
Graphics Workshop
A Graphical Bitmap Utility Program

by

Alex Raftis
Copyright ©1991, 1992 California Polytechnic State University, San Luis Obispo and Alex Raftis

Copyrights

The Graphics Workshop
Copyright © 1991 California Polytechnic State University, San Luis
Obispo, and Alex Raftis

NXBitmapImageRepControl, ImageControl, Control Loader, and all
Distributed Converter Objects
Copyright © 1991 California Polytechnic State University and Alex Raftis

GIF Loading and Saving
Copyright © 1988, 1989 Patrick J. Naughton (Writing)
Copyright © 1989, 1990 University of Pennsylvania (Reading and Writing)
Copyright © 1990, David Koblas (Reading)

Floyd Steinberg Ditherizing
Copyright © 1988, 1989 Patrick J. Naughton

JPEG Library and Utilities
Copyright © 1991 Thomas G. Lane

All Rights reserved.

For more information on any of the copyrights, please see the
accompanying source code. Due to the amount of borrowed code
segments, if you find any mistakes in the copyrights, I would appreciate
being informed immediately.

Final Draft Graphics Workshop
Page

Trademarks

NeXT, NeXTstep, NeXTstation Color, NeXTstation, Installer,
InterfaceBuilder, and Workspace Manager are trademarks of NeXT
Computer, Inc.

Apple and Apple IIGS are trademarks of Apple Computer, Inc.

JFIF and JPEG are trademarks of The Joint Photographics Extension
Group.

GIF, Graphics Interchange Format and CompuServe are trademarks of
CompuServe, Inc., an H&R Block Company.

Final Draft Graphics Workshop
Page

Table of Contents

Copyrights ii

Trademarks iii

Table of Contents iv

Table of Figures vii

Introduction 1
Reasons for the Project 1
Conception 1
Project Summary 2

GraphicsWorkshop 4
Overview 4
Installation 4

Normal Installation 4
Advanced Installation 5

Running 8
Menus 8

Info Panel... 9
Help... 9
Preferences... 9
Open... 10
Make Image Index... 12
Save 12
Save As... 12
Revert to Saved 12
Arrange in Front 12
Miniaturize Window 12
Close Window 12
Cropping 14
Data 13
Edges 13
Gamma 13
Orientation 13
Black and White 14
2 Level Gray Scale 13
16 Level Gray Scale 13
256 Level Gray Scale 13
12 Bit Color 15
24 Bit Color 15
Strip Alpha 15
Invert 15

Future 15

Final Draft Graphics Workshop
Page

Programmer's Overview 17
The Objects 16

Converters 17
Overview 17
Currently Supported Graphics Formats 17
Writing Converters 18
General Defines and Data 19
Method Overview 20
Useful Notes 21

NXBitmapImageRepControl Object 22
Abilities and Limitations 22

Reasoning 22
Programming With It 23

ControlLoader Object 23
Loading Images 23
Saving Images 25

Advanced Techniques 25
Manually Linking and Unlinking 25
Supporting Sender Messages 26
Manual Loading 26
Manual Saving 27

Final Notes 27

Image Control Object 28
Abilities and Limitations 28

Reasoning 28
Useful Methods 28
Advanced Topics 31

Re-writing the Object 31

Appendix A: Header Files 33
ControlLoader.h 33
NXBitmapImageRepControl.h 34
ImageControl.h 37
Converter.h 41

Appendix B: Source Code 45
ControlLoader.m 45
NXBitmapImageRepControl.m 48
ImageControl.m 61
Converter.m 71

Appendix C: Graphics Formats 73
GIF 73

Final Draft Graphics Workshop
Page

JPG 73
PBM, PGM, PPM, and PNM 73
TIFF 74
XBM 75

Appendix D: References 76

Index 77

Supplemental 78

Final Draft Graphics Workshop
Page

Table of Figures

Figure 1 Main Menu 8
Figure 2 Info Menu 9
Figure 3 Document Menu 9
Figure 4 The Open Panel 9
Figure 5 Make Image Index Panel 11
Figure 6 Windows Menu 12
Figure 7 Tools Menu 13
Figure 8 Convert To Menu 13
Figure 9 Hierarchy of Classes 16

Final Draft Graphics Workshop
Page

Introduction

GraphicsWorkshop allows the user to read, write, view, and manipulate a
variety of bitmap formats, however, this is only the surface. Underneath
GraphcsWorkshop is a complex method for controlling run time loadable
converters, allowing users to change the list of bitmaps availble to them.
There's also another object controlling the use of these objects to make
life simple for the application programmer.

Reasons for the Project

Graphics Workshop was conceived because I'm an avid collector of
computer images, which come in many formats, and having become a
recent owner of a NeXTstation Color™, I wanted a method to view and
use my images. However, I like to store my images in their original
formats. This made things difficult on the NeXT™ where most programs
only deal with TIFF's.

Conception

My primary consideration when thinking up the program was usability. I
could've written a program that loaded and saved bitmaps within the
confines of one application, but I wanted more. I figured it would be a lot
easier if the program I was using could read the bitmaps directly rather
than needing to go through another application first. I also concluded that
every application writer that needs to load and save bitmaps should not
have to reinvent the wheel each time.

I was also interested in flexibility. I figured that while I might support one
format or maybe six, I could never predict what formats might appear in
the future, nor what formats all people might want to use. This led to the
concept of loadable converters, allowing anyone to write a converter that
could be used from within any application that uses my objects.

This eventually led to an almost completely modifiable, re-writable system
of control objects. At compile time, the programmer needs only to link in
about thirty lines of code in one object. Everything else is loaded from disk
at run time. This means that if I update my software, or for that matter, if
someone else does, application programmers don't need to update their
code. It's already done for them.

Finally, while I concluded that each individual converter should be able to
load and save, the converter writer shouldn't have to worry about
mundane things like pixel retrieval and image processing. To this end, I
include a set of bitmap utilities which are at the disposal of the converter
writer. This means that converting a twenty-four bit color image to a one bit
black and white image is only a few lines of code.

Final Draft Graphics Workshop
Page

Project Summary

When I initially sat down to begin design, I wasn't sure of the scope of the
project. I eventually settled on a design that would allow for the loading
and saving of just bitmaps. This led to the current design, which I can
modify later.

In the earlier stages, the design required the linking of many objects into
the control application. After a time, I decided that it was ridiculous to
assume I could write the image utilities better than anyone else, so I
decided to also make these generic and loadable. Then I got to thinking. I
might also make mistakes that could be easily corrected if the control
object was also generic. This finally led to the develop of the
ControlLoader object.

The basic design of the project now stands with the ControlLoader object
being called to link the bitmap control object which in turn links the image
utilities and the converters. This simplifies greatly the dependencies
programmers who use the object have on my source code. Take a look at
the object hierarchy on page if you're interested in the final relationship of
all the objects.

On a historical basis, the project was first conceived in 1990. From this
point, I began to decide what I'd like in such a program. At the time, I was
designing for an Apple IIGS™. When I later became deeply involved in
NeXT and its environment, my mind drifted over to that platform. By early
1991, I'd pretty much decided on what to do and how to do it. As the
summer of 1991 approached, I decided it would be a good time to begin
my Senior Project at school, so I talked to a faculty advisor and arranged
to begin the project, officially.

From that point, I dove into the programming. Development of the original
plan was quick, as I entered the project with enthusiasm. This later slowed
a bit as classes imposed time constraints on me. By the end of summer,
however, the project was just about ready to enter alpha testing. At this
point, it could handle everything but JFIF™ (.jpg) files.

Over my fall quarter of 1991 I spent time in alpha testing. This allowed me
to get input from other programmers about what they might like to see.
This led to a small increase in the generic nature of the control object, the
addition of low level messages, and the ability to specify open parameters.
It also saw the addition of error and copyright handling capabilities. I
should also mention the elimination of numerous bugs.

This proceeded until the end of fall and into early winter. Just before I left
for my winter break, I released the code to the world in general by placing

Final Draft Graphics Workshop
Page

it on public ftp at sonata.cc.purdue.edu. I did this since mail distribution
was becoming too large, and I also felt project and code were stable
enough to warrant public consumption.

Once on the internet, many additional problems with installation and bugs
were reported. This led to a few new developments. To begin, I now
distribute the different parts of the program as Installer packages. This
makes installation for non-UNIX experts much easier. I also worked to
decrease dependencies on libraries that NeXT does not distribute to all
NeXT owners. Finally, I modified the GIF converter to handle a more
varied number of GIF's, since I was running into obnoxious errors with the
code I was using.

Final Draft Graphics Workshop
Page

GraphicsWorkshop

Overview

Graphics Workshop was written with three goals in mind. First, to provide
a demonstration platform for my project; to make my project of use with
programs that do not directly support the converters; and finally, to allow
the use of a varied number of bitmap formats.

Basic usage is simple. When properly installed, the user is opened up into
the world of graphic formats. To operate, you need to start by loading a
bitmap. This can be accomplished via the open panel, one of the
Workspace Manager's browser windows, or cut and paste. Any of these
actions will open a new window to display the image.

Once you have an image, you may manipulate the graphic in simple ways,
such as removing color information. In the future, I hope to greatly expand
on these handling capabilities of the program by including edge
enhancement, image rotation and scaling, and many other functions.

When you are done with the bitmap, you may save it into any of the
supported formats found within your library folder, or you may copy it onto
the paste board as a TIFF for inclusion in other programs.

Installation

Normal Installation

For most people, this is the only installation that you'll need to do.

To begin the installation, all you need to do is double click on the
packages from the Workspace Manager. There are three packages for
Graphics Workshop. The first, GraphicsWorkshop.pkg contains the
executable. If you want to run Graphics Workshop, you'll need to install
this package. It can go either into /LocalApps or ~/Apps, depending on
your needs and the needs of your site.

The next package, Converters.pkg, contains the converters used by
Graphics Workshop to load and save images. This package needs to be
installed in a library folder for Graphics Workshop to work properly. If you
installed the first package in /LocalApps, then this package should go
into /LocalLibrary, and likewise, if you installed the first package in ~/Apps,
then this package should go into ~/Library. This will create a sub-directory
called Converters containing all the run time code needed by the program.

Finally, the last package, GWSource.pkg, contains all the source code
Graphics-Workshop. You will not need to install this package on your

Final Draft Graphics Workshop
Page

system unless you wish to work with the source code. For that matter, you
can probably delete this package if you do not have the extended
NeXTstep release or an interest in programming, since it will take up about
1.5 to 2 megabytes of disk space.

At this point, if you have an extended release system, Graphics Workshop
should run properly. If it doesn't, check the following:

● Did you properly install the application? To check this, look in
/LocalApps or ~/Apps and make sure there's a sub-directory named
GraphicsWorkshop.app. If this doesn't exist in either directory, you
need to install the GraphicsWorkshop.pkg package.
● Did you install the converters correctly? Check in /LocalLibrary or
~/Library for the existence of the Converters sub-directory. If this
doesn't exist, you need to install the Converters.pkg package.
● The program runs, but aborts, indicating that the converters are not
properly installed. If this happens, check in the Converters sub-
directory for the existence of Bitmaps.tools, Bitmaps.controls,
Converter.bcvt, and tiff.bcvt. At least these files must exist in order to
run. If they do not, then the Converters.pkg file did not install properly.
Try re-installing it.
● If you can run the program, but other users can't, the problem is
most likely caused by not having both the converters and application
installed in the /Local directories. Check and make sure they are there.
If they aren't, you may need to move them from your own
directories.You may also need to check file permissions and make sure
all directories are readable and executable. Check the UNIX man page
for chmod for more information on changing permissions. You can also
do this via the file inspectors in the Workspace Manager.

If you don't have an extended release system, you'll need to also do the
following. From somebody that has an extended release system, you'll
need to copy the following files: /lib/libsys_s.a, /usr/lib/libNeXT_s.a,
/usr/lib/libcs.a, and /usr/lib/libm.a. You should be able to get a copy of
these from some with the extended release of NeXTstep, and yes, if you
own a NeXT, you may legally copy these files. This is necessary because
of the run time linking involved with the converters. Once these files are on
your system, Graphics Workshop should work; however, if there are still
problems, check the above list.

Advanced Installation

This section describes how to use the Install script. This script can be
used to coordinate the building of various parts of GraphicsWorkshop,
along with creating different installations of the program. Most people will
not need to use this, as it's included for people who wish to change the
source code.

Final Draft Graphics Workshop
Page

The first thing you need to do is change into the source code directory.
This will be wherever you placed the GWSource.pkg. From there, type
“Install <return>”. This will start the install script, and you'll see the
following:

Running this script will install GraphicsWorkshop on your
system. It give you
many oportunities to specify the arrangement of the
install. You also be asked
if you'd like to compile the various objects, even though
all the objects come
precompiled and ready to install. These are here in the
event that you have a
full developer's release and have modified code.

Please note that this install script works in cbreak
mode, so you do not nead
to hit return after single character input. Also, the
input lines are editbable
in a manner similar to tcsh. Here's some quick notes,
arrow keys more left
right, ^b back, ^f forward, ESC b back word, ESC f,
forward word, ESC B first
char, ESC F EOL, ^i toggle insert, ESC u Convert Word to
uppers, ESC l Convert
Word to lowers, and ^X delete line.

First of all, would you like the code built in debug
mode? Doing this will
generate profuse amounts of messages to the console
window, that can help a lot when debugging. If you're
just installing, say 'n'. Please enter y or n:

This question asks whether or not you'd like to build files in debug mode.
You most likely will not need to worry about this and should just answer
`n'. If, however, you're experiencing problems with the program and would
like additional debug information printed to the console window, you can
answer `y' and any makes will be done with the “-DDEBUG” flag.

Next you'll see the following:

You need to enter the name of the a directory telling
where you want to install
the software. The default is ~/Library/Converters, but
you are free to change
this location. Please note, however, that the location
must be

Final Draft Graphics Workshop
Page

~/Library/Converters, /LocalLibrary/Converters, or
/NextLibrary/Converters.
However, since most people should not insert files
into /NextLibrary, one of
the other two is recommended. Also note, you will
probably need to be root to
install items into /LocalLibrary.

Your Directory Choice [~/Library/Converters]?

Here you need to input a directory for the installation of the converters. If
you are not root, you'll see the above default. If you are root, you will see
“/LocalLibrary-/Converters”. If you'd like to change the directory, enter the
new one, otherwise, just hit return. Please note, however, that if the
converters cannot be found in a standard library folder, the program will
not function properly.

This will be followed by two questions:

The next questions are concerned with the converters.
These are the actual
objects that read and write bitmaps. You must have at
least one in your
library's converter folder for the program to function
properly.

Would you like to compile the converters? (y or n)?

Answering `y' to this first prompt will build the converters. You should not
need to do this on initial installation. It's here to make modifying converters
a little easier. It takes about five minutes to compile the converters.
Progress will be shown by the appearance of `.' characters.

Would you like move the converters into
~/Library/Converters? (y or n)?

The next question asks if you'd like the converters moved into the library
folder. You should answer `y' to this question if this is a first time
installation. Later on, it may be appropriate to answer `n'.

