
Release 1.0    Copyright ã1991 by California Polytechnic State University.    All Rights Reserved.

NXBitmapImageRepControl

INHERITS FROM Object

DECLARED IN NXBitmapImageRepControl.h

CLASS DESCRIPTION

This object is the object you should be talking to the most. It's job it to be the go between for you
program and the converters stored on disk. Like the converters, however, this object is also stored on
disk, so feel free to modify the code and place a new copy in the Converters directory as
Bitmap.controls. I do ask a couple of things. First, if you think a change warrants it, such as a major
bug fix, please send me the modified code, so that I can consider it for release in a future release or
a patch. Secondly, I ask that you do not distribute modified version. This has the possibility of
creating a lot of confusion and difficulty for the user.

Using this object is basically fairly simple. You simply need to instantiate a new version via the use of
the ControlLoader object. From there, you ask it to get a new filename via it's open panel. It can then
use this filename to open a new bitmap. Doing the reverse by calling the save panel, and then
passing the filename bask to the program can save an image.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Converter int errorState
int typesCount
int curMax
Type **types
Type *curType
BOOL useNeXTStep
id myView
BOOL amSaving
id currentPanel
id currentView
id myBox
NXRect viewDefault
id mySubView
id panelSave
id myPopUp
id myButton
id nameText
char picName[MAXPATHLEN]

typesCount Hold the number of converters found in the various library
folders.

curMax This holds the current maximun number of types. This value will
grow, dynamically, if many converters are found.

**types A dynamically growing array of types found on disk.

*curType Holds the current linked type, or NULL if nothing is linked.

useNeXTStep If YES, then the object will attempt to use the window server
where appropiate. If this is set incorrectly, it can cause
premature program termination.

myView Used to hold my custom view used in the open and save panels.

amSaving If YES, then the current operation is saving, otherwise it is
opening. This is used by both run methods for open and save
panels.

currentPanel Holds the id of the currently running panel.

currentView Holds any custom view handed in by the application programmer
along with their save or open panel.

myBox One of the controls used in myView.

viewDefault Default size of myView.

mySubView Used when a converter has a subview to hold that id.

panelSave Used to pass around the id of the save or open panel.

myPopUp One of the controls used in myView.

myButton One of the controls used in myView.

nameText One of the controls used in myView.

picName Current name of the bitmap. This is really only valid after the
runSavePanel:withName: method has been called.

METHOD TYPES

Creating and Freeing a Converter - init
- free

Reading and Writing - runOpenPanel:
- openAndReturnImage:
- runSavePanel:withFilename:
- saveImage:toFile:

Error Handling - errorState
- errorMessage
- errorStringMessage

Linking and Unlinking - handleLink:
- unlinkConverter

Informational Querries - getTypeList
- getCurrentFormatName
- getCurrentConverter
±    getImageControl:
±    filename
±    usesNeXTStep
±    setUseNeXTStep:

INSTANCE METHODS

errorState
- (int)errorState

Returns the current error state of the converter. The type of error state return can be found in
Converter.h, and must be CONVERT_ERR_NONE, CONVERT_ERR_WARNING, or
CONVERT_ERR_FATAL. The image should be returned unless the error state reported is
CONVERT_ERR_FATAL.

See also: - errorMessage
- errorStringMessage

errorMessage
- (int)errorMessage

Return a standard error code. These are defined in Converter.h and remain constant. If the converter
needs to return a non-standard error message, you will need to call errorStringMessage to get the
exact error code, however this is the prefered method, since it allows for internationalization.

See also: - errorState
- errorStringMessage

errorStringMessage
- (char *)errorStringMessage

Returns a NULL terminated string describing the current error state of the converter. This string
should be usable in a dialog box which informs the user of the current problem.

