
Appendix D:
Frequently Asked Questions

What exactly is an alpha channel?

First of all, a channel is a color or data component of a pixel. It often refers
collectively to a particular color component for all pixels in an image. A
screen grab on a color NeXT has three channels: red, green and blue. An
alpha channel or coverage component indicates how transparent each
pixel of data is. For example, the alphaMage.tiff picture shipped with Pixel
Magician has a totally transparent background (alpha = 0.0), a totally
opaque central figure (alpha = 1.0) and a partially transparent shadow (0.0
< alpha < 1.0). The trans- parency can be observed by Sovering the image
with different background colors. The transparency data can be used to
achieve interesting effects when combining images with one another. By
itself, an image with transparency looks no different from a normal opaque
image. The only way to ªseeº the transparency is to change the
background behind the picture. Just think of the TV ad comparing a real
aquarium with a TV picture of an aquarium. It is impossible to tell the
difference (especially on a low-resolution device like a TV) until the
pitchman walks behind the aquarium.

I select Retain Alpha Channel when I save my image but the final
result still has no alpha channel.

You are probably Sovering your image onto the background when you want
to Copy it instead.

Sovering an image onto a background is like painting the image onto a
canvas the color of the background. The canvas can be seen wherever the
image is not totally opaque. If you use a solid background, however, the
final resultÐthe painted image with the canvas, is no longer transparent.
When you save the Sovered image, you are saving the painted canvas. If
the canvas is opaque, then the final result (the painted canvas) is also
opaque, and the saved image will not have an alpha channel. Of course,
you could choose to paint onto a totally transparent canvas (like a piece of
clear glass). The final result would then be exactly as transparent as your
image. Theoretically, this is just like Copy.

Copying an image preserves the alpha channel as is. Nothing is done with
it when the image is saved. Of course, to view the image on the screen,
some- thing needs to be done with the alpha channel. On color NeXTs,
copied images are Sovered onto black backgrounds (so the background of
the alphaMage.tiff picture shipped with Pixel Magician appears black), but
on monochrome NeXTs and when printed on the NeXT printer, they are
Sovered onto white backgrounds (the background of alphaMage.tiff will
appear white). This is for purposes of display only. When the image is
saved, only the image data itself is saved (only the paint and not the
canvas using the Sover analogy). When using Copy, the user-selected
background color will only be seen around the edges of a rotated image.

Now why is Copy theoretically the same as Sovering onto a transparent
background? The results of Copy and Sover are computed using different
mathematical formulae. Copy uses the very simple final image = original
image formula and is faster than Sover, which requires two additions and a
multi- plication to be performed for each pixel in the image. For normal
pictures, these two formulae will yield the same result, but for certain non-
compliant, illegal pictures, the two methods may give different results. In
this case, one picture may be more useful than the other.

What does not checking Retain Alpha Channel do? When this switch is not
checked, the result after applying the Copy or Sover or other composite
operator is examined and, if an alpha channel remains, it will be manually
removed from the final result. Theoretically, because Pixel Magician treats
the color data as premultiplied, Copying a picture and not checking Retain
Alpha Channel is equivalent to Sovering the image onto a black
background. Again, with certain non-compliant pictures, different results
may be obtained using the two methods. The Retain Alpha Channel switch
can also be useful as a shortcut to producing opaque results when
compositing with operators such as Dover and PlusL.

When I make an image with transparency paletted, I can't change
the background color. Why is this?

Since Pixel Magician changes the bit depth of a file before performing any
compositing operations, making a file paletted and compositing it with the
background color probably cannot be accomplished in one step with the
results you expect. When the file is paletted, the alpha channel is lostÐ

Pixel Magician does not fully support paletted files with transparency
data. Most compositing operators then have no effect.

To work around this, break the task into smaller steps. First, composite the
picture with the background color of your choice and save the file. Make

sure the resulting picture has no alpha channel. If necessary, you can force
Pixel Magician to strip the alpha channel when you save the file. Then
convert this intermediate file to the paletted bit depth of your choice.
Since the intermediate file is unimportant, using a format like TIFF or
PXM is best. These formats preserve the most information about your file

and are the formats read most quickly by Pixel Magician.

For example, suppose you want to send the supplied alphaMage.tiff
picture to a friend with a PC who can only read 8 bit PCX files.    Since PCX
does not support an alpha channel, you will have to do something with it to
remove it. One possibility is to place the image over a background color of
your choice using the Sover operator. Of course, you can use other
composite operators for other effects. Save or convert this file to an
intermediate file, e.g., /tmp/alphaMage.pxm. Now convert
/tmp/alphaMage.pxm to an 8 bit PCX file either by using the Convert
window or by opening /tmp/alphaMage.pxm, changing it to 8 bit paletted
with the Image Inspector and saving it as a PCX file.

This same tactic can also be used with other complicated operations. If
Pixel Magician is not giving you the results you expect, break the task into
little subtasks and use intermediate files to force the operations to occur in
exactly the order desired.

Why do my rotated pictures appear skewed?

Uncheck the Proportional switch in the Scale panel. For more details on
why skewing occurs, see the section on Rotating in Appendix B, ªNotes on
Scaling, Rotating and Dots Per Inch.º

If I convert a TIFF into a GIF and later convert it back to a TIFF,
why does the final result look worse than the original?