You will then be asked very similar questions about two files,
Bitmap.controls and Bitmap.tools. Once again, you probably will not need
to compile the; however, you will need to move them into the library folder.
Without these files, the program will not function.

The install script will then ask if you'd like to compile GraphicsWorkshop.
Like the converters, you will probably answer no, but the next question,

Final Draft Graphics Workshop
Page

Would you now like to modify GraphicsWorkshop's icon
header to include bitmaps
of the known converters? (y or n)?

should be answered yes. This will allow you to double click on a bitmap in
the Workspace Manager and have GraphicsWorkshop launched to display
it.

You will then be asked if you'd like GraphicsWorkshop installed on your
system. If you answer yes, you will be asked where you'd like the program
installed. If you are not root, the default will be in “~/Apps”, otherwise it will
choose “/LocalApps” as the default.

Once you've determined the default directory, you may be prompted about
what to do with a previous version of GraphicsWorkshop. You can decide
to erase or back up the old version. Erasing it completely removes it from
your system, while backing it up will rename the folder
“GraphicsWorkshop.app” to “GraphicsWorkshop.app~”.

That ends the installation. You may need to log out and then log back in
for the icons to be visible in the Workspace Manager.

Running

Perhaps the most straightforward method of running the program is by
double clicking on its icon from the Workspace Manager.
GraphicsWorkshop's icon is shown at the left, and is what you should see
from within the Workspace Manager. You may, however, also see the icon
at the right, assuming GraphicsWorkshop has been fully installed. Don't be
too concerned if you cannot view the icon at the right. It will be associated
with the bitmaps known by GraphicsWorkshop.

An important way to recognize bitmaps is by their file extensions. Here are
the extensions recognized by GraphicsWorkshop, and their corresponding
formats:

gif Graphics Interchange Format
jpg Joint Photographic extension Group, a.k.a. JPEG or

JFIF
pbm Portable Bitmap
pgm Portable Graymap
ppm Portable Pixmap
tiff Tagged Image File Format
xbm X-11 Bitmap

You should be able to double click on any of these file types to launch

Final Draft Graphics Workshop
Page

GraphicsWorkshop. Doing so will run the program and bring up the
desired bitmap. Note that the extension must appear as above. This is
especially true of “tiff”, which must not be just “tif”. The latter is sometimes
seen from bitmaps ported from PC's. Also note that “jpg” is sometimes
seen as “jpeg” and should be shortened.

Menus

The main menu is pretty much like any other NeXT application. In brief,
the Info panel leads to information about the application, the Document
menu to options for opening and writing bitmaps, Edit to cutting and
pasting, Tools to image manipulation options, Convert To to basic image
conversion utilities, Services to standard NeXT services, Print to the print
panel, Hide hides the application, and Quit exits the application.

Under the current release not everything will work, or work as expected.
The main area you'll notice lacking is in services and printing. Currently,
the services are not started, and no services are registered. With printing,
a straight, unformatted bitmap is sent to the printer, often resulting
incropped or misaligned images.

Info Panel...

The info panel will pop up a small panel describing me, the author, and
telling you important things like the version number.

Help...

This panel is useful for finding out how to do things. In large part, it
contains this document in a shortened form, but it is all in all easy and
straightforward to use. It has two controls, a pop up menu and a scroll
view. The pop up menu is used to select sections to view. You can then
use the scroll view's slider to move about the text.

Preferences...

In its current incarnation, this menu item will always be disabled. In the
future it will contain basic global items of control, such as selecting default
conversion or the choice of whether or not to cache images.

Open...

This will pop up the open panel and allow you to make choices about
opening a new bitmap. This panel is a bit more involved than what you
might be used to from within most NeXTstep applications.

Below you'll find a snapshot of the open panel followed by a discussion of

Final Draft Graphics Workshop
Page

how to use it. Take note of its operation, as this may appear in other
applications using the same objects.

Within this panel, the browser, and the home, cancel, and okay buttons, all
work like the standard NeXT Open Panel. However, please notice the cus-
tom view located between the browser and buttons. This allows for the
specialization of open parameters for the converter objects along with a
few other extra interactions.

The first button, in the top left, labeled “Info” will pop up a panel describing
copyright information along with anything else the author of the converter
wishes to point out to you. Once you've read the information in that panel,
click its “Okay” button.

The next point of interest is the pop up menu on the top right. This menu
allows you to select the input type for the kind of picture you wish to read.
Normally, this button defaults to “All Types”. This default will allow you to
read all manner of bitmaps, assuming there are converters for them on the
disk. It will also allow you to select multiple file names.

When you click on the pop up, you'll be presented with a list of file
extensions representing the types of bitmaps you can read. When you
select a specific type of bitmap, a few things happen. First, the program
goes out onto disk and loads that converter. It then asks the converter if it
has anything specific that it'd like to ask of the user. If it does, this in-
formation will appear just below the “Format” label.

At this point, the text in the text box will change to reflect the name of the
new format, and the Info button will return more specific information about
a particular converter. You will no longer be able to select multiple file
names. This is because the control object assumes that if you wish to
specify certain parameters, they are particular to one image only.

Selecting “All Types” again from the pop-up menu will return the behavior
to the original.

As a final point, you may be asking, why would a converter need to ask
you about the picture it's loading. Well, this ability was added in order to
load pictures that don't contain pixel configuration information. This behav-
ior is exhibited in raw formats, sometimes used by various institutions
during research. Currently, none of the default converters use this ability.

Make Image Index...

This allows for the creation of index files. Index files contain collections of
bitmaps stored as small representations of their true selves. They also
have the name of the original bitmap stored with them in the new bitmap.

Final Draft Graphics Workshop
Page

When selecting this option, you will be presented with a slightly modified
open panel. This panel allows for the additional input of three parameters,
describing how the images should appear in the index image. The panel
appears as the figure to the left.

You may use the Color Panel to choose the background color of the index
file. White is the default. Click on the border of the Color Well to bring up
the Color Panel, or you may select the Color Panel via the menus.

The Tile Width text box allows you to enter the dimensions of the images
in the index file. The images will be automatically scaled to preserve their
original aspect ratio, so the image will either be Tile Width tall or Tile Width
wide, depending on the original aspect ratio of the bitmap.

The Tile Count textbox allows you to specify the number of index pictures
that will appear in the x direction. The default is six images per line.

Save

This will save the current picture out to disk under its default format. If you
are presented with a panel, as in the case of an untitled picture, or if you
wish to save the picture in a different format, please see “Save As...”

Save As...

This option will pop up a panel similar to the open panel; however, there
are a few differences in behavior. First, there is no “All Types” selection in
the pop up menu. This is due to the fact that you can only save one image
at a time in one format at a time.

Another point is that you do not need to add a file extension. The
appropriate type will automatically be appended to the file name. Also note
that if an extension you add is different from the type in the pop up menu,
yours will be overridden.

The only other notable difference is that some of the converters do make
use of the custom input parameters. Most notable, the TIFF converter will
allow you to specify compression type and compression factor. This ability
will also be added to the jpg converter when saving is implemented within
it.

Revert to Saved

This isn't yet enabled, but when it finally is, it will allow you to re-load an
image that has been modified.

Final Draft Graphics Workshop
Page

Arrange in Front

This simply pops the selected window to the front of everything. This is
useful when another application has tried to move something in front of
your window.

Miniaturize Window

This has the same effect as clicking on the box in the upper left of a
window. The window will be made small and appear as an icon along the
bottom of the screen.

Close Window

This has the same effect as clicking the close button in a window.

v Warning There is no warning about closing modified windows. Be careful of what
you do.

Cropping

This panel currently does nothing. It will eventually allow you to lasso a
portion of the picture and cut away unwanted edges, as well as “auto-
crop” the image to remove large areas of uniform color from the edges.

Data

This is the only panel in the tools menu that actually works. When
displayed, it shows various information about the current picture, such a
data configuration, bits per pixel, size, etc…

Edges

Hopefully, this will allow edge enhancement and recognition.

Gamma

This should eventually allow gamma color correction similar to that of
Scene or Icon.

Orientation

This will allow the flipping and rotation of the image.

Black and White

Final Draft Graphics Workshop
Page

This will make the picture's pixel depth one by applying a Floyd Steinberg
Ditherizing Algorhithm.

2 Level Gray Scale

This will remove all but two bits of black and white data. Note that this
method does not dither or halftone, so you will often loose color informa-
tion.

16 Level Gray Scale

This removes all but four bits of gray scale data. Although similar to the
previous option in method, many images will retain better color definition
due to the addition of more colors.

256 Level Gray Scale

Like the previous two, this removes color information, but since it keeps
eight bits of color information, the picture is much closer to photographic
quality.

12 Bit Color

This simply removes extraneous color information. Basically, if you've got
a 24 bit image, but wish to view it without dithering on a NeXTstation
Color, this is the option for you. This can often make an image appear
sharper, but it can also create color banding.

24 Bit Color

This makes an image a full twenty-four bits. Note, however, that this
cannot add color information to an image, so expanding it to this depth will
not make the picture any better. This was added mainly to account for bad
conversions causing crashes in programs like Icon.

Strip Alpha

This removes all transparency information. This is really only useful for
images that will be saved back to TIFF, since most converters strip the
information anyway.

Invert

Inverses the image. This can be kind of psychedelic with color images.

Final Draft Graphics Workshop
Page

That pretty much describes the menus and how to use the program. Read
on if you'd like to see where the program might go in the future.

Future

Well, I'd have to say that the first major improvements will be in getting all
the bugs out and all the features working. From that point, there are a few
areas that I'd like to explore.

The first is image scanning. I'd like to add a scanner module to the
program in a generic fashion that would allow multiple scanners to be
used by any program in a fashion similar to the current converters.
Unfortunately, I don't currently have the money for a scanner, so this
option is still a way off in the future.

The other thing I'd like to do is to get a lot of people using my objects so
that programs on the NeXT can be just a little bit more productive for
everyone.

Final Draft Graphics Workshop
Page

Programmer's Overview

The Objects

If you'd like to program with the underlying objects that allow for the
reading and writing of bitmaps, then continue reading.

GraphicsWorkshop is really just an control application used to make my
set of objects useful to everyday users. However, these objects are written
in a manner that allows any NeXTstep programmer easy access to the
converters. The objects are arranged in a simple hierarchy of “uses” rela-
tionships, with control objects using other objects to achieve their eventual
goal. Here's a quick look at the objects, followed by a detailed description
of each object and how to use it.

Converters

Converters lie at the heart of the control object. Without these, the system
would simply be another inflexible system for viewing bitmaps. The
converters give the user and the programmer the ability to dynamically
work with many different formats, as well as allow the system admin-
istrator and user to tailor their individual needs.

Overview

Each converter consists of a group of methods stored in a Mach-O
segment on the disk. These methods allow any form of controlling ap-
plication to load and save images in the converter's type. Each converter,
to insure future expandability, is obligated to respond to a certain number
of messages. At present, all converters respond to the same numbers and
types of messages, but this may change in the future.

All the converters are stored in a library folder on disk and are searched
for and used in following order: ~/Library/Converters,
/LocalLibrary/Converters, and /Next-Library/Converters. Where a
converter is placed is not truly important, but this search order was chosen
to allow end users the most flexibility in controlling the bitmap converters
they wish to use.

Inside these folders, you should find files with a “.bcvt” ending. This
signifies a converter. The root of the filename is the extension by which the
bitmap will be recognized on disk. For example, the file “gif.bcvt” is the
GIF converter and whenever a file with a “.gif” extension appears on disk,
it can be recognized by this converter, assuming that the file is in valid GIF
format.

If you do not plan to write your own converters, you've probably read
enough of this section. However, should you like to expand on the

Final Draft Graphics Workshop
Page

capabilities of GraphicsWorkshop, and other programs utilizing converters,
then continue reading.

Currently Supported Graphics Formats

As of the first release, the following converters with the following limita-
tions are supported:
Format Name Extension Reading Writing Limitations

TIFF .tiff Yes Yes None
GIF .gif Yes YesWill not show text extensions
JPEG .jpg Yes NoCannot write out images
XBM .xbm Yes YesDoes not extend to XPM
PBM .pbm Yes YesOnly writes in binary mode
PGM .pgm Yes YesCannot control ascii/binary write
PPM .ppm Yes YesCannot control ascii/binary write

Note that only the TIFF converter supports the reading and writing of
multiple images to one file.

For more information on these file formats, please see the appendices. If
you'd like to write a converter and have it appear as part of the standard
distribution, then please send the source, binaries, accompanying libraries
(if any), and a readme file describing the format and any installation notes
to alex@data.ACS.CalPoly.EDU. However, if you are not willing to
distribute source, then I am not willing to include your code as part of my
distribution. Please feel free to distribute your code via anonymous FTP or
whatever means possible. Also note that I will not support the distribution
of non-freeware code. You may ask for a donation, but you may not
require it as part of my distribution.

Writing Converters

Assuming you already know a graphics format well, then writing a
converter is a fairly simple task. The easiest method is to simply copy the
files template.h and template.m from inside the
…/GraphicsWorkshop/Converters directory to wherever you wish to do
your coding. Rename these files to whatever is appropriate, and begin
your work. When completed, compile the code and put the resulting “.o” or
Mach-O file in an appropriate Library folder with the “.bcvt” suffix.

Beyond implementing all the methods, which will be discussed in the next
section, there are a few things you need to keep in mind.

First, do not strip the resulting output files. Remember, these files must be
linked at run time. Were you to strip the files, the run time linker would not
have enough information left in the file to do anything with it.

Final Draft Graphics Workshop
Page

Secondly, it's easiest to use only one source file, but you may use more, if
you'd like. The easiest method here is to create a library of support files to
“pre-link” against your resulting object. This is necessary because at run
time, your converter will be linked against only the standard C library, the
math library, and the NeXT and system libraries. This is equivalent to
using “-lm -lNeXT_s -lsys_s” on the command line with cc. To “pre-link”,
you will likely type “ld -r input.o libraries… -o output.bcvt”. This creates an
intermediate link stage that can be used later on by the run time linker.
Note that you cannot use shared libraries when using this method. For an
example, see the make file rule for jpg.bcvt in …/GraphicsWorkshop
/Converters/Makefile.

As a few final points, the following can help you when writing your
converters. Your converter is always re-linked when it's selected via the
open or save panel. This means that you can work on a converter without
having to constantly re-launch the control application. Also, feel free to
print things to “stderr”. Anything printed here will make its way to the
terminal window or the Console window, depending on how you launch
the control application.

General Defines and Data

One of the most important things to remember when writing converters is
to properly support all the functions. Below is a description of each of the
methods, the parameters they take, and what they need to return, along
with default defines and class variables.

When your converter wishes to report an error state, it should report one
of the following:

#define CONVERT_ERR_NONE 0
#define CONVERT_ERR_WARNING 1
#define CONVERT_ERR_FATAL 2

The first reports no error has occurred and your converter should report
this when it has none. The second is used to report that something is
wrong, but that it wasn't fatal. A good example of this is with a truncated
file. You can still load the picture, but may have to return a shortened
version to the user. The final is returned when something that prevents
returning even part of the file occurs. This includes access permission
problems and illegal or corrupted file problems.