See also: - errorState
- errorMessage

filename
- (char *)filename

This returns a NULL terminated string describing the current filename being used by the control
object. Normally only the converters will call this message. It's here so that can find out the name. As
far as the calling program is concerned, it gave the control object this name in the first place via a
message to the runSavePane:withName: message.

free
- free

Frees storage use by the object. After calling this method, you can no longer message the object
reliably.

getCurrentConverter
- getCurrentConverter

Returns the id of the current converter. This can then be used to speak with a converter directly. You
can only call the method if you have previously linked a converter. You can accomplish converter
linking by calling runSavePanel:withName:, runOpenPanel:, or handleLink:. Otherwise the return
value has no meaning.

getCurrentFormatName
- (char *)getCurrentFormatName

Assuming that a converter has been linked, this method return the name describing the current
format. For example, if the TIFF converter were linked, this would return ªTIFF (Tagged Image File
Format)º. It returns a NULL terminated string. This string is only valid for the life of the linked
converter, so you should make a copy of it if you'd like to keep it around.

getImageControl:
- getImageControl: (id)image

This is here primarily for the converters to call. They use this method to get an instance of the
ImageControl object. However, your program may also choose to use this method if you need a
copy of that object. Image is an NXBitmapImageRep and will be associated with the return
ImageControl object.

getTypeList
- (char **)getTypeList

This returns an array of character pointers which point to NULL terminated character strings which
represent the current, usable image types. The last item in the list will be nil. You may pass any of
these strings to the handleLink method. The list will be valid until the NXBitmapImageRepControl
object is freed.

When done with this list, you should make sure to deallocate it's storage using free (3).

handleLink:
- handleLink: (char *)inType

Attempts to link the converter for inType. If it fails to link that converter, this method return nil,
otherwise it returns an id to an instance of that converter. You may only have one converter linked at
a time, so it you received a previous instance of a Converter, it will be unlinked, and the id you
already have will be invalid. This should perhaps not work this way, but it will until I can figure out how
to allow multiple converters to be linked simultaneously.

init
- init

Initializes the control object.    This method will attempt to get the base object ImageControl, and to
also find all converters located in the library directories. If it's successful, it will return self, otherwise it

returns nil.

openAndReturnImage:
- openAndReturnImage: (const char *)filename

Returns an id to a new instance of a NXBitmapImageRep that contains the bitmap data for the
image type found in filename. filename is a NULL terminated string that represents the file you wish
to load. It should contain the document extension for it's file type. For example, a give image would
be in the form foo.gif. If the file extension is not present, results can be unpredictable. If the image
could not be loaded, nil will be returned, and the caller should then message the errorState method
to find out the problem. You should probably send this message, anyways, to check for warning
conditions.

runOpenPanel:
- runOpenPanel: (id)openPanel

Runs the open panel asking the user to input a list of filenames. You will always receive back a list of
filenames from the user, however, you may choose to only use the first filename found. The user will
be presented with a close to standard open panel containing a custom view to allow them to select
specific file types or any file type they wish. You can get back a mixed list of file types.

OpenPanel is an instance of your applications open panel and should be gotten via a call to the
OpenPanel's new method. You may insert a custom view into the open panel before passing it
along. This panel will be incorporated in the control object's custom view, allowing your application to
request addional information from the user.

This object returns the same values as the open panel. self if successful or nil if not.

runSavePanel:

- runSavePanel: (id)savePanel

This is similar to the runOpenPanel method, but runs a standard save panel. Like the normal save
panel, it only allows the user to select on filename at a time. Also like the runOpenPanel method, this
will allow the use of your own custom views.

This method accepts the application's save panel via savePanel and will return it's values on exit.

saveImage:toFile:
- (BOOL)saveImage: (id)image

toFile: (const char *)filename

Saves the image image to the file filename. If you need to save an image to something else, you will
need to message the converter directly. filename should contain a valid document extension, so that
the converter knows what file format the user wants the image save under. Valid filetype extensions
can be found via the getTypeList method. This method return YES if the image was successfully
written to disk, other wise it returns NO.

setUseNeXTStep:
- setUseNeXTStep: (BOOL)state

This sets whether or not the control object should attempt to use the window server. This is relevant
for things like how to inform the user of problems. If set to YES it will run alert panels to inform the
user of problems, otherwise it will print the errors to stderr.

Returns self.

unlinkConverter
- unlinkConverter

Explicity unlinks whatever converter is currently linked. Normally you will not need to call the method,
however, if you program is doing dynamic run time linking of other objects, you should always make
sure that this method is called before anything else is linked. This ensures that your other objects will
not be unlinked by mistake. This is a short comming of the run time linker system that only allows the
previously linked object to be unlinked.

Returns self.

usesNeXTStep
- (BOOL)usesNeXTStep

Returns YES if it thinks it can use the window server, otherwise it return NO.

CONSTANTS AND DEFINED TYPES

typedef struct {
char fullpath[MAXPATHLEN];
char type[MAXPATHLEN];

} Type;

