
Appendix C:
PXM File Format Specification

The PXM file format is designed to be a simple yet versatile raster file
format. It is inspired by Jeff Poskanzer's popular PBM/PGM/PPM/PNM file
formats.

A PXM file consists of a header, palette data (if the file is paletted) and
image data.

paste_13.eps ¬ paste_14.eps ¬
 Paletted files Non-paletted files (Truecolor or grayscale)

Header

Unlike PNM files, PXM files are entirely binary and use Motorola (big-
endian) byte ordering, which is the native byte ordering on most NeXT
machines. The Intel 386/486
chips use opposite byte ordering (little-endian) from Motorola based machines.
People wishing to read PXM files on i486 based NeXT's, PC's or other
little-endian platforms will either have to swap bytes around as necessary or read

the header a byte at a time and shift accordingly.

Big-endian machines write the most significant byte (MSB) first and the
least significant byte (LSB) last. Little-endian machines write the LSB first and
the MSB last.

Writing the number 123416 to disk:

 paste_15.eps ¬ paste_16.eps ¬
Big-endian Little-endian

The header consists of the following fields:

· 2 bytes for the ªmagic numberº

A magic number is one or more bytes at the start of a file which can be
used to identify the format of the file. For example, the mach magic number
which identifies NeXT binary executables is 0xfeedface. The PXM magic

number is a 'P' followed by a '+' or 0x502b.

· 4 bytes for the width of the picture in pixels

· 4 bytes for the height of the picture in pixels

· 1 byte for the resolution of the picture in bits per color (max 8)

For example, a NeXTdimension system has 32 bits (8 bits each for red,

green, blue and alpha) so this byte would contain 8 for pictures produced by   
ªgrabbingº part of a NeXTdimension screen. A NeXTstation Color has 16

bits (4 bits each for the red, green, blue and alpha channels) so this byte would
contain 4 for NeXTstation Color screen grabs. Monochrome NeXT's can

show 4 shades of gray (2 bits) so this byte would be 2 for screen grabs on
these systems.

For paletted files, this byte is based upon the resolution of the picture after
it has been unpaletted for display, which is the same as the resolution of the

palette. A standard IBM PC EGA display can show a picture with 16 colors
simultaneously chosen from a palette of 262,144 possible colors (6 bits

each for red, green and
blue) so this byte would contain 6 for such pictures.

Note:    Image and palette data are stored in such a way that this field is un-
necessary for decoding. It is present for informational purposes only. See

also the Palette Data and Image Data sections below.

· 1 byte for the version number (currently 1)

· 1 byte for the header size in bytes (currently 24)

· 2 bytes for the palette size in bytes (this is 0 if there is no palette)

· 1 byte for miscellaneous header flags:

PXM_PALETTE 0x80 file has a palette
PXM_GRAY 0x40 file is grayscale

PXM_ALPHA 0x20 file has an alpha channel
PXM_TOP 0x02 data is arranged top to bottom
PXM_RIGHT 0x01 data is arranged right to left

Example: A standard grayscale PXM file would not have a palette or an
alpha channel, and its data would be arranged top to bottom, left to right. The
byte to use for such files is 0x42.

Note 1:    Currently, we do not support grayscale palettes, so flags
PXM_PALETTE and PXM_GRAY are mutually exclusive.

Note 2: PXM files are normally produced with orientation top to bottom, left
to right. Other orientations are produced only as intermediate files so PXM file

readers/converters do not have to deal with this case. A PXM file with a
non- standard orientation can be reoriented simply by opening and saving it with

Pixel Magician.

· 4 bytes for the horizontal resolution in pixels per inch (2 bytes for the
integer portion and 2 for the fraction, which should be rounded)

Example: Standard NeXT files are 72 pixels per inch. This field would
contain 0x00480000.

Example: With a custom linescreen, the NeXT printer can print 400 pixels
per inch. This field would contain 0x01900000.

Example: An image has 1 pixel per pica = 72 * 0.166 pixels per inch =

11.952 pixels per inch. This field would contain 0x000bf3b6.

Note: This field is equivalent to a 4 byte unsigned quantity holding the
integer part of (65536 * resolution + 0.5).

· 4 bytes for the vertical resolution in pixels per inch (2 bytes for the
integer portion and 2 for the fraction, which should be rounded)

· header sizeÐ24 bytes for other information

Currently, no other information is used. Future versions of the PXM file
format may use these bytes to hold information about how the file was created
(e.g., format from which the file was converted, compression originally employed,

¼). These fields will not be necessary for proper decoding of the PXM file
so a PXM reader only needs to read the above fields and then can skip ahead to
the next section.

Palette Data

Each entry in the palette contains 1 byte for the index number and 1 byte
for each color in the palette. Alpha channel data is included in the image data,
not in the palette, and grayscale palettes are not currently supported. Thus,
palette entries currently are always 4 bytes in size. Palette entries are stored
contig- uously (no padding).