Beyond the basic error states, the following are the types of errors that
may be reported:

#define ERROR_NO_ERROR 0
#define ERROR_UNABLE_TO_OPEN 1

Final Draft Graphics Workshop
Page

#define ERROR_PERMISSION_DENIED 2
#define ERROR_BAD_FORMAT 3
#define ERROR_TRUNCATED_FILE 4
#define ERROR_NEEDSWINDOWSERV 5
#define ERROR_UNABLETOLINK 6
#define ERROR_UNKNOWN 7

These are used by the controlling program to print error messages for the
user. If you've got an error to report that does not appear on the above list,
please use ERROR_UNKNOWN. The first on the list reports no error. The
second that the file could not be opened. The next reports an access
problem. The fourth reports a problem with the file image header or data.
This is followed by a truncated file error (or warning), and the final is used
to report an unknown error type.

Besides the above standard defines, each converter has one standard
class variable, “errState”. This variable holds the current error level of the
converter. It is an integer and should only be set to one of the
CONVERT_ERR_... defines.

Method Overview

You need to implement, under the current version, only fifteen methods. Of
these, not all need to be functional, but your converter should respond
properly to each of them. Failure to do so can result in an uncaught
exception which will crash the application. Future versions may, and
probably should, support exception handling; however, do not expect it.

For beginners, there are free and init. Many of the methods do not use
even these; however, you are welcome to use them. init is called when
your object is first linked and free is called just before it is unlinked. You
can use them to allocate storage or initialize variables. Neither of them
accepts any parameters.

The next methods you should be aware of are the reading and writing
methods, readFromStream:from:, write:toStream:from:,
readAllFromStream:from:, and writeAll:toStream:from:. Of these, it is only
expected that you support read and write, since many formats support
only one image per file. Any read method not supported should return nil
and any write method not supported should return NO.

In general, you should try to support as many of these methods as
possible. As stated earlier, however, some image formats to not support
multiple bitmaps. In this event, you can implement
readAllFromStream:from: to return an NXImage with only one bitmap and
writeAll:toStream:from: to write the first image in the NXImage.

Final Draft Graphics Workshop
Page

You may also wish to accept input and output parameters from a
controlling program. There are two methods at hand to accomplish this.
The two, customSaveView: and customOpenView: ask you to create a
view that can be inserted at the bottom of their appropriate panels. These
methods accept a width to help you align controls. You don't need to worry
about saving any input beyond an unlink and the next link. They're one
shot only.

The next method allows a protocol for passing in and returning values.
This method is not strongly encouraged, but here for the support of non-
NeXTStep applications. It allows the programmer to ask for a variable by
name. For example, you might send the message, “setCustomParameter:
"compression" withValue: &c”. This method is discouraged, however, since
there is no version control on what parameters a converter should respond
to. For example, one TIFF converter might respond to the above method
while another expects “factor” for the string. Any values you do accept
should be well documented in the header file, and your converter should
deal with bogus variables gracefully.

There is also some built-in error handling facilities, alluded to earlier. You
need to respond to errorState and errorMessage. Both return ints. The first
returns an int describing the current error condition of the converters. This
should be one of the CONVERT_ERR_… values. The second returns the
error type. This should be one of the ERROR_… defines. Also, in the
event that an error you cannot describe via the standard defines happens,
you may set the error type to unknown and then respond to the errorString
method, which returns a NULL terminated string describing what went
wrong.

Another important method is protocolVersion. This method describes the
current protocol version supported by the converter. At present, all should
return “1.0”. This value may change in the future. This is mainly to insure
that future enhancements can be added while guarding against sending
bogus messages.

The final two methods are for reporting informal information to the user.
The first, getFormatName, returns a NULL terminated string describing
the graphic format. This should, in general, be short. For example, tiff.bcvt
returns “Tagged Image File Format (TIFF)”. The second method,
copyrightNotice, is a bit longer and presents a more detailed message.
You might choose to use this to inform about shareware fees, copyrights,
version, etc... For example, gif.bcvt returns, “GIF Converter\nby Alex
Raftis\n\nCopyright (c) 1991 Cal Poly State University\nCopyright (c)
1989, 1990 University of Pennsylvania\nCopyright (c) 1988, 1989 by
Patrick J. Naughton\n\nEmail bugs to alex@data.ACS.CalPoly.EDU”.

Finally, in the event that you need to use the window server, you should

Final Draft Graphics Workshop
Page

ask your sender whether or not you're allowed to use it. This is basically a
preventative measure, since a program attempting to access a non-
existent window server can cause an application to crash. If not allowed
the window server, then you converter should return a nil value and an
ERROR_NEEDSWINDOWSERV error code.

With all of these implemented, you should have a fully functional
converter. If you'd like more information, check out the supplied converters
and also see the accompanying references. These are done in the style of
the NeXT Reference manuals for ease of use. They appear in RTF format
for use within the Digital Librarian.

Useful Notes

At this point, before diving into programming a converter, there are a few
things you should know. First of all, since many converters need to
perform a common suite of conversions, there is a package of supplied
utilities for just this purpose. This is available upon request from your
sender. This package allows easy methods for getting pixels from a
bitmap, converting to black and white, performing color quantization, and
converting pixel types. For more information, see the accompanying
references.

Also note, you may add functionality to all converters by modifying the
base class; however, I ask that you not do this, since more than one
person modifying this code has the possibility of creating mass confusion.
I would prefer that if you see a feature that absolutely must be added, you
contact me about adding it to the base class. This makes sure that
everyone is using the same version with the same version of the control
object at a certain protocol level.

Final Draft Graphics Workshop
Page

NXBitmapImageRepControl Object

This is the object that most people will be using. It is what actually deals
with linking the converters, handling their requests, and making sure the
flow of control between them and your program is fluid. Using this object
allows the support of many different types of bitmaps in your program at
the cost of about fives lines of code above and beyond what might be
required to support just TIFF's.

Abilities and Limitations

This object basically handles all the dirty work. It deals with dispatching
user requests to converters, reporting errors, and returning bitmaps to
your program. It can also work in a “dumb” mode, where you can pass
requests through it directly to the converters. This is sometimes desirable
when not working with the window server.

It's not perfect however. The main limitation is that only one converter may
be linked at a time. What this means to you, the programmer, is that for
each new bitmap type loaded, the object must do an unlink, so if your
program does some other form of dynamic linking, you need to make sure
that you explicitly unlink any loaded converter before doing your own
linking. This will prevent one of your own modules from unexpectedly
disappearing.

Reasoning

The object was written in the way it was for a couple of reasons. It is a
control object because I didn't really see implementing a subclass of
NXBitmapImageRep for each type of bitmap type I wanted to support,
and besides, I wanted everything dynamic.

I also, though experimentation, found that the run time linking of each
object on an as needed basis does not cause noticeable run time lag. The
user will spend much more time waiting for bitmaps to be read than
waiting for a converter to be linked.

I did, however, wish to allow the linking of all converters simultaneously,
but due to vagueness in the run time library documentation, and some
really obscure error codes from the run time linker, I've been unable to get
this done. This may, in fact, change in the future, if I can finally figure out
how to do it properly.

Finally, the program is almost completely dynamic to make it very
versatile. Any portion of the code, from the control objects to the
converters themselves, can be replaced without the required relinking at
compile time seen with other objects.

Final Draft Graphics Workshop
Page

Programming With It

As stated before, programming with this object is very simple, and
requires only a few steps. You just need to make one method call to get an
id for the converter. From that point on, all messages for loading and
saving bitmaps should be sent to this id.

ControlLoader Object

This is the one object you must link at compile time. It's as simple as
possible to ensure that it won't need to be needlessly updated, requiring
re-compiles for people using the object. Basically, here's the one message
you'll need to send to this object:

images = [[[ControlLoader loadControl: "Bitmap"] alloc] init];

This makes a new, temporary instance of control loader, that goes out
onto disk and loads a file named “Bitmap.controls” from a library's
Converter folder. It checks ~Library, /LocalLibrary, and /NextLibrary
respectively. For a return value, it returns the id of the
NXBitmapImageRepControl object. Note that it frees itself when it's done
with this step, so you don't need to worry about keeping an id for it. If a
fatal error occurs, images will have been set to nil.

In your application, when you need to use this object, you'll need to
include “ControlLoader.h” and you will also need to add libconverter.a to
your Makefile. This can be done from within InterfaceBuilder™ via your
project window. Also, depending on whether or not you've installed the
header files and libraries in /usr/lib and /usr/include respectively, you may
need to specify full paths. For the library, use the -Lpathname in the $
(CFLAGS) line of your makefile.

Loading Images

When you'd like to load an image you can go about it in two ways. First,
you can use the NeXTstep desktop environment, or you can ask for a file
to be loaded directly. In the first instance, you need to get your
application's open panel so that you can pass this to the appropriate
method in the control object. Here's an example of how this is done:

…
id openPanel = [OpenPanel new];
id image;
char **files;

[openPanel allowMultipleFiles: YES];

Final Draft Graphics Workshop
Page

if (![images runOpenPanel: openPanel]) return self;

files = (char **)[openPanel filenames];
…

This runs the open panel and gets a list of files names you can load. All
file names will have a valid extension representing some bitmap the user
wishes to load. Note that you could also insert an accessory view into the
panel before passing the panel along. The view will be incorporated into
the control object's own view and put back when done.

Once you've done this, you then need to load the files from disk. This is
also the only step you'd need to take when not using the NeXTstep
environment. This can be simplified by not doing error checking, but we
know that we always should do that, so here's a complete example. This
code follows the above.

…
for (x = 0; files[x]; x++) {

sprintf(buffer, "%s/%s", [openPanel directory], files[x]);
if (image = [images openAndReturnImage: buffer]) {

if ([images errorState] != CONVERT_ERR_NONE) {
NXRunAlertPanel("Alert",

errors[[images
errorMessage]],

"Continue", NULL, NULL);
}
…
Here you can handle the bitmap, “image” however
you'd like. At this point, I'd normally display it in a
window.
…

} else {
NXRunAlertPanel("Alert",

"Unable to open file: %s\n",
"Continue", NULL, NULL,
files[x]);

}
}
…

As you can see, the actual line that opens and gets the image is quite
short, being only one line in the code example above. The error checking
is a little more complicated, since you can get two types of errors, a
warning or a fatal error. The first kind in the above example warns the user

Final Draft Graphics Workshop
Page

that something went wrong, but attempts to open the bitmap anyway. The
second part tells the user the bitmap could not be loaded, and does not
open a new document.

That's all that's required to open a new bitmap.

Saving Images

Saving an image is similarly simple. Like the open method, you simply get
your application's save panel and pass this on to the control object. Like
the open panel, you can also insert a custom view. Here's an example of
saving a bitmap.

…
savePanel = [SavePanel new];

if ([images runSavePanel: savePanel withFilename: buffer]) {
if (![images saveImage: [currentDoc getImage]

toFile: [savePanel filename]]) {
sprintf(buffer, "Unable to save file: %s",

[savePanel filename]);
NXRunAlertPanel("Save",

buffer,
"Continue",
NULL, NULL, NULL);

}
}
…

As you can see, you can save an image in just two lines of code, sans
error checking, just like the open method. Simply cut out the first message
to images if you are not running under the window manager.

Advanced Techniques

Of course, there may be times when the above, simple methods are not
called for. For this reason, there are more advanced methods for dealing
with the objects. In the hopes of a consistent interface, however, it's
preferable that you try to use the above methods whenever possible.

Manually Linking and Unlinking

One of the first things you might need to do is manually link and unlink
converters. There are basically two methods for dealing with this,
handleLink: and unlinkConverter. The first message accepts a NULL
terminated string that represents the file format desired. For example, you
could pass in “gif” if you wished to link the GIF converter. If another

Final Draft Graphics Workshop
Page

converter is already linked, it will be unlinked to make room for the new
converter. The other method, unlinkConverter simply unlinks the current
converter.

v Warning If you have dynamically linked another portion of code and call
unlinkConverter, your code, and not the converter, will be unlinked.

Of course, if you're doing this, you may want to know what the legal types
happen to be. You can request this information by sending the getTypeList
message to the control object. This returns an array of NULL terminated
strings with the last entry set to nil.

Supporting Sender Messages

If you'd like to send messages to converters directly, you need to be aware
of what the converters might request of you. Mainly, they'll need to request
an instance of ImageTools. The easiest way to satisfy their needs it to
pass your instance of NXBitmapImageRepControl as the sender of the
message, but if you wish to pass yourself, you need to implement the
messages getImageControl:, filename, and usesNeXTStep. The first of
these methods returns an instance of an ImageTools object. You may
either dynamically link the one from the Libraries directory or supply one of
your own. However, whatever you supply must respond to all the
messages in ImageControl.h. The second message returns the current file
name of the image. This information is occasionally needed by converters
to put into a file header. The final message allows a converter to query
whether or not it's allowed to use the window server to accomplish its
needs. The best example of this is a EPS converter that uses the window
server to load images.

Manual Loading

When combined with the linking functions of the
NXBitmapImageRepControl object, manual loading is a fairly simple
process. After doing what was stated above for linking the
NXBitmapImageRepControl object into your code, you also need to do
the following:

…
[bitmaps handleLink: type];
converter = [bitmaps getCurrentConverter];
fprintf(stderr, "Using Format: %s\n", [converter getFormatName]);
myStream = NXOpenFile(fileno(stdin), NX_READONLY);
image = [converter readFromStream: myStream from: bitmaps];
if ([converter errorState]) {

fprintf(stderr, "Converter Error: %d\n", [converter
errorMessage]);

Final Draft Graphics Workshop
Page

exit(1);
}
…

In the above example, bitmaps is the instance of
NXBitmapImageRepControl. This example will read an image from stdin.
It's used in a short program for copying files into the pasteboard from the
command line.

Manual Saving

Saving is almost as easy. There's one more level of functionality that you
can have with a converter, however. This lies in setting a converter's
parameters, which is especially useful when saving an image while using
the command line.

Basically, what you'd do is link the converter, and then set its custom
parameters. For more information on this, read the documentation for
converters. You will also need to examine a converter's header file in order
to see to what custom parameters it can respond. Here's an example of
setting these parameters and saving an image:

…
[images handleLink: "tiff"];
curConvert = [images getCurrentConverter];
[curConvert setCustomParameter:
TIFF_COMPRESS_METHOD

withValue: &compress];
[curConvert setCustomParameter: TIFF_COMPRESS_RATIO

withValue: &factor];
if ([images saveImage: curImage toFile: newName] && removeIt) {

remove(argv[x]);
}
…

This example simplifies the previous by using the
NXBitmapImageRepControl object, images, to save the file. This means
you don't need to create an NXStream by yourself, and simplifies
responses to the converters. You could have also called the converter's
write:toStream:from: directly by sending a message to curConvert. The
first parameter would have been an id to an NXBitmapImageRep, the
second to an NXStream opened for writing, and the final a sender. For the
sender, you'd probably want to send images, since then you wouldn't need
to worry about the converter's needs directly.

