;

Set bb:bl,b2,b3;
CFunction g;

Local expr =

g(al)+g(a2)+g(al);
id g(x7aa?bb) = g(x);
print;
.end

expr =
g(bl) + g(®2) + g(b3);

The wildcarding x7aa?bb means that x must belong to the
set ‘aa’ and in the right hand side each occurrence of x will be
replaced by the corresponding element of ‘bb’. The sets ‘aa’ and
‘bb’ must have the same number of elements or there will be an
error message.

When the array elements are used during wildcarding the array
element should be indicated by a symbol. This symbol can also
be used for more wildcarding action in the same statement:

nwrite statistics;

Symbols al,a2,a3,b1,b2,b3,x,y,n;

Set aa:al,a2,a3;

Set bb:bl,b2,b3;

CFunction g,h;

Local expr =
h(al)*b1~3+h(a2)*b2"2+h(a3) *b3;

id h(x7aa[n])*y?bb[n] "n? = g(x,y)*n;
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print;
.end

expr =
g(al,bl)*b17°2 + 2xg(a2,b2) + h(a3)*b3;

In the first term n becomes 1 and so only one power of bl can
be absorbed. In the third term there aren’t enough powers of b3 to
allow a match. Note also that x and y have kept their traditional
identity, even though we could have obtained their contents as the
array elements aa[n] and bb[n].

Finally we’ll have a look at a more realistic example of the
differentiation of a class of functions of a single symbolic variable:

nwrite statistics;
Symbol x,y,n;
CFunctions sin,cos,exp,g;
Functions [sin], [cos], [-sin], [exp],f,dx;
Set commuting:sin,cos,exp;
Set noncommuting: [sin], [cos], [exp];
Set  derivative: [cos], [-sin], [exp];
Local expr =

x"3*(sin(x)+cos(x)*exp(x));

Make noncommuting functions.
The order is unimportant.

* ¥ ¥ ¥

id g?commuting?noncommuting(x) = g(x);
multiply,left,dx;
*
* Now the derivative of the functions
*
repeat;

id,dx*g?noncommuting[n] (x) =
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derivative [n] (x)+g(x) *dx;
id, [-sin] (x) = -[sin] (x);

endrepeat;
*
*  The derivative of the polynomial part
*
id dx*x"n? = n*x"(n-1);
*
* Back to the regular functions:
*
id f7noncommuting?commuting(x) = f(x);
print;
.end

expr =
3xsin(x) *x72 - sin(x)*exp(x)*x~3 + cos(x)*
x"3 + cos(x)*exp(x)*x7~3 + 3*cos(x)*exp(x)*
X"2;

Procedures of this kind can be made once for a class of prob-
lems and then stored in a library file. These library files are man-
aged by the preprocessor, so we will see more about them in the
section on the preprocessor.
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2.6 Manipulations with expressions

From now on we have modified the environment slightly by means
of a setup file. The default is now not to print the statistics.

Now we have seen some of the basics operations it is time to
study the expressions in more detail. There are several types of
expressions. We saw already the local expressions. The other
type consists of global expressions and those come again in two
varieties: the active global expressions and the stored global ex-
pressions. Global expressions serve two purposes: they can be
used with a parameter field and they can be stored and saved for
future programs. Let us make some simple examples:

Symbols a,b;

Global F(a,b) = (a+b)"4;
print;

.store

F(a,b) =
a“4 + 4*%a”3xb + 6*%a"2*%b”"2 + 4*a*xb”3 + b74;

Symbols c,d;
Local G = F(c,d);
print;

.end

G =
c”4 + 4xc”3%d + 6%c”2%d"2 + 4*c*d”"3 + d74;

The .store indicates an end of the module. The formula for F
is worked out and then, before continuing with the next module
FORM does some cleaning up. All local expressions are removed
from the system. The global expressions are stored away in the
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storage file. Then all declarations made undone. To this last
action there is an exception as we will see pretty soon. In our
example F is put in the storage file. From now on F cannot be
modified any more. It can be used however in the definition of new
expressions. When this is done the type of the parameters must
match the types in the definition of F exactly. Even the replace-
ment of either ¢ or d by a number is not allowed. This should not
be a serious limitation as a symbol can be replaced rather easily
by a number or any other expression in an id-statement.

The use of F isn’t restricted to the definition of new expres-
sions. F can also be used in the right hand side of id-statements or
at any other place were formulae like those right hand sides can be
used. FORM doesn’t know about the contents of an expression,
so when powers of expressions are used FORM will never use the
binomial expansion. There could be noncommuting objects after
all.

Saving the results of a computation for a future run is done
with the ‘save’ statement. Its syntax is rather simple. It needs a
file name and possibly one or more names of stored global expres-
sions. If no names are mentioned all stored expressions are saved
into the file with the given file name:

Symbols a,b;

Global F(a,b) = (a+b)"4;
print;

.store

F(a,b) =
a4 + 4*%a”3xb + 6*xa"2%b”"2 + 4*a*xb”3 + b74;

save simple.sav;
.end

In the above case the file ‘simple.sav’ is created and the stored
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expression F is put in it. If there were already a file by the name
‘simple.sav’ its contents would be lost.

We can use the results of the above computation with the
‘load’ statement. This statement has the same syntax as the ‘save’
statement. When an expression is loaded it is put in the storage
file and it gains the same status as an expression that would have
been stored in the current program:

Load simple.sav;
F loaded

Symbols c,d;

Local G = F(c,d);

print;

.end

¢ =
c™4 + 4xc”3*d + 6*c”2%d"2 + 4*cxd"3 + d74;

Note that FORM tells which expressions were loaded. This
gives the user some idea of what other expressions reside in the
same file. In the future there will be an ‘audit’ command to give a
precise layout of the expressions in a file, and a list of all variables
that are used in them.

Global files are stored together with a list of all there variables
that are actually used in them. When the expression is used
as part of a new expression these namelists are also read and
compared with the currently active namelists. If there is a conflict
there may be either a warning or an error message, depending
on how serious the conflict is. If a variable doesn’t exist in the
current name tables it will be added by FORM and after the next
.sort the user can use these variables as if he had declared them
himself. It is safer though to not rely on this mechanism. Using
hidden properties can cause surprises and sometimes lead to quite
unexpected errors.
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On the other hand FORM removes all variables from the
namelists after a .store statement, so this would lead to many
repetitions of declarations. To avoid this there is the .global in-
struction. This instruction is used to construct a module that
contains only declarations. All declarations that are active at the
moment of a .global instruction are kept over a .store instruction:

Symbols a,b,c,d;
.global

Global F = (a+b)"2;
print;

.store

F =
a~2 + 2xaxb + b"2;

Local G = F;

Local H (c-d)"3;
print;

.end

a“2 + 2*axb + b72;

c”3 - 3*c"2%d + 3*cxd"2 - d73;

Here we used F without parameters. In the second part of the
program the properties of ¢ and d were still known, because all
symbols that we used were declared globally at the beginning.

When working on a large project it is often advisable to put
all declarations in a separate file:

Symbols a,b,c,d;
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Vectors p,q,r,s;
Functions f1,f2,£3;
CFunctions gl,g2,g3;

We have put these declarations here in the file ‘declare.h’ and
use it with the #include instruction:

#include declare.h
Local F = (a+b)~2;
print;

.end

The # indicates that the preprocessor should get busy. It opens
the file and treats its contents as if they were in the regular input
file. The output of the program will look like:

#include declare.h
Symbols a,b,c,d;
Vectors p,q,r,s;
Functions f1,f2,£3;
CFunctions gl,g2,g3;

Local F = (a+b)~2;
print;
.end

F =
a~2 + 2xaxb + b"2;

This allows for a rather convenient continuity. It can also be
that the user doesn’t want to see the contents of an ‘include file’.
To mask a part of the input for the listing mechanism one may
insert the instructions #- for turning the listing off and #+ for
turning the listing on. We can give the file ‘declare.h’ now the
contents:
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#_

Symbols a,b,c,d;
Vectors p,q,r,s;
Functions f1,f2,£f3;
CFunctions gl,g2,g3;
#+

after which the job produces the following output:

#include declare.h
#_

Local F = (a+b)~2;
print;
.end

F =
a“2 + 2*axb + b72;

The listing of #- warns the user that part of the input is not
shown in the output.

The above shows what can be done with expressions in a global
sense. There are however many more things that can be done
locally. The now following holds both for local and for global
expressions. The only difference between local and global expres-
sions lies in what happens with them when a .store instruction
is executed. Also local expressions cannot have parameters, but
neither can the parameters of a global expression be used before
the expression has been stored.

Once an expression has been defined it can be used in the
right hand side of another expression or an id-statement. This is
preferably done after a .sort instruction but this is not necessary.
The difference is merely a matter of economy. When it is done
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before a .sort instruction the occurence of the expression in the
right hand side is replaced by the definition of the expression. So:

Symbols a,b,c;

Local F = (a+b+c) "4-ax(a+b+c)~3

- b*(atb+c) "3;
Local G = F * F;
write statistics;

.end
Time = 0.15 sec
F
Time = 4.75 sec
G

Generated terms
Terms left
Bytes used

Generated terms
Terms left
Bytes used

35
10
210

1225
28
618

is much more time consuming than needed, because the com-
putation of G is performed before the cancellations inside F have
taken place. The proper way is:

Symbols a,b,c;

Local F = (a+b+c) "4-ax(a+b+c) "3

- bx(a+b+c) " 3;
write statistics;
.sort

Time = 0.14 sec
F

Local G = F * F;
.end

FORM

Generated terms
Terms left
Bytes used

35
10
210
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Time = 0.18 sec Generated terms = 10
F Terms left = 10

Bytes used = 210

Time = 0.42 sec Generated terms = 100
G Terms left = 28

Bytes used = 618

Occasionally we use an expression, like F in the above exam-
ple for an intermediate result only. We don’t need it any more
after some steps. It would be wasteful to keep carrying it around,
possibly making all kinds of substitutions on it, because we make
substitutions on the other expressions. One way out would be to
declare the expression(s) that used F to be global expressions and
then issue a .store instruction. This isn’t very elegant. The better
way is to used the ‘drop’ statement. When this statement is used
the expression can still be used in the current module, but after
the next .sort (or .store) instruction the expression doesn’t exist
any more. Its name is available again. In the above job we would
use it as follows:

Symbols a,b,c,d,e;

Local F = (at+b+c) 4-ax(a+b+c)”3
- bx(at+b+c) " 3;

write statistics;

.sort
Time = 0.18 sec Generated terms = 35
F Terms left = 10
Bytes used = 210
Drop F;
Local G = F * F;
.end
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Time = 0.44 sec Generated terms = 100
G Terms left = 28
Bytes used = 618

Note that F doesn’t appear in the final statistics any more. It
cannot be acted upon any more in the second module, because
it is dropped. It is allowed to mention more than one expression
in a single drop statement. What also occurs frequently is the
simultaneous treatment of several expressions. At some point one
would like to make some substitutions in some of the expressions,
but not in others. One can inactivate an expression for the range
of a module with the ‘skip’ statement. The expression is still
available for the use in a right hand side, but no operations are
performed on it in the current module:

Symbols a,b,c,d,e;
Local F = (a+b)"3;
Local G (a+b)"4;
id b = c+d;

.sort

skip F;

idd =b - c;
.sort

id a = e;

print;

.end

F =
c™3 + 3%c”2*%d + 3*%c"2xe + 3xc*kd"2 + 6%ckd*xe + 3
*c*xe”2 + d73 + 3*xd"2*e + 3*d*e”2 + e73;

G =
b"4 + 4%b"3*e + 6xb"2%e”2 + 4xb*e”3 + e74;
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In this case the id-command ‘d = b - ¢’ was executed only
in the expression G. This is rather evident in the output. Also
the ‘skip’ statement can have more than one expression in its
parameter field.

The final property of expressions is slighty more involved but
it can be very useful. It has to do with the control over the
output format of an expression. Often the display of the output
becomes much clearer when there are some variables taken outside
parentheses. This can be obtained with the bracket statement:

Symbols a,b,c,d,e;
Local F = (a+b+c)~6;
Bracket a;

print;
.end

F =
+ a6 *x (1)
+ a’6 *x ( 6%xb + 6%c )
+ a™4 * ( 15%b"2 + 30%b*c + 15%c”2 )
+ a”3 * ( 20%b~3 + 60*b"2*c + 60*bxc”2 + 20%

c"3 )

+ a2 * ( 15%b~4 + 60*b~3*c + 90*b"2*xc"2 + 60%

bxc~3 + 15%c”4 )

+ a * ( 6%b"5 + 30%b~4*c + 60%b"3*c"2 + 60%b"2
*c"3 + 30*bxc”4 + 6%c”5 )

+ b"6 + 6*xb"5*c + 15%b"4*c”2 + 20%b~3*%c”3 + 15
*b"2*xc"4 + 6xb*c”5 + c76;

It is possible to mention more variables in a single bracket
statement. All occurrences of all variables in the bracket state-
ment are taken outside parentheses. There can however be only
one bracket statement per module. If there is more than one,
only the last one is relevant. The bracket statement is only active
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for the module in which it is defined and influences not only the
screen representation, but also the way in which the expression is
kept over the .sort or the .store instruction. This enables the user
to refer to the contents of the brackets:

Symbols a,b,c,d,e;

Local F = (a+b+c)~6;

Bracket a;

.sort

drop F;

write statistics;

Local G = 8*F[a~2]"2 - 15*xF[a]*F[a"~3];
Local H = F[1];

print;

.end
Time = 0.41 sec Generated terms = 49
G Terms left = 0
Bytes used = 2
Time = 0.43 sec Generated terms = 7
H Terms left = 7
Bytes used = 134

G = 0;

H =

b"6 + 6*%b~5*c + 15%b"4*c”2 + 20*%b~3*c”~3 + 1bx%
b"2*xc”4 + 6xb*c”5 + c76;

One refers to the contents of a bracket in the expression F
by placing the part that is outside the brackets enclosed in square
braces after the name F. The part that has nothing outside brack-
ets is refered to as F[1]. This feature can be very useful when
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solving equations. This is shown in the next example in which we
have two linear equations in three variables. We make these into
one equation in two variables:

Symbols a,b,c,x,y,z;

Local E1 = (at+b) "2xx+(b+c) "2*y+(c+a) "2xz;
Local E2 = (a-b) "2xx+(b-c) "2xy+(c-a) "2xz;
Bracket z;

.sort

drop E1,E2;

Local F1 = E1xE2[z] - E2*E1[z];

Bracket x,y;

print;
.end
F1 =
+ x * ( 4%a”3%b - 4*a”3*c - 4xaxb"2xc + 4d*axb*
c™2 )
+ y * ( 4*%a”2%bxc - 4*xa*xb"2%c - 4xakxc”3 + 4xb*
c"3);

We have multiplied the first equation (we assume that E1 and
E2 are equal to zero) by the coefficient of z in the second equation
and vise versa. The difference doesn’t contain z any more.

When a bracket statement is used before a .store instruction
the global expressions are put in the storage file with the brack-
eting active. If such an expression is saved one can use the brack-
eting even in a later program.
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2.7 The superstructure of the prepro-
cessor

The preprocessor of FORM is a program unit that manipulates
the input before it is offered to the compilation and execution
units. Anything that is done by the preprocessor has therefore no
direct influence on the terms of an expression. It is merely there
to allow the user to write his programs in a more concise and less
laborious way. As such it is a rather autonomous unit with its
own calculator, its own if instruction that is entirely different from
the if statement that works on the level of terms (which we will
encounter later). There are two types of preprocessor commands.
Of the first type we know nearly everything already. These are
the commands that start with a period. They are .end, .sort,
.store, .global and .clear. The last command is for very special
use only so the user is refered to the more detailed chapter on the
preprocessor if he wants to know more about it. It was built in
merely to have a convenient way to make sure that all examples of
the manual will run flawlessly. The other preprocessor commands
start with a hash mark (#) and are refered to as instructions.
Finally there are the comment lines. They are filtered out by the
preprocessor after printing them in the output (unless the listing
of the input has been turned off). In this section we will study
the # instructions.

Before we start to look at any examples we should get ac-
quainted with the preprocessor variables. Their names are com-
pletely independent of the names of the other variables in the
program. One can therefore have the regular variable ‘i’ and the
preprocessor variable ‘i’. The difference lies in the use. When a
preprocessor variable is defined it is refered to plainly by the char-
acters of its name but when it is used its name is enclosed between
single quotes. This last convention makes it possible to concate-
nate regular strings of characters and preprocessor variables to
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form larger strings of characters:

Symbols al,a2,a3,a4,ab;
Local F =
#do i = 1,5

+ a)i)“)i) )i)
#enddo
print;
.end

F =
al”11 + a2722 + a37"33 + a4744 + ab~b5;

The above is a good example of that the preprocessor manip-
ulates the input only. It generated five lines which are then seen
by the rest of FORM as the body of the right hand side of the
defining statement of F. The method of having a loop parameter
compose names of variables is very useful and can make many a
long input much shorter. It becomes even more powerful with the
mini calculator which allows for rather primitive computations.
The object {’i’+1} is a string that can be used in the same
way as i’ but its interpretation as a number is one larger than
'i’. When these curly brackets are used the preprocessor variables
inside are interpreted as (short) integer numbers, the necessary
computations are performed and the result is transformed back
into a string. The calculator knows parentheses, addition, sub-
traction, multiplication, division (integer division with rounding
toward zero) and modulus ( a%b is the modulus of a with respect
to b). If the string between the curly brackets contains any ille-
gal characters after the preprocessor variables have been inserted
—legal are only 0-9, +, -, *, /, %, ( and )— an error message will
be issued and execution will be halted immediately. There will be
no further checking of the input for errors. This holds for most of
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the errors against the preprocessor syntax, because those errors
can really mess up the input.

Local FO = 1;

Local F1 = 1;

#do i = 2,10
.sort

drop F{’i’-2};
skip F{’i’-1%};
Local F’i’ = F{’i’-2}+F{’i’-1};

print;
#enddo
F2 = 2;
F3 = 3;
F4 = 5;
F5 = 8;
F6 = 13;
F7 = 21;
F8 = 34;
F9 = b5;
.end
F10 = 89;

The above uses the preprocessor to generate the Fibonacci
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sequence rather efficiently. We have kept no more expressions in
memory than necessary by dropping whatever isn’t needed any
more. Note also that the contents of the loop were only printed
the first time. These contents are even printed for a so called zero
trip loop, ie. a loop that isn’t executed due to the values of its
parameters.

A preprocessor variable can also be defined directly in a ‘define’
instruction:

#define MAXVAL "10"
Symbols

#do i = 1,°’MAXVAL’
a’i’

#enddo

Local F =

#do i = 1,’MAXVAL’
+ {2%x(7i°%2)-1F * a’i’
#enddo

print;

.end

F =
al - a2 + a3 - a4 + ab - a6 + a7 - a8 + a9 -
alo;

The above example composes the necessary declarations and
then sets up a sequence in a number of variables. This is all
a function of a single parameter MAXVAL. The ‘value’ that is
assigned to a preprocessor variable is a string, enclosed between
double quotes. This way the string may contain nearly any legal
characters that can occur in a FORM program. In particular
MAXVAL could even be an entire set of statements! In the above
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example we used a string that had also a numerical interpretation,
enabling us to use it as a cutoff for a do loop. There is another
novelty in this little program, although it is well hidden: The
object {2x(?1°%2)-1} becomes either +1 or -1. In the first case
there is no problem as it is inserted as the string 1. In the other
case it is inserted as the string -1 leading to the string +-1 in the
input. FORM will accept strings of plusses and minusses. The
combined result will be plus if there is an even number of minusses
and minus if there is an odd number of minusses.

The opposite of the ‘define’ instruction is the ‘undefine’ in-
struction. It has only a single argument which should be the
name of a preprocessor variable without the single quotes. This
variable is then removed from the list of preprocessor variables.

Let us now turn our attention to the do loop. The loops we
saw thus far had two parameters after the equals sign. The first
is the start value and the second is the last value for the loop
parameter. In this case the increment is taken to be one. If the
user prefers a different increment he should specify its value as a
third parameter:

#define MAXVAL "10"
Symbols

#do i = 1,’MAXVAL’,3
a’i’

#enddo

Local F =

#do i = 1,’MAXVAL’,3
+ {2x(’1°%2)-1} * a’i’
#enddo

print;

.end
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F =
al - a4 + a7 - al0;

It is also allowed to use negative values for any of the three
parameters. The main restriction is that they must be short in-
tegers. For most computer systems this means that their value
must be in the range -32768 to 32767. The same holds for the
evaluation of preprocessor quantities inside the curly brackets.

There is a second type of do loops that has symbolic values
for its loop parameter, rather than numerical values. This type of
loop is called a listed loop:

Symbols e,mu,tau,u,d,s,c,b,t,W,Z,h,gamma;

CFunction V;

Local Vac =

#do i = {e,-1|mu,-1|tau,-1|
u,2/31d,-1/31s,-1/31c,2/3]
b,-1/31t,2/3|W,1|Z,0|h,0|gamma, 0}

+ V(i)

#enddo

print;

.end

Vac =
V(e, - 1) + V(mu, - 1) + V(tau, - 1) + V(u,2/3)
+V(d, - 1/3) + V(s, - 1/3) + V(c,2/3) + V(b,
-1/3) + V(£,2/3) + V(W,1) + V(Z,0) + V(h,O0)
+ V(gamma,0) ;

The parameter field is enclosed by curly brackets and the pa-
rameters are separated by the straight line symbol |. This way
it is possible to use nearly any character inside these parameters
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without fear of premature interpretation of the character. If a
character like the straight line is to be used it should be preceeded
by a backslash character (\).

The next preprocessor feature is the if instruction. It is fol-
lowed by a single expression without parentheses, and if this ex-
pression is true the lines till the matching else or endif instruction
are processed. If the condition is false and there is an else instruc-
tion then the lines after it till the matching endif are processed:

Symbols a0,al,a2,a3,a4,ab,a6;
Local F =
#do i = 0,6
#if {’i°%3} == 0
- a)i)
#telse
+ a’i’
#endif
#enddo
print;
.end

- a0 + al + a2 - a3 + a4 + ab - a6;

There can be only one conditional after the #if If more of
them are needed one should consider using nested if instructions.
This restriction may be lifted in future versions. The conditions
that can be used may contain:

= OQr ==
To indicate equality.
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To indicate inequality.

>
To indicate ‘greater than’
<
To indicate ‘less than’
>—
To indicate ‘greater than or equal’
<=

To indicate ‘less than or equal’

So the above program could just as easily have been:

Symbols a0,al,a2,a3,a4,ab,a6;

Local F =

#do i = 0,6

#if {’1°%3} >=1
+ a’i’

#else

- a)i)

#endif

#enddo

print;

.end

- a0 + al + a2 - a3 + a4 + ab - a6;

The final major feature of the preprocessor concerns proce-
dures, or stored sequences of instructions and statements. These
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procedures are very much like macro’s but in their use they can
often look like dynamically linked subroutines. Procedures can be
defined either at the beginning of the file in which the program
itself is, or in a separate file. This file must then have the name of
the procedure and the extention .prc so that FORM can pick it up
during run time. Let us first concentrate on the procedures that
are defined in the text of the current program. Our differentiation
program of section 5 can now be rewritten as a procedure:

#procedure diff (x,dx)

id g7commuting?noncommuting(’x’) = g(’x’);
multiply,left,’dx’;

repeat;

id, ’dx’*g?noncommuting[n] (’x’) =
derivative[n] (°x’)+g(°x’)*’dx’;
id, [-sin] (°x’) = -[sin] (°x’);

endrepeat;

id ’dx’*’x’"n? = nx’x’"(n-1);

id f?noncommuting?commuting(’x’) = £(°x’);
#endprocedure

*

* The following statements could be part of a
* standard include file:

*

Symbol x,y,n;
CFunctions sin,cos,exp,g;
Functions [sin], [cos], [-sin], [exp],f,dx;

Set commuting:sin,cos,exp;

Set noncommuting: [sin], [cos], [exp];

Set  derivative: [cos], [-sin], [exp];

*

* And now the program:

*
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Local expr = x~3*(sin(x)+cos(x)*exp(x));
#call diff{x|dx}

print;

.end

expr =
3*xsin(x) *x"2 - sin(x)*exp(x)*x~3 + cos(x)*x"3
+ cos(x)*exp(x)*x~3 + 3*cos(x)*exp(x)*x~2;

The procedure starts with the #procedure instruction which
has the formal parameters listed as in any ‘normal’ computer lan-
guage. These parameters become then preprocessor symbols. The
use of these parameters is entirely according to the rules that hold
for preprocessor variables. The procedure is terminated with the
#endprocedure instruction. The whole procedure is then available
for repeated use. Of course we still need the complicated dec-
larations, but as the commentary says they should be part of a
standard include file. The final program is now very short. The
procedure is invoked with the #call instruction. The parameters
obey the same rules as the parameters in the listed loop. If there
is a mismatch in the number of parameters FORM will issue an
error message and terminate execution immediately.

The eventual version of our differentiation program should
have the procedure in a file ‘diff.prc¢’ and the declarations in the
file ‘diff.h’. The declaritions of x,y and dx can be kept outside
this file. So ‘diff.h’ contains:

#_

Symbol n;
CFunctions sin,cos,exp,g;
Functions [sin], [cos], [-sin], [exp],f;
Set commuting:sin,cos,exp;
Set noncommuting: [sin], [cos], [exp];
Set  derivative: [cos], [-sin], [exp];
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#+
The program and the output become now:

#include diff.h
#_

Symbol y;

Function dy;

Local expr = y~3*(sin(y)+cos(y)*exp(y));
#call diff{yldy?}

print;
.end

expr =
3xsin(y)*y~2 - sin(y)*exp(y)*y~3 + cos(y)*y~3
+ cos(y)*exp(y)*y~3 + 3x*cos(y)*exp(y)*y~2;

Note that there is no reason to keep calling our variables ‘x’
and ‘dx’ as they are entirely formal parameters. When the user
starts constructing this kind of differentiation procedures to his
own whishes he should try to avoid using simple names like n,f
and g for the internal variables of a procedure. This could easily
lead to conflicts with variables that he may choose to use outside
his procedures.

Procedures, do-loops and include files may be nested. Together
with the nesting of preprocessor variables there can be a fixed
(installation dependent) maximum to this nesting, just as there
is a maximum to the number of preprocessor variables. If any
of these restrictions becomes an obstacle they can be altered by
the setting of some parameters in a file named the setup file. Its
default name is ‘form.set’. More about this file and the parameters
that can be set with it is found in the chapter on the setup file.

FORM 71



Tutorial The superstructure of the preprocessor

This chapter is rather technical though. The beginning user will
rarely run into these restrictions so he doesn’t need to bother.

