
Creating Examples: 

How it works:



This program is designed so that an instructor may add or remove 
examples without any instructions as to how the program should 
respond.    An example must consist of a single window that may 
contain any of the controls or a Matrix of controls (such as a matrix of 
buttons or sliders).    It may also contain user defined objects, such as 
a controller object.    There are several cases that need to be known.

This program manages to redirect targets and outlets to itself.    It 



then processes the message by animating a row of dots and then 
displaying the message sent in the scroll view associated with the 
window.    It DOES NOT catch messages sent from local variables 
such as when a control responds to "sender".    In that particular case, 
the program has a special case built in which animates a second 
message that it assumes is sent in response to a "takeDoubleValue:" 
message or any other "take" message.



For Example:

    (In object1, maybe a Text Field) 
    [object2 takeDoubleValueFrom:self];
    (In object2, possibly a Slider)
    - takeDoubleValue:sender

{
theValue=[sender doubleValue:self];



}

The redirections of outlets are handled by parsing the header file of a 
user defined class (such as Example2.h) which must be located in 
the same directory as this application.    Only those instance variables 
that are declared to be of type 'id' are checked to see if they 
correspond to a known object.    Known objects are all objects in the 
window that inherit from the View class.    The elements within a 



Matrix are also known.    The targets of all of the control objects and 
Matrix cells are also added to the table of known objects. This allows 
controller objects to be found since they are usually targets of 
controls on the window.

How to Create an Example:

Start a new module in Interface Builder.    The file owner will be 



unimportant, so one could make the file owner class 'Object'.    Do not 
make it an Application since this will bring up a menu when the 
Example is chosen.    Save the new .nib as "Example?.nib" with a 
number between 1 and 9.    Acceptable names are "Example2.nib" or 
"Example5.nib". 

Constructing the contents of the Window:



The objects within the window will be assigned the names according 
to the name listed the in Inspector under Miscellaneous (Command - 
4).    Altering the default names would be significantly more helpful 
than the default name system given by the NeXT.    This listed name 
will be replaced if it is connected to an outlet of a user defined object.

User defined classes and objects of them can be used so long as the 
interface file(.h) and the implementation file(.m) are in the same 



directory as the application file.    These classes do need to be added 
to the IB.proj file.    The new classes do NOT need to be named 
similar to the Example name.    To do this the entire application must 
be recompiled after the new class is added to the project.    If only 
a .nib file was added without any new classes, no recompilation is 
needed.    The outlets within the class will rename the objects that 
they are connected to.



If a new class was added, recompile the application with 'make'.    
Otherwise, if only a new .nib was added, run the application. 

Possible difficulties:

Since this program doesn't intervene in the message sending 
structure or set any trace bits (as gdb probably does), it succeeds in 
intercepting messages by redirecting through parts of itself.    This 



can create particualarly dangerous programs if any of the outlets are 
passed as arguments in a method.    One such example would be 
removing a subview from a window.    If the subview was connected 
to an outlet, this outlet would be reset at run-time to point to an 
intervening object.    That particular object would then be passed as a 
subview.    Since it is not even a view, looking through the subview list 
for it would be futile.



This program was intended for teachers to write simple demos to 
demostrate some aspects of the objective C language.    It was not 
intended as a visual gdb and would not work for such a purpose.    
Keep the flaws of this 'interception' approach in mind as you form 
new examples.