Final Notes

Final Draft Graphics Workshop
Page

Hopefully, you'll find this object easy to use. The idea was to simplify and
make using many different graphics formats as easy to use as possible. If
you'd like more information on this object, please see the accompanying
document, NXBitmapImageRepControl.rtf.

Final Draft Graphics Workshop
Page

Image Control Object

Abilities and Limitations

When writing converters, the ImageControl object can do a lot for the
programmer. It greatly simplifies access into the NXBitmapImageRep
when working on a pixel by pixel basis. It will also handle some basic
conversions of the image format for you. These conversions involve, in
general, algorithms complex enough that I felt it would be a waste for
people to re-write them constantly. They also encompass the elements
that I felt people would not want to write, preventing them from writing
converters.

On the down side, there are certain limitations to the what ImageControl
object can do for you. It cannot put pixels back into a bitmap. Also, the
CMYK color conversions do not work at this time.

Like the other objects implemented in GraphicsWorkshop, this one will
also be linked from disk, allowing for great flexibility in the source code.

Reasoning

While it may seem to you, the programmer, that certain features of this
control object are missing, I felt that certain features were not needed for
it. These are in two parts. The first is putting pixels. In general, when
reading an image, you know exactly what the pixels will look like in the
finished image. This means that you can write simple algorithms to put the
final pixels into the image. This would, in general, be much faster than a
generic “putpixel” could be.

The other class of missing routines involve easy to implement functions.
The most prominent among these would be a “to gray scale” conversion. I
left this out because the code to do gray scale conversion in about ten
lines of code, using the color conversion and get pixel operators.

Another important aspect of this object is that it can be linked from disk
like the other objects. This is important in the event you are not satisfied
with my final product, which is possible, and perhaps even likely due to the
simplicity of the convertToPalette method and the lack of CMYK color
conversion. For this reason, you could redesign the parts you don't like,
place the new Mach-O file in the correct place on disk and all programs
launched henceforth will use your new version.

Useful Methods

When using the ImageControl object, there are two classes of routines
and two methods you will likely use the most. The first class of routines

Final Draft Graphics Workshop
Page

deal with getting pixels from a bitmap and the second with converting the
color values in those pixels to other color types. The two methods you'll
use are for creating one bit dithered images and converting twenty-four bit
images into images with palettes.

The first step in using this object is to get a new instantiation of the object,
passing it an NXBitmapImageRep. You'll usually, as a converter, do this
by requesting it of your sender (usually the NXBitmapImageRepControl
object). You do this by sending your sender the getImageControl:
message. See the discussion on the NXBitmapImageRepControl object
for more details. You may also message the control object's new: method.
This is essentially what your sender will do.

Next, when you decide to get pixels from a bitmap, you have one of two
choices. You may get them in a random access order, by specifying (x,y)
pairs or you can get them sequentially. Unless you're doing some sort of
special processing, you'll usually just want to get the pixels sequentially.
Below is a discussion of this method, which can be easily applied to
random access, if you choose.

You first need to declare a pointer to a function of type Pixel
*GetPixelNextFunc (or Pixel *GetPixelXYFunc(int, int)). Note that
regular C functions are used for optimization reasons over method calls,
because you may need to call this function a million plus times. Your next
step is to assign a pointer to this variable. You do this by sending the
getNextFunction (or getXYFunction) message to the object.

Now that you've got the function pointer assigned a value, you can almost
call it. In the case of random access, you can call it immediately, but the
getNextFunction needs a resetNext message sent first. This sets up the
object to return you the pixels, beginning at (0,0), the upper left-hand
corner of the bitmap.

Converting between colors is as easy as getting the pixels in the first
place. You will need to decide what you'd like to convert to, and then
request a function that will do the job. Here you've got two choices: you
can request a function pointer of type ToGrayFunc or ToRGBFunc. Both
of these functions take a pointer to a Pixel and return a pointer to a Pixel.
This allows for easy nesting of get pixel calls and color conversions.
Here's an example of converting a color picture to gray scale.

…
id newImage;
id imageCon = [ImageControl new: imageIn];
unsigned char *planes[5];
GetPixelNextFunc nextPixel;
ToGrayFunc toGray;

Final Draft Graphics Workshop
Page

Pixel *workPixel;
int i, size;
double scale;
BOOL alpha = [imageIn hasAlpha];

// First, create a new image to place the gray scale image.
newImage = [NXBitmapImageRep alloc];
[newImage initData: NULL

pixelsWide: [imageIn pixelsWide]
pixelsHigh: [imageInpixelsHigh]
bitsPerSample: 8
samplesPerPixel: alpha ? 2 : 1
hasAlpha: alpha
isPlanar: YES
colorSpace: NX_OneIsWhiteColorSpace
bytesPerRow: 0
bitsPerPixel: 0];

// Get its data planes, so we can store our new image. Note that the
// newer image is planar to simplify dealing with alpha data.
[newImage getDataPlanes: planes];

// Get the next pixel function.
nextPixel = [imageCon getNextFunction];

// Get the toGray function
toGray = [imageCon getToGrayFunction];

// Precompute the number of pixels in the image.
size = [newImage pixelsWide] * [newImage pixelsHigh];

// Compute the scale factor. This is important because the returned
values

// are the same bits per sample as the original image.
scale = 256.0 / pow(2.0, (double)[imageIn bitsPerSample]);

// Reset the get next function so we can start at the beginning.
[imageCon resetNext];

// Loop for each pixel of the image.
for (i = 0; i < size; i++) {

workPixel = toGray(nextPixel());
planes[0][i] = workPixel->values[0] * scale;
if (alpha) planes[1][i] = workPixel->values[1] * scale;

}
…

Final Draft Graphics Workshop
Page

Before we leave these functions, you should know a bit more about just
what are Pixel's. Here's their typedef statement:

typedef struct {
pixel values[5];
int count;

} Pixel;

The array is an array of five pixel values. A pixel is basically an unsigned
long. Count is the number of samples in the pixels. Therefore, a gray scale
image would have a count of 1, while a CMYK pixel with alpha would have
a count of 5. Values are stored in expected order. I.e., RGBA is stored red,
green, blue, and alpha.

That's all there is to getting pixels and converting colors. Now, you may
need to do one of the most common color conversions. There are two
methods to support this: ditherImage and
convertToPalette:andReturn:andPalettes:::. The first transforms your
image by applying a Floyd Steinberg Ditherizing Algorithm over the image.
It returns to you a new NXBitmapImageRep with a one bit per sample
image in it. The control object will still be valid for the original image, so
you'll need to create a new image control object to access the one bit
image.

The convertToPalette:andReturn:andPalettes::: method is similar in
function, but more complex in parameters. It will return a new image, but it
also returns three arrays of RGB values representing the palette found for
the image. Under its current incarnation, this method applies a simple
mapping algorithm that, while it produces decent images, may cause color
banding. This is especially true with images that contain few colors in the
resulting palette. If you're looking for a small project, this would be a good
place to start by modifying the code to execute a Median Cut Algorithm.
See the next section on how to modify this object.

Advanced Topics

In the course of using the object, you may decide that you've got a better
way of doing things. If this is the case, feel free to change the code;
however, there are a couple of guide lines you need to follow.

Re-writing the Object

When re-writing this object, you need to know that it has to use a flock of
global variables stored inside the object implementation. This is due to the
use of functions, but it means that inheriting a new kind of ImageControl
object isn't very practical since you will not be able to access many
important variables. Due to this, plan on modifying my code rather than

Final Draft Graphics Workshop
Page

subclassing a newer version.

Next, when modifying the code, you can replace anything you'd like, add
functionality, or whatever. However, you must keep all data types the
same, as well as all currently implemented methods. You can only change
the code, not the entry points. Also remember that if you add functionality,
only your private converters should depend on it. I don't want to see a
bunch of versions of converters, all of which depend on different versions
of ImageControl objects. This only leads to frustration for the user.

Final Draft Graphics Workshop
Page

Appendix A: Header Files

ControlLoader.h

#import <objc/Object.h>

@interface ControlLoader : Object
{
}

/*
* Loads the control method you wish to use. Currently the only supported
type is
* Bitmap, but in the future, things like Draw or Sound could be added.
* Assumes: Nothing
* Results: If the controls type exists on disk, it's loaded and linked.
* Returns: id of Controls object or nil if an error occured.
*/
+ loadControl: (const char *)type;

@end

Final Draft Graphics Workshop
Page

NXBitmapImageRepControl.h

#import <objc/Object.h>
#import <sys/param.h>

typedef struct {
char fullpath[MAXPATHLEN];
char type[MAXPATHLEN];

} Type;

@interface NXBitmapImageRepControl : Object
{

int typesCount; // number of convertor typers
int curMax; // current maximum # of

types. Grow dynamically
Type **types; // Dyanmic array of covnerter

types and locations on disk
Type *curType ; // If one is linked, current type

converter, otherwise, NULL
BOOL useNeXTStep; // This variable controls the use of the

window manger

id myView; // View used in save panel.
BOOL amSaving; // Used to figure out what custom

converter view to use.
id currentPanel; // Used to message the current

panel.
id currentView; // Set to any panel accessory

view on first entry to panels.
id myBox; // Holds my custom view in

save panel.
NXRect viewDefault; // Default size of my ViewRect.
id mySubView; // Used to handle converters sub

view in save panel.
id panelSave; // Used so I can pass the save

panel around methods
id myPopUp; // Pop up for save panel.
id myButton; // Button that holds pop.
id nameText; // Used to display format name in

Save Panel.
char picName[MAXPATHLEN]; // Holds nams of file

currently being saved.
}

/*
* Initializes object and scans for converters
*/

Final Draft Graphics Workshop
Page

- init;

/*
* Deals with linking the correct convertor off of disk.
* Assumes: Object has been initialized with a message to init and that
inType
* is a null terminated pointer to a convertor type that
exists in the
* convertor list. This list can be accessed via a
message to getTypeList.
* a filename will have the correct type if it was received
via the
* runOpenPanel method.
* Returns: self
*/
- handleLink: (char *)inType;

/*
* Runs the open panels. Returns whatever the openPanel object's
* runModalForTypes method returns. All filetypes found during init
* will be valid.
* Assumes: Object has been initialized with message to init.
* Returns: See OpenPanel.
*/
- (int)runOpenPanel: (id)openPanel;

/*
* Looks at the extension on file filename, links the correct convertor, and
* loads the image, returning an NXBitmapImageRep.
* Assumes: Object initialized with message to init. filename exists on
* disk.
* Returns: Id to NXBitmapImageRep on success, or nil on failure.
*/
- (id)openAndReturnImage: (const char *)filename;

/*
* Gets the long name for the currently linked format convertor. This is
* useful if you say want the user to read Tagged Image File Format
* rather than just tiff.
* Assumes: Object inited and a convertor has been linked. This is
* Usually accomplished with either a save or open.
* Returns: A pointer to a string containing the format name.
*/
- (char *)getCurrentFormatName;

/*
* Runs the save panel for valid types. This also deals with linking in

Final Draft Graphics Workshop
Page

* the custom views of the converters and selected different save types.
* note that after this panel is run, the saveImage method should ne
* called, otherwise user settings may be forgotten.
* Assumes: Object initialized via init message.
* Returns: 0 if cancel clicked.
*/
- (int)runSavePanel: (id)savePanel withFilename: (const char *)filename;

/*
* Saves "image" named "filename" to disk. Via the correct convertor. The
* convertor was selected via use of the runSavePanel methods, so this
* methods should be called immediately afterward, as they're used in sync
* with each other.
* Assumes: Object has been initialized and runSavePanel was the last
* message to this object instance.
* Returns: YES is object correctly save, NO otherwise.
*/
- (BOOL)saveImage: (id)image toFile: (const char *)filename;

/*
* Give you the filetype list found when object was initialized.
* Assumes: Object has been initialized with a call to init.
* Returns: Returns a NULL terminated list of pointers to NULL
* terminated strings. This can be passed directly into
* the open panel, for example.
*/
- (char **)getTypeList;

/*
* Gets the most recently linked convertor.
* Assumes: Object initialized via message to init and that a convertor has
* been linked by a message to runSavePanel,
handleLink, or
* openAndReturnImage.
* Returns: id of linked convertor.
* Notes: Return is only a pointer to the id. The object will no
longer remain
* valid after the next link. Also note that it's not
recommended to go
* go around the save and open methods provided.
Calls such as this
* one exist primarily for people that need access to
special stream
* types, and not just filenames.
*/
- getCurrentConverter;

Final Draft Graphics Workshop
Page

/*
* Methods for converters to call.
*/

/*
* Gets an image control instance. This returned object can be used to
* perform basic image adjustments like converting Color to B&W or
* color to 1 bit B&W. See it's header file for details.
* Assumes: "image" is a valid NXBitmapImageRep, or ancestor thereof.
* Returns: id of image control object.
*/
- getImageControl: (id)image;

/*
* Reports the name of the currently selected file for saving.
* Assumes: runSavePanel has been messaged. Also, assumes you
* will not modify filename or try and free the pointer
returned.
* It will remain valid until the next call to runSavePanel,
so
* you might wish to make a copy.
* Returns: A pointer to a null terminated string containing a filename.
*/
- (char *)filename;

/*
* Sets whether or not the control object should attempt to use the window
manager.
* This will be over ridden, under the current release, by functions that
intuitively depend
* on the use of windows, such as the save panel. This may or may not be
changed in
* a future release. However, all error messages will print to stderr when
controller is
* told to not use the window manager. The default value is YES.
* Assumes: Object instantiated
* Results: If YES, then the window manager must be running. If NO,
running the
* window manager is optional. In the event that it is not,
the converter
* will core dump.
*/
- setUseNeXTStep: (BOOL)state;

/*
* Returns whether or not the object will use the window manager.
* Assumes: Object instantiated.