As we have seen before the listing of the input can be turned off
with the #- instruction and turned on again with the #+ instruc-
tion. The default is that the input is listed and also the contents of
the include files that are read at the ‘ground level’. The contents
of do-loops are listed only the first time. The contents of proce-
dures are not listed unless a #+ instruction is inserted. This will
never make the #procedure instruction visible because that must
be the first line of a procedure. It is possible to make the contents
of a loop visible each time the loop is executed by including the
#+ as its first instruction.
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2.8 Flow control

In one of the earlier sections we saw the if instruction of the pre-
processor. It can determine whether a set of statements is present.
These statements will then be executed for all active expressions.
Sometimes it is handier to have some statements only executed
for a subset of the terms of the active expressions. For that there
is the if-statement. This is a fulfledged statement with composite
conditions, a possible else and an endif statement. As all state-
ments it has to be terminated by a semicolon:

Symbols a,b,i,j;
CFunction g;

Local F = g(i)*b + g(j)*b;
if ( match( g(j) ) > 0 );

id b = a;

endif;
print;
.end

F =
g()*b + g(j)*a;

The above is a simple example of how one term gets selected
for the substitution statement. The condition that caused the
selection deserves some study. FORM has its attention focused
on a single term when it encounters the if-statement. Therefore
the condition can only contain questions about the contents of
this single term. There are of course a whole many things that
one can ask about the contents of a term. In the current version
of FORM three basic ‘questions’ have been implemented. They
are:
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match

Match is a function of which the argument can be any legal
left hand side of an id-statement, including possible options
like the select option we saw before. The ‘id’ is not present
and neither is the equals sign. The return value of this
function is the number of times that the given pattern can
be taken from the term. In the above example the first term
has a value of zero for match(g(j)), while the second term
returns the value one.

count

The count function is for power counting. Its power counting
includes vectors and functions. This function has pairs of
arguments. For each pair the first argument is an object like
a symbol, a function, a vector or a dotproduct. The second
argument is a numerical value which is added to the ‘count’
for each occurrence of a positive power of the object, and
subtracted from the power for each occurrence of a negative
power. Dotproducts are handled as symbols in the sense
that FORM will not look at the individual vectors that
make up the dotproduct. Vectors are kind of special as they
can occur in so many different ways as we will see shortly.
The returned value is the accumulated ‘count’.

coeflicient
This function has no arguments (even the parentheses are
not allowed). It returns the value of the coeflicient of the
term.

In addition the conditions may contain numbers like the zero
in the above example. The count function is mostly used for
powercounting purposes as in the next example:

V pl,p2,p3,p4,k;
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I mu,nu;
Local F =
+(p1 (mu) +k (mu) ) * (p2 (mu) +k (mu) )
*(p3(nu) +k (nu) ) * (p4 (nu) +k (nu) )
*(1/k.k+1/k.p1-1/k.p2-1/pl.p2);
if ( count(k,1) > 0 );
discard;
endif;
print;
.end

pl.p2*pl.k"-1%p3.p4 + pl.p2*pl.k"-1*p3.k +
pl.p2*pl.k"-1*%p4d.k - pl.p2*p2.k"-1*p3.p4 -
pl.p2*p2.k"-1*%p3.k - pl.p2*p2.k"-1*pd.k + pl.p2
*p3.p4*k.k"-1 + pl.p2*p3.kxk.k"-1 + pl.p2*xp4.kx*
k.k"-1 + pl.p2 - pl.kxp2.k"-1*p3.p4 + pl.kx*
p3.p4*xk.k"-1 + pl.k*p3.k*k.k"-1 + pl.k*p4d.kx*
k.k™-1 + pl.k™-1xp2.k*p3.p4 + p2.k*p3.pd*k.k"-1
+ p2.k*p3.k*k.k"-1 + p2.k*p4.k*k.k"-1;

If we take the above expression F and then assume that the
vector k is so small that any term that has effectively one or more
positive powers of k can be ignored we can trow those terms away
as was done in the above program. The function count does the
power counting for us and if there is a positive count the discard
statement is executed. This statement is very simple: It throws
the term away!

The above examples could still have been programmed without
the use of the if-statement (but with more work and less clarity
though). For the next one this isn’t possible.

S a,b,i,j;
Local F = sum_(i,0,4,a"i/fac_(1))
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*sum_(j,0,4,b"j/fac_(3));
if ( coefficient < 1/100 );
discard;
endif;
print;
.end

F =
1 + 1/48*a"4xb~2 + 1/24*a~4*b + 1/24%a"~4 + 1/36
*a"3*b"3 + 1/12*a"3%b"2 + 1/6*a"3*b + 1/6*a"3
+ 1/48%a"2%b"4 + 1/12*%a”2*b"~3 + 1/4*a~2*xb"2 +
1/2*xa~2xb + 1/2%a"2 + 1/24*a*xb”4 + 1/6*%a*xb”~3 +
1/2*%a*b”2 + a*b + a + 1/24%b"4 + 1/6%xb"3 + 1/2%
b"2 + b;

The function fac_ is the built in factorial function. It is eval-
uated immediately when its argument is a nonnegative integer.
With the if-statement we have placed a cutoff on the size of the
coefficients in our expression.

The operators that are recognized in the conditions are the
same as in the preprocessor if-instruction:

To indicate equality.
To indicate inequality.
To indicate ‘greater than’

To indicate ‘less than’
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>=
To indicate ‘greater than or equal’

To indicate ‘less than or equal’

Contrary to the preprocessor if, the if-statement can have com-

posite conditions:

Symbols a,b,i,j;

Local F = sum_(i,1,4,a"i)*sum_(j,1,4,b7j);

if ( ( ( match(a) > 2 ) && ( match(b) <=2 ) )
[l ¢ ( match(b) > 2 ) && ( match(a) <=2 ) )

);
discard;

endif;
print;
.end

F =
a"4xb"4 + a"4xb”"3 + a"3*b"4 + a“3%b"3 + a"2%b"2
+ a“2%b + axb”2 + axb;

To allow the composition of these conditions there are some

extra operators:

&&

To indicate a logical ‘and’.

To indicate a logical ‘or’.

FORM (s



Tutorial Flow control

Each element of the composite condition must be enclosed be-
tween parentheses, as the built in rules for evaluation are strictly
from left to right. There is no hierarchy among the operators!

The most complicated part of the if-statement is the handling
of the vectors in the count function. Vectors can occur as loose
vectors with an index, as part of a dotproduct, contracted with a
function argument that was an index and as a regular (not neces-
sarily linear) function argument. There are of course even more
ways but those cannot be considered at all by the count function.
It is possible to differentiate between the various occurrences:

Vectors k1,k2,k3,k4,k5;
Functions f1,f2,f3,f4;
Set fff:f1,£2,£3;

count (k1+v,1,k2+d,-1,k3+f,2,k4+vd,-1,k5+7fff,-2)

The above count function has the following result:

e The vector k1 has count-value one and is only counted when
it occurs as a loose vector with an index.

e The vector k2 has count-value -1 (the countvalue must al-
ways be an integer). It will only be counted when k2 occurs
inside a dotproduct.

e k3 will only be counted inside one of the two special built
in functions that are known to be linear in all its vector
arguments, since these arguments are actually indices that
were contracted with the index of a loose vector. These two
special functions are e_ (the Levi-Civita tensor) and g_ (the
Dirac gamma matrix).

e k4 will be counted when it occurs either as a loose vector or
inside dotproducts (options can be combined).
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e k5 will be counted when it occurs as an argument of one of
the functions in set ‘fff’. The user indicates with this nota-
tion that those occurrences of kb are due to the contraction
of an index. There are no provisions to differentiate between
the properties of different arguments.

It is allowed to let one object occur more than once in the
argumentlist of the count function. The effects are cumulative.

The if statement can be nested to 10 levels deep. Also the
bracketting to construct ‘subconditionals’ as in the example with
the logical ‘ands’ and ‘if’ is bound to 10 levels. In practice this
rarely causes problems. Inside the body of an if-statement (or its
else part) there cannot be end-of-module instructions. The whole
range of the if-statement must be part of a single module.

When there is an if-statement there is also use for labels and
goto statements. This enables the user to set up any type of loop
that he likes, or (more often) to save on much typing work:

if ( count(a,1,b,-1) > 0 );

id a2 = 1;
if ( count(c,1,d,-1) < 0 );
goto 1;
endif;
else;
if ( count(a,1,d,-1) > 0 );
label 1;
id --——- very long set of statements-----
else;
id a/d = 1;
endif
endif;

In the above example we could have avoided the use of labels.
It served more as a demonstration of the fact that it is allowed
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to jump inside the range of an if-statement. When constructing
loops it is harder (or even impossible) to avoid labels and goto’s:

label 1;

————— a number of statements
if ( count(a,1,b,2) > 5 );
goto 1;

endif;

The above is a makeshift constructing that imitates a do-while
loop. The while loop is made with:

label 1;
if ( --condition-- );

---statements-—--

goto 1;
endif;

There is a number of restrictions with respect to labels. A
goto statement and its corresponding label must be in the same
module. The labels have a number that may range from 0 to 20.
The labels are reusable in the sense that a label that has been
used in one module can be used again inside the next module. It
is not allowed to use the goto statement to jump into the range
of a repeat statement.
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2.9 Special objects and commands

Thus far we have seen most of the general capacities of FORM.
Occasionally we saw a special function like the functions sum- or
e_. Here we’ll have a look at what other built-in objects are cur-
rently available. We will make one exception though: everything
that has to do with gamma matrices is kept for the next section.

In addition to the function sum_ there is the function sump..
This is a summation function which has a slightly different rule
for the elements of the sum. The last argument of sum. is the
formula for each term in the sum. In sump_ the last argument is
the quotient of the i-th term in the sum divided by the (i-1)-th
term. The normalization is such that the first term in sump_ is
always one:

Symbols x,1i;

Local F = sump_(i,0,5,x/1i);
Local G = sump_(i,3,5,x/1);
print;

.end

F =
1 + 1/120%x"5 + 1/24*x"4 + 1/6*x"3 + 1/2%x"2 +
X;

¢ =
1+ 1/20%x72 + 1/4%*x;

The properties of sump_ are demonstrated best with the ex-
pression ‘G’. The first term is always one, so that takes care of
i =3. Thei = 4 term is then x/4 times the i = 3 term, and
the i = 5 term is x/5 times the i = 4 term. This is very handy
for expansions that look like exponential expansions as is shown
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with expression ‘F’. There should be a word of caution. If the
last argument in sump_ contains more than one term and the sum
contains a large range of ‘i’ then the evaluation can become very
timeconsuming. There is no intermediate evaluation of the ele-
ments in the sum. This means that if the last argument contains
two terms and the sum contains 21 elements the evaluation of the
last element in the sum involves 1048576 terms!

Symbols x,y,1;
Local F = sump_(i,0,10,x/i+y);
write statistics;

.end
Time = 16.12 sec Generated terms = 2047
F Terms left = 66
Bytes used = 1258

There are two types of delta functions. The first type is the
delta with two indices which serves as a metric tensor. Its symbol
is d_ and its use is in the field of vector and tensor algebra. When
one of its indices is contracted with an index elsewhere in the term
the d_ can be removed:

Indices mu,nu;

Vector v;

Local F = v(mu)*d_(mu,nu);
print;

.end

F =
v(nu) ;

When the d- function has two identical indices and they are
to be summed over the d_ can be replaced by the dimension of
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the space in which these indices are defined. This has been shown
already in an earlier section.

The other delta function is indicated by the string ‘delta.’
and it should have either one or two arguments. If it has one
argument the function is replaced by one if the argument is zero
and it is replaced by zero if the argument is unequal to zero. If
the argument is still symbolic the function is left as is:

Symbols x,y,z,n;

Function f;

Local F = f(x) + f(y) + f(z)*x;
id £(z?) = f(z)*delta_(z-y);

id x"n? = delta_(n);

print;

.end

F =
f(x)*delta_(x - y) + £(y);

The delta_ with the argument y-y has been replaced by one. In
the second substitution the delta_(1) has been replaced by zero.
When the delta_ has two arguments the rules are very similar.
If the arguments are equal the delta_ is replaced by one. Are
the arguments numeric and unequal then the delta_ is replaced
by zero. If the arguments are unequal and at least one of the
arguments is still symbolic the delta. is left untouched:

Symbols x,y,z,n;

Function £f;

Local F = f(x) + £(y) + f(z)*x;
id £(z?) = f(z)*delta_(y,z);

id x"n? = delta_(n,0);

print;

.end
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F =
f(x)*delta_(y,x) + £(y);

As one can see: the effect is quite the same. FORM doesn’t
try to symmetrize the delta_ with two arguments. The exchange
of the arguments of delta_ would be identical to a change of sign
in the delta. with one argument. There are cases in which this
isn’t called for.

The next special function is the theta function theta_. Again
this function can have either one or two arguments (for a larger
number of arguments the special properties are not applied). If it
has a single argument and this argument is numeric the theta_ is
replaced by zero if this argument is negative and by one otherwise.
If the argument is still symbolic the function is left untouched.
With two arguments the function is looked at from a symmetriza-
tion viewpoint. If symmetrization would require the arguments to
be exchanged the function is replaced by zero. If the arguments
are already in the proper order the function is replaced by one.

Symbols x,y,n;
CFunction g;
Local F = g(x,4);
repeat;
id g(x,n?) = x"n + g(x,n-1)*theta_(n);
endrepeat;
print;
.end

F =
1 +x74+x"3+x"2+x+ x7-1;

The above shows one of the main uses of the theta_ function:
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the cutoff on the definition of recursion relations. Note that the
cutoff becomes only active when n is negative!

We have seen the factorial function already. It is represented
by fac_ and a single argument. If this argument is a nonnegative
integer FORM will replace the function by the corresponding fac-
torial.

The next interesting quantity is the symbol i_. It is the basic
imaginary quantity, so its square is -1. Currently complex vari-
ables can be declared and FORM knows the difference between
a complex symbol and its complex conjugate (e.g. x and x#).
Complex conjugation hasn’t been built in yet. Therefore the user
is advised to use real objects only and use a notation of the type
a+i_xb when he has to use complex arithmatic.

Symbols x,y;

Local F = (x+i_x*y)~2;
print;

.sort

F =
2%i_xx*y + x72 - y©2;

idi_ = -i_;
print;
.end
- 2%i_xx*y + xX72 - y©2;

The id statement that is used here serves as a poor mans com-
plex conjugation. The variable i- can be used for many things
where an ordinary symbol can be used. It is illegal to use it as a
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wildcard. If it is used in the power of an object this power should
be enclosed by parentheses to avoid possible confusion.

There is a set of indices with a numerical value which has been
built in. These are called the ‘fixed indices’. Normally their value
can be any number from zero to 127 inclusive. If the user wants to
change this range he should consult the chapter on the setup file.
These fixed indices have special properties. They are considered
to be nonsummable, i.e. a repeated use of such an index is not
seen as a summation over this index. If such an index occurs twice
in the same d._ function the d_ function is replaced by one (this is
the default value). This value can be changed with the ‘FixIndex’
statement:

Symbol a;

FixIndex 1:-1, 2:6;

Local F = d_(0,0) + d_(1,1)*a + d_(2,2)*a"~2;
print;

.end

F =
1 + 6xa”"2 - a;

The syntax is rather clear: There are pairs of numbers. The
pairs are separated by comma’s. Inside a pair the numbers are
separated by a colon. The first number of the pair is the number
of the index and the second number is the value that FORM
should insert when this index occurs twice inside the same d..
When a d- function occurs with two different fixed indices it is
replaced by zero. This implicates that if the user would like to
introduce a metric tensor that is offdiagonal he should define his
own function for it.

There is a special statement for partial fractioning. It isn’t as
powerful as it should be yet, but in most cases the user can use
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some simple commands to bring his formulae in such a shape that
the ‘ratio’ statement can deal with it. The ratio statement has
three symbols as its arguments. The fractions are the first two
arguments and the third argument should represent the difference
of the second and the first argument. Formally this yields:

Symbols a,b,c;
Local F = 1/a/b;
ratio,a,b,c;
print;

.end

F =
a"-1*%c™-1 - b™-1*c™-1;

In practice this is rather cumbersome to read and very error-
prone. The notation that allows the use of square braces to enclose
a name was invented to avoid this notational problem:

Symbols [x+al, [x+b], [b-al,x,a;
Local F = 1/[x+al/[x+b];

Local G = x"3/[x+a] "2;

ratio, [x+a], [x+b], [b-a];
ratio,x, [x+al,a;

print;

.end

F =
[x+a] "-1*[b-al -1 - [x+b] " -1x[b-a]"-1;

G =
3x[x+a] "-1*a"2 - [x+a] " -2*a"3 + x - 2%*a;

This time it is rather easy to read what is happening, even
though we are still manipulating only symbols. The ratio com-
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mand becomes active when at least one of the first two symbols
in its parameter field occurs with a negative power in a term and
the other is also present with some power. It should be noted that
the answer of a partial fractioning operation isn’t always unique.
This can be seen in the answer for G. Rather than x-2xa it could
also have contained [x+a]-3*a. Such ambiguity will only occur
with positive powers, so it is rather easy to correct for it with
straight forward substitutions.

The last statements we will discuss here concern argument
fields of functions. Currently only the properties of the built in
functions are known to FORM. This means that FORM can take
the antisymmetry of the Levi-Civita tensor into account. The user
can force the symmetrization or the antisymmetrization of the ar-
gument field of a function with the ‘symmetrize’ or the ‘antisym-
metrize’ statement. The simplest form of these commands is with
a single argument: the function to be acted upon:

Symbols x,y;

CFunction g;

Local F = g(x,y)+g(y,x);
symmetrize g;

print;

.end

F=
2xg(x,y);

These commands have several options that can be found in the
chapter on functions.
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2.10 Numbers and statistics

Till now we have tacitly assumed that all coefficients and powers
that we used would cause no problems whatsoever. In practice
computers are finite so there will always be limitations. In addi-
tion there are the ‘voluntary’ limitations belonging to the language
of FORM. The main limitation of this type is that FORM does
its arithmatic either over the rational numbers or over a finite
field in which the arithmatic is modulus a positive integer num-
ber. The absence of floating point numbers is experienced by some
as a shortcoming, but FORM is neither a program for numerical
evaluation, nor a ‘mathematicians workbench’. It is a program for
the manipulation of formulae, and just as the user would, during
the manipulation stages of his computations, give the transcen-
dental numbers a name like pi, he can do so in FORM. For the
numerical evaluation stages he can use any of the languages that
are designed for computations like fortran or pascal.

Under ordinary circumstances the rational arithmatic is purely
for coefficients. Also the arguments of functions can be rational
numbers. The limitation on the size of the numerator and the de-
nominator is 2'600 in most implementations of FORM. For most
applications this will be more than enough. In future versions it
will be possible to alter this maximum size, using the setup file.

The arithmatic rules for the coefficients can be switched to
modular arithmatic with the ‘modulus’ statement:

modulus 7;

Symbol a;

Local F = 20*%a + 21*a”2 + 22*xa"3 + 1/5*%a"4;
print;

.end

F =
3*%a"4 + a”3 + 6%*a;

FORM 89



Tutorial Numbers and statistics

The above modulus command forces all arithmatic to be taken
modulus 7. This means that also fractions will be converted to
integers. So is 1/5 the integer that, if multiplied by 5, will give
1. This happens to be 3 in the above example. Note also that all
numbers are converted to the positive range.

In addition to the regular arithmatic the modulus command
can also control the limitation of powers by means of the Fermat
formula that P = x when arithmatic is modulus p:

modulus 7;

Symbol a;

Local F = 20*%a”™-5 + a~12;
print;

.end

F =
a“6 + 6%*a;

If the user doesn’t like the powers to be reduced like this he
should specify a negative number in the modulus command:

modulus,-7;

Symbol a;

Local F = 20*%a”™-5 + a"12;
print;

.end

F =
a“12 + 6*%a”-b5;

Note that the comma between ‘modulus’ and ‘-7’ is necessary
as a blank space is now not converted to a comma automatically
(it shouldn’t before the - sign!). Now we know what to do with the
positive and the negative values in the modulus statement there
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is only one value left unspecified: zero. The statement ‘modulus
0’ sets arithmatic back to the rational numbers. The modulus
statement has the same status as the other declarations. A .global
instruction makes it into a global declaration.

The modulus command has one more option. If the number
in the modulus command is followed by a colon and a second
number all coefficients will be printed as a power of this second
number. For this to be possible this second number has to be a
‘generator’ which means that its powers must generate all possi-
ble numbers. These powers have to be stored in a table, so the
amount of available memory may put a limitation to the size of
the modulus:

Symbol x;

modulus 7:3;

Local F = x + 2%x72 + 3*%x"3
+ 4*%x74 + b*xx"5 + 6%x76;

print;

.end

F =
373%x"6 + 375*%x"5 + 374*x74 + 371%x"3 + 372%x"2
+ X;

There exist more manipulations with the powers of symbols.
When a symbol is declared it is possible to specify a range of
powers for it. In that case only powers inside this range will be
admitted. All other powers will be considered to yield zero:

Symbols x(-4:4),y(:5),z(-5:);

Local F = (1/x+x)76 + (1+y) " 6*xy~2
+ zx(1-1/z)"10;

print;
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.end

F =
10 + 6*x"4 + 156xx72 + 16*x"-2 + 6%x"-4 + 20*y~5
+ 16xy~4 + 6xy~3 + y"2 + z + 45%z"-1 - 120%
z7-2 + 210%z7-3 - 252%z"-4 + 210%z"-5;

A range is specified between parentheses after the name of
the symbol. The minimum power and the maximum power are
separated by a colon. If either is absent then the default minimum
or maximum is substituted. This is at least +/-10000, but the
exact value depends on the implementation. A power which is
greater than the default value (or less than minus the default
value) results in an error message because this default value is
also used when no range of powers is specified.

Many numbers in FORM are restricted to be so called ‘short
integers’. The exact range of values that these integers can take
is implementation dependent. It is at least -32768 to +32767.
An example of such integers is the value that one may specify in
the fixindex statement. The dimension statement takes positive
‘short integers’. The preprocessor arithmetic is also restricted to
short integers. This arithmetic is independent of the settings of
the modulus command.

Until now we have seen small programs only. Whenever we
printed the statistics of a run there was always only one message
in the statistics for each expression. When the programs become
bigger the run time statistics may become a little bit more con-
fusing too. In the following program some of the parameters of
FORM were set in the file form.set so as to illustrate all possibil-
ities in one ‘little’ program:

Vectors pl1,p2,p3,p4,p5,p6,p7,p8;
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Local F = e_(pl,p2,p3,p4,p5,p6,p7,p8)
* e_(pl,p2,p3,p4,p5,p6,p7,p8)

contract;
.end
Time = 20.33 sec Generated terms
F Terms left
Bytes used
Time = 42.00 sec Generated terms
F Terms left
Bytes used
Time = 64.99 sec Generated terms
F Terms left
Bytes used
Time = 88.11 sec Generated terms
F Terms left
Bytes used
Time = 111.22 sec Generated terms
F Terms left
Bytes used
Time = 125.30 sec
F Terms active
Bytes used
Time = 148.91 sec Generated terms
F Terms left
Bytes used

FORM

>

5289
2651
148052

10530
7028
398314

15788
11281
641010

21061
15538
883316

26320
19833
1128394

17712

1006330

31579

22060
1254330
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Time = 172.29 sec Generated terms = 36841
F Terms left = 26441
Bytes used = 1503974
Time = 188.25 sec Generated terms = 40320
F Terms left = 29382
Bytes used = 1671784

Time = 205.86 sec
F Terms active = 25739
Bytes used = 1629768
Time = 245.73 sec Generated terms = 40320
F Terms in output = 18155
Bytes used = 1024118

In this program we compute a large 8 by 8 Gram determinant.
Actually in this program we compute only the number of terms in
the output, because we throw the output away after the program
is finished. Because we have an 8 by 8 determinant we have to
generate 8! terms. After 5289 terms however FORM prints spon-
taneously some statistics. It does so every time one of its buffers is
filled. It sorts this buffer and writes the results to another buffer.
This is what happens the first four times. The fifth time its also
sorts the first buffer, but now the second buffer is full, so the re-
sults of the sort cannot be written. FORM sorts now the second
buffer and writes the results to file. On home computers one may
now note some disk activity. As this operation doesn’t involve
the generation of new terms this part has not been mentioned in
the new statistics that describe how much is left after the sorted
results of the second buffer have been written. Now there is space
again in the second buffer, so FORM continues. It finishes gen-
eration. It then sorts the contents of the second buffer and writes
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this also to file. The final sort is the merger of two or more parts
in the sort file (the third stage sort). There is now a very intensive
disk activity and the speed of the disk has a measurable effect on
the running time here. Finally the last statistics show the overall
results.

It would of course have been easy to suppress all these statistics
and print only the final statistics. Many users prefer the regular
printout of intermediate statistics. This allows them to monitor
what is happening and to see whether things take an undesired
direction.

There are currently only three stages in the sort. In the third
stage the number ‘stage 2 results’ that can be merged is limited to
a number that is implementation dependent. On small computers
this is at least 32, while on larger computers it should be at least
64. Coupled to the size of the buffers it is usually sufficient to
swamp the available disks, so the run would be terminated earlier
anyway. In a future version even this limitation will be lifted with
a fourth stage sort. The advanced user can play around with
the parameters that influence this sorting. He should however
take very good notice of the correlations that exist between the
various parameters as explained in the chapter on the setup file.
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2.11 Dirac matrices

This section of the tutorial contains information that is particular
to some fields of physics and mathematics. The person who isn’t
interested in Dirac gamma matrices should skip this section with
having ill feelings that he may have missed something.

FORM has the Dirac gamma matrices as built in functions
with the name g_. It knows some properties of these matrices
and it has some commands to take the trace of a string of these
matrices. In addition there are some extra names gi_, g5_, g6- and
g7_ to make some operations more compact.

