
Release 1.0    Copyright ã1991 by California Polytechnic State University.    All Rights Reserved.

Converter

INHERITS FROM Object

DECLARED IN Converter.h

CLASS DESCRIPTION

The Converter objects provides the mechanism forconverting images between different formats.
Each converter object is responsible for reading and writing one graphics format. Through the
interaction of many of these object, image conversion is achieved.

In general, you will not need to call these methods directly. This reference is supplied many for
people who wish to program their own converters.    To that end, the descriptions tend to read more
for the converter writer and not the programmer who wishes to use the object.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Converter int errorState;

METHOD TYPES

Creating and Freeing a Converter - init
- free

Reading and Writing - readFromStream:from:
- readAllFromStream:from:
- write:toStream:from:
- writeAll:toStream:from:

View Management - customSaveView
- customOpenView

Error Handling - errorState
- errorMessage

Parameter Setting and Retrieval - setCustomParameter:withValue:
- getCustomParameter:

Informational Querries - getFormatName
- copyrightNotice
- protocolVersion

INSTANCE METHODS

copyrightNotice:
- (const char *)copyrightNotice

This method returns a pointer to a NULL terminated string. This string can be quite long and is used

to report copyright notices, author, where to report bugs, etc¼ It is expected that should a caller wish
to use this string into the future, it will make a copy of it. It is not the converters responsibilty to make
sure a copy remains around after it has been unlinked.

customOpenView:
- customOpenView: (int)width

Returns a custom view. This view should not be wider than width. This is used so that a converter
can request information about the picture it will be asked to open. In general, converters will not need
to use this mehod and should return nil. A case where this method should be used is when a raw
bitmap. In this case, the converter would need to ask information such as width, height, pixel depth,
etc¼

See also: - customSaveView:

customSaveView:
- customSaveView: (int)width

Returns a custom view. This view should not be wider than width. This is used to request information
about the picture about to be saved. If the converter does not need addional information from the
user, it should return nil. This view will be displayed at the bottom of the save panel. A common use
for this method would be to ask about compression method or factor.

See also: - customOpenView

errorMessage
- (int)errorMessage

Returns an integer describing the current error state of the converter. These can be found at the end
of this document.

errorState
- (int)errorState

Returns and integer describing the current error state of the converter. This is either none, warning,
or fatal.    The defines for this can be found at the end of this document.

free
- free

Frees up memory used by the converter. This will be called just before un-linking.

getCustomParameter:
- (void *)getCustomParameter: (const char *)parameter

This returns a pointer to a custom value inside the converter. The use of this method is not highly
recommended, but may be necessary. The caller will specify what parameter it wants by send the
NULL terminated string parameter. The converter should then return a pointer to this value. The caller
should make sure to make a copy of this value, as it is not guaranteed to remain stable to extant.

The converter should make sure to    always respond to this message. If it does not recognize
parameter, then it should return NULL.

See Also: - setCustomParameter:forValue:

getFormatName
- (const char *)getFormatName

Returns a NULL terminated string given a brief description of the format. This brief description
usually just expands upon an acronym. For example, the TIFF converter returns ªTagged Image File
Format (TIFF)º.

init
- init

Initializes the converter. Many converters may not actually do anything when this is called, but this
needs to be here for those that do.    Returns self.

protocolVersion
- (const char *)protocolVersion

This returns a NULL terminated string describing the current protocol version supported by the
converter. Current converters should return ª1.0º. If you wish to keep this string value around make
sure to copy it, as it's existance in the future is not guaranteed nor likely.

readAllFromStream:from:
- readAllFromStream: (NXStream *)stream

from: sender

Reads images of the converters type from stream and return an NXImage. Since many formats do
not support multiple images in a stream, this method may return nil, meaning it is not supported. It
will also return nil in the event of an error. When an error occurs, the program should message
errorState and possibly errorMessage to find out what's wrong.

The converter may request an instance of ImageControl from it's sender. The caller should be
prepared to respond to all messages send by the converter. For this reason, it's usually better for the
programmer to not call this message directly.

See Also: - readFromStream:from:
- errorMessage
- errorState

readFromStream:from:
- readFromStream: (NXStream *)stream

from: sender

Returns a NXBitmapImageRep of the image read from stream. The programmer should always try
to support this method, but if it does not, it should return nil. Also, on an error condition, it should
return nil. The caller can then querry errorState and errorMessage to discover the problem.

The converter may request an instance of ImageControl from it's sender. The caller should be
prepared to respond to all messages send by the converter. For this reason, it's usually better for the
programmer to not call this message directly.

See Also: - readAllFromStream:from:
- errorMessage
- errorState

setCustomParameter:withValue:
- (BOOL)setCustomParameter: (const char *)parameter

withValue: (void *)ptr

This sets a custom parameter pointed to by ptr in the converter. The use of this method is not highly
recommended, but here for the support of command line version of the converters. The converter
should always attempt to respond to this message. If it is unable to set a value, it should return NO,
otherwise it should set the value and return YES.

See Also: - (const char *)getCustomParameter:

write:toStream:from:
- (BOOL)write: (id)image

toStream: (NXStream *)stream

from: sender

This method writes the image, represented by an NXBitmapImageRep to stream.    It is expected
that this message can send to it's sender to request certain data, therefore, the sender should be
able to respond to all message by the converter. On success, the converter returns YES and NO on
failure.

See Also: - writeAll:toStream:from:

writeAll:toStream:from:
- (BOOL)writeAll: (id)images

toStream: (NXStream *)stream
from: sender

This method writes all images out to stream. It is expected that this message can send to it's sender
to request certain data, therefore, the sender should be able to respond to all message by the
converter. If the converter does not wish to or cannot save multiple images, it should return NO.
However, it's recommended that at least the first image in the NXImage be written to disk, even if this
means loss of the other images. A warning message might be sent to inform the user of the loss. This
should return YES on success and NO on failure.

METHODS IMPLEMENTED BY SENDER

getImageControl:
- getImageControl: (id)image

This method return a new instance of ImageControl associated with the NXBitmapImageRep
image. The sender should always make sure to respond to the message. It should return nil if it fails
to instantiate an ImageControl, however, this will most certainly result in the image not be saved or
loaded.

CONSTANTS AND DEFINED TYPES

/* Converter Error States */
#define CONVERT_ERR_NONE 0
#define CONVERT_ERR_WARNING 1
#define CONVERT_ERR_FATAL 2

/* Converter Error Codes */
#define ERROR_NO_ERROR 0
#define ERROR_UNABLE_TO_OPEN 1
#define ERROR_PERMISSION_DENIED 2
#define ERROR_BAD_FORMAT 3
#define ERROR_TRUNCATED_FILE 4