Final Draft Graphics Workshop
Page

* Returns: YES, the object will use the window manager, or NO, the
object will
* use stderr error for messages.
*/
- (BOOL)usesNeXTStep;

- (int)errorState;

- (int)errorMessage;

- (char *)errorStringMessage;

@end

Final Draft Graphics Workshop
Page

ImageControl.h

/*
* Image Control
* ------------------
* Alex Raftis
* Sr. Project
* CalPoly San Luis Obispo
*
* Version: 0.9 (alpha)
* Last Modified: 10/10/91
*
* This package is a set of utilities for manipulating images stored in
NXBitmapImageRep.
* It is linked into the control object, NXBitmapImageRepControl at
initialization time, so
* you may modify it at any time. To be useful, however, it must fully
implement all functions.
* The flexibility of run time linking is added so that a user has some choice
over the various
* algorhythms used, and may replace them if need be. The object code
should appear in
* some Library directory, either ~/Library/Converters,
/LocalLibrary/Converters, or
* /NextLibrary/Converters. The libraries will be searched in that order.
*/

#ifndef __IMAGE__
#define __IMAGE__

#import <objc/Object.h>

/*
* Color Space defines. Mostly useless. You should use defines in
graphics.h for
* the varios NXColorSpaces. Also, methods to the NXBitmapImageRep
help to
* remove the need for these, as the supplied methods can give this
information.
*/
#define IMAGE_BW 1
#define IMAGE_RGB 2
#define IMAGE_CYMK 3
#define IMAGE_NOALPHA 0
#define IMAGE_ALPHA 1

/*

Final Draft Graphics Workshop
Page

* Macros that give various data from the photometric interpretation field of
* of tiff image. Mostly useless since the NXBitmapImageRep can supply
this
* information.
*/
#define COLOR(i1) (i1 & 0x3)
#define ALPHA(i1) ((i1 & 0x4) >> 2)
#define PALETTE(i1) ((i1 & 0x8) >> 3)
#define IMAGE_HASALPHA(alpha) (ALPHA(alpha) ==
IMAGE_ALPHA)

/*
* Macro that converts an RGB image to gray scale, of the same magnitude
at the
* original RGB values. Ie, if the max RGB values are 15, the max gray
scale (white)
* will be 15.
*/
#define MONO(rd,gn,bl) (((rd)*11 + (gn)*16 + (bl)*5) >> 5) /*.33R+ .5G+
.17B*/

typedef unsigned long pixel;

/*
* Pixel
* ------
* Contains the data associated with a pixel. The count is the same as
samples per
* pixels. The values in values will be the following when the following
circumstance
* are true.
* 1. Black and White image- values[1] gray scale 1 is white
depending on the current
* color space. Message
NXBitmapImageRep to be sure.
* values[2] contains alpha, if
present.
* 2. RGB color image- values[0] = Red, values[1] =
Green, values[2] = Blue.
* values[4] = alpha, if
present.
* 3. CMYK color image- values[0] = Cyan, values[1] =
Magenta, values[2] = Yellow,
* values[3] = Black.
values[4] = alpha if present.
* The max value of each values[] is equal to 2 ^ BitsPerSample - 1. You
should always

Final Draft Graphics Workshop
Page

* querry the orignal NXBitmapImageRep to be sure of the color space for
the given image,
* and thus the values of the array.
*/
typedef struct {

pixel values[5];
int count;

} Pixel;

/*
* Pointer to a function that accepts and integer (x,y) pair, and returns a
Pixel structure
* containing the pixel found and (x,y). This does not check bounds!
*/
typedef Pixel * (*GetPixelXYFunc)(int, int);
/*
* Pointer to a fucntion that returns successive pixels in an image. Returns
pointers to
* a Pixel structure containing the pixel values.
*/
typedef Pixel * (*GetPixelNextFunc)(void);
/*
* A pointer to a function that converts a pixel structure (pointer to) to a gray
scale
* value. This value should be from 0 to 2^BitsPerSample-1 of the original
image.
*/
typedef Pixel * (*ToGrayFunc)(Pixel *);
/*
* A pointer to a function that converts a pixel structure (pointer to) to a
RGB pixel
* structure. This values returned should be from 0 to 2^BitsPerSample-1 of
the original image.
*/
typedef Pixel * (*ToRGBFunc)(Pixel *);

@interface ImageControl: Object
{

/*
* Note: There's no class variables since c functions need access to

them, and
* objective C does not support the concept of friend fucntions.

However, by
* making locally global variables within the context of the

implementation module,
* I can simulate this effect. Not as nice of programming, but oh-well.
*/

Final Draft Graphics Workshop
Page

}

/*
* Initializes the object. This must be called before any other method.
* Assumes: imageIn is an NXBitmapImageRep, or will at least responds
to it's messages.
* Returns: A new instance of ImageControl.
*/
+ new: (id)imageIn;

/*
* Returns a pointer to a C function call that will get a random pixel (x,y)
from an NXBitmap-
* ImageRep. The function can then be called getting passed an (x,y)
coordinate pair. The
* only limitation is that the (x,y) pair must fall with in the domain of the
image. It returns
* a pointer to a pixel structure. This structure will contain up to five values
representing the
* pixel. This can then be passed to other routines like PixelToGray.
*
* Assumes: Object initialized.
* Returns: A Pointer to a fucntion of type GetPixelXYFunc.
*/
- (GetPixelXYFunc)getXYFunction;

/*
* Resets the get next pixel function to point to the pixel in the top left hand
corner of the
* image. Note that this is different than normal postscript images which
begin with (0,0)
* in the lower left hand corner.
*
* Assumes: Object initialized.
* Returns: self.
* Results: Object ready to accept first call to GetNextFunction (see
below).
*/
- resetNext;

/*
* Returns a pointer to the correct get next function depending on the
image type. This
* function, when call after resetNext, will eventually supply all pixels in the
image. It's
* very useful for converting images. A sample algorhythms would be to:
* 1. resetNext.

Final Draft Graphics Workshop
Page

* 2. Call routine width * height times getting a pointer to a pixel.
* 3. Call the correct conversion routine for the type of output you will
be doing (Ie,
* RGB or BW).
* 4. Write the correct pixel type out to the image your saving.
*
* Assumes: Object initialized and resetNext has been called, if you wish
to start from
* the beginning of the program. Also, the programmer
must take care to run
* past the end of the picture, or unexpected results will
occur.
* Returns: Returns a pointer to a Pixel structure.
*/
- (GetPixelNextFunc)getNextFunction;

/*
* Returns a pointer to a function that converts pixel values to gray scale,
where high
* values represent white.
*
* Assumes: Object initialized.
* Returns: Pointer to a function of type ToGrayFunc.
*/
- (ToGrayFunc) getToGrayFunction;

/*
* Returns a pointer to a function that converts pixel values to rgb values,
where high
* values represent full intensity.
*
* Assumes: Object initialized.
* Returns: Pointer to a function of type ToRGBFunc.
*/
- (ToRGBFunc) getToRGBFunction;

/*
* Applies a Floyd Sternberg Ditherizing algorhythm to the image and return
a new
* NXBitmapImageRep of a one bit image, where 1 is white.
*
* Assumes: Object initialized.
* Returns: A NXBitmapImageRep (1 = BPP, 1 = SPP, CS =
NX_OneIsWhiteColorSpace.
*/
- ditherImage;

Final Draft Graphics Workshop
Page

/*
* A most knarly and nasty function, this takes the original data and conerts
into a picture
* with a palette of specified size. Currently, it's implemented via a simple
algorhtym that
* contructs a generic palette with a sample color from the full spectrum.
This works well
* on pictures with highly contrast, varied colors, but pretty much sucks
other wise. It
* get worse with the smaller the palette size. It should ideally implement a
Medim-Cut
* Algorhythm, but I couldn't find the references on a good implementation,
so I just hacked
* (read borrowed and modified) this piece of code from XV, an image view
for X. It works,
* but produces images of questionable quality. Note, however, that if the
image is black
* and white, a simple conversion is done on the data to make it matched
the specified
* palette size. Likewise, should the image contain less than the palette
size in colors,
* a simple conversion is done to preserve the original color set.
*
* Assumes: Object initialized. size is the size of the requested palette. It
should be
* be from 8 to 256, due to limitations of the algorhythm.
outPic is
* a pointer to a pointer that will hold the final image.
Space will be allocated
* for the image. r, g, and b are pointers to an array that
can hold size bytes
* (unsigned) char worth of data. This will envtually be
the palette. This
* should never be used to construct palettes greater
than 256 colors.
* Returns: self
* Results: outPic contains width * height palette entries into arrays r,g,
and b.
*/
- convertToPalette: (int)size

andReturn: (unsigned char **)outPic
andPalettes: (unsigned char *)r : (unsigned char *)g :

(unsigned char *)b;

@end

#endif

Final Draft Graphics Workshop
Page

Final Draft Graphics Workshop
Page

Converter.h

/*
* This is perhaps one of the most important objects. It's what deals with
reading and
* writing the bitmaps to and from disk. When used init and free should
always be called.
* The concept of sender is used in a couple of places in this object and
should respond to
* the following request: It should respond to getImageCon and return the
id of a ImageControl
* object. Note that the NXBitmapImageRep links this from disk at run time.
You may also
* do this, should you wish, or you may define your own set of internal
routines. Whatever
* you do, the ImageControl object should respond to everything defined in
image.h, and
* these should have predictable results.
*/

#import <objc/Object.h>

#define CONVERT_ERR_NONE 0
#define CONVERT_ERR_WARNING 1
#define CONVERT_ERR_FATAL 2

#define ERROR_NO_ERROR 0
#define ERROR_UNABLE_TO_OPEN 1
#define ERROR_PERMISSION_DENIED 2
#define ERROR_BAD_FORMAT 3
#define ERROR_TRUNCATED_FILE 4
#define ERROR_NEEDSWINDOWSERV 5
#define ERROR_UNABLETOLINK 6
#define ERROR_UNKNOWN 7

@interface Converter : Object
{

int errState;
}

/*
* Initializes the object. This need not necessarily be used, but you can use
it if you'd like.
* Assumes: Nothing
* Returns: self
* Results: A new object is up and running.
*/

Final Draft Graphics Workshop
Page

- init;

/*
* Frees anything used by the object.
* Assumes: Object is instantiated.
* Results: It is no longer valid to message the object.
*/
- free;

/*
* Reads the bitmap from stream.
* Assumes: The object has been instantiates, stream is an valid stream
opened for at least
* reading. Sender is the id of whatever object is calling
the converter.
* Returns: id of an NXBitmapImageRep or nil if the image was unable
to be read.
*/
- readFromStream: (NXStream *)stream from: sender;

/*
* Write the bitmaps id to stream.
* Assumes: Object has been instantiated. At times, it's best to have used
a call to the
* save panel first, since this can set internal variables,
but it's not necessary.
* stream should be a valid NXStream opened for at
least writing. Sender should
* be the id of the caller. id is a NXBitmapImageRep, or
something that responds
* to all the message of the NXBitmapImageRep.
* Returns: YES if the image was sucessfully writing, otherwise it returns
NO.
*/
- (BOOL)write: (id)image toStream: (NXStream *)stream from: sender;

/*
* Similar to readFromStream but will read multiple images from a stream
when present.
* Assumes: Object instantiated. stream valid for reading. sender is id of
caller.
* Returns: id of an NXImage or nil if unable to read the image. It should
return a single
* image in the least, even for formats that don't support
multiple images.
*/
- readAllFromStream: (NXStream *)stream from: sender;

Final Draft Graphics Workshop
Page

/*
* Reverses the process of read all.
* Assumes: Object instantiates. id is to an NXImage or something that
responds to all of
* NXImage's methods. stream is valid for writing. This
should always attempt
* to write at least one image to disk (the first usually)
even for formats that
* don't support multiple images.
* Returns: YES if the image is sucessfully written to disk.
*/
- (BOOL)writeAll: (id)image toStream: (NXStream *)stream;

/*
* Creates and lays out a custom view that the converter can use to set
customization
* parameters.
* Assumes: Object instantiated and the window server is running. width
should be the
* maximum width the custom view can be.
* Returns: id of a parent view or nil if this object doesn't use one.
*/
- customSaveView: (int)width;

/*
* This is very similar to customSaveView, however, it is used to set
parameters for
* the run time loading of images. This object does not support input
custom views.
* Assumes: Object instantiated and the window server is running. width
should be the
* maximum width the custom view can be.
* Returns: id of a parent view or nil if this object doesn't use one.
*/
- customOpenView: (int)width;

/*
* Returns the name of the current format, ie, the gif converter returns the
string "Graphics
* Interchange Format (GIF)".
* Assumes: Object has been instantiated.
* Returns: A pointer to a string. The caller should always use something
like strcpy to
* get a copy of the string, since it's life is only
guaranteed for the life of the
* object.

Final Draft Graphics Workshop
Page

*/
- (char *)getFormatName;

/*
* This is a simple interface to setting custom values of various parameters.
There are
* no standards for what a converter must take of these values, so while
the converter
* will tell you whether it took the value you or not, you, as the programmer,
should
* not get upset when a parameter is not taken. Likewise, should the
converter receive
* a request to set a parameter it does not understand, it should always
refuse it with
* grace (ie, make it idiot proof.) What parameters an indivudual converter
will take
* should be documented somewhere with the converters distribution.
* Assumes: The converter is instantiated, parameter is a NULL
terminated character
* string, and ptr is a pointer to the data type. This is
determined by patameter.
* Returns: YES if the value was set, NO if the setting failed for any
reason.
*/
- (BOOL)setCustomParameter: (const char *)parameter withValue: (void
*)ptr;

/*
* Gets a custom parameter value. See above about support for this call,
as it's similar
* to setCustomParameter. Mainly, the converter should not crash when a
request for
* a non-existant parameter is made.
* Assumes: The converter is instantiated and parameter is a NULL
terminater char-
* acter string.
* Returns: A pointer to the parameter (type depends on return value) or
nil if the
* parameter is not understood.
*/
- (void *)getCustomParameter: (const char *)parameter;

/*
 * Returns a string with copyright information, name of the author, where
the author
 * can be reached, etc. This should only be a couple of lines, so keep it
short and

Final Draft Graphics Workshop
Page

 * sweet. An example might be:
 * "My Image Format Converter\nby Joe Programmer\nCopyright R'N'R
Software\n ...
 * ... email bugs to jprogramm@system.there.edu"
 * Assumes: Converter linked and instantiated.
 * Returns: A pointer to a null terminated string. This string must be non
volatile for
 * the life of the converter. Ie, as long as the
programmer keeps a converter
 * linked, the pointer should be valid.
 */
- (char *)copyrightNotice;

/*
 * Returns the current error state of the converter.
 * Assumes: Converter has been instantiated.
 * Returns: 0 = CONVERT_ERR_NONE Signals no error
 * 1 = CONVERT_ERR_WARNING Signals action
taken, but not one expected.
 * 2 = CONVERT_ERR_FATAL Signals no action
taken.
 */
- (int)errorState;

/*
 * Returns an int describing the current error message.
 * Assumes: Converter instantiated.
 * Returns: An int describing the error type. See defines for integers
returned.
 */
- (int)errorMessage;

/*
 * This provides support for non standard error messages. It's preferable
for programmers
 * to avoid this message, but in special cases where you need to express
something unique,
 * it is appropiate. Just remember, that the use of this message disables
multilingual
 * support.
 * Assumes: Converter Instantiated
 * Returns: NULL terminated string describing the error.
 */
- (char *)errorStringMessage;

/*
 * This method returns YES if the converter requires the window server.