Indices ml1,m2,m3,m4;

Local F = g_(1,m1)*g_(1,m2)*g_(1,m3)*g_(1,m4)
+ g_(1,ml)*g_(1,m2)*g_(1,m3);

print;

.sort

F =
g_(1,m1,m2,m3,m4) + g_(1,m1,m2,m3);

trace4,1;
print;
.end

F =
4xd_(m1,m2)*d_(m3,m4) - 4*d_(ml1,m3)*d_(m2,m4)
+ 4%d_(m1,m4)*d_(m2,m3) ;

We see the gamma matrices in expression F with a first ar-
gument that must be an index an is in the above case a 1. This
index is there to indicate a ‘spin line’. Matrices of a different spin
line commute with each other and have nothing to do with each
other when a trace is taken. When the output is printed we see
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that all matrices were raked together into a single g_ function.
This is done when no other noncommuting functions are between
the matrices. Otherwise there may be more of those strings of
matrices. After the printing the ‘trace4’ command was issued for
spin line 1. The trace4 command evaluates the trace of all gamma
matrices with spin line 1 in each term. They are taken into one
string regardless of whether there are noncommuting functions in
between. The user must take care that any possible conflicts are
resolved before he issues a trace command. The trace4 statement
forces the trace to be taken in 4 dimensions. It uses tricks that are
particular to 4 dimensions, allowing a rather fast evaluation of the
trace. In the above example it means that the string with three
gamma matrices is removed because its trace is trivially zero. The
trace of the four gamma matrices gives its canonical form. There
is a second trace statement: ‘tracen’ which takes the trace in an
unspecified dimension (which looks rather much like 4 though).
In the above example this would not have made much difference.
It does in the following example:

Symbol n;

Index mil;

Vectors pl.p2;

Local F = g_(1,m1)*g_(1,pl)*g_(1,m1)*g_(1,p2);
trace4,1;

print;

.sort

- 8*pl.p2;
drop F;

Index mé4=n;
Local G = g_(1,md)*g_(1,pl)*g_(1,m4)*g_(1,p2);
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tracen,1;
print;
.end

G =
8xpl.p2 - 4x*pl.p2*n;

Note that replacing n by four makes G equal to F. In general
the 4 dimensional trace algorithms are more compact. When there
are contracted indices it is possible to apply the Chisholm iden-
tities. It is also possible to use reduction formulae in the Dirac
algebra because the exact structure of the algebra is known. In
n dimensions things are necessarily somewhat vague, so many of
these handy algorithms are not allowed.

The use of the axial matrix 75 is allowed. Its symbol is gh_
and it has only the spin line index. If it is inserted directly in a
string of gamma matrices it can be put in as 5_. In addition there
are the matrices 74 = 1 + 5 and 7 = 1 — 5. These can be used
as g6_and g7_or a 6. and a 7_inside a string of gamma matrices.
The unit matrix is gi- with just a spin line index.

Example: Muon decay.

Vectors pmu,pmuneutrino,pe,peneutrino;
Indices ml,m2;

Symbols emass,mumass;

write statistics;

Local M =
g_(1,pmuneutrino)*g_(1,m1)*g7_(1)
*(g_(1,pmu) +mumass)*g_(1,m2) *g7_(1)
*(g_(2,pe)+emass)*g_(2,m1,7_)
*g_(2,peneutrino)*g_(2,m2,7_);

trace4,1;
trace4,?2;
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contract 0;

print;
.end
Time = 0.19 sec Generated terms = 13
M Terms left = 1
Bytes used = 26
M =

256*pmu.peneutrino*pmuneutrino.pe;

The above program computes the matrix element for the decay
of a muon into an electron, a muon neutrino and an anti electron
neutrino. There are two spin lines and we have used the Fermi
four point interaction. In the second spin line we have put the
~v7 together with the other gamma matrix of the vertex in one
string of gamma matrices. Because there are two strings we have
to issue two trace commands. After this there may be terms with
Two Levi-Civita tensors, so we contract those. The final answer
is the familiar result that can be found in many textbooks.

In some cases one would like to have gamma matrices that
don’t have a spin line index but rather the two indices that indi-
cate that it is a matrix in spinor space. It is rather easy for the
user to define such a function himself. To convert a string of such
matrices into a string of gamma matrices so that its trace may be
taken isn’t very difficult:

Vectors pl,p2,p3,p4;

Indices ml1,m2,m3,m4;

CFunction g;

Local F = g(ml,m2,pl)*g(méd,m1,p4)
*g(m2,m3,p2) *g(m3,mé,p3) ;

repeat;
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id g(ml,m27,77)*g(m27,m37,777)
= g(ml,m3,..,...);

endrepeat;

print;

.sort

F =
g(ml,m1,pl,p2,p3,p4);

repeat;
id g(m1l,m1,m27,77) = g_(1,m2)*g(ml,ml,..);
endrepeat;
id g(ml,m1) = gi_(1);
print;
.sort

F=
g_(1,p1,p2,p3,p4);

traced,1;
print;
.end
F =
4xpl.p2*p3.p4 - 4*pl.p3*p2.p4 + 4*pl.pd*p2.p3;
The above program shows all techniques. First the function g
is used as the gamma matrices with two indices. The matrices are

raked together in one string that is clearly the trace of a product
of matrices. Now the easiest would be to use a command like:

id g(ml,m1,?77) = g_(1,..);

but alas this form of wildcarding cannot be used for the func-
tions d_, e_ and g_. Therefore we make a loop in which we pull
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out one gamma matrix at a time. It is essential that this is done
from the left. This way we get no problems with the fact that
the gamma’s are noncommuting functions. The noncommuting
functions are always to the left of the commuting functions when
FORM normal orders its terms. This produces indeed the de-
sired string of gamma matrices. After this it is easy to take the
trace. One should also note that we didn’t wildcard the index m1.
This enables us to select the matrices of a single spin line only. It
avoids that we mess up the matrices of two spin lines.

For more information about the gamma matrices and what
algorithms are used for taking the traces one should consult the
chapter on gamma matrices.
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Running FORM

On most systems FORM is invoked by typing the name of the
program file (usually form, but it could have a path in front of
it). After the name there may be some parameters. The set of
parameters is called the ‘command tail’. The last parameter is
usually the name of the file that is to be executed by FORM. Be-
fore this file name there may be some options. These options can
be given by their full name or a part of the name. Usually (except
for llog) the first character is already sufficient. The options are
case insensitive. They are:

-check

-log

This flag tells FORM to check the syntax of the program
only. It is mainly intended for long programs. By running
them first with this flag the user can avoid the unpleasant
situation of having the program abort on a syntax error near
the end of the program.

This flag should preceed the name of the file that contains
the input for FORM. Normally the output is either written
to the screen (not always a good idea if one likes to keep
a copy of the output) or to a file (via output redirection).
This last mode has the limitation that the user cannot see
how well the program is advancing. The -log option gives
the best of both by having FORM write the output both
to the screen and to a file of which the name is formed
by appending the extension .log to the name of the input
file. On some systems only one file extension is allowed. On
those systems FORM will strip the old extension first before
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appending the .log extension.

-llog
Same as -log, but only the last block of statistics is written
for each expression. This doesn’t affect the display of the
statistics on the screen.

-setupfile name

‘name’ is the name of a file with setup parameters. When
FORM begins execution it looks first whether there is a file
‘form.set’ in the current directory. If this is the case the -S
parameter is ignored, together with its file name. If there is
no file ‘form.set’ and if there is a -setup parameter FORM
will try to open the given file and take setup parameters from
it. The order in which parameters should be used enables
the user to define an alias for FORM that has a standard
setup file in it while still being allowed to use a local setup
file.

-tempdir pathname

The pathname should point to a directory in which FORM
should make its temporary files. On many systems it is
advisable to use a ‘tempdir’. If the temporary files are made
in one of the users directories their size may be restricted by
the file quota of the user. There is another way of passing
the name of a directory for temporary files to FORM. It is
described in the chapter on the setup file.

In addition there is the option ‘-interactive’. This option acti-
vates the interactive mode. In this mode FORM will take its in-
put from the keyboard rather than from an inputfile. This part of
FORM is the most sensitive to the type of computer it is running
on. Therefore the interactive mode has not yet been completed
properly, so it will only run with a handicap and the severeness
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of this handicap depends on the machine FORM happens to be
running on.
Example:

form -1 foo

This causes FORM to execute the program in file ‘foo’ The
output is written both to the screen and to the file ‘foo.log’.

On VMS systems the -’ that starts an option can be replaced
by the character ’/’. In addition all systems allow the use of ‘-
s=filename’ and ‘-t=pathname’ rather than ‘-s filename’ and ‘-t
pathname’.
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Command structure

FORM commands are grouped in modules. Each module is read
in and compiled. If there has been no error the module is executed.
A program can consist of as many modules as the user likes. Mod-
ules are terminated with a line in which the first relevant character
is a period. The period is followed by a keyword which indicates
the type of the module. The case of the characters of any key-
word in FORM is unimportant. The case is only important in the
names of variables and maybe in file names. This last sensitivity
is a function of whether the computer system on which FORM
runs is sensitive to the case of the characters. Most mainframes
are sensitive to it, while for instance MSDOS and derivates are
not.

Modules consist of statements or instructions. The number
of statements that is allowed in a module depends on the instal-
lation. It is influenced by several parameters that the user can
modify if these limitations restrict him. How this can be done
is explained in the chapter on the setup parameters. A typical
restriction is 100 statements with at most 32767 characters per
statement and no more than 50000 bytes in the compiled output
of the module.

A statement can be either a declaration, the setting of a flag or
an executable statement. All statements start with zero or more
blanks (or tabs) and a keyword. Statements must end with a semi-
colon and can extend over more than one line. Lines that have the
character * in column 1 are considered to be commentary. Also
all characters after a semicolon in a line are seen as commentary.
Many statements start with a keyword that is so general that a
part of that keyword is already recognized by FORM. Examples
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are L for Local, I for Index etc. The list of mandatory and optional
parts of the keywords is given in the chapter ‘List of commands’.

Blank space is relevant in FORM. Parameters in a declarative
statement may be separated either by white space (blanks, tabs)
or by comma’s. White space that is adjacent to an operator or a
bracket is ignored. So

L F (ab) =ax* b;
is read as:
L,F(a,b)=axb;

When arithmatic symbols are involved white space is irrele-
vant. This means that

L F(a-b)=ax*b;
is read as:
L,F(a-b)=axb;

Usually this is what the user wants. This is not the case in the
following:

modulus -5;
which is read as:
modulus-5;

and an error message will be given. The use of a comma is
necessary here:

modulus,-5;
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The built-in rules to separate relevant blanks from irrelevant
blanks are almost always in agreement with the intuitive expec-
tation. The one exception is encountered in the representation of
very long numbers or names. Because

L F = 12345678
901234567890

is read as:
L,F=12345678,901234567890;
One may ‘escape’ the end of line in the standard UNIX fashion:

L F = 12345678\
901234567890;

This will give the proper interpretation:
L,F=12345678901234567890;

Actually there is no need to start in column one in the second
line. After the backslash all spaces and tabs at the beginning of
the ‘continuation’ line are ignored, so

L F = 12345678\
901234567890;

would produce the same result.

Powers are indicated by the character A, but the string #x
is also accepted. Only symbols, dotproducts and subexpressions
may have powers which are implemented in a natural way. When
other objects have powers there can either be an ambiguity or the
object is placed inside the ‘exponent function’. This is a function
without a name and with two arguments. The second argument
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is the exponent. In simple cases FORM can expand the expo-
nent. For the rest its presence is tolerated and it can be printed.
Functions with powers are printed as a sequence of individual oc-
currences of the function. The same holds for vector components.

Apart from the ‘compiler’ commands there are the preproces-
sor commands. The preprocessor may operate on the code before
it is offered to the compiler. It is the preprocessor that tries to
interpret the blanks and replaces the string *x by A. In addition
there are several preprocessor instructions, each of which starts
with the symbol #, followed by a keyword. Such an instruction
may cause the definition of preprocessor variables, the duplication
of code in a range while substituting preprocessor variables in this
code, inserting the contents of a file and more. Preprocessor state-
ments are not terminated by a semicolon. They occupy either a
single line (which can be extended with the use of a backslash at
the end of the line), or a range which is enclosed by curly braces
(some statements only).

Preprocessor variables can be recognized easily as they must
be enclosed between single quotes when they are used. This allows
the user to concatenate the contents of preprocessor variables to
form longer strings. The exact preprocessor syntax can be looked
up in the chapter on the preprocessor. Mastering the preproces-
sors possibilities is important when one would like to take FORM
to the limits of its capabilities.

There are several conventions regarding the input and the out-
put. A vectorproduct is written as pl.p2 when pl and p2 are the
two vectors. The alternative is to write p1$p2 as FORM will use
this notation when writing output in Fortran format.

For contracted indices we use the Schoonschip notation. When
a vector is written at the position where an index is expected this
means that the index that would have been at that location was
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the same as the index of the vector, and that the index has been
summed over according to the Einstein summation convention.
This notation is also very useful in hand computations.
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Expressions

The main difference between numerical computations and formula
manipulations lies in the order of the action. In numerical compu-
tation one first computes all numbers that are needed to evaluate
the statement that leads to the final result. In computer alge-
bra things work exactly the opposite: A formula is defined, after
which operations on this formula may lead to a different formula.
One has to first define the relation that would have been used
last in the numerical computation, then introduce the next to last
relation and finally end with the relation that would be evalu-
ated first when working numerically. In other words: in numeri-
cal computation one starts with the components while in formula
manipulations one ends up with an expression that consists of
components.

* Define the expression F:

L F=a+ b;

* Give the values of a and b:
id a = 2;

id b = 5;

This would be in fortran:

a = 2;
b =5;
F =a+ b;

A formula is called an expression. Expressions are always de-
fined first, afterwhich the operations that work on these expres-
sions are introduced. So a module may consist of declarations,
definitions of expressions and operations on these expressions.
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Anywhere in the module there may be commentary and the set-
tings of run time parameters (like print flags, bracket information
etc). One should however realize that there are two types of ex-
pressions: Active expressions and Stored expressions. The
active expressions are the object of the operations. This means
that each operation is executed on each expression that is active
in the given module. A stored expression is an expression that
cannot be the object of operations any more, but its contents
can be used. The active expressions are again divided into two
classes: Local expressions and Global expressions. Local ex-
pressions are expressions that stay active till the next .store or
.end termination of a module. After the .store or .end instruction
has been executed these expressions are removed from the system.
The global expressions stay also active till the next .store or .end
statement, but after a .store instruction they are copied to a spe-
cial file, so that they may be used as stored expressions. They will
remain stored expressions for the rest of the program or until a
‘Delete Storage’ statement is encountered in which case all stored
expressions are deleted.

s a,b,c;

L F (at+b)"2;
id b=c- a;
write names;
print;

.sort

id a=b+ c;
print;

.store

write names;
print;
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.end

In this example F is declared to be a local expression that is
equal to (a+b)~2. The substitution b -> c-a is made and the
results are sorted and printed. In the next module the original
F is still an active expression and the substitution a -> b+c is
made. After this the expression is printed and forgotten (because
of the .store instruction). It is removed from all lists, so one is
allowed to reuse the name F for a different expression after the
.store as is done in this example.

s a,b,c;

g F = (a+b)"2;
write names;
.store

L G = Fx*F;
write names;
print;

.end

The expression F is declared to be global, evaluated and stored
after which itis removed from the list of active expressions. The
local expression G is defined and its definition uses the stored ex-
pression F. Finally G is evaluated and printed, after which the
program terminates. The above results could also have been ob-
tained in a simpler program:

s a,b,c;

L F = (a+b)"2;
write names;

.sort

drop F;

L G = Fx*F;
write names;
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print;
.end

In this case the expression F doesn’t have to be written away
as it stays a local expression. The drop statement inactivates F
for the current module and will remove it from all lists at the end
of the current module.

It is allowed to have more than one active expression. Only the
sum of all expressions that are currently in the namelists is subject
to restrictions. These limitations have a default value (typically
100 or 200) but they can be altered with the variable ‘Expressions’
in the setup file.

s a,b,c;
.global

L F1 = (a+b)"2;
L F2 = (a-b)"3;
id b = 2xb+c;
.sort

skip F1,F2;

L F3 = (a+c)~5;
.sort

skip F1,F2,F3;

L F4 = (a+b)~2;
L F5 = (a-b)"3;
id b = b+2x*c;
.sort

drop F1,F2,F3;

skip F4,F5;

L F6 = F1*F2-F3;
.sort

drop F4,F5,F6;

L h = F6*F4*F5;
print
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.end

The above example shows a useful technique: The parts of an
expression are evaluated separately and then the entire expression
is put together. This can often save much computer time. When
this technique is used the expressions are treated again like the
numbers in a Fortran program. The skip statement inactivates
the expressions that are mentioned in it for the current module.
This means that they can still be used in the right hand side of a
statement, but they will not be operated upon.

Often one may need only a part of an expression. A popular
example is formed by an expression that is quadratic in a given
variable (say x) and one needs to know the discriminant of the
expression. This can be done by bracketing with respect to the in-
teresting variable (see the chapter on brackets) and then referring
to the contents of the brackets using the notation of the straight
brackets ([ and ]). Whenever one refers to f[x~2] FORM will
substitute that part of f that has exactly x~2 outside parenthe-
ses. So if x~2*y would be outside parentheses the contents of that
bracket would not be part of the substitution.

s a,b,c,x,y,z,s,t,u;

.global

L F = a™2%b + b™2%c + c"2%a - 4xaxb*c;
id a=x+s - t;

id b=y+t-u;

id c=z+u - s;

b X;

print;

.sort

drop F;

L G = F[x]"2 - 4*xF[x"2]*F[1];
b Z;

print;
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.end

This program finds the discriminant of F which is a quadratic
form in x. As long as there are no built in instructions for solving
sets of equations this use of the contents of brackets can be very
profitable when solving equations. For example, if only x was
taken outside brackets when E1 and E2 were stored then:

E1xE2[x] - E2xE1[x]

gives a new equation that has no single x outside parentheses.
Expressions can have parameters. In the expression

S a,b,c,d;
G F(a,b) = (atb+c)"2;

the symbols a and b are treated as parameters, while the symbol
c is a fixed symbol. This is used as follows:

S a,b,c,d;

G F(a,b) = (a-b+c)"2;
print;

.store

L G = F(d,b);

print;

.end

In this program G becomes the formula (d-b+c)A2. There
are several restrictions when using these parameters. Parameters
must be either symbols, indices, vectors or functions. Currently
numbers and subexpressions are not allowed. This means that

L G = F((c+d),b);

will give an error message. Instead one should use:
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There must also be an exact match between the number and
the types of the parameters. An expression with a different num-
ber of arguments or different types of arguments is considered to
be an entirely different expression.

Only stored expressions can be referred to with parameters.
When an expression has been defined with parameters they only
become active during the storing process. FORM will read the pa-
rameters, independent of whether the expression has been stored,
but at the moment of substitution it will ignore them if the ex-
pression is still active.

Sometimes one would like to execute a number of operations
or substitutions on a subset of the currently active expressions.
For this purpose one may use the skip statement. It causes the
expressions that are mentioned in it to skip all activity in the
current module. They can however still be used in the right hand
side of another expression or a substitution. In addition there
is the drop statement. It causes the expressions that are given
in it to be skipped during the current module (they can still be
used in right hand sides) and when the module is completed the
expression is removed completely. The targets of the skip and
drop commands must be active expressions. Reference to a stored
expression will be ignored. Example:

S a,b,c,d;

L F1 = (a+b+c)"2;
L F2 = (a+b+c)~3;
L F3 = (a+b+c)4;
b a;

.sort
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skip F1,F3;

drop F2;

L F4 = F1*F3[a"2];
L F5 = F2xF3[a"3];
id c =d;

print;

.sort

print;

.end

In this example all expressions are local. First F1, F2, F3 are
defined and the powers of ‘a’ are taken outside parentheses. In
the next module these three expressions will not be acted upon.
F4 is the product of F1 and the contents of the aA2 bracket of F3.
F5 is something similar. The replacement ¢ = d is only made in
F4 and F5 and they are also the only expressions that are printed.
After the .sort F2 is removed from the system, so the final print
statement causes the printout of F1, F3, F4 and F5.

Finally there is a feature for interactive use (currently FORM
doesn’t operate very well in the interactive mode). The commands
‘local’ or ‘global” with just the names of expressions following will
alter the local or global properties of these expressions if they were
defined properly before.
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Variables

The objects of the symbolic manipulations are expressions. Ex-
pressions are built up from variables. FORM knows several types
of variables, each of which has special rules assigned to it. The
types of variables are symbols, vectors, indices, functions, sets
and expressions. The expressions are used either in the definition
of an expression or in the right hand side of an expression or a
substitution. When an expression is used in the right hand side
of another expression or a substitution it will be replaced by its
contents at the first opportunity. Therefore expressions will never
occur as a variable in the output of another expression and we
will further ignore their potential presence.

The right hand side of an expression can consist of symbols,
vectors, indices and functions. All these objects have to be de-
clared before they can be used. The rules connected to each of
these types of variables are described in the sections below. Sets
are collections of variables of the same type. They can be used
during wildcarding to indicate which object may match a wild-
card.

6.1 Names

There are two types of names. Regular names consist of alphabetic
and numeric characters with the condition that the first charac-
ter must be alphabetic. FORM is case sensitive with respect to
names. In addition there are formal names. These names start
with the character [ and end with the character ]. Inbetween
there can be any characters that are not intercepted by the pre-
processor. This allows for the use of variables like [x+a]. Using
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formal names can improve the readability of programs very much,
while at the same time giving the user the benefits of the greater
speed. The use of denominators that are composite (like 1/ (x+a))
is usually rather costly in time. Often 1/ [x+a] is equally readable
while leading to the same results. Note however that the variable
[x+a] will have to be declared properly.

Some names may contain special characters. All built in ob-
jects have as their last character an underscore (-). Dotproducts
(the scalar product of two vectors) consist of two vectors sepa-
rated either by a period or a dollar sign. The dollar sign is used
by FORM when the output of the program has to be fortran com-
patible. The user may apply either notation. These conventions
avoid the possibility of conflicts with reserved names, allowing the
user full freedom in his choice of names.

The complex conjugate of a complex quantity is indicated by
the character # appended to the name of the variable.

The length of names is not restricted in FORM. There is one
exception to this rule: names of expressions cannot be longer than
16 characters. There is also a physical limitation with respect to
the length of names. The length of the ‘NameBuffer’ puts a limit
on the sum of all characters in all names. The use of this buffer
is explained in the chapter on the setup file.

6.2 Symbols

Symbols are plain objects that behave most like normal variables
in hand manipulations. Many hand manipulations concern poly-
nomial formulae of simple algebraic variables. FORM assumes
that symbols commute with all other objects and have a power
connected to them. This power is limited to an installation de-
pendent maximum and minimum. A power outside this range will
lead to an error message. The user may override this built in re-
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striction by one of his own that is more restrictive. Any power
that falls outside the user defined range leads to the removal of
the term that contains the variable with this power. Such a power
restriction can be defined for each symbol separately.

Symbols can also have complex conjugation properties. A sym-
bol can be declared to be real, imaginary or complex. This prop-
erty is only relevant when the complex conjugation operator is
used. This operator has not yet been implemented.

The syntax of the statement that defines symbols is given by:

S [ymbols] name [#{R|I|C}] [(min:max)];

Each variable is declared by the presence of its name in a
symbol statement. If the # symbol is appended it should be
followed by either the character C, I or R to indicate whether
the variable is complex, imaginary or real. The #R is not really
necessary, as the type real is default. It is not relevant whether
the C, I, R are in upper or in lower case. A power restriction
is indicated with a range between regular parentheses. If one of
the two numbers is not present the default value is taken. This
default value is installation dependent, but at least -10000 resp.
10000. Each symbol statement can define more than one variable.
In that case the variables have to be separated by either comma’s
or blanks. Example:

S X,y,2z,a#c,b#tc,cttc,r(-5:5),s(:20) ,t#1(6:9);

In this statement x, y and z are normal real algebraic variables.
The variables a, b and ¢ are complex. This means that for each of
these variables two entries are reserved in the property lists: one
for the variable and one for its complex conjugate. The variable
r has a power restriction: Any power outside the specified range
will cause the term containing this power to be eliminated. This
is particularly useful in power series expansions. The restrictions
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on s are such that there is no limitation on the minimum power of
s —with the exception of the built in restrictions— but a term with
a power of s that is larger than 20 is eliminated. The variable t is
imaginary. This means that under complex congugation it changes
sign. Its power restrictions are somewhat uncommon. Any power
outside the range 6 to 9 is eliminated. There is however one
exception: a term that doesn’t contain t to any power (V) is not
affected.

s x(:10),y;
L F=y~7;
id y=x+x"2;
print;
.end
Time = 0.51 sec Generated terms = 4
F Terms left = 4
Bytes used = 66
F =

35xx710 + 21*%x"9 + 7*x"8 + x77

Note that all terms with a power greater than 10 don’t even
count as generated terms, as they are intercepted immediately
after the replacement, before any possible additional statements
can be carried out.

6.3 Vectors

A vector is an object with a single index. This index represents
a number that indicates which component of the vector is meant.
Vectors have a dimension connected to them which is the dimen-
sion of the vector space in which they are defined. In FORM this
dimension is by default set to 4. If the user likes to change this
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default this can be done with the ‘Dimension’ statement. The
use of this command affects the dimension of all vectors and the
default dimension of indices. Its syntax is:

dimension number;
or
dimension symbol;

The number must be a number that fits inside a FORM word
which is an installation dependent size, but it will be at least
32767. The number must be positive. Negative values are illegal.
If a symbol is specified it must have been declared before. Any
symbol may be used with the exception of i_.

The declaration of vectors is rather straightforward:

Vlector] name [,MoreNames];

The names of the vectors may be separated either by comma’s
or by blanks. Example:

v P>q;
I mu,nu;
L F=p(mu) *q (nu) ;

6.4 Indices

Indices are objects that represent a number that is used as an
integer argument for counting purposes. They are used mostly as
the arguments of vectors or multidimensional arrays (or tensors).
Their main property is that they have a dimension. This dimen-
sion indicates what values the index can take. A four-dimensional
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index can usually take the values 1 to 4. A very important prop-
erty of an index is found in the convention that it is assumed that
an index that is used twice in the same term is summed over.
This is called the Einstein summation convention. So is the term
p(mu)*q(mu) equivalent to the scalar product of the vectors p and
q (which can also be written as p.q).

There are of course also indices that should not be summed
over. Such indices we call zero-dimensional. This is just a con-
vention. To declare indices we use the statement:

Index name[={number|symbol}]
[,othername [={number | symbol}]];

When the equals sign is used this indicates the specification of
a dimension. Indices that are not followed by an equals sign get
the dimension that is currently the default dimension (see also the
section on vectors). The dimension can be either a number that
is zero or positive (zero indicates that the summation convention
doesn’t apply for this index) or it can be any symbol with the
exception of the symbol i_. The symbol must have been declared
before.

The most important use of the dimension of an index is the
built in rule that a Kronecker delta with two the same indices is
replaced by the dimension of this index if this index has a nonzero
dimension. So when mu is 4-dimensional d-(mu,mu) will be re-
placed by 4 and when nu is n-dimensional d_(nu,nu) will be re-
placed by n. If ro is zero dimensional the expression d_(ro,ro) is
left untouched.

In addition to the symbolic indices there is a number of fixed
indices with a numeric value. The values of these indices runs
from zero to an installation dependent number (usually 127). If
the user likes a different maximum value he should consult the
chapter on the setup parameters. The numeric indices are all
assumed to have dimension zero, so no summation is applied to
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them. This means that they can be used for vector components.
It is therefore perfectly legal to use:

v pP,9,T;
L F=p (1) *q (1) *r(1)+p(2)*q(2)*r(2);

When two numeric indices occur inside the same Kronecker
delta a value is substituted for this delta. Normally this value is
one when the two indices are the same and zero when they are
different. The value for the diagonal elements can be changed
with the ‘FixIndex’ statement:

Fi[xIndex] number:value [,number:value];

This command assigns to d_(number,number) the given value.
This value must fit in a single FORM word. This means that
this value can at least be in the range -32768 to +32767. For
more details on the size of a FORM word one should consult the
installation manual.

