
Graphics
W o r k s h o p

by Alex Raftis

Copyright ã 1991 Cal Poly State University. All rights reserved.
See end for addional Copyrights.

Overview
This is a nifty little program for reading and writing files in various picture
formats. It will also let to affet and play around with the images a bit while
you've got them loaded. Before you get bored with the menus (since you've

probably figured them out already, you might want to skip down to
Programmers Stuff.

The Menus
Currently, here's what works:

Info
Info Panel¼
Displays informtion regarding me, the programmer.

Help¼
Displays this panel, to tell you what it does, assuming you haven't

figured it out for yourself yet.

Document
Open¼
Opens a new picture document, in any of the supported converter
types. The current list is TIFF, PGM, PBM, PPM, XBM, and GIF. It
accomplishes this daunting task via a message to the NXBitmapImage-
RepControl of (int)runOpenPanel: (id)openPanel.

Save
Saves the current picture. It should never call up the save panel, since
you can never really make a "new" document. It's really kind of
pointless at the moment, since there are no image transformations you

can run on the object.

Save As¼
This calls forth the Save Panel via the message - (int)runSavePanel:
(id)savePanel withFilename: (const char *)filename in the NXBitmap-
ImageRepControl object.

Windows
Everything under this panel run as expected, like every other Windows
menu in every other NeXTStep application.

Tools
Data¼

This displays information about the current image, such as width,
height, number of colors, etc< It also displays the current image type in
english.

Print¼
Prints out the current view. This is currently very crude printing, so the
image may display cropped or otherwise not all there. Accomplished via
the print message to the current view.

Hide
Hides the application or cause total world devastation, depending on your
security clearance.

Quit
Quits the application.

Programmer's Stuff
So you like what this object does and you want to use it? Well, this will tell
you how, but first a few brief words about the source. The main documention
is in the header files (where about the only comments appear). They will tell
you about what a method expects, however, this will tell you how they relate
to each other. The final release will have a much more comprehensive
documentation release.

Overview

You might also want to know what this program does, I suppose. Well, it's
sort of a rapper that fits around an NXBitmapImageRep, thus the object
name NXBitmapImageRepControl. It's purpose is to make the
NXBitmapImageRep a more useful object by supporting more types of
graphics formats. It does this through calls to objc_loadModules() and
objc_unloadModules() calls (NeXStep Refernce, Volume 2, page 3-157). So,
when you request it to load a module, it looks out on disk for a converter (call
thus since it converts the format to the internal NeXT format and back again).
It reverses the process when saving and image.

Converters
Now, what's in a converter? A converter is basicially an unlinked object
module, created with a cc -c <filename> -o <format.extension>.bcvt system

call. The object is of type converter and all object of this type must respond to
certain messages in a predescribed way. Meeting these specifications fully
will allow programs to easily access many types of bitmap formats.

The converters are stored in library folders about the file system. They will be
using in the following order: ~/Library/Converters is first, followed by a
converter in /LocalLibrary/Converters, which is followed by
/NextLibrary/Converters. All recognized converters should have the .bcvt
suffix.

Image Manipulation Tools
Also, since many of these converters need a standard set of routines and
utilities for manipulating images, they may request an object to do this of their

sender, usually the NXBitmapImageRepControl object. This object is also
stored on disk in a library folder under the name of Image.tools. The object
contains a list a standard functions for converting bitmaps from color to black
and white to getting individual pixels from an image. Because this program is
linked at run time, it may be modified at a later date to improve the
functionality of the routines and it's algorhythms. This can be especially
important, since this is the prime place something might cause a crash.

Of course, these tools are availble to any application programmer.

The Steps to Using It
Now that you know what it uses, here's how to use it. For examples of any of
these callings, see the source to GraphicsWorkshop.

1. Initialize the object NXBitmapImageRepControl object. This will cause
the program to search for converters, as while as link in the
ImageControl object for later instantiations. It should only ever be called
once.

2. When ready, create an open panel, but to run it, call the runOpenPanel
method. This will show the open panel to all file types found in Step 1. It
will return the same values as the Open Panels, run open panel method.
See NeXTStep Reference, Volume1.