Final Draft Graphics Workshop
Page

Ideally, converters
 * should not depend on the window server, but sometimes this cannot be
avoided. For
 * example, a programmer wouldn't be expect to write a PostScript
interpreter just to read
 * in eps files. Note, however, that returning YES will result in the converter
not working
 * with command line versions of applications.
 * Assumes: Converter Instantiated
 * Returns: YES is window server is needed, NO otherwise.
 */
- (BOOL)needsWindowServer;

/*
* Returns a string in the form <major version>.<minor version>. This is
used by
* the calling program to see what level or protocol the object will respond
to.
* Assumes: Converter instantiated.
* Returns: A null terminated string in the form <major version>.<minor
version>.
* For example, 1.0.
*/
- (char *)protocolVersion;

@end

Final Draft Graphics Workshop
Page

Appendix B: Source Code

ControlLoader.m

#import <stdio.h>
#import <stdlib.h>
#import <strings.h>
#import <defaults.h>
#import <sys/types.h>
#import <sys/dir.h>
#import <sys/param.h>
#import <objc/objc-load.h>
#import <appkit/Application.h>
#import "ControlLoader.h"

@implementation ControlLoader

id controlObject;

- (char *)getImageControlFromPath: (char *)path ofType: (const char
*)type
{

DIR *myDir;
struct direct *myEntry;
static char buffer[MAXPATHLEN];
char typeBuffer[MAXPATHLEN];

sprintf(typeBuffer, "%s.controls", type);
#ifdef DEBUG

fprintf(stderr, "Opening %s to find %s\n", path, typeBuffer);
#endif

myDir = opendir(path);
if (myDir) {

while (myEntry = readdir(myDir)) {
if (!strcmp(myEntry->d_name, typeBuffer)) {

strcpy(buffer, path);
strcat(buffer, myEntry->d_name);

#ifdef DEBUG
fprintf(stderr, "Found image tools: %s\n",

buffer);
#endif

break;
}

}
closedir(myDir);

}
else {

Final Draft Graphics Workshop
Page

#ifdef DEBUG
fprintf(stderr, "Unable to open dir\n");

#endif
return NULL;

}

return buffer;
}

- (char *)getImageControlsOfType: (const char *)type
{

char buffer[1000];
char *imagePath = NULL;
char *tmpPath;

if (tmpPath=[self getImageControlFromPath:
"/NextLibrary/Converters/" ofType: type]) {

imagePath = tmpPath;
}
if (tmpPath=[self getImageControlFromPath:

"/LocalLibrary/Converters/" ofType: type]) {
imagePath = tmpPath;

}
sprintf(buffer, "%s/Library/Converters/", NXHomeDirectory());
if (tmpPath = [self getImageControlFromPath: buffer ofType: type]) {

imagePath = tmpPath;
}

return imagePath;
}

void LinkImageControlsCallBack(Class cl, Category ca)
{
#ifdef DEBUG

fprintf(stderr, "Call back for control object reached\n");
#endif

controlObject = (id)cl;
#ifdef DEBUG

fprintf(stderr, "Linked object at %p\n", cl);
#endif
}

+ loadControl: (const char *)type
{

NXStream *myStream;
char *cvtFiles[] = { NULL,

"/usr/lib/libcs.a",

Final Draft Graphics Workshop
Page

"/usr/lib/libm.a",
"/usr/shlib/

libNeXT_s.C.shlib",
"/usr/shlib/

libsys_s.B.shlib",
NULL };

self = [super new];

cvtFiles[0] = [self getImageControlsOfType: type];
if (!cvtFiles[0]) {

#ifdef DEBUG
fprintf(stderr, "Fatal Error, unable to open controls type:

%s\n", type);
#endif

[self free];
return nil;

}
myStream = NXOpenFile(fileno(stderr), NX_WRITEONLY);

#ifdef DEBUG
fprintf(stderr, "stderr linked to stream myStream\n");

#endif
if (objc_loadModules(cvtFiles, myStream,

LinkImageControlsCallBack, NULL, NULL)) {
NXFlush(myStream);
return nil;

}
NXFlush(myStream);
NXClose(myStream);

[self free];

return controlObject;
}

@end

Final Draft Graphics Workshop
Page

NXBitmapImageRepControl.m

#import <stdio.h>
#import <stdlib.h>
#import <strings.h>
#import <defaults.h>
#import <sys/types.h>
#import <sys/dir.h>
#import <sys/param.h>
#import <objc/objc-load.h>
#import <appkit/Application.h>
#import <appkit/defaults.h>
#import <appkit/OpenPanel.h>
#import <appkit/Panel.h>
#import <appkit/NXBitmapImageRep.h>
#import <appkit/View.h>
#import <appkit/ButtonCell.h>
#import <appkit/Button.h>
#import <appkit/PopUpList.h>
#import <appkit/TextField.h>
#import <appkit/View.h>
#import <appkit/Text.h>
#import <appkit/Box.h>
#import "NXBitmapImageRepControl.h"
#import "Converter.h"
#import "ImageControl.h"

@implementation NXBitmapImageRepControl

id imageControl;

- splitFilename: (const char *)filename to: (char *)name andPath: (char
*)path
{

int x;

for (x = strlen(filename); (x != -1) && filename[x] != '/'; x--) ;
strcpy(name, filename + x + 1);
if (x == -1) path = NULL;
else strncpy(path, filename, x);
path[x] = '\0';

return self;
}

- (Type *)getConverterType: (const char *)typeIn
{

Final Draft Graphics Workshop
Page

int x;

for (x = 0; x < typesCount; x++) {
if (!strcmp(typeIn, types[x]->type)) {

return types[x];
}

}

return NULL;
}

- getTypesFromPath: (char *)path
{

DIR *myDir;
struct direct *myEntry;
int x;
char buffer[MAXPATHLEN];

#ifdef DEBUG
fprintf(stderr, "Opening %s\n", path);

#endif
myDir = opendir(path);
if (myDir) {

while (myEntry = readdir(myDir)) {
for (x = strlen(myEntry->d_name); x && myEntry-

>d_name[x] != '.'; x--);
if (!strcmp(myEntry->d_name + x, ".bcvt")) {

if (typesCount >= curMax) {
#ifdef DEBUG

fprintf(stderr, "Reallocing\n");
#endif

curMax += 10;
types = (Type **)realloc(types,

sizeof(Type *) * curMax);
}
types[typesCount] = (Type

*)malloc(sizeof(Type));
sprintf(buffer, "%s%s", path, myEntry-

>d_name);
strcpy(types[typesCount]->fullpath, buffer);
strncpy(types[typesCount]->type, myEntry-

>d_name, x);
types[typesCount]->type[x] = '\0';

#ifdef DEBUG
fprintf(stderr, " converter = %s in %s\n",

types[typesCount]->type,
types[typesCount]-

Final Draft Graphics Workshop
Page

>fullpath);
#endif

typesCount++;
}

}
closedir(myDir);

}
else {

#ifdef DEBUG
fprintf(stderr, "Unable to open dir\n");

#endif
}

return self;
}

int typeCompare(void *t1, void *t2)
{

return strcmp((**((Type **)t1)).type, (**((Type **)t2)).type);
}

- getTypesFromDisk
{

char buffer[1000];

sprintf(buffer, "%s/Library/Converters/", NXHomeDirectory());
[self getTypesFromPath: buffer];
[self getTypesFromPath: "/LocalLibrary/Converters/"];
[self getTypesFromPath: "/NextLibrary/Converters/"];

qsort(&(types[0]), typesCount, sizeof(Type *), typeCompare);

return self;
}

- (char *)getImageControlFromPath: (char *)path
{

DIR *myDir;
struct direct *myEntry;
static char buffer[MAXPATHLEN];

#ifdef DEBUG
fprintf(stderr, "Opening %s\n", path);

#endif
myDir = opendir(path);
if (myDir) {

while (myEntry = readdir(myDir)) {

Final Draft Graphics Workshop
Page

if (!strcmp(myEntry->d_name, "Bitmap.tools")) {
strcpy(buffer, path);
strcat(buffer, myEntry->d_name);

#ifdef DEBUG
fprintf(stderr, "Found image tools: %s\n",

buffer);
#endif

break;
}

}
closedir(myDir);

}
else {

#ifdef DEBUG
fprintf(stderr, "Unable to open dir\n");

#endif
}

return buffer;
}

- (char *)getImageControls
{

char buffer[1000];
char *imagePath;

imagePath = [self getImageControlFromPath:
"/NextLibrary/Converters/"];

imagePath = [self getImageControlFromPath:
"/LocalLibrary/Converters/"];

sprintf(buffer, "%s/Library/Converters/", NXHomeDirectory());
imagePath = [self getImageControlFromPath: buffer];

return imagePath;
}

void LinkImageControlCallBack(Class cl, Category ca)
{
#ifdef DEBUG

fprintf(stderr, "Call back for image controls reached\n");
#endif

imageControl = (id)cl;
#ifdef DEBUG

fprintf(stderr, "Linked object at %p\n", cl);
#endif
}

Final Draft Graphics Workshop
Page

- init
{

NXStream *myStream;
char *cvtFiles[] = { NULL,

"/usr/lib/libcs.a",
"/usr/lib/libm.a",
"/usr/lib/

libNeXT_s.a",
"/lib/libsys_s.a",
NULL };

cvtFiles[0] = [self getImageControls];
myStream = NXOpenFile(fileno(stderr), NX_WRITEONLY);

#ifdef DEBUG
fprintf(stderr, "stderr linked to stream myStream\n");

#endif
if (objc_loadModules(cvtFiles, myStream,

LinkImageControlCallBack, NULL, NULL)) {
NXFlush(myStream);
return nil;

}
NXFlush(myStream);
NXClose(myStream);

curMax = 10;
types = (Type **)malloc(sizeof(Type *) * curMax);
curType = NULL;
[self getTypesFromDisk];
mySubView = nil;
useNeXTStep = YES;

[self handleLink: "Converter"];
curType = NULL;

return self;
}

id convert; // These badly placed
global is here to support the

// objc_loadModules call.
It's gotta be global since fucntions

// cannot access class
variables and c doesn't allow nested

// functions.

void LinkCallBack(Class cl, Category ca)
{

Final Draft Graphics Workshop
Page

#ifdef DEBUG
fprintf(stderr, "Call back reached %p %p\n", cl, ca);

#endif
convert = [(id)cl new];

#ifdef DEBUG
fprintf(stderr, "Linked object at %p\n", cl);

#endif
}

- linkConverter: (Type *)cvtType
{

NXStream *myStream;
char *cvtFiles[] = { NULL,

"/usr/lib/libcs.a",
"/usr/lib/libm.a",
"/usr/lib/

libNeXT_s.a",
"/lib/libsys_s.a",
NULL };

cvtFiles[0] = cvtType->fullpath;
myStream = NXOpenFile(fileno(stderr), NX_WRITEONLY);

#ifdef DEBUG
fprintf(stderr, "stderr linked to stream myStream\n");

#endif
if (objc_loadModules(cvtFiles, myStream, LinkCallBack, NULL,

NULL)) {
NXFlush(myStream);

#ifdef DEBUG
fprintf(stderr, "Unable to link converter\n");

#endif
return nil;

}
NXFlush(myStream);
NXClose(myStream);

[convert init];

return self;
}

- unlinkConverter
{

NXStream *myStream;
long resultCode;

myStream = NXOpenFile(fileno(stderr), NX_WRITEONLY);

Final Draft Graphics Workshop
Page

resultCode = objc_unloadModules(myStream, NULL);
#ifdef DEBUG

fprintf(stderr, "stderr linked to stream myStream\n");
fprintf(stderr, "output of unlink = %ld\n", resultCode);

#endif
NXFlush(myStream);
NXClose(myStream);

return self;
}

- handleLink: (char *)inType;
{

Type *cvtType;
char buffer[MAXPATHLEN];

#ifdef DEBUG
fprintf(stderr, "You want me to convert type %s\n", inType);

#endif
if (curType) {

#ifdef DEBUG
fprintf(stderr, "We've got a linked type.\n");

#endif
if (strcmp(curType->type, inType) /* || 1 */) {

#ifdef DEBUG
fprintf(stderr, "Nope, wrong converter type, so unlink

it.\n");
#endif

[self unlinkConverter];
curType = NULL;

#ifdef DEBUG
fprintf(stderr, "And we're unlinked.\n");

#endif
}

#ifdef DEBUG
else {

fprintf(stderr, "We've already got the correct converter
linked in\n");

}
#endif

}
if (!curType) {

#ifdef DEBUG
fprintf(stderr, "Here we go, let's link that baby.\n");

#endif
cvtType = [self getConverterType: inType];

#ifdef DEBUG

Final Draft Graphics Workshop
Page

fprintf(stderr, "We're gunna link %s\n", cvtType->fullpath);
#endif

if (![self linkConverter: cvtType]) {
if (useNeXTStep) {

NXRunAlertPanel("Error", "Unable to link
converter: %s", "Abort", NULL, NULL, cvtType->fullpath);

}
else {

fprintf(stderr, "Unable to link converter: %s",
cvtType->fullpath);

}

convert = nil;

return nil;
}

#ifdef DEBUG
fprintf(stderr, "And we're linked!\n");

#endif
curType = cvtType;

}

return self;
}

- (id)openAndReturnImage: (const char *)filename
{

char *inType;
int x;
NXStream *myStream;

for (x = strlen(filename); x && filename[x] != '.'; x--);
inType = (char *)filename + x + 1;

if ([self handleLink: inType]) {
#ifdef DEBUG

fprintf(stderr, "here we go\n");
#endif

myStream = NXMapFile(filename, NX_READONLY);
return [convert readFromStream: myStream from: self];

}
return nil;

}

- (char *)getCurrentFormatName
{

if (curType) {

Final Draft Graphics Workshop
Page

return [convert getFormatName];
}
else {

return "No Format Loaded";
}

}

- popClick
{

char *inType;
NXRect r;
id tView;

inType = (char *)[myPopUp selectedItem];
#ifdef DEBUG

fprintf(stderr, "Yeah, I got clicked, and I selected: %s\n", inType);
#endif

if (!strcmp(inType, "All Types")) {
[nameText setStringValue: "Any Bitmap Format May be

Selected"];
[panelSave allowMultipleFiles: YES];
return self;

}
[panelSave setRequiredFileType: inType];
if ([self handleLink: inType]) {

if (!amSaving) [panelSave allowMultipleFiles: NO];
[nameText setStringValue: [self getCurrentFormatName]];
if (mySubView) {

[mySubView removeFromSuperview];
[mySubView free];

#ifdef DEBUG
fprintf(stderr, "Old subview unlinked\n");

#endif
}
[myBox getBounds: &r];
if (amSaving) {

mySubView = [convert customSaveView: r.size.width
- 15];

} else {
mySubView = [convert customOpenView: r.size.width

- 15];
}
if (mySubView) {

int tmp = 0;

if (currentView) {
NXRect tmpRect;

Final Draft Graphics Workshop
Page

#ifdef DEBUG
fprintf(stderr, "Adding custom view\n");

#endif
[currentView getBounds: &tmpRect];
tmp = tmpRect.size.height;

}

[mySubView moveBy: 0: 53 + tmp];
[myBox addSubview: mySubView];

#ifdef DEBUG
fprintf(stderr, "New subview added: %p\n",

mySubView);
#endif

}

[myBox getFrame: &r];
tView = [Box alloc];
[tView initFrame: &r];
[tView setTitle: "Format"];
[panelSave setAccessoryView: tView];
[myBox sizeToFit];
[panelSave setAccessoryView: myBox];
[tView free];

}
return self;