In the case of summable indices the use of three times the
same index in the same term would cause problems. FORM will
execute the contraction for the first pair it encounters, after which
the third index is left. In the case of four or more indices the
pairing for the contractions depends on the order in which the
parts of the term is processed, so on the userlevel the result may
be quasi random. Nothing can be done about this as the user
should guard against such ambiguous notation.

6.5 Functions

There are two types of functions: commuting functions which
commute automatically with all other objects, and noncommut-
ing functions which do not necessarily commute with other non-
commuting functions. An object is declared to be a commuting
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function with the ‘cfunction’ command. Of this command the first
two characters are mandatory, the others optional. An object is
declared to be a noncommuting function with the ‘function’ com-
mand. Here only the f is mandatory. The declaration of a function
knows one option. This option concerns the complexity properties
of the function. It is indicated by a # following the name, after
which one of the characters R, I, C specifies whether the function
is real, imaginary or complex. The declaration that a function is
real is unnecessary as real is the default property. Example:

cf fa,fb,fc;
f ga,gb,gc#c;

In this example the functions fa, fb, fc are commuting and
the functions ga, gb and gc are not necessarily commuting. In
addition the function gc is complex. More about functions and
their conventions is explained in the chapter on ‘Operations on
functions’.

6.6 Sets

A set is a (non empty) collection of variables that should all be
of the same type. This type can be symbols, vectors, indices or
functions. A set has a name which can be used to refer to it,
and this name may not coincide with any of the other names in
the program. They are declared by giving the name of the set,
followed by a colon, after which the elements of the set are listed.
The first element determines the type of all the elements of the
set. All elements must have been declared as variables before the
set statement. There can be only one set per statement. Example:

s xa xb xc xd ya x y;
i mu nu ro;
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set exxes: xa, xb, xc, xd;

set yyy: xc, xd, xb, ya;

set indi: mu, nu, ro, 1, 2, 3;
set xandy: xa, ya;

We see here that a single symbol (xa) can belong to more than
one set. Also the fixed indices (1, 2 and 3) can be elements of
a set of indices and the numbers that can be powers can also be
members of a set of symbols (usually -9999 to + 9999). If this can
lead to a confusion FORM will give a warning and interpret the
set as a set of symbols.

Sets can be used during wildcarding. When x is a symbol the
notation x? indicates ‘any symbol’. This is sometimes more than
we want. In the case that we would like ‘any symbol that belongs
to set exxes’ we would write x7exxes which is an unique notation
as usually the question mark cannot be followed by a name. There
should be no blank between the question mark and the name of
the set. The object x?indi would result in a typemismatch error
if x is a symbol and indi a set of indices.

This use of wildcards belonging to sets can be extended even
more: The notation x?exxes?yyy means that x should belong to
the set exxes, and its replacement should be the corresponding
element of set yyy. At first this notation looks unnecessarily com-
plicated. The statement

id x7exxes?yyy = X;
should have the much simpler syntax
id exxes = yyy;

This last notation cannot be maintained when the patterns are
more complicated.
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t f.g
id  x7exxes?yyy = 2*x"2;
id  xPexxes?yyy * f(x7yyy) = g(x-x"2);

In the last example the loose x must belong to set exxes while
the x in the function f must belong to the set yyy. As the two
occurences of x must match the same object it means that x must
belong to the intersection of these two sets. The replacement of x
will be by the element of yyy that has the same number inside yyy
as the x has inside the set exxes, so xa doen’t match, xb goes to
xd, xc goes to xb and xd goes to ya. When the two sets exxes and
yyy have a different number of elements the compiler will issue an
error message.

When things become really complicated the sets can be used
as kind of an array. They can be used with a fixed array index
(running from 1 for the first element). When they have a symbolic
argument (must be a symbol) they are either in the right hand
side of an id-statement and the symbol must be replaced by a
number by means of a wildcard substitution or in the left hand
side and the symbol is automatically seen as a wildcard. The set
must still follow the question mark of a wildcard:

s al,a2,a3,b1,b2,b3,x,n;

f gl,82,g3,8;
set aa:al,a2,a3;
set bb:bl,b2,b3;

set gg:gl,g2,g3;
id g(x7aaln]) = ggln] (bb[nl) + bb[2]*n;

The n in the left hand side is automatically a symbol wildcard.
x must match an element in aa and n takes its number. In the
right hand side ggl[n] becomes an array element when the n is
substituted. The same holds for bb[n]. The element bb[2] is
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immediately replaced by b2, so there is rarely profit by using this,
unless the preprocessor had something to do with the construction
of this quantity. As should be clear from the above: the array
elements are indicated with straight braces.

Another use of sets is in the select option of the id statement.
This is discussed in the chapter on substitutions.

6.7 Namelists

Sometimes it is necessary to see how FORM has interpreted a
set of declarations. It can also be that declarations were made
in an unlisted include file and that the user wants to know what
variables have been defined. The lists of active variables can be
printed with the statement

write names;

This statement sets a flag that causes the listing of all name
tables and default properties that are active at the moment that
the compiler has finished compiling the current module. This is
just before the algebra processor takes over for the execution of
the module —assuming that no error condition exists—. If the ‘write
names’ is specified in a module that ends with a .global instruction
the namelists will be printed at the end of each module, as printing
the namelists will then be the default option. If one likes to switch
this flag off this can be done with the statement

nwrite names;

which prohibits the printing of the namelists in the current mod-
ule.
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6.8 Dummy indices

Sometimes indices are to be summed over but due to the evalua-
tion procedures in some terms there is the index mu and in other
terms there is the index nu. There is a command to sum over
indices in such a way that FORM recognizes that the exact name
of the index is irrelevant. This is the ‘sum’ statement:

i mu,nu;

£ f1,f2;

L F=f1(mu)*f2(mu)+f1(nu)*f2(nu);
sum mu;

sum nu;

print;

.end

At first the expression contains two terms. After the summa-
tions FORM recognizes the terms as identical. In the output we
see the term:

2%£1(N1_7)*£2(N1_7) ;

The N1_7 are dummy indices. Currently FORM can print
them but cannot read them when the output is offered as input to
the compiler. The dimension of these dummy indices is the current
default dimension as set with the last dimension statement. This
may look like it is a restriction, but in practice it is possible to
declare the default dimension to have one value in one module,
take some sums, and do some more operations, and then give the
default dimension another value in the next module.

The scheme that is used to renumber the indices in a term
is quite involved but alas not perfect. To do a perfect job could
consume enormous amounts of computer time when complicated
products of Levi-Civita tensors are present.
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6.9 Restrictions

The number of each type of variables is restricted. This restric-
tion has a default value that depends on the installation and is
usually 100 for each of the variables including the expressions. It
is however possible to change these limits with a setup file. For
more about this one should consult the chapter on the setup file.
In addition there is a limit to the total number of elements for all
sets together which can however be altered with the setup file.
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Substitutions

The essence of a symbolic manipulation program is the ability to
replace an object by other objects. We call this a substitution.
The substitutions are divided in two classes: identifications and
operations. The operations perform a specified action and are
treated in the chapter on operations. An identification is a re-
placement of a specified pattern. Usually when we call something
a substitution we mean such a replacement. One of the tasks of
this chapter is to describe the patterns that can be specified.

The identification statement starts always with the keyword
id[entify]. There may be a secondary keyword, depending on the
pattern. Then there is a pattern which forms the left hand side
of an equation, followed by an equals sign and a right hand side.
If the given pattern can be located in a term it is taken out and
the right hand side is substituted for it. Example:

id x = a + b;

The pattern here is rather trival. The above identification will
take any power of x and replace it by the same power of a + b. In
other words: each occurrence of x is replaced by a + b. Patterns
can be more complicated:

id x*y~2*p(mu) = ((a+b)*q(mu)+(a-b)*r(mu))/2;

Here each occurrence of the pattern is replaced by the right
hand side. When mu is an index with a dimension this will be at
most once, as in a pattern of this kind only a free occurrence of a
p with index mu can lead to a match.

Often we need a way to indicate a type of pattern, rather than
a specific pattern. This is done via wildcarding. A wildcard is
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a variable that occurs in the left hand side of an identification
statement and of which the name is followed by a question mark.
So the pattern p(mu?) means a p with any index. The index will
be called mu during the replacement, regardless of whether there
exists a variable mu already. mu must have been declared as an
index before:

id p(mu?) = (q(mu)+r(mu))/2;

Any occurrence of p with an index is replaced by the right hand
side with the found index taking the place of the mu in the right
hand side. There can be more than one wildcard in a pattern:

id p(mu?)*p(nu?) = T(mu,nu) + d_(mu,nu)*p.p;

When the same wildcard occurs more than once in a pattern
all its matches must be identical:

id Q7 (mu)*Q?(nu) = d_(mu,nu)*Q.Q/4;

The above pattern will match when there are two identical
vectors, one with index mu and the other with index nu.
The following objects are allowed inside a pattern:

The symbol x. Each power will give a replacement.

x"number
An integer power of x (0 is forbidden). There will be as
many replacements as possible. Example: x"3 fits twice in
x"7.

Xx"n?
This matches any (integer) power of x.
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x7?

Any symbol. A fixed power is also allowed.

x?"n?

Any symbol to any (integer) power. The difference with the
‘any symbol’ pattern is found in the number of right hand
side insertions when a power of a symbol is encountered: In
the ‘any symbol’ pattern there will be as many right hand
side insertions as there are powers of the symbol, while the
pattern with the wildcard power will never give more than
a single right hand side insertion for which n takes the value
of the power of the symbol.

p(mu)

The vector p with index mu. In this form p has to occur as
a vector with an index. There will be no match with vectors
of which the index has been contracted. In particular there
will be no match with vectors inside a dotproduct. Powers
are not allowed for vectors. If such a power is nevertheless
specified the exponent function is invoked. The best way to
achieve the equivalent of (p(mu))“n? is to replace p(mu) by
a symbol x and then use the pattern x"n?.

p(mu?)

The vector p with any index.

p?(mu)

Any vector with the index mu.

p?(mu?)

p-q

Any vector with any index.

The dotproduct p.q. Any fixed power of a dotproduct or its
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wildcard forms is also allowed as in the x"number pattern.

p.q? or q?7.p
Any dotproduct that contains at least one occurrence of the
vector p.

p?.q?

Any dotproduct. Note that which vector in the dotproduct
will be assigned to p and which will be assigned to q is a
function of internal ordering in FORM. This plays no role
when the right hand side is symmetric between p and q. If
such a symmetry does not exist there is an arbitrariness in
the answer. The user is advised not to make programs that
depend on the order in which FORM assigns these wild-
cards as this may be different in future versions or different
implementations.

p?.p?
Any dotproduct that is the square of a vector.

p-9°n?
All the above forms of the dotproduct may have a wildcard
power.

d_(mu,nu)
Patterns may contain Kronecker delta’s.

d_(mu?,nu) or d_(nu,mu?)
Any Kronecker delta that contains at least one index nu.
Note that mu can match one of the fixed numerical indices,
but that currently one has no wildcard to pick out only those
indices.
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d_(mu?,nu?)
Any Kronecker delta. Again the internal ordering of FORM
determines which index is match to mu and which index
takes the place of nu. If the right hand side is not symmetric
between mu and nu the result is a function of the order in
which mu and nu were declared.

d_(mu?,mu?)
Any Kronecker delta with two the same indices. This index
must have dimension zero, or the Kronecker delta would not
occur in the term. Note that currently there is no way to
wildcard the indices in such a way that only indices with the
same dimension will match it.

In this form p must be the only object in the pattern. An
automatic wildcarding will be assumed for the index and
the substitution will be made in all occurrences of p as a
vector with an index, of p inside dotproducts and of p con-
tracted with indices inside the special functions e_ and g_.
Occurrences in other functions should be handled according
to the methods that are given in the chapter ‘Operations on
functions’. In this form each vector without an index on the
right hand side gets the generated wildcard index attached
to it:

id p = (g+r)/2;

It is of course easy to produce meaningless results by making
putting ‘too many’ vectors in the right hand side:

id p = qg*r;

Such an identification can easily lead to a messed up output.
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When using this type of replacement the user ventures out
on his own.

Sometimes one needs to refer to the induced wildcard. This
can be done with a single question mark as in:

id v = e_(p,q,r,?);

In this case a new dummy index is generated. If it makes
it to the output it will be printed as Nnumber_? in which
‘number’ is a number that is as close to 1 as possible without
coming into conflict with other generated dummy indices.
This type of dummy index always has the dimension that is
currently the default dimension. If the default dimension is
changed the dimension of the dummy indices changes with
it. Basically the default dimension is the dimension of the
vectors inside dotproducts.

The use is similar to the preceeding pattern, but here the
vector is a wildcard.

More patterns are given in the chapter ‘Operations on func-
tions’.

The normal rules for the pattern matching are that a pattern
is taken out as many times as possible, unless a wildcard power
is present, in which case the pattern is matched only once. Only
after all matches have been taken out are the right hand sides
inserted. After this insertion there is no renewed attempt to match
the same patterns again. When there is a need to deviate from
the above rules one may specify a subkey. These subkeys are:

Once
Only a single match of the pattern is attempted. In partic-
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ular the statement
id,Once,x = a + b;

will take only one power of x, so x~8 will go to x~7*(a+b).
This is the default mode when there are wildcard powers of
symbols or dotproducts in the pattern. In such a case only
the subkeys ‘Once’ and ‘Only’ are allowed.

Only
The match must be exact. This means that all powers of the
symbols and the dotproducts must match exactly with the
powers of these symbols and dotproducts inside the term.

Multi

There is a single matching for which a multiplicity is de-
termined. This means that the right hand side will be used
only once but it may be taken to some power. This form can
only occur when the pattern contains only symbols and/or
dotproducts and there are no wildcard powers present. In
that case multi is the default option. Note that in this case
there is only a single wildcard assignment.

Many

This is the default option when a pattern contains objects
that are neither symbols nor dotproducts. It may also not
contain wildcard powers of symbols or dotproducts. With
this option the matching is attempted till there are no more
matches. Each match gives an insertion of the right hand
side with its own wildcard assignments after all pattern
matching has been completed.
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Select
This option is a special form of ‘only’. It needs in addition
the names of one or more sets of symbols. The replacement
will then be made if after the matching of the left hand side
no elements of the mentioned sets are left, unless they occur
inside function arguments. Example:

s a, b, c, d;

set ab: a, b;

L F = (a+b+c)"5;
id,select,ab, a = d;

Only a single ‘a’ will match if there are no elements of the
set ab left after the match. This means that a*bA4 will not
give a match but a*cA4 will. If more sets are specified the
union of the sets is taken. In that case the names of the sets
must be separated either by blanks or by comma’s.

There will be many more subkeys in future versions to allow
for great flexibility in the selection of the patterns to be acted
upon.

Patterns have to behave according to some fixed rules. One of
these rules is that a pattern may never develop a coefficient that
is not equal to one. This means that

id 2xx = a + b;

is illegal and will result in a compile time error. The same holds
for the following pattern:

id d_(mu,mu) = 4;

if mu has a dimension that is not set to zero. During the compila-
tion the left hand side is normalized and part of the normalization
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is the contraction of indices. So if the dimension of mu is 4 the
statement would have just 4 on the left hand side and would be
illegal. If the dimension of mu would be ‘n’ the left hand side
would become n and the statement would be perfectly legal, even
though it might not be what the user had in mind.

Each symbol or dotproduct may only occur once outside func-
tion arguments. The following pattern is illegal:

id x72*x"n%? = y"2 * a'n;
It is usually not very difficult to work around this type of

restriction.

Sometimes one would like to take out the left hand sides of
more than a single substitution before the right hand sides are
inserted. This is for example the case in the following two dimen-
sional rotation:

id p = costheta*p + sinthetaxq;
idold q = costheta*q - sinthetax*p;

It would be rather destructive to the idea of the rotation if the
second substitution would act on the results of the first. The id
statement and the idold statements that follow it define a group
of substitutions. In thisgroup all left hand sides are taken out first
(in order) and after this has been done the right hand sides are
inserted. Next is the statement after the last idold of the group.

For those people that are used to Schoonschip the idold state-
ment has the alias al[so]. As it turns out people prefer to use it
this way so in most of the examples the idold statement is used
in the guise of the ‘al’ statement. They are completely identical.
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Operations on functions

Because of their arguments the rules for operations on functions
are somewhat different from the normal operational rules. There
are basically two types of operations: one is a class of regular
substitutions with potentially rather complicated wildcards, while
the other concerns the properties of functions. We will first deal
with the properties of functions. There are several commands
for defining properties. One set is executed at the moment it is
specified while the other set concerns more durable properties.
Of course durable properties will have a tendency to cost more
computer resources, as they will have to be checked everytime
that anything is done with the function. Currently the following
property functions have been implemented:

Symmetrize Name Fields
This statement is executed only when specified. The name
is the name of the function and the fields refer to the argu-
ments. Each field is treated as a single entry for purposes
of symmetry. The simplest field is a single digit, indicating
the number of a single argument. So

Symmetrize Fun 1,2,4;

defines that the function Fun is to be symmetrized in its
arguments 1, 2 and 4. If an occurrence of Fun is found with
fewer than four arguments the statement is ignored. When
the function name is specified as Fun:number the number
indicates that only occurrences with the given number of
arguments should be affected. The notation Fun: indicates
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that if the number of arguments is too small the excess num-
ber of specified fields will be ignored. So if Fun were to have
three arguments and we had specified Fun: 1,2,4 only the
first two arguments would be symmetrized.

The second type of argument fields concerns a group of ar-
guments. It is specified with the numbers of the elements of
the group enclosed in parentheses:

Symmetrize Fun (1,2),(4,5),(7,8);

In this case the arguments 1 and 2 are considered together.
This means that if 1 is exchanged with 4, 2 will be exchanged
with 5 and vise versa. When groups are used all fields must
be groups of the same length or an error message is given.
Note also that if an occurrence of Fun is found with seven
arguments it will not be treated and the seventh argument
will never be part of symmetrization even when the state-
ment would have been

Symmetrize Fun: (1,2),(4,5),(7,8);

to indicate that the number of arguments is not important.
There is one severe restriction: the elements of an argument
field must be adjacent. This means that

Symmetrize Fun: (1,3),(4,5),(7,8);

would be illegal. Also all fields must have the same number
of elements.

The ordering of the arguments is according to the orderin
the namelists of FORM. The order in the namelists is de-
termined by the order of declaration of the variables.
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When no argument fields are specified the function is as-
sumed to be symmetric in all its individual arguments.

Antisymmetrize Name Fields
This command is fully equal to the symmetrize statement
with the exception of the minus sign that is added to the
coeflicient for each exchange of a pair of argument fields. If
two argument fields are identical the function is replaced by
Zero.

The more durable equivalents have not yet been installed.
Their names would be ‘symmetric’ and ‘antisymmetric’.

The regular replacements of functions are rather simple. When
noncommuting functions are involved the order of the functions
is important unless a special property statement (not yet imple-
mented) was used to declare commutation properties. Also special
keywords (currently not implemented) may relax the rules about
ordering of functions.

8.1 Wildcarding

With respect to substitutions of functions there are several types
of wildcarding. The simplest case is a wildcard parameter that has
to match a single parameter that is a single object of the same
type. This is the case in the following example:

s X;
i mu,nu,rho;

v pP,q;

f f,g;

id  £(p?) = p.q;

id  f(mu?) = g(mu);
id  f(x,mu?) = q(mu);
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id f£(x?7,mu?,nu?,p?,rho) = x * p(rho) * d_(mu,nu);

The last id statement shows that there can be more than one
wildcard per function. Wildcards may be repeated in the left hand
side. This means that each occurrence has to match with the same
object:

id g(x,mu?,p,mu?) = £(x,p);

will match g(x,nu,p,nu) but it won’t match g(x,nu,p,rho).
It is of course possible to have more functions or functions and
other objects at the left hand side of the id statement. Again the
rules are that wildcards that are identical at the left hand side
should match with identical objects.

The second type of wildcard is a wildcard for the function
itself:

id  f7(x) = £(0,x);

The above causes each function of x to obtain an extra argu-
ment.

The third type of wildcard is a little bit intertwined with the
first type. Wildcard arguments can match a whole composite
argument:

id  £(x?) = x°2;

will match with f(a+b) and the result will be (a+b)~2. A
symbol wildcard will only match whole arguments if the argu-
ment doesn’t contain loose vectors or indices. A vector wildcard
can match a whole argument if the nature of the argument is vec-
torlike. This means that each term in the argument contains a
single loose vector. An index wildcard will match a whole argu-
ment if the argument is either a single index or vectorlike. In the
last case the argument is considered to be a single index that has
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been contracted with a vector expression. In such a case it is also
clear that the function is linear in its argument. This linearity is
exploited.

id  £f(mu?) = g(mu);

When this statement matches f (2*p+q) this property makes
the result to be 2xg(p)+g(q). If this is not desired one should
use the vector wildcard, rather than the index wildcard.

The fourth type of wildcard is very special. It involves groups
of arguments of functions. In the statement

id  £(777) = g(1,...);

the 7?77 will match any argument field of f. In the right hand
side the three dots refer to this match. This means that f(a,b)
will be replaced by g(1,a,b). There are ten of these ‘argument
field’ wildcards. They are referred to by the number of question
marks and dots that are used. So the following is legal:

id  £(??)*g(??)*h(x,?) = h(x,.,..);

This will match when there are an f and a g with the same
argument fields and an h with an argument field that starts with
an argument that is a single x. The single period in the right
hand side will be replaced by whatever the single question mark
matches (it could also be no argument at all). The double dot
will be replaced by the match of the double question mark in the
left hand side.

There is one severe restriction. Per function one may use only
one ‘argument field” wildcard. There may be any number of other
arguments though.

Currently no provisions have been taken for wildcard matches
of the type
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id f(x7+a) = x * g(2*x+a);

Such wildcarding could be very costly in time. The complexity
of implementing this in a very general (and recursive) way is very
great.

Restrictions:

The above wildcardings can be applied to all functions with
the exception of the functions e_, g_, d_. With these functions only
wildcards of the first type can be used.
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Repeat

In some symbolic manipulation languages the specification of a
substitution means that this substitution is applied until it doesn’t
give any further matches. In such a case the replacement

id X2 =x + 1;

would take any power of x and reduce it down until there are
only terms with a single power of x or no power of x (not counting
negative powers). Another approach is to apply the substitution
once and allow the user to specify a more frequent use. The more
frequent use has to be specified carefully in some cases. It can
cause unpleasant surprises when it is wrongly estimated.

The solution in FORM is to have each individual statement
applied only once, —in the case of the keyword many there is also
only one cycle of matching and then inserting— but allow a re-
peated use when a special instruction is provided. The syntax
is:

repeat;

any number of id statements, idold statements
or operations.
All statements must be part of the same module.

endrepeat;

The statements between the repeat and the endrepeat state-
ments are applied as a group until they cause no further changes.
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This provides much more flexibility then either of the above mod-
els for substitutions. There are of course some caveats. The state-
ments

repeat;
id X =x + 1;
endrepeat;

will cause an infinite loop of substitutions. How execution will
come to a halt is installation dependend as not all implementations
allow tests for stack overflow.

Repeat loops may be nested to 10 levels. The only restriction
is that all statements in a loop belong to the same module. This
means that no .sort, .store, .global or .end instruction can occur
in the range of a repeat loop.
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Partial Fractioning

When a formula that contains composite denominators has to be
integrated a standard method is to ’split the fractions’ which is
also called partial fractioning. The basic identities for such an
operation are:

1/ (x+a)/(x+b)
(x+a)/ (x+b)

(1/(x+a)-1/(x+b))/(b-a);
1 - (b-a)/(x+b);

This partial fractioning is part of a package of polynomial op-
erations that has not yet been written. To execute the partial
fractioning with single symbols one can use the ratio statement.
It operates on symbols, so normally a single symbol xb would have
to represent the composite denominator like (x+b). The name-
convention with the [ and the ] was designed to avoid such cryptic
notation. It is usually very convenient to write [x+b] for (x+b).
The ratio command should be given in the following way:

ratio,xa,xb,ba;

It expects three parameters that must have been declared as sym-
bols. The third parameter is supposed to stand for the difference
between the second parameter and the first parameter: ba=xb-xa.
In answer to this command FORM will look for combinations of
powers of xa and xb with at least one of them in the denominator.
If such a combination is found it is rewritten in such a way that
xa and xb don’t occur in the same term any more. The case with
both powers positive is usually rather simple and doesn’t need
any special algorithms. In principle the case with xa"n/xb"m can
be solved by replacing xa by xb-ba, so the ratio command uses
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for the case that n > m a slightly different algorithm in which the
terms that have no xb in the denominator are still expressed in
terms of xa. This could be called a 'minimal’ operation. Example:

s [x+al, [x+b], [b-al;

1 F1 1/ [x+al "2/ [x+b];
1 F2 = [x+b] 2x[x+a]l"-1;
ratio, [x+a], [x+b], [b-a];

This gives the formulae:

F1 =
- [x+al "-1*x[b-a]~"-2 + [x+a] " -2%[b-a] -1
+ [x+b] "-1%[b-a] "-2;

F2 =
[x+a] "-1*[b-al "2 + [x+b] + [b-al;

The second formula could also be obtained by a pair of sub-
stitutions:

s [x+a], [x+b], [b-al;

1 F2 = [x+b] "2*[x+a]l"-1;
id [x+b] = [x+a] + [b-al;
id [x+a] = [x+b] - [b-al;

This would require much more work as there would be more
terms generated than is needed. To avoid the ratio command for
the first formula would be much more complicated.

