
Programmer's Stuff

So you'd like what this object does and why you'd want to use it? Well, this 
will tell you how, but first a few brief words about the source. The main 
documention is in the header files at the moment (where about the only 
comments appear). They will tell you about what a method expects, however, 
this will tell you how they relate to each other. The final release will have 
much more comprehensive documentation.

Overview
You might also want to know what this program does, I suppose. Well, it's 
sort of a wrapper that fits around an NXBitmapImageRep, thus the object 
name NXBitmapImageRepControl. It's purpose is to make the 
NXBitmapImageRep a more useful object by supporting more types of 
graphics formats. It does this through calls to objc_loadModules() and 



objc_unloadModules() (NeXStep Refernce, Volume 2, page 3-157). So, when 
you request it to load a module, it looks out on disk for a converter (called 
thus since it converts the format to the internal NeXT format and back again). 
It reverses the process when saving and image.

Part of the goal of these object was to allow the most flexibility in upgrading 
the objects with the least pain to the programmer. To this end, the only object 
actally linked into the program at compile time is the ConvertLoader object. 
Messaging/instantiating this object loads a Control object off the disk. This is 
currently only availble for bitmaps, but may yet become availble for other file 
formats, like sounds.

Once the Control object is linked, it links in the ImageControl object, which is 
used by converters to convert between various bitmap formats, and to get 
pixel information out of a bitmap. It also scans the library folders and makes a 
list of all known converters and their file types.



Converters
Now, what's in a converter? A converter is basicially an unlinked object 
module, created with a cc -c <filename> -o <format.extension>.bcvt system 
call, and possibly a ld -r <source file>¼, which ªpre-linksº a set of .o files and 
libraries. The only realy requirement is that the converter must always be first 
in the final mach-o file. 

The object is of type Converter and all object of this type must respond to 
certain messages in a predescribed way. Meeting these specifications fully 
will allow programs to easily access many types of bitmap formats. You can 
find a template for writing a converter object in 
¼/GraphicsWorkship/Converters/template.[hm].

The converters are stored in library folders about the file system. They will be 
using in the following order: ~/Library/Converters is first, followed by a 
converter in /LocalLibrary/Converters, which is followed by 
/NextLibrary/Converters. All recognized converters should have the .bcvt 



suffix. The name of the converter is also important as it's used to get the file 
type. Therefore, a TIFF converter would be called tiff.bcvt.

Image Manipulation Tools
Also, since many of these converters need a common set of routines and 
utilities for manipulating images, they may request an object to do this for 
them by message their sender. This is usually the 
NXBitmapImageRepControl object. This object is also stored on disk in a 
library/Converter folder under the name of Image.tools. The object contains a 
list a standard functions for converting bitmaps from color to black and white 
to getting individual pixels from an image. Because this program is linked at 
run time, it may be modified at a later date to improve the functionality of the 
routines and it's algorithms. This can be especially important, since this is the 
prime place something might cause a crash or need to be change to increase 
functionality.

Of course, these tools are availble to any application programmer who may 



also decide to rewrite them.

The Steps to Using It
Now that you know what it uses, here's how to use it. For examples of any of 
these steps, see the source to GraphicsWorkshop.

1. Initialize the ControlLoader object by telling it to load an instance of 
"Bitmap" tools. This will cause the program to search for converters, as 
well as link in the ImageControl object for later instantiations. It should 
only be called once.

2. When ready, create an open panel, but to run it, call the runOpenPanel 
method in the NXBitmapImageRepControl object. This will show the 
open panel for all file types found in Step 1. It will return the same values 
as the normal Open Panel found in the NeXTStep Reference, Volume 1.

3. Once you have from 1 to n filenames, pass these names, one at a time, 
to the openAndReturnImage method. This will return an 
NXBitmapImageRep for each image.



4. Manipulate the image any way you'd like.
5. Now that you're ready to save the image, create a save panel, but run it 

via the runSavePanel method. This will bring up a panel, with the images 
current type linked into the code. Should the user select a new type, that 
converter will be linked, it's custom view, if any, displayed, and it's file 
extension added to the bitmaps filename. If it returns YES, then you can 
move onto step 6, otherwise, the user canceled the save.

5a. The programmer can also get parameter information from the 
converter object itself at this point. However, this is discouraged in 
applications using the NeXTStep interface, as every converter can have 
it's ªownº set of parameters and using the set and get methods only ties 
the program down to a few or one specific converter.

6. Call the saveImage method to save the bitmap. The correct converter 
was already linked, so make sure you don't call the handleLink message 
before the saveImage message as this will eradicate the user's 
customazation selections. 

7. That's it.



Some Pointers
· You can call the routines to link converter maually. This is useful when 

needing to bi-pass the open and save panels or working at the UNIX 
shell level.

· Most converters should work without the WindowServer active. 
Examples of ones that might not is one that reads EPS files.

· File extensions are very important. This is how the object can tell what 
kind of converter is being used. Make sure, when passing names, that 
the filename always has a valid extension, otherwise thing won't work 
nicely for the user.

· When running a save panel, the linked converter's specializeation 
parameters only last as long as the next save panel.

· If you'd like to open multiple images in a file, you'll have to link converters 
yourself and message them via the openMulitple and saveMultiple calls.

Pointers on Writing Converters



· You need not implement any of the routinse, however, you must respond 
to all messages up to the version level you're programming.

· It's really kind of pointless to not implement Reading and Writing of single 
images to streams, however, should you wish to not do this, simply make 
sure to always return NO for the one not implemented.

· If you don't wish to implement the "all" routines, also return NO, however, 
it is preferable that this return a single image inside and NXImage object, 
if the format only supports one image per file. If it supports multiple 
images, this should definitely be implemented (of course, it's not for gif :-
(, or any other routines for that matter).

· You only need to implement customSaveView and customOpenView if 
you'd like, but always return nil when you don't. The width parameter is 
the max width of the save panel. This helps when laying things out.

· Init and free are always called, however, they don't need to do anything 
unless you need to.

· The version method really needs to return something valid. It's assumed 
all converters will always respond to protocol level 1.0. However, should 



new messages be implemented for ªunseenº bitmap features in the 
future, this protocol level may increase, which is why it's important that 
you return the string ª1.0º, as it's the only way that 
NXBitmapImageRepControl knows what not send your converter in the 
future.

· The ability to handle errors has been made more robust. Please see 
sample code and header files for more details.