Pixel Magician can read and display TIFFs with up to 8 bits each of red,
green and blue data for each pixel in the image (assuming you have a
NeXTdimension). Thus, TIFF images can be displayed with up 24 bits of
visible color data (16,777,216 colors). Of course, the monitor does not have
enough pixels to show all these colorsÐonly about a million colors can be
seen at any one time, but Pixel Magician can be used to pan around an
image larger than the physical screen. GIF, however, is capable of storing
only 256 colors total for the entire image. When a file with many colors is
converted into a GIF file, the choice of which 256 colors to use in the GIF is
obviously very important. There is no best way to make this choice, but
Pixel Magician gives the user a choice of many popular and powerful
palette-selection algorithms.

When the GIF file is converted back into a TIFF, no matter how good the
color selection algorithm was, some colors will have been lost so the new
TIFF will not look as good as the original. The lost colors are nowhere in
the GIF file and can not miraculously reappear when the GIF is converted
back into a TIFF.

This problem can also occur with color NeXTstations, although it should not
look as severe, and with other 24/32 bit formats such as TGA, PICT, PCX
and Sun Raster.

Exactly the same reasoning can be employed to explain why a color file
saved to a black and white image (such as the MACPaint format requires)
doesn't suddenly acquire the colors of the original color image when the
black and white image is converted back to a color format.

What are JPEG and LZW, and how do they differ?

LZW (Lempel-Ziv, Welch) refers to an adaptive coding technique for non-
lossy compression. When an image (or other data) is LZW compressed for
efficient storage and later uncompressed, the resulting image will be
identical to the original. LZW in one form or another is the basis for most
high performance non-lossy compression algorithms and is used in the GIF
and TIFF file formats and in popular utility programs such as the standard
Unix compress program, PKZIP and ARC. LZW works best when the data
has long uniform stretches such as occur in line art, faxes, ray-traced
images and pictures created using computer drawing and painting
programs. For more information, see ªA Technique for High Performance
Data Compressionº by Terry A. Welch, IEEE Computer, vol. 17 no. 6 (June
1984).

JPEG (Joint Photographic Expert Group) is a lossy compression technique
good for continuous tone images. Lossy means that once an image has

been JPEG compressed, it will no longer look as good as the originalÐdata
will have been lost. The amount of data lost can be controlled by the Q-
Factor. Because data is actually lost, much higher compression ratios can
be achieved than is possible through non-lossy algorithms. JPEG is also
distinct from most non-lossy compression techniques in that it tries to take
advantage of the two-dimensional nature of images. Stated simply, the
lossy JPEG algorithm is a DCT (discrete cosine transform) followed by
quantization and then Huffman or other encoding of the the resulting
coefficients. JPEG works best on scans of moderately complex ªrealº data
such as photographs. It is especially good for regions with a steady change
in shade. It is not good for line art, faxes or pictures created with painting
programs because the DCT will result in Gibbs phenomenon. Complex
images also will not encode well if they have strong high frequencies
resulting from important image data (as opposed to noise). The best that
can be hoped for in this case is that JPEG might preserve the general
texture of the high-frequency areas. For more information, see ªOverview of
the JPEG Still Picture Compression Algorithmº by G. Wallace, Electronic
Imaging East `90.

Note 1:    JPEG is a truecolor algorithm only. It is not usable with palettes.

Note 2:    There is also a lossless JPEG algorithm, but this is not what most
people mean when they refer to the JPEG algorithm.

NeXTmail Note:    Since NeXTmail tars, compresses (with Unix compress)
and uuencodes attachments, and since compressing a compressed file
with the BSD compress program can at best make it only a little smaller
and usually makes it substantially larger, it is not a good idea to send LZW
compressed images using NeXTmail. Unless substantial image
compression with acceptable loss can be achieved with the JPEG

algorithm, it is probably best not to compress images that are to be sent
over NeXTmail.

Why doesn't my software read files I produce with Pixel
Magician?

An enormous variety of image software exists on the market today. With
most formats, the lack of a standard library means that each program must
write, from scratch, all the routines necessary to read and write that format.
Many, if not most, image programs are content merely to make sure that
they will read files that they themselves write (some software will not even
do this)!

Pixel Magician realizes that a program advertising to read a certain format
may in fact read only a very limited class of files within that format. For
example, an image processing program that claims to accept TGA files may
in fact only accept truecolor TGA files since most sophisticated
transformations (convolutions, maximal entropy methods, wavelet
transforms, shock filters and so forth) are best performed with truecolor
data. On the other hand, a PC painting program that claims to read TGA
files may in fact only accept paletted files because of memory
requirements. The TIFF specification states that probably no program has
been written that completely implements the specificationÐthe version 6.0
specification is already well over a hundred pages of fairly dense material,
and it is still in progress!

The only solution is for Pixel Magician to give the user the ability to write
many different flavors of each file format. If you can't get your software to
read Pixel Magician's files, experiment with the different options available.
With many programs on systems without virtual memory, the problem may
simply be that the image is too large. In this case, see if the program will
read a smaller file produced by Pixel Magician. If so, try using Pixel
Magician to reduce the number of colors in your image, thereby making the
image smaller. If nothing works, send us a copy of the file in question and
the name of the program you are trying to use with Pixel Magician.
Technical support will be happy to help you with your problem.