A typical example of the use of ratio is given below:

s [x+al, [x+b], [b-al ,dx,x;

S [In(x+a)], [ln(x+b)],n,m,da;
set [x+]: [x+a] [x+b];

*
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F = dx/[x+a] "4/ [x+b]"5;

L
*
* Partial fractioning:

*

ratio, [x+a], [x+b], [b-a];

*

* Now do the logarithms first:
*

id,only,dx/ [x+al
id,only,dx/ [x+b]

[In(x+a)];
[In(x+b)];

*
* Now we can do the other integrals.
*  These wildcards work for linear
*  polynomials and all their powers.
*  They must be in set [x+].
*
id dx*x?[x+]°n? = x"(n+1)/(n+1);
b [b-al;
print;
.end

F =

+ [b-al"-4 * ( - 1/4x[x+b]"-4)

+

[b-al]"-5 * ( - 1/3%[x+a]"-3
- 4/3%[x+b] -3 )

+ [b-a]"-6 * ( 5/2%[x+a]"-2

- B5x[x+b] -2 )
+ [b-a]l~-7 * ( - 15x[x+a]l"-1

- 20%[x+b] -1 )
+ [b-a]"-8 * ( - 35%[1n(x+a)l

+ 35%[1n(x+b)] )
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In the above the logarithms are introduced as separate symbols
which is a common technique when the expressions become big
while there are only few different arguments for the logarithm.
The implementation of a dedicated logarithm function is planned
for some future version.
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Special functions

Several special functions have been implemented in FORM. They
are usually functions that are either hard to immitate or costly
in execution time when the user defines them by himself. These
functions are:

fac_

This is the factorial function. Currently it should have only
a single argument. When this argument is a positive integer
the factorial will be substituted. The first 50 factorials are
kept in memory (unless they have never been used). The
higher factorials are evaluated, starting from 50. This may
be altered in the future.

theta_

This is a step function. When theta_ has a single argu-
ment,and the argument is just a (rational) number FORM
will replace the function by 0 when the argument is neg-
ative and by one otherwise. No attempt is made to guess
whether the argument can be negative in the same way a hu-
man would do with for instance theta_(xA2) when x is real.
When there are two arguments the arguments are compared
with each other and when this comparison indicates that the
arguments should be exchanged, assuming that the function
were symmetric, the function is replaced by zero. If the ar-
guments are in order or identical the function is replaced by
one.
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delta_

This is a delta function. It has two varieties .In the first vari-
ety it should have two arguments. When the two arguments
are identical the whole function is replaced by 1. When the
two arguments differ and the are both (rational) numbers
the function is replaced by zero. When the arguments dif-
fer and at least one of the arguments contains variables the
function is left untouched. When there is only one argument
the function is replaced by 1 if the argument is zero, by zero
if the argument is a number that is unequal to zero. In all
other cases it is left untouched. Note that delta_(a,b) gives
the same result as delta_(a-b).
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The count instruction

Often one has problems in which a number of terms can be elim-
inated on the basis of power counting. One of the solutions could
be to introduce a new symbol with a limited power range and then
replace all relevant objects in such a way that the power counting
corresponds to the powers of this new symbol. This can be quite
cumbersome. There exists a special statement for power counting
purposes. It is called the count statement. Its syntax is:

count minimum,object,valuel[,object,value];

‘minimum’ is the minimum value of the count that is needed
if the term is to survive the power counting. When the combined
count is less than ‘minimum’ the term is removed. After the
minimum there follows an arbitrarily long list of objects and the
value that is used for the counting. Both ‘minimum’ and these
values should be integers that fit inside a short integer (from -
32768 to +32767 on most systems). The objects can be of several
types. They must have been declared before. The allowed types
are:

Symbol
Object is the name of a symbol. When the count is made
value is multiplied by the power of this symbol and added
to the count. Only symbols that don’t occur inside function
arguments are considered.

Function
Object is the name of a function. For each occurrence of
this function outside function arguments value is added to
the count.
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Dotproduct
Object is a dotproduct. Dotproducts are handled in the
same way as the symbols.

Vector
Object is the name of a vector. In this case there exist
possible ambiguities. There is also a need to have some
control over which occurrences of the vector are taken into
account. There are again four cases:

Vector Loose vectors with indices are taken into account.
Dotproduct Vectors inside dotproducts are taken into account.
Function Vectors inside the special linear functions e_ and g_ are
taken into account.
Sets Vectors that are the argument of a function that is
a member of the specified set are taken into account.
This assumes that thefunction is linear in the vector.

In order to have some control over the various cases there
is the possibility to add some flags after the name of the
vector. This is done by typing a ‘+’ after the name of the
vector, followed by one or more characters. ‘v’ stands for
vector, ‘f’ for function, ‘d’ for dotproduct and ‘?setname’
for the set option. The set option is always the last option
and there can only be one set specified. When there is no
‘+’ following the name of the vector the result is identical
to vectorname+vfd.

In principle there can be an interference between the counting
of vectors and the counting of dotproducts. The rule is that if an
object occurs more than once in the list it is counted more than
once, SO

count 0 p 1 p.q -1;
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gives for the dotproduct p.q a count of 0 and for the dotproduct
p-k a count of +1 (assuming that p,k and ¢ are vectors). The
dotproduct p.k"5 would give a count of 5 and p.p would give 2.
The term p(alfa)*p.q would give a count of 1.

There is a variation to the count statement which is the count
function. It can occur in the condition field of an if statement. Its
parameters are identical to the arguments of the count statement
with one exception: the first parameter (minimum) is missing.
This function returns the value of the count. Actually the count
statement

count minval,arguments;
is identical to:

if ( count(arguments) < minval );
discard;
endif;

in which the discard statement removes the terms that have a
count that is too small.
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Output

As the primary object of a program is to produce some output
there must be some ways to control this output. On the whole
this interface is not as fancy as in some other symbolic programs,
because FORM is primarily intended as a package to manipu-
late giant formulae, rather than being a desktop program for pre-
senting results in an artistic way. There are several instructions
available in FORM:

Print
The print statement tells FORM to print its results at the
end of the module. If no expressions are specified all files
will be printed. If expressions are specified only those ex-
pressions will be printed. Only active expressions can be
printed. The statement:

print[];

causes the printout to take a special form. Of each expres-
sion only the external part outside the brackets is printed,
while of the part inside the brackets only the length is given.
As this is a print statement without the names of expressions
all expressions will be printed. The statement:

print namel,name2[],name3;

causes the printout of the expressions namel, name2 and
name3. The expression name2 is printed in the special no-
tation that is explained above with the print [] statement.
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Nprint
This statement causes the exclusion of expressions from the
list of expressions to be printed. Just the single nprint state-
ment removes all expressions from this list. If names are
specified only those expressions are taken from the list. This
can be used in the following way:

print;
nprint name5;

These instructions cause the printing of all expressions with
the exception of nameb.

There can be several option flags in the print statements.
These flags can be put between the names of the expres-
sions or as parameters at the end of the statement when no
expressions are specified. These flags are:

+f
This option causes the expressions to be printed only
in the log file if there is one. If there is no log file this
flag is ignored and printing is as usual.

-f
This turns the above flag off again.

+s
The expression(s) will be printed with each term start-
ing at a new line.

This turns of the flag for single terms per line.

Example:
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print a +f b +s ¢ -f d;

The expression a is printed as usual (screen plus log file). b
is printed only in the log file. ¢ is printed only in the log file
with one term per line only and d is printed on the screen
and in the log file with a single term per line.

Print statements hold till the next .sort instruction. This
means that for each print statement the requested expres-
sions are printed only once. If the user wants to print the
expression(s) also at the end of the next module he should
issue another print statement in that module.

Bracket
This statement has arguments that indicate which object
should be presented outside brackets. Only the initial b
of the statementis mandatory, the other characters are op-
tional. When the statement

b X;

is given all powers of x will be taken outside parentheses.
With vectors the situation is more confusing:

b pluu),q;

will put p(mu) and q with any index outside parentheses.
This statement will not affect dotproducts. With respect
to bracketing dotproducts should be handled as symbols, ie
each of them should be specified separately.

Functions can be put outside parentheses by specifying their
names. This may cause some problems with noncommuting
functions, so the rule is that if a noncommuting function is
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taken outside parentheses all noncommuting function to the
left of it are also taken outside the parentheses.

There may be only one bracket statement per module. If
there are more bracket statements only the last one counts.

Format
The format statement is used to either indicate the number
of columns that the output is allowed to occupy, or to tell
FORM that the output must be in a form that can be read
by a fortran compiler. The first command is given by:

format number;

in which ‘number’ is a number of at most 255. The fortran
output is forced with:

format fortran;

When output is given in the fortran mode there is still a little
editing work left for the user. The number of continuation
cards has been left unrestricted, even though all brackets
have been split up in pieces of at most about 10 lines. If
for instance the expression is called F the user must supply
lines that read F=F between the lines of the output. There
is a reason why FORM doesn’t do this yet. The expression
could just as easily have had the name F(a,b,p) or something
like it. In that case inserting lines like F(a,b,p)=F(a,b,p)
would give nonsense. With a good editor the job for the
user should not be very great.
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Preprocessor instructions

FORM is equipped with a preprocessor that can prepare the input
for its compiler. It is the preprocessor that defines modules that
are translated by the compiler and executed immediately after
the translation. This makes FORM an interpreter on the level of
entire modules, while inside it has the benefit of compiled code.

There are several classes of preprocessor instructions. They
are easily recognizeable as their first character is always a special
one. The modules are always terminated by a statement that
starts with a period. These statements are:

.sort
Executes the module, sorts its results, prints them when
requested and prepares for further processing.

.end
Executes the module, sorts its results, prints them when
requested and terminates the program.

.store
Executes the module, sorts its results, prints them when
requested, stores global expression so that they may be used
later in substitutions and removes all local variables. The
next module will only know the global definitions.

.clear
Executes the module, sorts the results, prints them when
requested and makes a soft restart of FORM. The com-
mandtail isn’t read again, and neither is the setup file. The
reading of the input continues at the next line in the input
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file and the preprocessor symbols are kept (the statement
could be inside a preprocessor variable!). All loaded proce-
dures are also kept (same reason). All stored expressions
are lost. The errorflags are reset. This statement allows the
consecutive execution of independent programs unless there
is a severe error condition in one of the early parts of the
program (like a preprocessor error).

.global
The definitions and declarations in the module are made
global. They cannot be removed any more in the current
program except for by a .clear instruction.

The absence of a .end is not a fatal error. A warning will be is-
sued and a .end will be inferred. Any other (erroneous) statement
that starts with a . will cause a preprocessor error. Preprocessor
errors are immediately fatal and no further compilation will be
attempted. The reason for this may become clear in the sequel.

The preprocessor knows a (installation dependent) number of
preprocessor variables. The name of these variables can consist
of any alphanumeric character string of at most 10 characters.
They are recognizeable as they are enclosed inside single quotes.
When the preprocessor finds a quote in the text it will look for the
matching quote and consider the text in between as a variable.
If this word doesn’t correspond to one of its variables an error
message will be issued. When there is a match the whole string,
including the quotes will be replaced by the character string that
the variable stands for. If this variable again contains quotes they
are treated as before. The main restriction on the replacement
string is that the sum of the length of all replacement strings
that are defined at any given moment must be less than a fixed
installation dependent number. When a preprocessor variable is
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defined its name is not enclosed between the single quotes.

The largest class of preprocessor instructions starts with the
character # which should either be in column 1 or preceeded by
whitespace. This includes:

#include filename

#+

The reading of the current input file is interrupted and input
is taken from the indicated file. When the end of that file is
reached the reading continues from the original file. Such an
include file may again contain #include instructions. The
maximum level of nesting of these files shall not exceed an
installation dependent number (see PreLevels in the chapter
on the setup file.

Stop listing the input. Normally FORM will send a copy of
the input to the screen while error messages will be put after
the statement they correspond to. After the #- the input is
not echoed. This feature is often employed to include files
that are used frequently.

Resume listing the input.

#define Name ”string”

This defines a preprocessor variable with the given name.
Whenever it is encountered in the text it will be replaced
by string. String is any string of characters that is enclosed
in the double quotes, including single quotes, linefeeds etc.
So a preprocessor variable that is defined in this way can
contain complete statements.

#do name = valuel, value2 [,value3]

The code following till the first '#enddo name’ will be exe-
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cuted repeatedly, while the first time name takes the value
valuel, the second time valuel+value3 etc till name is larger
than value2. The default value of value3d is 1. The objects
valuel etc may contain simple arithmatic expressions but
they have to evaluate to numbers that fit inside a word. Op-
erations that are allowed are *, /, +, -, % (modulus: a%b
is a mod b) and nesting of parentheses. If valuel is larger
than value2 the contents of the loop are skipped. This state-
ment is fully equivalent to the fortran do loop: ‘do .. name
= valuel,value2,value3’ Here the use of curly brackets (see
later in this chapter) to force the evaluation of the values is
not needed: It is done automatically. It is not even allowed
to start the first value with a curly bracket, because this
would indicate a ‘listed loop’ (see below).

#enddo
Ends the innermost of the currently active loops.

#do name = {stringl|string?2|.....|stringn}

The statements till the first ’#enddo name’ are executed
first with the substitution name = stringl, then with the
substitution name = string2 etc. These strings may contain
any characters that will result in further proper processing.
This instruction is not limited to a single line, as reading
continues till the matching } is encountered. When any
of the strings contain curly brackets these brackets must
be properly matched inside each string separately. This is
called a ‘listed loop’.

#procedure name(argumentl,argument2,...,argumentn)
Declaration of a procedure. For more information one shoul
dconsult the chapter on procedures.
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#endprocedure
End of a procedure. This statement is only used to indicate
the end of a procedure that is defined at the beginning of
a program in which it is used. In the procedures that are
defined externally in a file this statement is ignored.

#call name {stringl|string2|.....|stringn}
Call of a procedure. The strings are the arguments that
are substituted into the parameters in the procedure defini-
tion. For more information one should consult the chapter
on procedures.

#if expression condition expression
The statements after this #if instruction are executed de-
pending on whether the condition is true. The expressions
must be numerical expressions that are evaluated by the
preprocessor. The conditioncode can be

— == The condition is true when the expressions have the
same value.

— != The condition is true when the expressions have
different values.

— > The condition is true when expression 1 is greater
then expression 2.

— >= The condition is true when expression 1 is greater
then or equal to expression 2.

— < The condition is true when expression 1 is less then
expression 2.

— <= The condition is true when expression 1 is less then
or equal to expression 2.

When there is only a single expression the following state-
ments are executed when the expression is equal to a number
that is not equal to zero. Together with the #if instruction
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there are the #else and the #endif instructions. They are
used in the same way as in any higher language.

#else
See the #if instruction.

#endif
See the #if instruction.

The loops are preprocessor loops i.e., they result in the re-
peated generation of code to be offered to the compiler. The string
substitution is however very powerful and would not be possible
inside the compiler. The compiler loops are of a greatly different
nature and can be looked up in the compiler manual under the
‘repeat’ statement and the chapter on the if statement. There are
also other varieties.

FORM can read two notations that are in use for exponents.
The preprocessor will translate the combination ** into " inter-
nally, so both x**2 and x"2 are acceptable. Also both pl.p2 and
p1$p2 will be interpreted as the vector product of pl and p2 (the
p1$p2 notation can be used in a fortran program).

Spaces are relevant in FORM when they separate words. They
are then replaced by a comma internally. When they are adjacent
to an operator or a bracket they are ignored. Tabs are fully equiv-
alent to blanks for processing purposes. The character \ followed
by a newline character makes the current line connect to the next
line without the preprocessor trying to look at the first character
of that next line. This is not a very useful feature.

All lines that start with a * are taken to be comments and
are ignored after they have been through the preprocessor. State-
ments are supposed to end with a semicolon. A carriage return is
interpreted as a single blank, so it is seen as a separator of words.
When this is the opposite of what the user wants he can place an
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‘escape character’ at the end of the line. The escape character is
the backslash. When an expression is continued on the next line
the continuation can start in column 1, unless the first character
of this continuation is a *, because in that case the line would be
interpreted as commentary. All characters that follow a semicolon
until the end of the line are interpreted as commentary. There is
no such thing as more than one statement on one line. Preproces-
sor statements are exempted from the rule that statements should
be terminated with a semicolon.

It is perfectly legal to start a statement, continue it with the
contents of one or more include files and terminate it after that.
It may also happen that the statement is terminated inside the
include file. Note however that a #do and the corresponding
#enddo must lie inside the same file, unless the user wants to risk
a crash.

Once the end of a statement is found the statement is imme-
diately compiled and error messages are printed if there are any.

Sometimes it is necessary to evaluate a numeric expression in
the preprocessor. For this the preprocessor is equipped with a
little calculator. It can be activated by placing the expression to
be evaluated between curly brackets. If the expression is fully nu-
meric (no symbols etc) and each intermediate result fits inside a
short integer the whole expression will be replaced by the charac-
ter string that is formed by the numeric answer. Example:

G f0 = 1;

G f1 =1,

.store

#do 1 = 2,10

G £f2i° = f{?1i’°-1}+£f{’i’-2};
print;

.store

#enddo
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.end

This is a (not so very smart) way to compute Fibonacci num-
bers. When i’ is 2 the defining line becomes ‘G f2 = f1 +
f0;’. The expression to be evaluated may contain additions(+),
multiplications(x), subtractions(-), divisions(/), modulus(%) and
brackets. The division is an integer division, so 5/2 will result in
2.
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Summations

One way to program is series expansion is via the preprocessor
loop facility. Although this is the most versatile method it is not
always practical. The results of the preprocessor are fed to the
compiler, so the summations in the preprocessor must necessarily
fit in the compiler buffers. In addition they require compilation

time.
sum..

To avoid this there is a run time summation function named
This function is treated as any other function, until its

arguments fulfil a set of requirements:

The first argument must be a single symbol. This symbol
can be any symbol that was previously declared with the
exception of the symbol i_. When the first argument is not
a single symbol the compiler will issue an error message,
because it must be known at compiletime which variable is
the summation variable.

The second argument is a number that fits inside a single
word in FORM. This means usually that its value must be
in the range -32768 to +32767. This value will be interpreted
as the starting value of the summation variable.

The third argument is like the second argument. It is used
as a final value for the summation variable.

There is an additional argument that is at the same time
the second argument from the end and it fulfils the same
requirement as the previous two arguments. It is used as
an increment for the summation variable. If this argument
is absent the increment is taken equal to one. When the
increment is such that the starting value is already beyond
the final value the sum is replaced by zero.
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e The last argument can be anything. In particular it can
depend on the summation variable. This argument is used as
object to be summed over. For each value of the summation
variable this value is sumstituted in this argument and the
full argument is added to the sum.

e There are no arguments in addition to the ones mentioned
above.

Under the above conditions the sum is evaluated and replaced
by the results of this evaluation. Example:

s X,1;
L F1 = sum_(i,1,10,-(-x)"i/1);

The above is an expansion of the function In(1+x) to 10 terms
in x. Multiple sums can also be executed:

s a,b,c,i,j,k;

L F2 = sum_(i,1,3,a"i*
sum_(j,1,i,b"j*
sum_(k,1,j,c"k)));

When one or more of the arguments are not according to the
required conditions the whole sum function is left as is. It may
then be waiting for some substitution that makes evaluation pos-
sible. If such a substitution is never made the sum_ function will
end up in the output eventually.

Note that this can be used to make more complicated sums:

s a,b,c,i,j,k;

L F2 = sum_(i,1,3,a"i*
sum_(j,1,2%i-1,b"j*
sum_(k,i+1,i+j+1,c"k)));
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At first the inner sums won’t be executed. The substitution of
the value of i allows FORM to evaluate the third argument of the
second sum, after which it can be evaluated after all. Eventually
the second and the third arguments of the last sum are put in
order and this sum can also be evaluated.

Of course sum._ has its limitations. When the summable object
contains composite objects (like the (-x) in the first sum) that are
taken to a (large) power the evaluation of this power may take
much space in the inner buffers. If this causes an overflow of
FORM’s workspace the user can addapt the value of the vari-
able ‘WorkSpace’ in the setup file (see the chapter on the setup
parameters).

One should never try to give the summation variable the same
name as an already existing wildcard variable:

id x"i?xy"j? = i*x"(i+1)*sum_(i,1,j,z"1);

will result in an error message from the compiler. The use of the
variable ‘i’ is ambiguous here. If the compiler would let this pass
the term x~2*y~3 would be replaced by

2*x~3*sum_(2,1,3,z"2)

and the sum would never be executed.

There is a second summation function called sump._. This func-
tion works like the regular function sum- except for that the last
argument is not the i-th element of the sum, but the quotient of
the i-th element and the (i-1)-th element. The first element of the
sum is normalized to one. This function can be useful at times:

L F = sump_(i,0,10,x/1);

is the expansion of the exponent of x to ten powers in x.
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Levi-Civita tensors

When doing either mathematics or vectoralgebra there may be a
need for external products. A very simple example is the cross
product between two three vectors. Such products can be written
rather conveniently with the use of Levi-Civita tensors. A Levi-
Civita tensor is a tensor that is antisymmetric in all its indices.
It has as many indices as the dimension of the space that the
indices refer to. In FORM the Levi-Civita tensor is written as

e_(....indices...) and when the indices run from 1 to n e_ is defined
by

e_(1,2,...,n) =1

The antisymmetric properties fix all other values. In metrics
that define upper and lower indices one may have to be more care-
ful, but FORM doesn’t know about upper and lower indices.The
same conventions about contractions of indices with indices of
vectors apply as in the rest of FORM. This means that

v pl,p2,p3,p4;
L  F=e_(pl,p2,p3,p4);

defines a pseudo scalar object.
Levi-Civita tensors can also be used to define determinants.
So the determinant of the 4x4 matrix A is defined by:

i ml,m2,m3,m4;

cf A;

L F=e_(m1,m2,m3,m4)*e_(1,2,3,4)
*A(m1,1)*A(m2,2) *A(m3,3)*A(m4,4) ;
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The above determinant can be made more explicit with a spe-
cial command. The product of a pair of Levi-Civita tensors can be
rewritten into a series of terms that contain only Kronecker delta’s
d_. Thisreduction can be obtained with the ‘contract’ statement.

Often the contraction of Levi-Civita tensors should be con-
troled. This is the case when there is more than a single pair
of them. In the two dimensional example below it makes a big
difference how the tensors are combined to form pairs:

i ml,m2,m3,m4,m5,m6,m7;
L F=e_(m1,m2)*e_(ml1,m3)*e_(m4,m5)*e_(m6,m7) ;

One combination will give two terms, and the other two com-
binations lead to four terms. The results are equal but it is rather
complicated to prove this without the original expression in terms
of Levi-Civita tensors. When the ‘contract’ statement is invoked
in its simplest form the pair that gives the smallest number of
terms after contraction is combined and contracted. All other
Levi-Civita tensors in the term are left as they are. In case of a
tie the first pair involved in the tie will be taken. Successive ap-
plication of ‘contract’ can remove all tensors (unless there is one
left) and the expression that is generated this way will usually be
the shortest.

To give the user some control over how many and which tensors
are contracted the ‘contract’ statement has several variations:

Contract #
When # is a number contractions are executed till there are
# or #+1 tensors left. A common example is the statement
‘contract 0’ which will contract as many pairs as possible.

Contract:#
The number here indicates the number of indices in a Levi-
Civita tensor. Only tensors with the specified number of in-
dices are contracted. This command can be used when there
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are Levi-Civita tensors in several vectorspaces that have dif-
ferent dimensions. As with the regular contract statement
only a single pair will be contracted.

Contract:#,#
The first argument refers to the number of arguments of
the Levi-Civita tensors. The second argument specifies how
many of those tensors must be kept.

In the ‘Contract:#’ statement we encounter an annoying prob-
lem. When there are tensors with different numbers of arguments
one needs great care about the dimension of the indices. As a
general rule FORM will consider an index that is common be-
tween two Levi-Civita tensors as contractible only when this index
has the same dimension as the number of the arguments in both
tensors. This means that more terms will be generated if one is
sloppy about the notation and the result will also be different: the
d_(mu,mu) term will be replaced by the dimension of the index,
rather then by the number of arguments of the tensor.

When making substitutions on Levi-Civita tensors their anti-
symmetric properties are taken into account. With complicated
wildcard assignments of wildcards that occur more than once in
the left hand side this may cause a rather slow execution as the
number of possible combinations for the wildcard assignments is
the factorial of the number of wildcards that are involved.

One of the great applications of Levi-Civita tensors concerns
numerical stability problems. Gram determinants are notorious
for their numerical instabilities (a Gram determinant is a con-
traction between two Levi-Civita tensors that have all their non
common indices contracted with vectors). Traditionally one con-
tracts the tensors to obtain a number of terms that contain only
regular scalar products between the vectors. Such expressions can
cause enormous problems during numerical evaluation. In such a
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case it is far superior to keep the tensors in and try to compute
the product of the two tensors in a different way.
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The if statement

FORM is equipped with a number of decision taking instructions.
Some operate on the preprocessor level. One of them is the pre-
processor if instruction. This instruction plays a role in the
preparation of the input for the compiler. Its working and syn-
tax are explained in the chapter on the preprocessor. Often one
needs to take some decisions during run time. This decision may
be based on the particular contents of a term. One of the mech-
anisms for this is the if statement. With this statement it is
possible to execute a number of statements selectively, depending
on the particular shape of a term. The if statement works a little
bit like a hybrid of C and Fortran: there is an if statement, an
else statement and an endif statement. Each of these statements
must be terminated by a semicolon, as their translation is done
by the compiler.

The things that put the if statement in FORM apart from the
corresponding statements in C and Fortran are the elements of the
condition by which it is decided whether the following statements
should be executed. These objects can be :

A number or a fraction
Any number or fraction that stays within the limitations
that govern such quantities are allowed.

coeff[icient]
This word indicates the coefficient of the current term.

match(pattern)
The value of the object is the number of times that the pat-
tern can be taken out from the current term. The pattern is
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given in the same format as the left hand side of an id state-
ment. This means that it could contain keywords like ‘once’,
‘only’, ‘many’, ‘select’, etc. The pattern may also contain
wildcards. The interpretation of the patterns and the key-
words is identical to the interpretation in the id statement,
except for the absence of a right hand side.

count(count values)

This gives the count value of the term as obtained when
using the defined count values. The syntax of these values
is identical to those in the count statement, except for the
absence of the first number in the count statement that de-
termines for which count value the term should be discarded.

Objects can be combined via a number of logical operations:

= or ==

The numerical values of the two objects are compared. The
answer is TRUE if they are equal.

The numerical values of the two objects are compared. The
answer is TRUE if they are not equal.

The numerical values of the two objects are compared. The
answer is TRUE if the first object is greater than the second.

The numerical values of the two objects are compared. The
answer is TRUE if the first object is greater than or equal
to the second.
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<
The numerical values of the two objects are compared. The
answer is TRUE if the first object is less than the second.
<=
The numerical values of the two objects are compared. The
answer is TRUE if the first object is less than or equal to
the second.
&&

The logical value of the two objects are compared. The
answer is TRUE if both objects are TRUE.

The logical value of the two objects are compared. The
answer is TRUE if one of the objects is TRUE.

Whenever the answer is not TRUE it is FALSE (sic!).