3. Once you have from 1 to n filenames, pass these names, one at a time,
to the openAndReturnImage method. This will return an NXBitmap-
ImageRep for each image.

4. Manipulate the image any way you'd like.

5. Now that you're ready to save, create a save panel, but run it via the
runSavePanel method. This will bring up a panel, with the images current
type linked in. Should the user select a new type, that converter will be
linked in, it's specialization panel poped up, and it's file extension added
to the bitmaps filename. If it returns YES, then you can move onto step
6, otherwise, the user canceled the save.

6. Call the saveImage method to save the bitmap. This will link the correct
converter, if necessary, and call it to save the image.

7. That's it.

Some Pointers
· You can call the routines to link converter maually. This is useful when

needed to bi-pass the open and save panels.

· File extensions are very important. This is how the object can tell what
kind of converter is being used. May sure when passing names, that the
filename always has a valid extension, otherwise thing won't work nicely
for the user.

· When running a save panel, the linked converter's specializeation
parameters only last as long as the next save panel.

· If you'd like to open multiple images in a file, you'll have to link converters
yourself and message them via the openMulitple and saveMultiple calls.

· As long as you don't use open an save panals, this object should be able
to run without the window server.

Points on Writing Converters
· You only have to implement 1 routine, however, you must respond to all

messages. You only need to implement getFormatName.
· It's really kind of pointless to not implement Reading and Writing of single

images to streams, however, should you wish to not do this, simply make
sure to always return NO for the one not implemented.

· If you don't wish to implement the "all" routines, also return NO, however,
it is preferable that this return a single image inside and NXImage object,
if the format only supports one image per file. If it supports multiple
images, this should definitely be implemented (of course, it's not for gif :-(
).

· You only need to implement customSaveView if you'd like, but always
return nil when you don't. The width parameter is the max width of the
save panel. This helps when laying things out.

· Init and free are always called, however, they don't need to do anything

unless you want them to.

Bugs and Quirks
· The convert24toPalette method should implement a Meduim Cut

algorhythm, but doesn't. The algorhythm used will work well for larger
palettes of high contrast colors. This may be fixed in the future (not
necessarily by me.)

· Many of the converters (all but tiff) don't even attempt a response to
readAll and writeAll.

· CYMK color handling capabilities are near nil. You can get the pixels
(possibly not when under messed configuration), and that's about it.
Neither convert to BW or RGB currently works.

Fixes as of October 10, 1991
· PNM converters not handle comments. Oh-Ah.
· The GIF converter now handles truncated files. The problem was with

filling the blank pixels via a call to memset and not always having 8 bit
pixels. This was fixed by explicitly filling the extra pixels with the
background color.

· Conversions to 1 bit now work all the time. (Well, most of the time.
Something obscure still happens on odd cases [I think only 1 in 8.])
There was a mistake in the manual about internal formatted that led me
to believe that 1 bit per sample images would not be padded at the end
of the line. This is not so, and I was misled because my original test

image's width was divisible by 8.
· Previously unknown fixes to ImageControl object with messed RGB

values. It seems that I was getting the R and B values swapped. This
has been fixed for RGB, I can't swear what'll happen with CMYK. I think
you'll get C <> K and M <> Y, but I have no images to test with.

· Behavior of Save panels corrected.
· TIFF saving under JPEG will now drop to LZW when appropiate, ie, with

images of less than 4 bits per sample. (Conserves space and prevents
exceptions to the JPEG routines.)

· Added Convert To menu items. Currently, only conversion to BW and 12
Bit Color are implemented. I hope to fix the rest soon. Note that the
conversion of less < 4 bits per sample are a little flakly in that a value of
3 expands to 12, not 15 like it should. I'm working on it.

· Added pretty colors to the title in the help pages. BTW, you can only do
this in edit by hand. Yech.

Final Notes
I can be reached at the following email address:

alex@data.ACS.CalPoly.EDU For NeXTMail
alex@cosmos.ACS.CalPoly.EDU For standard email

Addional Copyrights
Gif loading and Saving-
Copyright ã 1988, 1989 Patrick J. Naughton

Copyright ã 1989, 1990 University of Pensylvania

Floyd Streinberg Ditherizing-
Copyright ã 1988, 1989 Patrick J. Naughton