}

- myButtonIIPush
{

const char *tmp = [myPopUp selectedItem];

if (!tmp) tmp = "All Types";
if (!strcmp(tmp, "All Types")) {

NXRunAlertPanel("Information",
"NXBitmapImageRepControl\nby

Alex Raftis\n\nCopyright 1991, California Polytechnic State University, San
Luis Obispo and Alex Raftis",

"Continue", NULL, NULL, NULL);
} else {

NXRunAlertPanel("Converter Information",
[convert copyrightNotice],
"Continue", NULL, NULL, NULL);

}
return self;

}

Final Draft Graphics Workshop
Page

- createViewForType: (char *)inType
inRect: (NXRect *)r
withString: (const char *)secondPrompt

{
id myButtonII = [Button alloc];
id myText = [TextField alloc];
NXRect myRect = {0, 0, r->size.width - 10, 54 };
NXRect myButRect = {r->size.width - 99, 35, 80, 21 };
NXRect myButRectII = {9, 35, 70, 21 };
NXRect myTextRect = {5, 36, r->size.width - 109, 18 };
NXRect myTextRectII = {9, 8, r->size.width - 28, 22 };
int x;
char **fTypes;

mySubView = nil;

myBox = [Box alloc];
[myBox initFrame: &myRect];

myView = [View alloc];
[myView initFrame: &myRect];
viewDefault = myRect;

fTypes = [self getTypeList];
myPopUp = [PopUpList alloc];
[myPopUp init];
for (x = 0; fTypes[x]; x++) {

[myPopUp addItem: fTypes[x]];
#ifdef DEBUG

fprintf(stderr, "%s\n", fTypes[x]);
#endif

}
[myPopUp setAction: @selector(popClick)];
[myPopUp setTarget: self];
myButton = [Button alloc];
[myButton initFrame: &myButRect];
NXAttachPopUpList(myButton, myPopUp);
[myView addSubview: myButton];
[myButton setTitle: inType];
free(fTypes);

[myText initFrame: &myTextRect];
[myText setEditable: NO];
[myText setStringValue: secondPrompt];
[myText setBezeled: NO];
[myText setAlignment: NX_RIGHTALIGNED];
[myText setBackgroundGray: NX_LTGRAY];

Final Draft Graphics Workshop
Page

[myView addSubview: myText];

nameText = [TextField alloc];
[nameText initFrame: &myTextRectII];
[nameText setEditable: NO];
[nameText setStringValue: [convert getFormatName]];
[nameText setBezeled: YES];
[nameText setAlignment: NX_CENTERED];
[nameText setBackgroundGray: NX_WHITE];
[myView addSubview: nameText];

[myView addSubview: myButtonII];
[myButtonII initFrame: &myButRectII

title: "Info"
tag: 1
target: self
action: @selector(myButtonIIPush)
key: '\1'
enabled: YES];

[myButtonII setType: NX_MOMENTARYPUSH];

[myBox setContentView: myView];
[myBox setTitle: "Format"];
[myBox sizeToFit];

[myBox getBounds: &myRect];

if (currentView) {
NXRect tmpRect;

[[myBox contentView] getBounds: &tmpRect];
[currentView moveBy: -11: tmpRect.size.height + 30];
[myBox addSubview: currentView];

}

if (amSaving) {
mySubView = [convert customSaveView: myRect.size.width

- 15];
} else {

mySubView = [convert customOpenView: myRect.size.width
- 15];

if (mySubView) [currentPanel allowMultipleFiles: NO];
else [currentPanel allowMultipleFiles: YES];

}

if (mySubView) {
int tmp = 0;

Final Draft Graphics Workshop
Page

if (currentView) {
NXRect tmpRect;

[currentView getBounds: &tmpRect];
tmp = tmpRect.size.height;

}

[mySubView moveBy: 0: 53 + tmp];
[myBox addSubview: mySubView];

#ifdef DEBUG
fprintf(stderr, "New subview added: %p\n", mySubView);

#endif
}

[myBox sizeToFit];

return myBox;
}

- (int)runOpenPanel: (id)openPanel
{

char **fTypes;
int x;
NXRect tRect;
id openView = [openPanel accessoryView];
int retVal;

amSaving = NO; // Make sure
to use custom open view.

currentPanel = openPanel; // Set up to use the
open panel for messages.

currentView = [openPanel accessoryView];
[openPanel setAccessoryView: nil];

fTypes = [self getTypeList];

if (!curType) {
[self handleLink: "tiff"];

}

panelSave = openPanel;
[[openPanel contentView] getBounds: &tRect];
myView = [self createViewForType: curType->type

inRect: &tRect
withString: "Set Parameters

Final Draft Graphics Workshop
Page

For:"];
[myPopUp addItem: "All Types"];
[myButton setTitle: "All Types"];
[nameText setStringValue: "Any Bitmap Format May be Selected"];

#ifdef DEBUG
fprintf(stderr, "Custom view created\n");

#endif
[openPanel setAccessoryView: myView];
[openPanel setDelegate: self];
retVal = [openPanel runModalForTypes: fTypes];
[openPanel setAccessoryView: openView];
[myView free];
free(fTypes);

currentView = nil;

return retVal;
}

- (int)runSavePanel: (id)savePanel withFilename: (const char *)filename
{

int retVal;
id saveView = [savePanel accessoryView];
char path[MAXPATHLEN];
int x;
char *inType;
NXRect tRect;

amSaving = YES; // Make sure
to use custom save view.

currentPanel = savePanel; // Set up to use the
open panel for messages.

currentView = [savePanel accessoryView];
[savePanel setAccessoryView: nil];

if (!curType)
if (![self handleLink: "tiff"]) return NO;

#ifdef DEBUG
fprintf(stderr, "And splitting filename\n");

#endif
panelSave = savePanel;
[self splitFilename: filename to: picName andPath: path];

#ifdef DEBUG
fprintf(stderr, "and getting type\n");

#endif
for (x = strlen(picName); x && picName[x] != '.'; x--);

Final Draft Graphics Workshop
Page

inType = (char *)picName + x + 1;
picName[x] = '\0';
[[savePanel contentView] getBounds: &tRect];

#ifdef DEBUG
fprintf(stderr, "Types: %s %s\n", inType, curType->type);

#endif
if (strcmp(inType, curType->type)) {

[self handleLink: inType];
}
myView = [self createViewForType: inType

inRect: &tRect
withString: "Format to Save

in:"];
[savePanel setAccessoryView: myView];

#ifdef DEBUG
fprintf(stderr, "name %s in %s\n", picName, path);

#endif
[savePanel setRequiredFileType: inType];
[savePanel setDelegate: self];
retVal = [savePanel runModalForDirectory: path file: picName];
[savePanel setAccessoryView: saveView];
[myView free];

currentView = nil;

return retVal;
}

- (BOOL)saveImage: (id)image toFile: (const char *)filename
{

FILE *myFile;
NXStream *myStream;
BOOL boolSave;

myFile = fopen(filename, "w");
if (myFile) {

myStream = NXOpenFile(fileno(myFile), NX_WRITEONLY);
if (myStream) {

boolSave = [convert write: image toStream: myStream
from: self];

NXClose(myStream);
fclose(myFile);
return boolSave;

}
fclose(myFile);
return NO;

}

Final Draft Graphics Workshop
Page

return NO;
}

- (char **)getTypeList
{

char **fTypes = (char **)malloc(sizeof(char *) * (typesCount
+ 1));

int x, y;

for (x = 0, y = 0; x < typesCount; x++) {
if (strcmp(types[x]->type, "Converter")) {

fTypes[y++] = types[x]->type;
#ifdef DEBUG

fprintf(stderr, "Type: %s\n", types[x]->type);
#endif

}
}

#ifdef DEBUG
fprintf(stderr, "\n");

#endif
fTypes[y] = NULL;

return fTypes;
}

- windowDidResize: sender toSize:(NXSize *)frameSize
{
#ifdef DEBUG

fprintf(stderr, "%p\n", [panelSave accessoryView]);
#endif

[myView setAutodisplay: YES];
[myView display];

return self;
}

- windowWillResize: sender toSize:(NXSize *)frameSize
{
#ifdef DEBUG

fprintf(stderr, "%p\n", [panelSave accessoryView]);
#endif

return self;
}

- getImageControl: (id)image
{

Final Draft Graphics Workshop
Page

#ifdef DEBUG
fprintf(stderr, "Converter requested image controls.\n");

#endif

return [imageControl new: image];
}

- getCurrentConverter
{

return convert;
}

- (char *)filename
{

return picName;
}

- setUseNeXTStep: (BOOL)state
{

useNeXTStep = state;

return self;
}

- (BOOL)usesNeXTStep
{

return useNeXTStep;
}

- (int)errorState
{

if (convert) {
return [convert errorState];

}
return CONVERT_ERR_FATAL;

}

- (int)errorMessage
{

if (convert) {
return [convert errorMessage];

}
return ERROR_UNABLETOLINK;

}

- (char *)errorStringMessage
{

Final Draft Graphics Workshop
Page

if (convert) {
return [convert errorStringMessage];

}
return "Unable to link converter";

}

@end

Final Draft Graphics Workshop
Page

ImageControl.m

#import <appkit/tiff.h>
#import <appkit/color.h>
#import <appkit/NXBitmapImageRep.h>
#import <appkit/graphics.h>
#import <streams/streams.h>
#import <stdio.h>
#import <stdlib.h>
#import <math.h>
#import "ImageControl.h"

@implementation ImageControl

Pixel *GetMeshedXY(int x, int y);
Pixel *GetPlanarXY(int x, int y);
Pixel *GetMeshedNext(void);
Pixel *GetPlanarNext(void);

id image;
int SPP;
int width, height;
int sampleWidth;
int pixelWidth;
int bitNumber;
int byteNumber;
int bitOffset;
int sampleMask;
int pixelMask;
int colorSpace;
BOOL hasAlpha;
Pixel workPixel;
unsigned char *data[5];

+ new: (id)imageIn;
{

self = [super new];
image = imageIn;
SPP = [image samplesPerPixel];
width = [image pixelsWide];
height = [image pixelsHigh];
hasAlpha = [image hasAlpha];
bitNumber = 0;
sampleWidth = [image bitsPerSample];
pixelWidth = sampleWidth * SPP;
byteNumber = 0;
bitOffset = 0;

Final Draft Graphics Workshop
Page

sampleMask = (1 << sampleWidth) - 1;
pixelMask = (1 << pixelWidth) - 1;
colorSpace = [image colorSpace];
workPixel.count = SPP;
[image getDataPlanes: data];

return self;
}

- (GetPixelXYFunc)getXYFunction
{

if ([image isPlanar]) return GetPlanarXY;
else return GetMeshedXY;

}

- resetNext
{

byteNumber = 0;
bitOffset = 0;

return self;
}

- (GetPixelNextFunc)getNextFunction
{

if ([image isPlanar]) return GetPlanarNext;
else return GetMeshedNext;

}

Pixel *GetMeshedXY(int x, int y)
{

static unsigned long value; // tempoary value it will
find

static int contained, index; // working
variables

static int i; //
index value;

bitNumber = (y * width + x) * pixelWidth; // Figures starting bit in
data

byteNumber = bitNumber / 8; // Finds byte bits
start in

bitOffset = bitNumber % 8; // Discovers
bit offset in byte

value = *(data[0] + byteNumber) & 0x000000FF;

Final Draft Graphics Workshop
Page

for (contained=8-bitOffset, index=1; contained < pixelWidth; index+
+, contained+=8) {

value = value << 8;
value |= (*(data[0] + byteNumber + index) & 0x000000FF);

}

// Shift bits and mask off extra stuff.
for (i = SPP - 1; i >= 0; i--) {

workPixel.values[i] = value & sampleMask;
value >>= sampleWidth;

}
/*

fprintf(stderr, "bitw=%4d bitnum=%4d bytenum=%4d bitoff=%4d
mask=%0X values = ",

sampleWidth, bitNumber,
byteNumber, bitOffset, sampleMask);

for (i = 0; i < SPP; i++) {
fprintf(stderr, "%02X ", workPixel.values[i]);

}
fprintf(stderr, "\n");

*/
return &workPixel;

}

Pixel *GetPlanarXY(int x, int y)
{

static unsigned long value[5]; // tempoary value it
will find

static int contained, index; // working
variables

static int i; //
Index variable

bitNumber = (y * width + x) * sampleWidth; // Figures starting bit
in data

byteNumber = bitNumber / 8; // Finds byte bits
start in

bitOffset = bitNumber % 8; // Discovers
bit offset in byte

for (i = 0; i < SPP; i++) {
// start getting the pixel. It can span multiple bytes
value[i] = *(data[i] + byteNumber) & 0x000000FF;

}

for (contained=8-bitOffset, index=1; contained < sampleWidth;
index++, contained+=8) {

Final Draft Graphics Workshop
Page

for (i = 0; i < SPP; i++) {
value[i] = value[i] << 8;
value[i] |= (*(data[i] + byteNumber + index) &

0x000000FF);
}

}

// Shift bits and mask off extra stuff.
for (i = 0; i < SPP; i++) {

workPixel.values[i] = value[i]>>(8*index-bitOffset-
sampleWidth)&sampleMask;

}
/*

fprintf(stderr, "bitw=%4d bitnum=%4d bytenum=%4d bitoff=%4d
mask=%0X values = ",

sampleWidth, bitNumber,
byteNumber, bitOffset, sampleMask);

for (i = 0; i < SPP; i++) {
fprintf(stderr, "%02X ", workPixel.values[i]);

}
fprintf(stderr, "\n");

*/
return &workPixel;

}

Pixel *GetMeshedNext(void)
{

static unsigned long value; // tempoary value it will
find

static int contained, index; // working
variables

static int i; //
index value;

value = *(data[0] + byteNumber) & 0x000000FF;

for (contained=8-bitOffset, index=1; contained < pixelWidth; index+
+, contained+=8) {

value = value << 8;
value |= (*(data[0] + byteNumber + index) & 0x000000FF);

}

// Shift bits and mask off extra stuff.
for (i = SPP - 1; i >= 0; i--) {

workPixel.values[i] = value & sampleMask;
value >>= sampleWidth;

}

Final Draft Graphics Workshop
Page

/*
fprintf(stderr, "bitw=%4d bitnum=%4d bytenum=%4d bitoff=%4d

mask=%0X values = ",
sampleWidth, bitNumber,

byteNumber, bitOffset, sampleMask);
for (i = 0; i < SPP; i++) {

fprintf(stderr, "%02X ", workPixel.values[i]);
}
fprintf(stderr, "\n");

*/
bitOffset += pixelWidth;
if (bitOffset >= 8) {

byteNumber += bitOffset / 8;
bitOffset %= 8;

}

return &workPixel;
}

Pixel *GetPlanarNext(void)
{

static unsigned long value[5]; // tempoary value it
will find

static int contained, index; // working
variables

static int i; //
index value;

for (i = 0; i < SPP; i++) {
value[i] = *(data[i] + byteNumber) & 0x000000FF;

}

for (contained=8-bitOffset, index=1; contained < sampleWidth;
index++, contained+=8) {

for (i = 0; i < SPP; i++) {
value[i] = value[i] << 8;
value[i] |= (*(data[i] + byteNumber + index) &

0x000000FF);
}

}

// Shift bits and mask off extra stuff.
for (i = SPP - 1; i >= 0; i--) {

workPixel.values[i] = value[i]>>(8*index-bitOffset-
sampleWidth)&sampleMask;

}
/*

Final Draft Graphics Workshop
Page

fprintf(stderr, "bitw=%4d bitnum=%4d bytenum=%4d bitoff=%4d
mask=%0X values = ",

sampleWidth, bitNumber,
byteNumber, bitOffset, sampleMask);

for (i = 0; i < SPP; i++) {
fprintf(stderr, "(%02X, %02X); ", workPixel.values[i], value[i]);

}
fprintf(stderr, "\n");

*/
bitOffset += sampleWidth;
if (bitOffset >= 8) {

byteNumber += bitOffset / 8;
bitOffset %= 8;

}

return &workPixel;
}

Pixel *OIWtoGray(Pixel *p)
{

p->values[0] = p->values[0];

return p;
}

Pixel *OIBtoGray(Pixel *p)
{

p->values[0] = sampleMask - p->values[0];

return p;
}

Pixel *RGBtoGray(Pixel *p)
{
 // .33R+ .5G+ .17B

p->values[0] = (((p->values[0])*11 + (p->values[1])*16 + (p-
>values[2])*5) >> 5);

if (hasAlpha) {
p->values[1] = p->values[3];
p->count = 2;

} else p->count = 1;
return p;

}

Pixel *CMYKtoGray(Pixel *p)
{

// I need to find out the values for doing the CYMK conversion.