The comparison of two objects is done via the construction
<objectl> <logical operator> <object2>. An object has a nu-
merical value and a logical value. The numerical value is for in-
stance the value returned by match, count or coefficient. If a
numerical value has to be converted to a logical value it is con-
verted to FALSE when the numerical value is zero. It is converted
to TRUE when the numerical value is not equal to zero. When a
logical value has to be converted to a numerical value FALSE is
translated into zero and TRUE is translated into one.

if ( coefficient == 10/3 );
id x = (y+2);
endif;

It is possible to chain a number of objects and logical opera-
tions without having to use parentheses:
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if ( match(only,a"2) && match(£7(a?))
&% match(e_(mu,nu)) );

The rule is here that each oject is evaluated and then combined
with the total result of everything to the left of it. This may cause
some problems:

if ( match(a"2*b) == 3 && match(a*b~2) == 4 );

This statement will probably be interpreted in a way that is
different from what the user wants. First the return value of
match(a~2#*b) is compared with 3. Let us assume that the result
is TRUE. Then the return value of match(a*xb~2) is converted to
logical and the logical and operation is taken with the previous
result. This gives either in our example the resulting value TRUE.
Finally this value TRUE is converted to one and compared to 4.
The final answer is always FALSE! The condition can be written
properly with the use of parentheses:

if ( ( match(a"2*b) == 3 )
&& ( match(axb~2) == 4 ) );

It should be noted that if the first object of a logical ‘and’
operation gives the value FALSE there is no need to evaluate the
second object. This means that in the above example the second
match will never be attempted if the first match fails to return the
value 3. A corresponding remark can be made about the logical ‘if’
operation. If the first object returns the value TRUE the second
object won’t be evaluated.

It is possible to use an if statement without a logical operator.
This is done when the condition is rather simple:

example a:

s x, a, b, c;
f £,
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if ( match(£?7(x7?)) );
id a*b”2 = 2xc;
endif;

In the above example y is replaced by 2*z in all terms that
contain at least one function with a single argument that is a
symbol. A similar result could be obtained with the statements:

example b:

s X, a, b, c;
f £,

repeat;
id £7(x?7)*a*b~2 = 2*cxf (x);
endrepeat;

With large expressions the user would find out rather soon that
the method of example a is much faster. For high powers of a and
b it could even be that the solution with the repeat statement
can not be used unless the size of the execution heap (see the
chapter on the setup parameters) is extended. There is a third
solution that avoids the problems of example b but still example
a is simpler, faster and easier to understand.

example c:

s X, a, b, ¢, dummy, dumpow;
f £,

id a*b”2 = dummy;
id £7(x?)*dummy”~dumpow? = f(x)*(2*c) ~dumpow;
id dummy = axb~2;

It is harder to find ways around the if statement when the else
statement is also used:
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s X, a, b, c;
f £

if ( ( match(£f7(x?)) );
id a*b”2 = 2xc;
else;
id a"2xb = 2x%c;
endif;

It is left to the reader to try to use method b to remove the if
statement in the last example.

It is allowed to nest if statements. It is also allowed to place
labels inside the ‘range’ of an if statement. This range consists
of the statements between an if and its matching endif. It is not
allowed to to put end-of-module instructions inside the range of
an if statement.

Limitations: The nesting of if statements is restricted to 10 lev-
els. So is the nesting of parentheses that are used for the grouping
inside the conditional part of the if statement. This grouping does
not include the parentheses that are used inside match or count
operations.
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Labels and loops

Like any decent computer language FORM is equipped with the
infamous goto statement. For a goto to work properly there must
of course also be a label statement. The label statement consists
of the word ‘label’, a blank space, tab or a comma and then a
number in the range of 0 to 20. The whole is followed by the
ubiquitous semicolon. The syntax of the goto statement is rather
similar: The word goto is followed by a blank space, tab or comma
after which there is the number of a label that is defined in the
same module and then the semicolon. It is not allowed to use the
goto to jump to another module. The labels exist only during the
execution of the module in which they are defined. This means
that the number of a label can be reused again in other modules.

The main uses of labels in FORM are for the construction
of loops and to simplify difficult constructions in which otherwise
a particular messy piece of code would have to occur more than
once. The user can undoubtly think of more applications.

Loops are usually constructed in combination with the if state-
ment. So is the imitation of a while statement given by:

Label O;
if ( condition );
etc.

goto 0;
endif;

It is not possible to construct do loops that act on the level of
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individual terms because we have only preprocessor variables and
regular variables. It is however possible so simulate some of these
loops rather well:

Label O:
if ( coefficient > 1 );
multiply a/2;

goto 0;
endif;
id a = 2;

The above is a loop that will be executed a number of times
depending on the size of the coefficient of the term.

It is not allowed to use a goto statement to jump into the range
of a repeat/endrepeat statement. It is allowed to jump into the
range of an if statement though.

If a loop is executed many times it may place a heavy burden
on the stacks and buffers of FORM and it is not unthinkable that
an error message will result. In that case one should consult the
chapter on the setup file.
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Multiply

At times one would like to multiply terms by some expression.
Technically such a command isn’t needed because on could al-
ways multiply the expression by some symbol at the time that
it is defined and then replace the symbol by a more complicated
object when the time is there, but this is counter intuitive. The
multiply statement allows the user to multiply the current term
by an expression:

multiply,<any expression>;

There are two subkeys: left and right
multiply,left,<any expression>;

will put the expression at the left of each term, and
multiply,right,<any expression>;

will put the expression at the right of each term. When the
subkey is not present FORM assumes that there are no rele-
vant noncommuting objects and chooses the multiplication that
is fastest. This may depend on the installation or the version of
FORM. Example:

if ( coefficient < 0 );
multiply, -1;

endif;

The above causes all terms to have a positive coefficient.
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Gamma Matrices

For its use in high energy physics FORM is equiped with a built-
in class of functions. These are the gamma functions of the Dirac
algebra which are generically denoted by g_. The gamma matrices
fulfill the relations:

2 * d_(mu,nu)
0 j1 not equal to j2.

{g_(j1,mu),g_(j1,nu)}
lg_(j1,mu),g_(j2,nu)]

The first argument is a so called spin line index. When gamma
matrices have the same spin line they belong to the same Clifford
algebra and commute with the matrices of other Clifford agebra’s.
The indices mu and nu are over space-time and are therefore
usually running from 1 to 4 (or from 0 to 3 in B&D metric).
The totally antisymmetric product e_(m1,m2,....mn)g_(j,m1)... X
g-(j,mn)/n! is defined to be gamma5 or g5_(j). The notation 5
finds its roots in 4 dimensional space-time. The unitmatrix is de-
noted by gi_(j). In four dimensions a basis of the Clifford algebra
can be given by:

gi_(3§)

g-(j,mu)
[g_(j,mu),g_(j,nu)]/2
g5_(j)*g_(j,mu)
g5_(j)

In a different number of dimensions this basis is correspond-
ingly different. We introduce the following notation for conve-
nience:
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g6_(3) = gi(j) + gb_(3) (from schoonschip)
g7_(j) = gi(§) - gb_(j)
g_(j,mu,nu) = g_(j,mu)*g_(j,nu) (from reduce)
g_(j,mu,nu,..... ,ro,si) =

g_(j,mu,nu,..... ,ro)*g_(j,si)
g_(j,5_) = gb_(3)
g_(3,6_) = gb6_(3)
g_(3,7_2) = g7_(3)

The common operation for gamma matrices is obtaining the
trace of a string of gamma matrices. This is done with the state-
ment:

traced4, j

Take the trace in 4 dimensions of the combination of all
gamma matrices with spin line j in the current term. Any
noncommuting objects that may be between some of these
matrices are ignored. It is the users responsibility to issue
this statement only after all functions of the relevant ma-
trices are resolved. The four refers to special tricks that
can be applied in four dimensions. This allows for relatively
compact expressions.

tracen, j

Take the trace in an unspecified number of dimensions. This
number of dimensions is considered to be even. The traces
are evaluated by only using the anticommutation properties
of the matrices. As the number of dimensions is not specified
the occurrence of a g5_(j) is a fatal error. In general the
expressions that are generated this way are longer than the
four dimensional expressions.

It is possible to alter the value of the trace of the unitmatrix.
Its default value is 4, but by using the statement
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unittrace value

it can be altered. Value may be any positive short number (see
theinstallation guide for its ranges) or a single symbol with the
exception of the symbol i_.

Algorithms:

FORM has been equipped with several built in rules to keep
the number of generated terms to a minimum during the evalua-
tion of a trace. These rules are:

rule

rule

rule

0

Strings with an odd number of matrices (not considering
gammab) have a trace that is zero when using traced or
tracen.

1

A string of gamma matrices is first scanned for adjacent
matrices that have the same contractable index, or that are
contracted with the same vector. If such a pair is found the
relations

g_(1,mu,mu) = gi_(1)*d_(mu,mu)
g_(1,pl,pl) = gi_(1)*pl.pl

are applied.

2

Next is a scan for a pair of the same contractable indices
that has an odd number of other matrices in between. This
is done only for 4 dimensions (trace4) and the dimension
of the indices must be 4. If found the Chisholm identity is
applied:
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g_(1,mu,ml,m2,...mn,mu) =
-2xg_(1,mn,...,m2,ml)

rule 3

rule

Then (again only for traced) there is a search for a pair
of matrices with the same 4 dimensional index and an even
number of matrices in between. If found one of the following
variations of the Chisholm identity is applied:

g_(1,mu,ml,m2,mu) = 4*xgi_(1)*d_(m1,m2)

g_(1,mu,ml,m2,...mj,mn,mu) =
2xg_(1,mn,m1,m2,...,mj)
+2xg_(1,mj,...,m2,ml,mn)

4

Then there is a scan for pairs of matrices that have the same
index or that are contracted with the same vector. If found
the identity:

g_(1,mu,ml,m2,...,mj,mn,mu) =
2xd_(mn,mn) *g_(1,mu,ml,m2,...,mj)
-2xd_(mu,mj)*g_(1,mu,ml,m2,...,mn)

+/-2%d_(mu,m1)*g_(1,mu,m2,...,mj,mn)
-/+2*d_(mu,mu)*g_(1,m1,m2,...,mj,mn)

is used to ’anticommute’ these identical object till they be-
come adjacent and can be eliminated via the application of
rule 1. After this all gamma matrices that are left have a dif-
ferent index or are contracted with different vectors. These
are treated using:

FORM 188



Chapter 20 Gamma Matrices

rule 5
Traces in 4 dimensions for which all gamma matrices have a
different index, or are contracted with a different fourvector
are evaluated using the reduction formula

g_(1,mu,nu,ro) =
g_(1,5_,si)*e_(mu,nu,ro,si)
+d_(mu,nu)*g_(1,ro)
-d_(mu,ro)*g_(1,nu)
+d_(nu,ro)*g_(1,mu)

For tracen the generating algorithm is based on the gener-
ation of all possible pairs of indices/vectors that occur in
the gamma matrices in combination with their proper sign.
When the dimension is not specified there is no shorter ex-
pression.

Remarks:

When an index is declared to have dimension n and the com-
mand traced is used the special 4 dimensional rules 2 and 3 are
not applied to this index. The application of rule 1 or 4 will then
give the correct results. The result will nevertheless be wrong due
to rule 5 when there are at least 10 gamma matrices left after the
application of the first 4 rules, as the two algorithms in rule 5
give a difference only when there are at least 10 gamma matrices.
The result is unpredictable when both indices in four dimensions
and indices in n dimensions occur in the same string of gamma
matrices. Therefore one should be very careful when using the
four dimensional trace under the condition that the results need
to be correct in n dimensions. This is sometimes needed when a
gammad is involved, as the tracen instruction will not allow the
presence of a gammab.
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Modulus

Sometimes it is necessary to use coeflicients that belong to a fi-
nite field. This can be done rather conveniently in FORM. The
statement

Modulus number;

specifies that all arithmatic should be modulus the number
‘number’. Of this command only the m is mandatory, the other
characters of the word modulus are optional.

When the number is less than the maximal power that is al-
lowed for symbols (see for instance the section on symbols) the
powers of symbols and dotproducts are reduced via the relation

X ~ number = x;

All powers are then positive or zero. The situation with func-
tion arguments is somewhat more complicated. They are taken
modulus ‘number’, even though that may be incorrect if one of
the arguments represents a power. It is the responsibility of the
user to avoid these problems.

The modulus arithmatic extends itself to fractions. These are
also reduced to integers, as the inverse of a number can be defined
properly unless ‘number’ is not a prime number. If that is the case
a division by zero may result.

When the number that is specified in the modulus statement
is larger than the maximum power that is allowed there will be no
reduction of powers. The user should work his way around this
restriction by the use of special symbols. This is price to be paid
for the speed of FORM.
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The argument in a modulus statement must be positive or zero.
If the argument is 0 or 1 the statement would be meaningless.
It is then interpreted as an indication that any existing modulus
arithmatic must be switched off and ordinary fractional arithmatic
should be restored.

Sometimes the reduction of powers in modular arithmatic can
be a nuisance. In that case this reduction can be turned off by
specifying a negative value in the modulus statement. So

Modulus,-17;

will set all arithmatic of coefficients to modulus 17, but ex-
ponents will be unaffected. Note that the comma is necessary
here.

When the value in the modulus statement is a prime number
there exists another feature that is handy at times. It is possible to
find a number x so that when arithmatic is modulus p all numbers
greater than zero and less than p can be written as x"n for some
n. Such a number x is called a generator. The user can select the
option to print all coefficients as a power of a generator with the
statement

Modulus p:x;

FORM will then construct a table in which each number less
than p is expressed as a power of the generator. This will fail when
the generator turns out to be not a real generator or when there
is not enough memory for such a table. Therefore this option is
only useful when p is not very large.
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Procedures

Like any decent language FORM can use prepared input that de-
pends on a number of parameters. Such input is often referred
to as subroutines or procedures. The procedures in FORM are
managed by the preprocessor. This means that, unlike in the com-
putational languages, a procedure is not necessarily called just to
produce a number. It is called to act upon the current environ-
ment in a way that depends on the contents of the procedure and
the specific ‘value’ of the parameters. A procedure can exist of
just a collection of id statements or it can define new expressions
etc.

There are two ways to define procedures: The first one is at
the beginning of a program. If the preprocessor encounters a
procedure instruction the contents of the procedure are copied into
a procedures buffer. The end of the procedure is indicated with an
‘endprocedure’ instruction. This way any number of procedures
can be defined. The requirement is that a procedure must be
defined before it is used and the occurrence of the definition of a
procedure inside the range of a loop may cause a fatal error.

The second method is to define the procedure in a prepared
file. This file must have the name of the procedure to which
the extension ‘.prc’ is added. If the filesystem does not support
extensions to file names the period is omitted and the characters
‘prc’ are added. So the procedure ‘solve’ should be stored in the
file ‘solve.prc’ (or ‘solveprc’ on ‘those other’ systems).

The first line of a procedure must be the procedure declaration
and it should also contain the parameter field definition. This line
must be a single line, so if the user likes to extend it over more than
a single inputline the linefeed should be escaped with a backslash.

FORM 192



Chapter 22 Procedures

The syntax of the line is:
#procedure name(argl,arg2,...,argn)

The arguments must have names that consist of regular al-
phanumerical characters. They are separated by comma’s. Also
the name of the procedure must consist of alphanumerical char-
acters only. The procedure declaration must be in the first line of
the file when it is defined in a file. Note that FORM is very picky
about the name of the procedure. It must be exactly equal to the
name that was used to obtain the name of the file (when defined
in a file), even though this implies some redundancy. The end
of the procedure is indicated with the ‘endprocedure’ instruction
which has the very simple syntax

#endprocedure

This instruction is used only when the procedure is defined at
the beginning of a program. When it is encountered in a file it is
skipped.

A procedure is used with the ‘call” instruction. This instruction
has the syntax:

#call name {parameterl|parameter?2]...|parameter}

Here the parameterfield obeys the same rules as the parameter
field in the listed do loops, ie it is enclosed in curly brackets ({ and
}) and the parameters are separated by a vertical line (1). This
notation allows the use of any regular characters as parameters,
including strings that contain comma’s or linefeeds. If a parameter
contains curly brackets, these brackets should be paired properly
inside each parameter separately.

The parameters inside the procedures are local preprocessor
variables. This means that inside the procedure the local defini-
tion takes precedence over a potentially already existing definition.
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In other words: if the variable i is used in a do loop and a proce-
dure, which uses a variable i, is called inside this loop there will
be no conflict. Inside the procedure the local definition is used,
while after the completion of the procedure the original definition
is active again. Note also that the parameters are preprocessor
variables so they should be enclosed in quotes when they are used.

For some applications of procedures one should consult the
chapter with the examples.
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Saving and Loading

Often it is necessary to save the results of one program so that it
may be used in another program. This process is called saving.
In FORM expressions can be saved if they are already stored
expressions. The save statement is given either with a list of
expressions that should be saved or without such a list in which
case all stored expressions are saved:

save filename;
save filename expressions;

The name of the file should be acceptable to the filesystem
of the computer on which FORM is running. The expressions
should all be valid expressions that were properly stored.

To use the saved expressions in another program one should
apply the load statement. Its syntax is similar to the syntax of
the save command:

load filename;
load filename expressions;

In the first case all expressions in the given file are loaded, while
in the second case only the expressions that are asked for are
loaded. If an expression is not found or when loading would cause
an expression to occur twice a fatal error is generated. A fatal
error is also generated when a loaded expression is being used and
its namelists are incompatible with the current namelists. For
each expression that is loaded FORM will print a line with the
name of the expression. This allows the user to check the contents
of a file. There is no restruiction on the number of save and load
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statements in a program. It is suggested that the extension of a
file with saved expressions is .sav on systems that allow file names
with extentions.

The internal storage file in which the stored expressions are
kept is written in the same format as the ‘save file’. This means
that if a program is aborted prematurely all information in the
storage file can be recovered, unless an error occurred during the
updating of the storage file. The storage file is removed after
successful completion of a program. When it is not deleted it
can be found either in the current directory or in the directory
designated to contain the temporary files. Its name will end either
in .str on systems that allow extentions to file names or in str when
such extentions are not allowed.

The save and load instructions are executed by the compiler,
so when such an instruction is found between a number of id
statements it is still executed only once. The compiler output will
show no trace of the presence of a save or load instruction.
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The setup parameters

When FORM is started it has a number of settings built in that
were determined during its installation. If the user would like to
alter these settings he can specify their desired values in a setup
file. There are two ways in which FORM can find a setup file.
The first way is by having a file named ‘form.set’ in the current
directory. If such a file is present FORM will open it and interpret
its contents as setup parameters. If this file is not present one may
specify a setup file via the -s option in the command tail. This
option must preceede the name of the input file. After the -s follow
one or more blanks or tabs and then the full name of the setup
file. FORM will try to read startup parameters from this file. If
a file ‘form.set’ is present FORM will ignore the -s option and its
corresponding file name. This order of interpretation allows the
user to define an alias with a standard setup file which can be
overruled by a local setup file. If neither of the above methods is
used FORM will use a built in set of parameters. Their values
may depend on the installation and are given in the installation
guide.

The following is a list of parameters that can be set. The
syntax is rather simple: The full word must be specified (case in-
sensitive), followed by one or more blanks or tabs and the desired
number. Anything after the number is considered to be commen-
tary. Also lines that don’t start with an alphabetic character are
seen as commentary. The order of description is the order in which
the parameters are used during the memory allocation phase.

MaxTermSize
This is the maximum size that an individual term may oc-
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cupy. This size doesn’t affect any allocations. One should
realize however that the larger this size is the heavier the
demand can be on the workspace. Consequently the evalu-
ationtree cannot be very deep when WorkSpace / TermSize
is not very big. MaxTermSize controls mainly when FORM
starts complaining about terms that are too complicated.
The size is in a number of short integers.

NwriteStatistics
When this word is mentioned the default setting for the
statistics is that no run time statistics will be shown. Ordi-
narily they will be shown.

LineLength

The number that follows determines a cutoff on the number
of characters that will be printed on one line. This rule is
not adhered to rigidly as some types of output may take a
few extra characters. This LineLength should not be outside
the range 39 to 255 or it will be corrected to a number in-
side this range. This parameter looks much like the Format
parameter that can be set during run time, except for that
the LineLength cannot take symbolic values like ‘fortran’.

ConstIndex
This is just the number of indices that are considered to be
constant indices like in fixed vector components. The size
of this parameter is not coupled to any array space, but
ConstIndex+4*Vectors+4*Indices) must be a number that
fits inside a short integer in FORM (usually two bytes).

TempDir

This variable should contain the name of a directory that is
the directory in which FORM should make its temporary
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files. If the -T option is used when FORM is started the
TempDir variable in the setup file is ignored. FORM can
create 5 different temporary files. They have the extensions
.str, .scl, .sc2, .sor and .sga. The first file contains the global
expressions after they have been stored away by a .store
instruction. The internal format is identical to the format
of the files that are written by the ‘save’ statement. When
FORM aborts execution and there is a possibility that the
.str file contains relevant information it is not removed. The
other files are removed at the end of execution. The .str file
can then be read by a ‘load’ statement.

PreBuffer
The size of the buffer that the preprocessor uses for storing
preprocessor variables.

PreVariables
The number of variables that the preprocessor can have in
its buffers simultaneously.

Symbols
The maximum number of symbols that can be defined at
any given moment. Note that a complex symbol takes two
entries: one for the symbol itself and one for its complex
conjugate.

Indices
The maximum number of indices that can be defined at any
time.

Vectors
The maximum number of vectors that can be defined at any
time.
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Functions
The maximum number of functions that can be defined at
any time. Again the complex functions use two spots in the
tables.

Sets
The maximum number of sets that can be defined at any
time.

SetStore
The maximum number of elements in all sets together.

Expressions
The maximum number of expressions that can be defined at
any time.

MaxNames
The compiler part of FORM keeps a list of pointers to all ex-
isting names of variables. This enables the compiler to find
names rather quickly. The size of this list is restricted by the
variable MaxNames. If the user needs more than this num-
ber of names he should increment the value of MaxNames.

NameBuffer
The maximum storage space for all names in the name ta-
bles. Each name occupies a number of bytes that is equal to
the number of characters in the name plus one termination
character and if this sum is odd there is an extra character
to make the total length even.

MaxWildcards
The maximum number of wildcards that can be active in a
single matching of a pattern.
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InputSize

The size of the raw input buffer. This buffer is used to
collect an entire statement before it is sent to the compiler.
This size is therefore a limitation on the size of a single
instruction. The size that is limited is the size that the
statement obtains after the preprocessor variables have been
expanded. This buffer is also used during the execution of a
program. It serves for temporary storage of some quantities
during wildcard expansions. This involves rarely more than
a few hundred bytes.

CompilerOutput

The size of the buffer that contains the output of the com-
piler. This buffer contains the output that concerns an entire
module. This compiler output is used directly by the alge-
bra processor. The algebra processor sets up a single tree for
each term in the input so it would be very wasteful to have
the compiler output residing on disk. Therefore the com-
piler output must be in memory. If the allocated memory is
not sufficient and more memory cannot be obtained the user
should try to simplify his modules by breaking them up.

MaxStatements
The maximum number of executable statements that is al-
lowed in each module.

MaxLevels
The maximum number of effective statements that is allowed
in a module. The number of effective statements is obtained
by taking the number of executable statements, adding to
that the number of pairs of parentheses and adding to that
the number of nontrivial function arguments.
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FunctionLevels
The maximum number of levels that may occur when func-
tions have functions in their arguments.

MaxBracket
The maximum number of words that can be used to store
bracket information. If this number is too small the bracket
statement will issue an error message.

FilePatches

The maximum number of patches that is allowed on a file
during sorting. Currently this number is limited because
the file sorting is done in one pass. There is a corrella-
tion between this number and the size of the other buffers:
Each patch will be buffered with a buffer that must have
at least the maximum size of a term. In addition there
must be space for rational arithmatic, so each buffer must
have a minimum size of (bytes in MaxTermSize ) * 2. In
most computers this means that FilePatches must be less
than (LargeSize+SmallExtension)/(4«MaxTermSize). Ac-
tually the size of these buffers is fixed by SortIOsize.

LargePatches
The maximum number of patches that is allowed in the large
buffer. The large buffer resides in virtual memory and when-
ever it is full or the number of patches exceeds the maximum
it is sorted and the result is written to the intermediate file
that is used for sorting.

TermsInSmall
The maximum number of terms that is allowed in the small
buffer before it is sorted. The sorted result is either copied
to the large buffer or written to the intermediate sort file.
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SmallSize

The size of the small buffer in bytes. This buffer is used to
place the freshly generated terms in. When it is full or its
number of terms exceeds a maximum number (TermsInS-
mall) or the generation of terms is finished for the current
expression the terms in this buffer are sorted and the results
are sent to either the large buffer, the intermediate sort file
or to the output.

SmallExtension

The size of the small buffer plus its extension. The small
buffer needs an extension that is contiguous with it, as dur-
ing the sort the sum of two terms may take more space
than either of the individual terms. This is the price to be
paid for arithmatic with rational numbers. Such a term can
then be moved to the extension space and the sort contin-
ues. If the extensionspace is also full a garbage collection
is attempted. This garbage collection uses the disk so it is
not very fast. Typical settings are that SmallExtension is
about 1.25 times the size of SmallSize. When SmallSize is
set SmallExtension is automatically set to such a value. So
it is useless to first specify SmallExtension and then Small-
Size. A value for SmallExtension that is less than SmallSize
results in an error message.

LargeSize
The size of the large or virtual buffer. This buffer is useful
on systems with virtual memory that is much larger than
the physical memory. Sorting in the small buffer is done by
pointers. This method works only well when the whole small
buffer resides inside the physical memory. When virtual
memory is going to be used a different sorting mechanism is
applied. It uses the pages only once in their entirety, but it
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has to move terms. This sort merges at most 'LargePatches’
patches that are each the result of a sort inside the small
buffer. The results are either put in the intermediate sort
file or in the output file. Some experimenting may be needed
to determine the optimal size of LargeSize and SmallSize.
This optimum may also be function of the workload on the
machine. The large buffer and the small buffer are assigned
to be contiguous. This gives a maximal size for the buffers
that can be used when the intermediate sort file is merged.
(See also MaxPatches).

SortIOsize
The size of the buffer that is used to write to the intermedi-
ate sorting file. This buffer must have a size that is at least
as large as the MaxTermSize * (bytes per short integer) and
(SortIOsize+MaxTermSize in bytes) x MaxPatches must be
less than SmallExtension + LargeSize.

ScratchSize
The size of the input and the output buffers for the regular
algebra processing. Terms are read in in chunks this size
and are written to the output file via buffers of this size.
There are two of these buffers. These buffers must have a
size that is at least as large as the MaxTermSize * (bytes
per short integer).

NumberStoreCache
See SizeStoreCache below.

SizeStoreCache
When stored expressions are used they are read term by
term. This may be rather slow on some computers. There-
fore some caching mechanism has been built in. The first
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‘NumberStoreCache’ expressions get a chaching buffer as-
signed to them. These buffers are ‘SizeStoreCache’ bytes
long. For the purpose of counting expressions each expres-
sion contributes by the number of its power, so F~2 uses two
cache buffers. These buffers must have a size that is at least
as large as the MaxTermSize * (bytes per short integer).

WorkSpace
The size of the heap that is used by the algebra processor
when it is evaluating the substitution tree. It will contain
terms, half finished terms and other information. The size
of the workspace may be a limitation on the depth of a
substitution tree.