Example: 4 color cyan, magenta, yellow and black palette

color 0: 0x0000ffff cyan
color 1: 0x01ff00ff magenta
color 2: 0x02ffff00 yellow
color 3: 0x03000000 black

Indices are allowed to be permuted for convenience in hashing algorithms.

Example: equivalent 4 color cyan, magenta, yellow and black palette

color 2: 0x02ffff00 yellow
color 1: 0x01ff00ff magenta
color 0: 0x0000ffff cyan
color 3: 0x03000000 black

Unused entries must be set not to conflict with legal values. Conflicting
values cause undefined behavior.

Example: invalid 4 color palette with 4 unused entries

color 0: 0x0000ffff cyan
color 1: 0x01ff00ff magenta
color 2: 0x02ffff00 yellow
color 3: 0x03000000 black
color 0: 0x00000000 unused
color 0: 0x00000000 unused

color 0: 0x00000000 unused
color 8: 0x08000000 unused

It is not clear whether palette entry 0 is cyan 0x00ffff or black
0x000000. Also illegal is
color 8 since the palette only allows 8 colors. The color index must be between
0 and the number of entries in the palette -1 (inclusive).

Example: valid 4 color palette with 4 unused entries

color 0: 0x0000ffff cyan
color 1: 0x01ff00ff magenta
color 2: 0x02ffff00 yellow
color 3: 0x03000000 black
color 3: 0x03000000 black
color 4: 0x04000000 unused
color 7: 0x07000000 unused
color 7: 0x07010203 unused

The duplicate entry for color 3 does not matter since it does not conflict.
The conflicting values for color 7 do not matter since it is not used. Colors 5 and
6 are undefined but unused so, again, they do not matter. As can be seen,
there are many possibilities for dealing with unused entries.

Unused entries can be generated when converting from a file format which
only supports a limited choice in the number of palette entries.

Example: A 10 color paletted PCX file must use a 16 color palette format
since PCX does not have a 10 color palette format. Six entries will be

unused.

Palette entries are stored as if 256 shades were available for each color
component. This increases the speed with which PXM files can be loaded

and displayed on the NeXT, since no bit depth conversion needs to be done.
Thus, the resolution field in the header does not affect the palette data.

Example: black and white image paletted image

color 0: 0x00000000 black
color 1: 0x01ffffff white

not

color 1: 0x01010101 very dark grey

Image Data

If there is palette data, each byte of image data will contain an index into
the palette. The data is not compressed in any way. If there is an alpha channel
and a palette, each palette index byte will be followed by a byte for the
coverage component for
that pixel. This byte is stored as if 256 shades were available for the alpha
channel, regardless of how many bits are actually available for the alpha

channel.

If the image has no palette, one byte is used for each color component (1
for gray, 2 for gray images with an alpha channel, 3 for RGB pictures and 4 for

RGBA pictures). Again, no compression is used and the data is stored as if
256 shades were available for each color component. No padding is used.
Thus, data can be loaded
directly into an NXBitmapImageRep with no translation necessary.

Example: 4 shade gray image with alpha

If we distribute 4 shades evenly between 0 and 255, we find that the
shades are 0, 85, 170, and
255 (or 0x00, 0x55, 0xaa, and 0xff). The image data will only consist of the
values 0x00, 0x55, 0xaa, and 0xff. The resolution field in the header
should contain the value 2. Two bytes are used for each pixel. The image data
has the format GAGAGAGA¼.

Example: 16 shade RGB image

If we distribute 16 shades evenly between 0 and 255, we find that the
shades are 0x00, 0x11, 0x22, 0x33, ¼ 0xff. The image data will only consist
of the values 0x00, 0x11, 0x22, ¼ 0xff. The resolution field in the header

should contain the value 4. Three bytes are used for each pixel. The image
data has the format RGBRGBRGB¼.

Example: 5 bit palette with alpha

If we distribute 32 shades evenly between 0 and 255, we find that the
shades are 0x00, 0x08, 0x10, 0x19, 0x21, 0x29, 0x31, 0x3a, 0x42, 0x4a,

0x52, 0x5a, 0x63, 0x6b, 0x73, 0x7b, 0x84, 0x8c, 0x94, 0x9c,
0xa5, 0xad, 0xb5, 0xbd, 0xc5, 0xce, 0xd6, 0xde, 0xe6, 0xef,
0xf7, and 0xff. The palette index byte must contain a value between 0

and 31, inclusive. The palette entries can only contain the above listed values
for the color components. Similarly, the alpha channel byte can only contain
the above listed values. The resolution field in the header should contain the
value 5. Two bytes are used for each pixel. The image data has the format

PAPAPA¼.