Restrictions: The small buffer and the large buffer are used by
FORM as a collection of input buffers when sorting gets to the
stage that the patches in the intermediate sorting file have to be
merged. This can only be done if there is enough room in this
buffer for one input buffer for each patch on the file plus some
overflow space to avoid having only parts of a term in the buffer.
This means that:

SmallExtention + LargeSize >=
LargePatches$*$(SortIOsize +
MaxTerSize$*$bytes per short integer).

The current default settings should be looked up in the installation
guide.

The file setup that comes with FORM shows the default set-
tings. It is an example of a file that contains all parameters. In
practice one only has to specify those parameters that must be
different from their default value.

Example file form. set:

MaxTermSize 1000
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NwriteStatistics is off

LineLength
ConstIndex
TempDir
PreBuffer
PreVariables
Symbols
Indices
Vectors
Functions

Sets

SetStore
Expressions
MaxNames
NameBuffer
MaxWildcards
InputSize
CompilerQutput
MaxStatements
MaxLevels
FunctionLevels
MaxBracket
FilePatches
LargePatches
TermsInSmall
SmallSize
SmallExtension
LargeSize
SortIOsize
ScratchSize

NumberStoreCache

SizeStoreCache
WorkSpace

FORM

79
128

200

20

100
100
100
100

50

200
100
250
4096
40
32768
50000
100
500

10

200

64

128
20000
450000
600000
2000000
8192
8192

5

4096
50000
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Bug hunting

However careful one may be, occasionally there are those mys-
terious error messages that take a while to figure out. Take for
instance the following program:

Symbols x,n;

CFunctions gl,g2
Functions f1,f2,f,dx;
Local F = £1(0,x)*£f2(0,x);
multiply dx;

repeat;
id,dx*f?(n?,x) = f(n+1,x)+f(n,x)*dx;
endrepeat;
id dx = 0;
print;
.end
WorkSpace overflow 40000 bytes is not enough.

It is also possible that this program doesn’t even yield an error
message but that a stack overflow occurs first having FORM crash
quite unelegantly (there is no check for stack overflow currently).
What went wrong here? The program looks very much like one
of the programs we made in one of the sections in the tutorial.

One of the ways in which FORM can help us is by printing
how it interpreted the name lists. We can force it to do so with
the ‘write names’ statement. This statement turns on a flag that
causes FORM to let us have a look at the namelists each time
that FORM encounters an end of module instruction. This flag
can be turned off again with the ‘nwrite names’ statement.
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Symbols x,n;
CFunctions gl,g2
Functions f1,f2,f,dx;
Local F = £1(0,x)*f2(0,x);
multiply dx;
repeat;

id,dx*f?(n?,x) = f(n+1,x)+f(n,x)*dx;
endrepeat;

id dx = 0;
write names;
print;

.end

Symbols
i_#i xn
Functions
g_#1 sum_ sump_
Commuting Functions
e_#i fac_ theta_ delta_ gl g2 Functions f1 f2 f
dx

Expressions
F(local)
Expressions to be printed
F
WorkSpace overflow 40000 bytes is not enough.

Now what do we see: Our functions have been entered in the
namelists as commuting functions, even the ones that we declared
as noncommuting functions. In addition there is the mysterious
function ‘Functions’. Let us have a close look at the function
declarations. By now the reader may notice (if he hadn’t from
the beginning) that there is a semicolon missing in the declaration
of the commuting functions. So form read the next line as a
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continuation of the earlier line. There is very little that can be
done to prevent such a situation. The freedom that the syntax of
FORM gives to the user may occasionally result in an error that
isn’t caught by the compiler. On the other hand the above case
is rather rare.

What happens more often is that the user forgets a semicolon,
after which the compiler will issue a message about incorrect syn-
tax of a statement that doesn’t refer to semicolons at all. There-
fore one of the guidelines should be that if the error message
seems to be about something that looks correct, one should in-
spect whether all statements in the neighborhood are terminated
properly.

Another common error is the error ‘Write error while sorting’
after which FORM will terminate the execution. This indicates
usually that either the user tried to write beyond he quota (on
mainframes) or that his disk is full. Inspection of the statistics
should reveal whether such is the case. On UNIX systems the use
of the ‘“TempDir’ option could solve this problem by having the
intermediate files written to the directory /tmp (or in spool).
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List of commands

The following is a list of all statements, instructions, built in func-
tions and options. Note that FORM is case insensitive with re-
spect to these objects. If the keyword can be abbreviated the
mandatory part is outside the square brackets, while the optional
part of the word is inside the square brackets. Note that the op-
tional part may be fractionally present. D dim dimen or dimension
all mean the same.

A
See ‘Symbols’.
Al[so]
See ‘Idold’.
An[tisymmetrize]
Antisymmetrize the given function according to the specified
parameter field information.
Blrackets]

Should be followed by a list of objects that must be taken
outside parentheses when the output is printed.

C[functions| or Clommuting)]
Declaration of commuting functions.

Coefl[icient]

Function that returns the value of the coefficient of the cur-
rent term.
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Contract
Contraction of Levi-Civita tensors.

Count
Function for power counting. When used as a statement all
terms that don’t fulfil the count condition are discarded.

Delete Storage
Deletes the contents of the storage file.

delta_
The delta function with values 0 or 1.

D[imension]
Set the default dimension.

Discard

Discards the current term.

Drop
Skip the given expressions and remove them after the next
.sort instruction.

d_
The Kronecker delta.

else
See if-statement.

endif
See if-statement.

Endrepeat
End of a group of statements that should be repeated till no
more replacements are made.
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The Levi-Civita tensor.

Fi[xindex]
Set the value of d_ for the diagonal elements with number
indices.

Fo[rmat]
Set either the number of columns per line or set in Fortran
mode

F[unctions] or N[functions]
Declaration of non commuting functions.

G/lobal]
Definition of a global expression.

Golto] or GoJ to]
Go to the label who’s number is given after the go to.

g
The built in gamma matrix.

The imaginary i.

Id[entify] or Id[new]
Replacement statement. Enters a new level which means
that the matching of the lhs will be made after the preivous
statement has been completed.

Ido[ld] or Al[so]
Replacement statement. The matching of the lhs takes place
before the rhs of the previous Id or Idold statement has been
inserted.
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If
The if statement that reacts to the contents of terms.

I[ndex] or I[ndices]
Declaration of indices.

La[bel]
Put a label before the next statement.

Local]
Definition of a local expression.

Loa[d]
Load expressions from an external file into the file with
stored expressions.

Many
Option in id-statement. Take pattern once at a time but
then as many times as possible.

Match
Function that returns the number of times that the given
pattern fits in the current term.

M|odulus]
Change to modulus arithmatic.

Multi
Option in id-statement. Take pattern as many times as pos-
sible.

Mu(ltiply]
Multiply each term by a symbol.
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N[functions]
See Functions.

Np|rint]
Don’t print the specified expressions.

Nw(rite]
Don’t write names or statistics.

Once
Option in id-statement. Take pattern only once.

Only
Option in id-statement. Take pattern only if exact match.

P[rint]
Print the specified expressions.

Ratio
Partional fractioning with respect to given objects.

Repeat
Repeat the group of statements between the repeat and the
matching endrepeat statement till there are no more replace-
ments.

Sa[ve]
Save expressions from the file with stored expressions to an
external file.

Select

Option in id-statement. Take pattern only if no elements of
the additionally mentioned sets are left.
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Skip
The given expressions will not be the object of operations
in this module.

Sum
Declare that an index is summed over.

sum_
The built in sum function.

sump-_
The built in sum function with special incrementation rules.

S[ymbols] or A
Declaration of symbols.

Symm|etrize]
Symmetrize the given function according to the specified
parameter field information.

theta_
The theta function with values 0 or 1.

Tracen
Take trace of gamma matrices using n-dimensional algo-
rithms.

Trace4
Take trace of gamma matrices using 4-dimensional algo-
rithms.

Ulnittrace]
Set the trace of the unit matrix gi..

Vlectors]
Declaration of vectors.
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Wirite]
Write names or statistics.

Selt]
Declaration and definition of a set.

.clear
Clears all the contents of FORMs buffers with the exception
of the input and preprocessor buffers.

.end
End of module and end of program.

.global
End of module. No evaluations are made. Make the decla-
rations and definitions in this module global.

.sort
End of module. Evaluate all expressions.

.store
End of module. Evaluate all expressions. Store the global
expresssions and remove all local expressions.

F#call
Call of a procedure.

#define
Define a preprocessor variable.

#do

Preprocessor do-loop.

#else

Preprocessor else instruction.
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#enddo
End of preprocessor do-loop.

#endif

Preprocessor endif instruction.

#endprocedure
End of the definition of a procedure.

Hif

Preprocessor if instruction.

#include
Insert the contents of the mentioned file into the input.

#procedure
Definition of a procedure.

#undefine
Undefine a preprocessor variable.

#+

Resume listing the input.
-
Stop listing the input.

Line is commentary.
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27.1 Polynomial substitutions

Usually polynomials in commuting objects are substituted using
binomial coefficients when powers of the polynomials are involved.
A simple example is:

s a,b;
L F=(a+b)"4;
print;
.end
F =

a"4 + 4xa”3%b + 6*xa”2*%b"2 + 4xaxb”3 + b"4

In this case FORM generated only the five terms in the output,
rather than 16 terms. When there are noncommuting objects
(functions, subexpressions containing noncommuting functions, or
expressions) involved the brute force method is used, rather than
the binomial expansion.

In the substitution of one Taylor expansion inside another ex-
pansion even the use of binomial coefficients is not sufficient. An
expression containing m terms raised to the n-th power will still
generate (n+m-1)!/(n! (m-1)!) terms before FORM can collect
and sort them. When n and m are of the order of 20 such a
method is clearly impractical.

The practical method will be illustrated in the following ex-
ample. We are going to take the expansion of In(1+x) to 40 terms
deep and substitute in it the expansion for exp(z)-1. The result
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should of course be z after lengthy computations. This trivial re-
sult allows us to check that the algorithm is correct and also that
the arithmatic routines of FORM are functioning properly.

The expansions we need are:

n

In(1+z) =Y (-1)*a'/i

i=1

and:
n

e —1= Zz"/n'

i=1
This last expansion has to be modified, because when n is

rather large the results can be catastrophic. We will use the ‘tele-
scope’ formulas:

e —1=2(l+-(1+2(1+5(1-))

This formula is applied by the successive substitutions:

id x = y*z;

id y =1+ y*z/2;
id y =1+ y*z/3;
id y =1 + yxz/4;

id y =1 + y*z/n;
id y=1;

The use of the preprocessor do loops makes it rather convenient
to program. Note also the use of the preprocessor variable n to
indicate the depth of the expansion and the cutoff on the power
of z.
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#define n "40"

s x,y,z(:’n’),1;

L F=sumn_(i,1,’n’,-(-x)"1/1);
id x = y*z;

#do i = 2,’n’

id y =1+ y*xz/’i’;
#enddo

id y =1;

print;

.end

This program gives the answer z, but it takes still quite some
time to do so, as it still generates 215307 terms, disregarding the
terms that were discarded prematurely because they had a power
of z that was larger than 40. The program becomes nearly 40
times faster when this build up is suppressed by sorting the terms
after each substitution. This is done by adding a .sort statement
inside the last loop:

#do i = 2,’n’

id y =1+ yxz/’i’;
.sort

#enddo
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27.2 Solving equations

Many algebra programs contain built in commands to solve sets of
equations. The drawback of such commands is that they choose
often an inefficient algorithm because the algorithm must be gen-
eral. FORM doesn’t have built in commands to solve equations
but it provides the tools to build ones own procedures to solve
a particular class of equations. In this example we will solve a
set of three equations in three variables. This is best done in a
procedure, so that we may use it whenever we run again into the
same problem.

27.2.1 Method 1

The first method is rather similar to the way one uses when solving
the equations by hand. We eliminate variables one by one to
obtain equations with fewer variables. This is done in the following
procedure:

#procedure solve3(F1,F2,F3,x1,x2,x3,G1,G2,G3)

*
* Solves 3 linear equations in 3 variables.

* F1, F2, F3 are the three equations.

* x1, x2, x3 are the variables.

* G1, G2, G3 are the equations with the results.
*

* Make first two equations in two variables:

*

b ’'x3’;

nprint;

.sort

L Solve3Auxl = ’F1’%’F2’[’x3’] - ’F2’*%’F1°’[’x3’];
L Solve3Aux2 = ’F1’%’F3°[’x3’] - ’F3’%x’F1’[’x3°];
*
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* Now eliminate first x2 to obtain x1:
*
b ’x2’;
nprint;
.sort
L ’G1’ = Solve3Auxl1*Solve3Aux2[’x2’]
- Solve3Aux2*Solve3Aux1[’x2’];

Next eliminate first x1 to obtain x2:

T % ¥ *

’x17;

nprint;

.sort

skip ’F3’;

drop Solve3Auxl,Solve3Aux?2;

L ’G2’ = Solve3Auxl1*Solve3Aux2[’x1’]
- Solve3Aux2*Solve3Aux1[’x1’];

*

* Now something similar to obtain x3

b ’x1’;

nprint;

.sort

skip ’G1’,’G2’,’F1’ ,°F2’,°F3’;

L Solve3Auxl = ’F1’%’F2’°[’x1’] - ’F2’x’F1’[’x1°];

L Solve3Aux2 = ’F1’%’F3’[’x1’] - ’F3’x’F1’[’x1°];

b ’x2’;

nprint;

.sort

skip ’F1’,’F2’,°F3’;

drop Solve3Auxl,Solve3Aux?2;

L ’G3’ = Solve3Aux1*Solve3Aux2[’x2’]
- Solve3Aux2*Solve3Aux1[’x2’];

b ’'x1’,’x2’,’x3’;

FORM 222



Examples Solving equations

print;
.sort
nprint;

This procedure should be stored in the file ‘solve3.prc’ (or
‘solve3prc’ when extentions with a period are not allowed) and
can be used from then on. It is used in the following program:

s al,bl,c1,d1,a2,b2,c2,d2,a3,b3,c3,d3,x,y,z;
nwrite statistics;
L V1 = al*xx+bl*y+cl*xz+dl;

L V2 = a2*x+b2*y+c2xz+d2;

L V3 = a3*x+b3*y+c3*z+d3;

#call solve3{V1|V2|V3|x|ylz|H1|H2|H3}
.end

and the results are printed. Of course the results are not as nice
as could be when printing ‘x =’ etc., but on the other hand we
are not harmed by sets of equations that don’t have a solution!
Nevertheless running the program shows a considerable weakness:
The resulting formulae have each a factor by which they can be
divided. This means for instance that if cl is zero the first two
equations (for x and y) become meaningless. The better way is to
use the formal approach that follows below.

27.2.2 Method 2

A set of linear equations can always be written in terms of matrices
using the formula

Ax =D

in which x and b are vectors and A is a matrix. The solution of
these equations is obtained by multiplying with the inverse of A:

x=A"tb
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The inverse of A is given by its minors divided by the determinant,
so the following program will do the job:

#procedure solve3a(F1,F2,F3,x1,x2,x3,H1,H2,H3)

nprint;
’x1’,°x27,°x37;
.sort
skip ’F1’,°F2’,°F3’;
s Solve3DetAux;

b

L

)Hl)

)HQ)

)HS)

+

] + +

+ +

+
+

’x1’ * Solve3DetAux

'F12 [x2°1%°F2° [’x37 1% F3’ [1]
’F1° [’x2°]*°F2° [1]%°F3° [’x3’]
’F1° [’x3°]*°F2° [’x2°]*’F3’ [1]
’F1° [’x3°]*°F2° [1]%°F3’ [’x2’]
’F1° [1]%°F2° [’x2°]*’F3° [’x3"]

'F1° [1]1%°F2° [’x3°]*°F3° [’x2°];

’x2’ * Solve3DetAux

'F1° [’x1°]%°F2° [’x3°]*’F3’ [1]
'F1° [’x1°]1*°F2° [1]%°F3° [’x3’]
"F1° [’x3°]*°F2° [’x1°]*°F3° [1]
"F1° [’x3°]*°F2° [1]*°F3° [’x1°]
’F1° [1]%°F2° [’x1°]*’F3° [’x3"]

PF1° [1]1%°F2° [’x3°]*’F3° [’x1°];

’x3? * Solve3DetAux

PF1 [Px1°]%°F2 ['x2°1%°F3° [1]
PF1° [Px1°]1*%°F2° [1]%°F3° [’x2°]
PF1° [x2°]1*%°F2° [’x1°]1*°F3° [1]
YF12[’x2°]1%°F2° [1]1%°F3° [’x1°]
YF12[1]1%°F2° [’x1°]1%°F3° [’x2°]

PF1° [1]1%°F2° [’x2°]*°F3° [’x1°]1;

id Solve3DetAux =

FORM

71:'17 [’Xl’]*’FQ’ [’X2’]*’F3’ [’XS’]
- JF1? [’Xl’]*’FQ’ [’X3’]*’F3’ [’XQ’]
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- F1° [’x2°]*’F2’ [’x1°]*’F3’ [’x3’]

'F1° [’x2°]%°F2° [’x3°]*°F3° [’x1°]

'F1° [Px3°]%°F2° [’x1°]*°F3’ [’x27]
- )Fl)[)XB)]*)FQ)[JX2)]*)F3)[JX1)];

b ’'x1’,’x2’,’x3’;

print;

.sort

nprint;

+
+

Of course typing in such a procedure can be quite a nuisance,
unless one types it in the ‘normal’ way and uses a decent editor
to replace the shorthand object by the objects with the quotes.
There is however still a better way:

27.2.3 Method 3

The above method used the determinant of a three by three ma-
trix. Actually the solution of our problem can be expressed in
terms of three regular determinants (multiplied by x1, x2 and x3)
and the three determinants that are obtained by replacing one of
the columns of the matrix A by the column vector b. So if we
make one procedure with a three by three determinant we can
call it six times to solve our problem. The determinant is given
by:

#procedure det3(F1,F2,F3,x1,x2,x3)

(

+ PF1° [’x1°]%°F2° [’x2°]#’F3’ [’x3’]

- ’Fl’[’Xl’]*’FQ’[’XS’]*’FB’[’XQ’]
P12 [x2°]#°F2° [*x1°]%°F3’ ['x3°]
PF1 [2x2°1%°F27 ['x37]%°F3’ [’x17]
PF1 [Px371%°F27 [’x1°]%°F3’ [’x27]
P12 [Px3°]#°F2° ['x2°]%°F3? [’x1°];

+ o+
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#endprocedure
The new routine to solve the equations becomes:

#procedure solve3b(F1,F2,F3,x1,x2,x3,H1,H2,H3)

nprint;

b ’x1’,’x2’,°x3’;

.sort

skip ’F1’,’F2’,°F3’;

L °’H1’ = ’x1’ %

#call det3{’F1’|’F2’|’F3’|’x1°|°x2°|’x3’}
+

#call det3{’F1’|’F2’|’F3’|1]|°x2°|°x3}

L °’H2’ = ’x2’ %

#call det3{’F1’|’F2’|’F3’|’x1°|°x2°|’x3’}
+

#call det3{’F1’|’F2’|’F3’|’x1°|1|°x3°}

L °’H3’ = ’x3° %

#call det3{’F1’|’F2’|’F3’|’x1°|°x2°|’x3’}
+

#call det3{’F1’|’F2’|’F3’|’x1’|°x2’ |1}

b ’'x1’,’x2’,’x3’;

print;

.sort

nprint;

#endprocedure

Note that the parameter 1 will cause the element F1[1] to be
generated which is the part of the expression F1 which has nothing
outside parentheses. The result of the above program is now:
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s al,bl,cl,dl,a2,b2,c2,d2,a3,b3,c3,d3,x,y,Zz;
L V1 = al*xx+bl*y+cl*z+dl;
L V2 = a2*x+b2*y+c2*z+d2;
L V3 = a3*x+b3*y+c3*z+d3;

#call solve3b{V1|V2|V3|xlylz|H1|H2|H3}

+ x * ( al*b2*c3 - al*c2*b3 - bl*a2*c3 +
bl*c2*a3 + cl*a2%b3 - cl*b2*a3 )

+ bl*c2*xd3 - blxd2*%c3 - cl*xb2*d3 + cl*xd2x*
b3 + di1xb2*xc3 - dil*c2*b3

H2 =
+ y * ( al*b2%c3 - al*c2%b3 - bl*a2%c3 +
blxc2*a3 + cl*a2%b3 - cl*b2*a3 )
- al*c2*d3 + al*d2*xc3 + cl*a2*xd3 - clxd2x
a3 - dl*a2*c3 + dl*c2*a3

H3 =
+ z * ( al*b2*c3 - al*c2*b3 - bl*a2*c3 +
bl*c2*a3 + cl*a2%b3 - cl*b2*a3 )
+ al*b2*xd3 - al*d2*b3 - bl*a2*%d3 + blxd2x*
a3 + di*a2*%b3 - di1*b2*a3

.end

It is clear that this method can be extended rather easily to
different numbers of equations and unknown quantities. The fact
that writing out larger determinants becomes rather tiresome re-
flects somewhat the inefficiency of solving a large number of equa-
tions via this method. Usually there are different tricks when
solving such a big system of equations. The fastest ways are then
hybrid ways involving inspection and intelligent action of the user
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while FORM will do the work. It is also possible to use one of
the other ways we have seen to evaluate determinants, but they
will only simplify the determinant routine. The speed of the pro-
gram won’t be better as the amount of work for evaluating the
determinant has not deminished.
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27.3 Determinants of sparce matrices

When one has to take the determinant of a matrix it occurs often
that the matrix contains many zeroes. Taking the determinant
then by means of a general method (like the contraction of two
Levi-Civita tensors) can be very wasteful. The general method is
bound to generate the maximum number of terms, even though
most of them are thrown away rather quickly. When such a deter-
minant is evaluated by hand (for as far as possible) the zeroes are
used to eliminate much of the work. In this example we will eval-
uate a two Sylvester determinants that may occur when finding
the common solution space of two quartic equations (gives an 8 by
8 determinant) and when finding the condition for simultaneous
solutions of a quartic and a fifth order equation (which gives a 9
by 9 determinant). Even this last determinant requires no more
than two minutes on a small computer!

When doing a determinant by hand a popular strategy is to
select the row with the maximum number of zeroes and use this
row to construct (the minimum number of) (n-1) by (n-1) minors.
This procedure can be addapted again and again until there are
only trivial matrices left. We will construct a procedure here
that works this way. Because we cannot make procedures with a
variable number of arguments the procedure has to be addapted
a little bit when we change the size of the matrix.

Let us assume that the rows of the matrix have been ordered
such that the row with the least amount of zeroes is the top row,
the next row has the second largest number of zeroes etc. If we
want to indicate a i by i minor that is left after n-i rows have
been treated it is sufficient to give the columns of that minor. So
considering an 8 by 8 matrix M the minor M(2,3,4,6,8) is one
of the minors that is left after three rows have been ‘eliminated’.
The whole matrix is indicated by M(1,2,3,4,5,6,7,8). The rule
for breaking a 5 by 5 determinant down to 4 by 4 determinants is
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very simple:

id M(m17,m27,m37,m47,m57) =
+ matrix(1,ml1)*M(m2,m3,m4,m5)
- matrix(1,m2)*M(m1,m3,m4,mb)
+ matrix(1,m3)*M(m1,m2,m4,m5)
- matrix(1,m4)*M(m1,m2,m3,m5)
+ matrix(1,m5)*M(ml,m2,m3,m4) ;

The main problem is now to program such a reduction state-
ment in a way that it can be used for any size matrix and for any
step in the computation. Below is one way of doing this. It uses
the preprocessor rather heavily:

#procedure peeldet(ii,M,N,nl1,n2,n3,n4,n5,n6,n7,n8)
id M’ (
#do iii = 1,’ii’
m’iii’?
#enddo
) =
#do iii = 1,’ii’
+ {2%(?1ii’%2)-13%° N’ (m’>iii’)*°M° (
#do iiii = 1,°’ii’

#if ’iiii’ 1= ’iii?
m’iiii’
#endif
#enddo
)
#enddo
id °N’(1) = ’ni1’;
al °’N’(2) = ’n2’;
al °’N’(3) = ’n3’;
al °’N’(4) = ’n4d’;
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al ’N’(5) = ’nb’;
al ’N’(6) = ’n6’;
al °’N°(7) = ’n7’;
al ’N°(8) = ’n8’;
.sort
#endprocedure

The procedure to peel off a determinant has as first argument
the size of the minors we are doing (so it starts at 8 in this ex-
ample), then the name of the function that we use to represent
the minors and the determinant. The third argument is a dummy
function that we use to determine the matrix elements in each
row. Finally there are the 8 elements in the row that we are deal-
ing with. The number ‘i’ will be variable so also the number of
arguments in M will vary. Therefore we need the preprocessor to
generate the argument field of M. We use here the property that
blanks are relevant as separators of the arguments. In the right
hand side we have to generate an alternating sign for each of the
terms, and then the minors which have the same arguments as the
original matrix except for one (this is done with a loop again and
an if inside the loop to skip one element) and a matrix element
in the row we are treating. Finally we substitute these matrix
elements. How does this look in practice:

S a0,al,a2,a3,a4,b0,b1,b2,b3,b4;
S ml,m2,m3,m4,m5,m6,m7,m3;

CF M,N;

*

* Matrix is:

*

* | a0 0 0 0ObO O O O |
* | a1l a0 0 0 bl b0 O O |
* | a2 a1 a0 0 b2 bl b0 0 |
* | a3 a2 al a0 b3 b2 bl b0 |
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| a4 a3 a2 al b4 b3 b2 bl |
| 0 a4 a3 a2 0 b4 b3 b2 |
| 0 0 a4 a3 0 0 b4 b3 |
| 0 0 0a4d O O O b4 |

% % % % %

F = M(1,2,3,4,5,6,7,8);

#call peeldet{8|M|N|aO| O] Ol OlbO| Ol Ol O}
#call peeldet{7|MIN| O| O] Ola4| O] Ol Ol|b4}
#call peeldet{6IM|N|alla0| Ol Olb1|bO| Ol 0}
#call peeldet{5|IMIN| 0| Ola4la3| 0| 0|b4|b3}
#call peeldet{4|M|N|a2lalla0| O|b2|b1|bO| O}
#call peeldet{3|M|N| Ola4la3|a2| 0|b4|b3|b2}
#call peeldet{2|MIN|a3|a2|alla0|b3|b2|bl|b0}
#call peeldet{1IM|N|a4|a3|a2lal|b4|b3|b2|b1}

id MO = 1;
print;
.end
Time = 38.33 sec Generated terms = 219
F Terms left = 219

Bytes used = 7430

Above is the program and the final statistics of the actual run.
The order of the rows has be rearranged in such a way that the
sign of the determinant didn’t change. The variables m1 to m8
were declared because peeldet uses them as dummy variables.

It is actually possible to improve a little bit on this method.
On of the drawbacks of the above methods is that the argument
field has a length that depends on the size of the matrix. Using
sets we can improve on this (as long as we use elements in the sets
that are symbols or integers that can be used as powers):

#procedure peeldet(ii,nn,M,row)
id "M’ (
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#do iii = 1,’ii’

m’iii’?
#enddo

) =
#do iii = 1,’ii’

+ {2%(?1ii°%2) -1 km’iii % M’ (
#do iiii = 1,’ii’
#if ’iiii’ !'= ’iii?

m’iiii’
#endif
#enddo

)
#enddo
#do iii = 1,’nn’

id m’iii’ = ’row’[’iii’];
#enddo

.sort
#endprocedure

S a0,al,a2,a3,a4,b0,bl1,b2,b3,b4;
S ml1,m2,m3,m4,m5,m6,m7,m38;

Set rowl:a0, O, 0, 0,bO, 0, O, O;
Set row2:al1,a0, 0, 0,b1,b0, 0, O;
Set row3:a2,al,al0, 0,b2,b1,b0, O;
Set row4:a3,a2,al,al0,b3,b2,bl1,b0;
Set rowb:a4,a3,a2,al,b4,b3,b2,bl;
Set row6: 0,a4,a3,a2, 0,b4,b3,b2;
Set row7: 0, 0,a4,a3, 0, 0,b4,b3;
Set row8: 0, 0, 0,a4, 0, 0, 0,b4;
CF M;
LF=Mml,m2,m3,m4,m5,m6,m7,m8);
#call peeldet{8|8|M|rowl}
#call peeldet{7|8|M|row8}
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#call peeldet{6|8|M|row2}
#call peeldet{5|8|M|row7}
#call peeldet{4|8|M|row3}
#call peeldet{3|8|M|row6}
#call peeldet{2|8|M|rowd}
#call peeldet{1|8|M|row5}

id MO = 1;
.end
Time = 28.39 sec Generated terms = 219
F Terms left = 219
Bytes used = 7430

We have changed one more thing: the elements of M are now
symbols. This makes that we don’t need the intermediate ‘array’
N any more. This is mainly responsible for the speed difference. It
is also possible now to write down the matrix in a more readable
form.

The results are even more impressive with the 9 by 9 Sylvester
determinant that results when a quartic and a fifth order equation
are combined. The determinant is then:

S a0,al,a2,a3,a4,a5,b0,b1,b2,b3,b4;
S ml,m2,m3,m4,m5,m6,m7,m8,m9;

Set rowl:al0, O, 0, 0,bO, O, O, O,
Set row2:al1,a0, 0, 0,b1,b0, O, O,
Set row3:a2,al,al0, 0,b2,b1,b0, O,
Set row4:a3,a2,al,al0,b3,b2,bl1,b0, 0;
Set rowb:a4,a3,a2,al,b4,b3,b2,b1,b0;
Set row6:ab,a4,a3,a2, 0,b4,b3,b2,bl;
Set row7: 0,ab,a4,a3, 0, 0,b4,b3,b2;
Set row8: 0, 0,ab,a4, 0, 0, 0,b4,b3;
Set row9: 0, 0, 0,ab, 0, 0, 0, 0,b4;
CF M;

’
’

)

O O O O
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L F=Mmil,m2,m3,m4,m5,m6,m7,m8,m9) ;
#call peeldet{9|9|M|row9}
#call peeldet{8|9|M|rowl}
#call peeldet{7|9|M|row83}
#call peeldet{6|9|M|row2}
#call peeldet{5|9|M|row7}
#call peeldet{4|9|M|row3}
#call peeldet{3|9|M|row6}
#call peeldet{2|9|M|rowd}
#call peeldet{1|9|M|row5}

id MO = 1;
.end
Time = 86.77 sec Generated terms = 549
F Terms left = 549
Bytes used = 19690

To compute this determinant with the method of the contrac-
tion of the Levi-Civita tensors would take of the order of an hour
on the same computer, so the savings are rather great. It should
be clear by now that with this method even larger determinants
can be taken in ‘reasonable’ amounts of time. The actual timings
for two fifth degree equations are 343 sec for this method and
16400 sec for the general method (with some economization so
that the order in which the zeroes are substituted is optimized).
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27.4

The following is an example from high energy physics in which
the brute force method does work, but with being a little smart
we can obtain results that are far superior. We will study a rather
common reaction: ete™ — 777~ = udy,udv,. Thisis a 2 to 6
reaction, but it has some features that make it easier than one

Brute force isn’t always good

might expect. Let us first do it by brute force:

v

0 HH

¥ ¥ ¥ -

FORM

p1,p2,Q,91,92,p3,p4,p5,p6,p7,p8;
ml,m2,m3;

nl,n2,n3;
emass,tmass,mass4,mass5,mass7,mass8;

F =
The incoming e+ e- pair. momenta p2 and pl

(g_(1,p2)-emass)*g_(1,m1)
*(g_(1,pl)+emass)*g_(1,n1)

The tau line. tau- is ql, taut+ is qg2.

*xg_(2,p3)*g_(2,m2)*g7_(2)

*(g_(2,ql)+tmass) *g_(2,m1)

*(-g_(2,q92) +tmass) *g_(2,m3) *g7_(2) *g_(2,p6)
*xg_(2,n3)*g7_(2)*(-g_(2,92) +tmass) *g_(2,n1)
*(g_(2,q1)+tmass) *g_(2,n2)*g7_(2)

The u d-bar pair. p4 is u, pb5 is d-bar.

*(g_(3,p4)+massd) *xg_(3,m2)*g7_(3)
*(g_(3,p5)-massb)*g_(3,n2)*g7_(3)
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* The d u-bar pair. p7 is d, p8 is u-bar.
*

*(g_(4,p7)+mass7)*g_(4,m3)*g7_(4)
*(g_(4,p8)-mass8) *g_(4,n3)*g7_(4)

>

.sort
Time = 9.41 sec Generated terms = 64
F Terms left = 64
Bytes used = 5886
trace4,4;
trace4, 3;
trace4,1;
.sort
Time = 12.90 sec Generated terms = 256
F Terms left = 256
Bytes used = 14354
trace4,?2;

contract 0;

We kill the leftover Levi-Civita tensors. We
know that there must be a relation that makes
them cancel each other because the reaction
is time reversal invariant:

* K X X ¥ ¥

if ( count(e_,1) > 0 );
discard;

endif;

.end

Time = 1257.49 sec Generated terms = 226280
F Terms in output 2848
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Bytes used = 147316

We have an output here that cannot be considered small and
continuing numerical work with such a formula will be time con-
suming. So let us have a look at some of the individual parts.
First the electron trace:

Vv pl,p2,Q;
I ml,m2,m3;
I nl,n2,n3;
S emass,tmass,mass4,massb,mass7,mass8,s;
L F =
(g_(1,p2)-emass)*g_(1,m1)
*(g_(1,pl)+emass)*g_(1,n1)
trace4,1;
print;
.sort
F —

4xpl(m1)*p2(nl) + 4%pl(nl)*p2(ml) - 4*d_(ml,nl1)
xemass”2 - 4*d_(ml,n1)*pl.p2;

*  Use momentum conservation. Q = pl + p2

id p2 = Q - pl;
id pl.pl = emass™2;

id Q(ml1) = 0;

al Q(nl) = 0;

id p1.Q = Q.Q/2;
print;

.end
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- 8*pl(ml)*pl(nl) - 2*d_(ml,n1)*Q.Q;

The first step gives the brute force result with 4 terms. Some
massaging and the observation that current conservation will give

that Q(m1)=Q(n1)=0 reduces things to two terms.

make the computation faster and the result shorter.

The next step is more interesting. We observe that the decay
vertices both have a similar structure. We take here the ud part
with a little part of the long tau line. Of course we may not take
the trace over spin line 2, but we can ‘Fierz’ it. This is done with
the multiply command and the subsequent trace.

V. p1,p2,Q,91,92,p3,p4,p5,p6,p7,p8;

I ml,m2,m3;

I nl,n2,n3;

S emass,tmass,mass4,mass5,mass7,mass8;

L F-=
g_(2,n2)*g7_(2)*g_(2,p3) *g_(2,m2) *g7_(2)
*(g_(3,p4)+mass4) *g_(3,m2) *g7_(3)*(g_(3,p5)
-massb)*g_(3,n2) *xg7_(3)

trace4, 3;

print;

.sort

F =

16*g_(2,6_,p4,p3,p5) + 16xg_(2,6_,p5,p3,p4) +
16*g_(2,6_,n2,p3,m2)*e_(p4,p5,m2,n2) - 16xg_(2,
6_,n2,p3,n2) *p4.p5;

Symbols as,ap;
Vectors av,aa;

FORM

This would
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CFunction at;
*

* Fierz transformation:

*
multiply,
as*xgi_(2)/4
+ap*gb_(2)/4
+g_(2,av) /4
-g_(2,5_,aa)/4
-at(ml,n1)*(g_(2,m1,n1)-g_(2,n1,m1))/8;
trace4,2;
contract;

id as = gi_(2);
al ap = gb_(2);
al av = g_(2,7);

al aa =g_(2,5_,7);

al at(ml?,nl1?) = g_(2,ml,nl1)/2-g_(2,n1,ml1)/2;
print;

.end
F_

64*xg_(2,p5)*p3.p4 + 64*g_(2,5_,p5) *p3.p4;

Note the great economization. First we had 4 terms with three
gamma matrices and one had a Levi-Civita tensor. The Fierz
transformation simplified the expression considerably! The only
drawback that occurs is that the 1 — ~5 is not a single object any
more. This can be mended with a single id-statement of course.
Now the final program:

Vv p1,p2,Q,91,92,p3,p4,p5,p6,p7,p8;

I ml,m2,m3;

I nl,n2,n3;

S emass,tmass,mass4,mass5,mass7,mass8;
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Symbols as,ap;

Vectors av,aa;

CFunction at;

.global

G F1 =
(g_(1,p2)-emass)*g_(1,ml)
*(g_(1,pl)+emass)*g_(1,n1);

trace4,1;

id p2 =Q - pi;

id pl.pl = emass™2;

id Q(m1) = 0;

al Q(n1l) = 0;

id p1.Q = Q.Q/2;

.store

G F3 =
g_(2,n2)*g7_(2)*g_(2,p3) *g_(2,m2) *g7_(2)
*(g_(3,p4)+massé) *g_(3,m2)*g7_(3)
*(g_(3,p5)-massb)*g_(3,n2)*g7_(3);

G F4 =
g_(2,m3)*g7_(2)*g_(2,p6) *g_(2,n3)*g7_(2)
*(g_(4,p7)+mass7)*g_(4,m3)*g7_(4)
*(g_(4,p8)-mass8)*g_(4,n3)*g7_(4);

trace4, 3;

trace4,4;

multiply,
as*xgi_(2)/4
+ap*gb_(2)/4
+g_(2,av)/4
-g_(2,5_,aa)/4
—at(m1,n1)*(g_(2,m1,n1)-g_(2,n1,m1))/8;

trace4,?2;

contract;

id as = gi_(2);

FORM
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al ap = gb_(2);
al av = g_(2,7);
al aa =g_(2,5_,7);

al at(ml?,n1?) = g_(2,m1,n1)/2-g_(2,n1,ml1)/2;
id g_(2,5_,p57) = g_(2,p5)*g7_(2) - g_(2,p5);
print;
.store

F3 =
64x*g_(2,6_,p5)*p3.p4;

F4 =
64x*g_(2,6_,p7)*p6.p8;

write statistics;

L F=F1 %
F3*(g_(2,q1)+tmass)
*xg_(2,m1)*(-g_(2,92) +tmass)
*F4*(-g_(2,92)+tmass)
*g_(2,n1)*(g_(2,q1) +tmass)

)

trace4,?2;
print;
.end
Time = 1.77 sec Generated terms = 41
F Terms left = 23
Bytes used = 1202

262144x*pl.pl*xql.ql*q2.q2*p3.p4*p5.p7*p6.p8 -
524288+*pl.pl*ql.ql*q2.p5*q2.p7*p3.p4*p6.p8 +
1048576*pl.pl*xql.q2*ql.p5*q2.p7*p3.p4*p6.p8 +
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524288%*pl.pl*xql.q2*p3.p4*p5.p7*p6.p8*tmass~2 -
524288+*pl.pl*ql.pb*ql.p7*q2.q2*p3.p4*p6.p8 +
524288*pl.pl*xql.pb5*xq2.p7*p3.p4*p6.p8*tmass”2 -
524288*pl.pl*xql.p7*q2.p5*p3.p4*p6.p8S*tmass™2 +
262144*pl.pl*p3.p4*p5.p7*p6.p8*tmass”4 -
2097152%pl.ql*pl.q2*ql.p5*q2.p7*p3.p4*p6.p8 -
1048576*pl.ql*pl.q2*p3.p4*p5.p7*p6.p8*tmass”™2

+ 1048576%*pl.ql*pl.p7*ql.p5*q2.92*p3.p4*p6.p8
+ 1048576%*pl.ql*pl.p7*q2.p5*p3.p4*p6.p8*
tmass”2 + 1048576*pl.q2*pl.pb*ql.ql*q2.p7*p3.p4
*p6.p8 + 1048576*pl.q2*pl.pb*ql.p7*p3.p4*p6.p8*
tmass”2 - 524288*pl.pb*pl.p7*ql.ql*q2.q2*p3.p4*
p6.p8 - 1048576*pl.p5*pl.p7*ql.q2*p3.p4*p6.p8*
tmass”2 - 524288*pl.p5*pl.p7*p3.p4*p6.p8*
tmass”4 + 131072*Q.Q*ql.ql*q2.q2*p3.p4*p5.p7*

p6.p8 - 262144xQ.Q*ql.ql*q2.p5*q2.p7*p3.pé*
p6.p8 + 524288%Q.Q*ql.q2*ql.p5*q2.p7*p3.pé*
p6.p8 - 262144xQ.Q*ql.p5*ql.p7*q2.q2*p3.pé*

p6.p8 + 524288+*Q.Q*ql.p5*q2.p7*p3.p4*p6.p8*
tmass”2 + 131072xQ.Q*p3.p4*p5.p7*p6.p8*tmass”4;

Note the enormous economization. The tricks we employed
with F3 and F4 removed all Levi-Civita tensors and eliminated
all ambiguities in the final form of the expression. This final form
hardly took any computer time and is only 23 terms long! It is
actually possible to reduce this output a little further but that
isn’t very important any more. The above formula is quite useful
as it contains not a single approximation. Neither the electron
mass nor the quark masses have been ignored. Actually even a
mass for the neutrino would not have upset this result, as this
neutrino mass would have disappeared in the Fierz operation. We
have not even assumed that the 7 leptons are on shell!
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The above computation shows several things. First of all it
pays to think when brute force doesn’t work. Second of all there
is much room for different answers when there are Levi-Civita
tensors involved and there are more vectors than the number of
dimensions. This is illustrated in the following program that op-
erates in two dimensions:

Dimension 2;

Vectors pl,p2,p3,p4,p5,p6;
Indices mi;

Symbols a;

L F1 = e_(pl,p2)*e_(p3,ml)*e_(p4,ml)*e_(p5,p6);
L F2 = e_(p1l,p2)*e_(p3,ml)*a;
contract;

id a = e_(p4,ml)*e_(p5,p6);
contract;

print;

.end

F1 =
pl.p5*p2.p6*p3.p4 - pl.p6*p2.p5*p3.p4;

F2 =
- pl.p3*p2.pb*p4.p6 + pl.p3*p2.p6*p4d.p5 +
pl.p5*p2.p3*p4.p6 - pl.p6*p2.p3*p4.p5;

In the first expression FORM selected the ideal contraction
scheme by taking the tensor with a common index first. In the
second expression this wasn’t possible. Nevertheless both expres-
sions are equal, even though this may not be very clear at first
sight. This is what happened in a much more complicated fash-
ion when we ran the brute force method. The Levi-Civita tensors
couldn’t be combined in the ‘natural’ way. In the second method
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the Fierz operation took care that they did. Actually in the last
example the difference F1-F2 can be written as:

e_(p1,p2,p4)*e_(p3,p5,p6)

which is of course zero because we work in two dimensions and
any totally antisymmetric object with three indices must be zero
then. To find such relations is usually nontrivial and no reliable
way has been found to construct an automatic implementation in
computer algebra.
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.clear, 61, 161

.end, 9, 61, 111, 161

.global, 52, 61, 91, 128, 162

.prc extension, 69

.sav extension, 196

.sort, 26, 54, 56, 59, 61, 161

.store, 49, 52, 56, 59, 61, 111,
161

.str extension, 196

#-+, 53, 72, 163

#-, 53, 72,163

5_, 98, 185

6_, 98, 185

7_, 98, 185

active expression, 111
algebra,Dirac, 98, 185
alphabetic, 22, 118
alphanumeric, 22, 162
antisymmetric, 142, 174
antisymmetrize, 88, 142
argument, 15
argument,empty, 16
array, 44, 127

backslash, 167, 192
binomial, 12, 50, 218
bracket, 58, 159
bracket restrictions, 202

C, 5, 176

246

caching, 204

calculator, 61, 62, 167

call, 165, 193

call procedure, 193

case, 8, 102, 105, 118, 197

cfunctions, 15

Chisholm identity, 98, 187, 188

coefficient, 74, 89, 176, 184,
190

coefficient,binomial, 12, 218

columns, 160

command tail, 102, 197

commentary, 27, 61, 105, 166,
197

commute, 15

commuting function, 15, 124

compileroutput,setting, 201

complex, 119, 120, 125, 199,
200

composite, 77

concatenate, 61

condition, 73, 76, 176

condition,composite, 77

conjugation, 85, 119, 120

constindex,setting, 198

contract, 26, 173

count, 74, 154, 177

count,power, 74

d., 20, 38, 82, 145
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declaration, 7, 50, 52, 91, 118,
128

decoration, 8

define, 64, 163

delete storage, 111

delta, 82, 153

delta,Kronecker, 20, 38, 123,
134

delta_, 83, 153

denominator, 23

denominator,composite, 23, 119,
148

determinant, 94, 172, 224, 229

determinant,Sylvester, 24, 229

differentiation, 47, 69

dimension, 20, 82, 121

dimension statement, 122

dimension,default, 21, 121, 123,
129

Dirac, 96, 185

discard, 75, 156

do loop, 65, 163

do loop instruction, 219

dollar sign, 22, 119

dotproduct, 16, 74, 119, 133,
155

drop, 56, 113

e, 26, 38, 39, 145, 155, 172
Einstein summation, 17, 109,

123
else, 67, 73, 166, 176
enddo, 164

FORM

endif, 67, 73, 166, 176
endprocedure, 70, 165, 192,
193
endrepeat, 28, 146
equations,solving, 60, 221
error,execution, 31
error,run time, 30
error,syntax, 31
escape character, 167
expansion,binomial, 13, 50, 218
expansion,exponential, 81
exponent, 107, 166
expression, 49, 110, 118
expression,active, 8, 49, 111
expression,global, 49, 111, 161
expression,local, 8, 49, 111
expression,name of, 119
expression,stored, 49, 111, 195
expression,with parameters, 115
expressions,setting, 200
extension,.prc, 192
extension,.sav, 196
extension,.scl, 199
extension,.sc2, 199
extension,.sga, 199
extension,.sor, 199
extension,.str, 196, 199

fac, 76, 85

factorial, 15, 76, 85, 152
Fibonacci, 63

Fierz transformation, 239
file,include, 53
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file,procedure, 192
file,program, 102
file,storage, 50, 196
filepatches,setting, 202
fixindex, 86, 92, 124
form.set, 197
format, 160
fortran, 5, 8, 89, 119, 160,
176
fractal, 40
fractions, 190
function, 12, 74, 124, 140, 154
function,commuting, 41, 124
function,count, 156, 177
function,delta, 82, 153
function,factorial, 76, 85, 152
function,gamma, 96, 185
function,match, 176
function,noncommuting, 41,
124, 160
function,sum, 169
function,sump, 171
function,sump., 81
function,theta, 84, 152
functionlevels,setting, 201
functions,setting, 200

gh_, 96, 185

g6_, 96, 185

g7, 96, 185

g-, 38, 39, 96, 145, 155, 185
gamma, 96

gamma function, 185

FORM

gamma matrix, 38, 39, 96,
155

gammad, 185

gammab, 185

gamma7, 185

gi_, 96, 185

global expression, 111

goto, 79, 182

hello world, 7
hierarchy, 78
high energy physics, 185, 236

I, 18

i, 85, 169, 187

id, 27, 131
identifications, 131

if, 67, 73, 165, 176

if statement, 176
imaginary, 85, 120, 125
include, 53, 163
include file, 53

index, 16, 121, 122, 143
index,dummy, 129
index,fixed, 19, 86, 123, 126
index,lower, 19, 172
index,upper, 19, 172
indices, 16
indices,setting, 199
inputsize,setting, 200
instruction,.store, 199
instruction,#+, 72, 163
instruction,#-, 72, 163
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instruction,call, 165, 193
instruction,define, 64, 163
instruction,do loop, 163, 219
instruction,else, 67, 165
instruction,enddo, 164
instruction,endif, 67, 166
instruction,endprocedure, 70,
165, 192, 193
instruction,if, 67, 165
instruction,include, 163
instruction,preprocessor, 163
instruction,procedure, 70, 164,
192
instruction,undefine, 65
integer,short, 92, 154, 167, 198
integration, 29
interface, 157

keyword, 7, 131
Kronecker delta, 20, 123, 134,
173

L, 18

label, 79, 182

largepatches,setting, 202

largesize,setting, 203

Levi-Civita tensor, 26, 38, 39,
129, 155, 172, 229,
243

linelength,setting, 198

listed loop, 164

listing off, 53

listing on, 53

FORM

load, 51, 195, 199
local, 8

local expression, 111
loop, 182
loop,listed, 66

macsyma, 4

maple, 4

match, 74, 176

mathematica, 4

maxbracket,setting, 202

maxlevels,setting, 201

maxnames,setting, 200

maxstatements,setting, 201

maxtermsize,setting, 197

maxwildcards,setting, 200

memory, 91, 191

metric tensor, 86

mode,fortran, 160

module, 9, 26, 28, 40, 49, 52,
56, 58,105, 111, 128,
161

modulus, 89, 190

MSDOS, 105

multiply statement, 28, 184

multiply,left, 28, 184

multiply,right, 28, 184

muon decay, 98

name, 22, 51, 118, 125
name list, 128

name table, 128
name,built in, 22
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name,formal, 118

name,of expressions, 22
namebuffer, 119
namebuffer,setting, 200
nesting, 71, 79, 181
noncommuting, 12, 160
noncommuting function, 124
nprint, 158
numbers,floating point, 89
numbers,modulus, 89
numbers,rational, 89
numbers,transcendental, 89
numbers,very long, 107
numberstorecache,setting, 204
numeric character, 118
numerical stability, 174
nwrite names, 207
nwritestatistics,setting, 198

operation,and, 179
operation,if, 179
operations, 131
option, 102
option,check, 102
option,interactive, 103
option,llog, 103
option,log, 102
option,select, 42, 128
option,setupfile, 103
option,tempdir, 103, 209
ordering, 141

output, 160

parameter, 70

FORM

parentheses, 159

partial fractioning, 86, 148

pascal, 89

pattern, 27, 74, 131

pattern,allowed, 132

polynomial, 218

power, 8, 15, 74, 89, 133, 190

power,range of, 91

power,restriction, 120

powers, 107

prebuffer,setting, 199

prelevels, 163

preprocessor, 40, 45, 53, 61,
161, 192, 219

preprocessor variable, 193

prevariables,setting, 199

print, 9, 157

procedure, 68, 164, 192

procedure,call, 165

ratio, 87, 148

real, 120, 125
recursion relation, 85
reduce, 4, 5

repeat, 28, 146
replacement, 131
reset, 162

restart, 161

S, 18

save, 50, 195, 199
schoonschip, 4, 5
schoonschip notation, 18, 108
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scratchsize,setting, 204

select, 128

set, 22, 41, 79, 125, 155

sets,setting, 200

setstore,setting, 200

settings, 197

setup file, 5, 19, 40, 49, 71,
86, 95, 105, 113, 119,
130, 163, 171, 183,

197
short integer, 92, 154, 167,
198
sizestorecache,setting, 204
skip, 57, 114

smallextension,setting, 203
smallsize,setting, 203
sortiosize,setting, 204
space, 106, 166
space,blank, 8, 90
space,white, 106
spin line, 96, 185
statement, 7, 105
statement,also, 139
statement,antisymmetrize, 88,
142
statement,bracket, 58, 159
statement,contract, 26, 173
statement,count, 154
statement,delete storage, 111
statement,dimension, 122
statement,discard, 75, 156
statement,drop, 56, 113
statement,else, 73, 176

FORM

statement,end of, 8, 105, 108,
166
statement,endif, 73, 176
statement,endrepeat, 28, 146
statement,fixindex, 86, 92, 124
statement,format, 160
statement,goto, 79, 182
statement,id, 27, 32
statement,identify, 131
statement,idold, 139
statement,if, 73, 156, 176
statement,label, 79, 182
statement,load, 51, 195, 199
statement,modulus, 89, 190
statement,multiply, 28, 184
statement,nprint, 158
statement,nwrite, 34, 128
statement,nwrite names, 207
statement,print, 157
statement,ratio, 87, 148
statement,repeat, 28, 146
statement,save, 50, 195, 199
statement,skip, 57, 114
statement,sum, 129
statement,symmetrize, 88, 140
statement,trace4, 97, 186
statement,tracen, 97, 186
statement,unittrace, 186
statement,write, 128
statement,write names, 207
statistics, 10, 16, 92
statistics,nwrite, 33
storage file, 196
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stored expression, 111
subexpressions, 11
subroutine, 192
substitution, 24, 131, 140
sum, 129, 169

sum., 30, 169

summation, 169

sump-, 81, 171

Sylvester determinant, 24, 229
symbol, 7, 15, 74, 119, 154
symbols,setting, 199
symmetric, 142
symmetrize, 88, 140

tempdir,setting, 198
tensor, 16
tensor,metric, 86
term, 8, 16, 73
term,contents, 176
termination, 161
termsinsmall setting, 202
theta, 84, 152
theta_, 84, 152

trace, 96, 239

trace algorithms, 187
traced, 97, 186
tracen, 97, 186

undefine, 65
underscore, 22
unittrace, 186

variable, 15, 118
variable,local, 161

FORM

variable,preprocessor, 61, 108,
162, 163, 193

vector, 16, 74, 121, 143, 155

vectorlike, 36, 143

vectors,setting, 199

VMS, 104

while, 182

wildcard, 27, 28, 32, 41, 126,
131, 140, 142, 174

wildcard,argument field, 37,
144

workspace, 171

workspace,setting, 205

write names, 128, 207
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