Final Draft Graphics Workshop
Page

return p;
}

- (ToGrayFunc) getToGrayFunction
{

NXColorSpace cs = [image colorSpace];

if (cs == NX_OneIsWhiteColorSpace) return OIWtoGray;
else if (cs == NX_OneIsBlackColorSpace) return OIBtoGray;
else if (cs == NX_RGBColorSpace) return RGBtoGray;

return CMYKtoGray;
}

Pixel *OIWtoRGB(Pixel *p)
{

if (hasAlpha) {
p->values[3] = p->values[1];
p->count = 4;

} else p->count = 3;
p->values[1] = p->values[2] = p->values[0];
return p;

}

Pixel *OIBtoRGB(Pixel *p)
{

if (hasAlpha) {
p->values[3] = p->values[1];
p->count = 4;

} else p->count = 3;
p->values[1] = p->values[2] = sampleMask - p->values[0];
return p;

}

Pixel *RGBtoRGB(Pixel *p)
{

return p;
}

Pixel *CMYKtoRGB(Pixel *p)
{

// I need to find out the values for doing the CYMK conversion.
return p;

}

- (ToRGBFunc) getToRGBFunction
{

Final Draft Graphics Workshop
Page

NXColorSpace cs = [image colorSpace];

if (cs == NX_OneIsWhiteColorSpace) return OIWtoRGB;
else if (cs == NX_OneIsBlackColorSpace) return OIBtoRGB;
else if (cs == NX_RGBColorSpace) return RGBtoRGB;

return CMYKtoRGB;
}

- ditherImage
{

short *dp;
short *dithpic;
unsigned char pix8, bit;
int i, j, err;
unsigned char *pp, *pq;
id imageOut;
long size = [image pixelsWide] * [image

pixelsHigh];
GetPixelNextFunc myFuncNext;
int maxColor = 1 << [image

bitsPerSample], multiplier;
ToGrayFunc GetColor;

if (([image bitsPerSample] == 1) && ([image samplesPerPixel] ==
1)) {

imageOut = [NXBitmapImageRep alloc];
[imageOut initData: NULL

pixelsWide: [image pixelsWide]
pixelsHigh: [image pixelsHigh]
bitsPerSample: 1
samplesPerPixel: 1
hasAlpha: NO
isPlanar: NO
colorSpace:

NX_OneIsWhiteColorSpace
bytesPerRow: 0
bitsPerPixel: 0];

if ([image colorSpace] == NX_OneIsBlackColorSpace) {
#ifdef DEBUG

fprintf(stderr, "Inverting image\n");
#endif

j = 0xFF;
}
else j = 0x00;
size = (([image pixelsWide] + 7) / 8) * [image pixelsHigh];
pp = [image data];

Final Draft Graphics Workshop
Page

pq = [imageOut data];
for (i = 0; i < size; i++) {

*pq++ = *pp++ ^ j;
}
return imageOut;

}

imageOut = [NXBitmapImageRep alloc];
[imageOut initData: NULL

pixelsWide: [image pixelsWide]
pixelsHigh: [image pixelsHigh]
bitsPerSample: 1
samplesPerPixel: 1
hasAlpha: NO
isPlanar: NO
colorSpace:

NX_OneIsWhiteColorSpace
bytesPerRow: 0
bitsPerPixel: 0];

dithpic = (short *)malloc(width * height * sizeof(short));
if (!dithpic) {

[imageOut free];
#ifdef DEBUG

fprintf(stderr, "Unable to malloc memory\n");
#endif

return nil;
}

#ifdef DEBUG
fprintf(stderr, "Converting to BW...");

#endif
myFuncNext = [self getNextFunction];
[self resetNext];

GetColor = [self getToGrayFunction];
multiplier = 256 / maxColor;
for (i = 0, dp = dithpic; i < size; i++, dp++) {

*dp = GetColor(myFuncNext())->values[0] * multiplier;
}

#ifdef DEBUG
fprintf(stderr,"Ditherizing1...");

#endif
dp = dithpic /* [imageWork data] */;
pp = [imageOut data];

Final Draft Graphics Workshop
Page

bit = pix8 = 0;
for (i = 0; i < height; i++) {

for (j = 0; j < width; j++, dp++) {
if (*dp < 128) {

err = *dp;
pix8 |= 0;

} else {
err = *dp - 255;
pix8 |= 1;

}

if (bit == 7) {
*pp++ = pix8;
bit = pix8 = 0;

} else {
pix8 <<= 1;
bit++;

}

if (j < width - 1) dp[1] += ((err * 7) / 16);

if (i < height - 1) {
dp[width] += ((err * 5) / 16);
if (j > 0) dp[width - 1] +=

((err * 3) / 16);
if (j < width - 1) dp[width + 1] += (err / 16);

}
}
if (bit) {

*pp++ = pix8 << 1;
pix8 = bit = 0;

}
}

#ifdef DEBUG
fprintf(stderr,"done\n");

#endif

free(dithpic);

return imageOut;
}

- makePalette : (int)cMapSize
: (unsigned char *)data
: (unsigned char *)r
: (unsigned char *)g

Final Draft Graphics Workshop
Page

: (unsigned char *)b
{

int bits;
int rBits, gBits, bBits;
int rMask, gMask, bMask;
int i;
double mod;
GetPixelNextFunc getNext;
ToRGBFunc toRGB;
Pixel *pixel;

bits = log(cMapSize) / log(2);
rBits = bits / 3;
gBits = bits / 3;
bBits = bits / 3;
if (rBits + bBits + gBits < bits) rBits++;
if (rBits + bBits + gBits < bits) gBits++;
rMask = ((0x01 << rBits) - 1) << (bits - rBits);
gMask = ((0x01 << gBits) - 1) << (bits - (gBits + rBits));
bMask = ((0x01 << bBits) - 1) << (bits - (bBits + rBits + gBits));

#ifdef DEBUG
fprintf(stderr, "Creating Palette: #%d R,#%d G, #%d B...", rBits,

gBits, bBits);
#endif

mod = 255 / (cMapSize - 1);
for (i = 0; i < cMapSize; i++) {

r[i] = (((i & rMask) * (cMapSize - 1)) / rMask) * mod;
g[i] = (((i & gMask) * (cMapSize - 1)) / gMask) * mod;
b[i] = (((i & bMask) * (cMapSize - 1)) / bMask) * mod;

}
#ifdef DEBUG

fprintf(stderr, "done.\n");
#endif

getNext = [self getNextFunction];
toRGB = [self getToRGBFunction];
[self resetNext];
mod = (double)cMapSize / (double)(sampleMask + 1);

#ifdef DEBUG
fprintf(stderr, "Mapping Pixels...%f...%d...%d...", mod, sampleMask,

cMapSize);
#endif

for (i = 0; i < width * height; i++) {
pixel = toRGB(getNext());
pixel->values[0] *= mod;
pixel->values[1] *= mod;
pixel->values[2] *= mod;
*data++ = (pixel->values[0] & rMask) |

Final Draft Graphics Workshop
Page

((pixel->values[1] >> rBits) & gMask) |
(pixel->values[2] >> (rBits + gBits));

}
#ifdef DEBUG

fprintf(stderr, "done.\n");
#endif
}

- makePaletteBW : (int)cMapSize
: (unsigned char *)data
: (unsigned char *)r
: (unsigned char *)g
: (unsigned char *)b

{
int i, j;
double mod;
GetPixelNextFunc getNext;
Pixel *pixel;

mod = 255 / (cMapSize - 1);
#ifdef DEBUG

fprintf(stderr, "Creating Palette: %d...", j);
#endif

for (i = 0; i < cMapSize; i++) {
r[i] = g[i] = b[i] = mod * i;

#ifdef DEBUG
fprintf(stderr, "%d %d %d, ", r[i], g[i], b[i]);

#endif
}

#ifdef DEBUG
fprintf(stderr, "done.\n");

#endif
getNext = [self getNextFunction];
[self resetNext];
mod = (double)(cMapSize - 1) / (double)sampleMask;

#ifdef DEBUG
fprintf(stderr, "Mapping Pixels...%f...%d...%d...", mod, sampleMask,

cMapSize);
#endif

for (i = 0; i < width * height; i++) {
pixel = getNext();
*data++ = (unsigned char)(pixel->values[0] * mod);

}
#ifdef DEBUG

fprintf(stderr, "done.\n");
#endif
}

Final Draft Graphics Workshop
Page

- convertToPalette: (int)size
andReturn: (unsigned char **)outPic
andPalettes: (unsigned char *)r : (unsigned char *)g :

(unsigned char *)b
{

*outPic = (unsigned char *)malloc(width * height * sizeof(unsigned
char));

#ifdef DEBUG
fprintf(stderr, "color space = %d\n", [image colorSpace]);
fprintf(stderr, "%d %d %d %d\n", NX_OneIsWhiteColorSpace,

NX_OneIsBlackCol
orSpace,

NX_RGBColorSpac
e,

NX_CMYKColorSp
ace);
#endif

if (([image colorSpace] == NX_OneIsWhiteColorSpace) ||
([image colorSpace] == NX_OneIsBlackColorSpace)) {

#ifdef DEBUG
fprintf(stderr, "This is a B&W pic, so handle as such\n");

#endif
[self makePaletteBW: size : *outPic : r : g : b];

} else if (([image colorSpace] == NX_RGBColorSpace) ||
([image colorSpace] == NX_CMYKColorSpace)) {

[self makePalette: size : *outPic : r : g : b];
} else {

#ifdef DEBUG
fprintf(stderr, "Opps, this is an impossible color space...

leaving.\n");
#endif

}
}

@end

Final Draft Graphics Workshop
Page

Converter.m

#import <stdio.h>
#import <streams/streams.h>
#import <appkit/graphics.h>
#import <appkit/NXBitmapImageRep.h>
#import "NXBitmapImageRepControl.h"
#import "ImageControl.h"
#import "Converter.h"

@implementation Converter

- init
{

return self;
}

- free
{

return [super free];
}

- readFromStream: (NXStream *)stream from: sender;
{

return nil;
}

- (BOOL)write: (id)image toStream: (NXStream *)stream from: sender;
{

return NO;
}

- readAllFromStream: (NXStream *)stream from: sender
{

return nil;
}

- (BOOL)writeAll: (id)image toStream: (NXStream *)stream
{

return NO;
}

- customSaveView: (int)width
{

return nil;
}

Final Draft Graphics Workshop
Page

- customOpenView: (int)width
{

return nil;
}

- (char *)getFormatName
{

return("This is the template converter");
}

- (BOOL)setCustomParameter: (const char *)parameter withValue: (void
*)ptr
{

return NO;
}

- (void *)getCustomParameter: (const char *)parameter
{

return NULL;
}

- (char *)copyrightNotice
{

return "This is for your copyright notice.";
}

- (int)errorState
{

return CONVERT_ERR_NONE;
}

- (int)errorMessage
{

return ERROR_NO_ERROR;
}

- (char *)errorStringMessage
{

return NULL;
}

- (BOOL)needsWindowServer;
{

return NO;
}

- (char *)protocolVersion

Final Draft Graphics Workshop
Page

{
return "1.0";

}

@end

Final Draft Graphics Workshop
Page

Appendix C: Graphics Formats

GIF

Probably one of the most popular and yet one of the more limited graphics
standards out, GIF, or Graphics Interchange Format, was introduced by
CompuServe in order for its clients to be able to exchange graphics
across many platforms. They'd also hoped to be able to implement simple
animation through the GIF format for such applications as weather maps.

JPG

One of the newer standards on the scene is JPEG, standing for Joint
Photographic Extension Group. This format is perhaps the best at
compressing images; however, it does so at a “loss” of picture quality. This
loss is dependant on the compression factor. JPEG was introduced as a
standard for the compression of twenty-four bit and Grayscale images.

NeXT chose one of two standards for storing the JPEG files. Theirs, the
TIFF encapsulation format, was the first to be widely seen publicly. The
second is the stand-alone format being discussed here.

Some people worry about the “lossyness” of the JPEG format; however,
it's important to note that you can control the amount of loss. At default
levels, the JPEG format will lose much less information about the original
picture than a color quantized GIF file. Also, when compressing “real
world” images, JPEG shines, but the compression of generated images
sometimes shows remnants. Still, considering the amount of disk savings
and the fact that less is lost in the JPEG compression scheme than the
GIF scheme, JPEG is quickly becoming a format of choice for 24 bit
images.

Currently, this converter leaves a bit to be desired. There is no manner to
adjust the compression factor of an image being saved, and for that
matter, there is no manner to save the picture. I hope to have this cleared
up as the JPEG libraries approach completion. For the time being,
however, you may open .jpg files and save them back as JPEG's by
encapsulating them as TIFF's.

PBM, PGM, PPM, and PNM

This collection of formats is less an exchange mechanism than a
intermediate step. However, due the generic nature of the picture format,
the PNM files may often be the best manner of transmission over ASCII
only lines. The four formats are basically for three image types. The first,
PBM, is for storing black and white bitmaps. The second, PGM, for storing
gray scale images. The third for storing red, green, and blue color triplets.

Final Draft Graphics Workshop
Page

The final for storing any of the previous as one file extension.

These formats were originally written to convert between graphics formats.
For example, if you wished to convert a GIF to a PICT file, you might need
to convert first to PPM to produce a twenty-four bit color image, followed
by a conversion to PGM to get a gray scale image, followed by a
conversion to PBM to get a one bit pictures and finally a conversion to
PICT, which wants the one bit image. This method basically simplified the
work of the image converter writers, freeing them from mundane tasks like
pixel manipulation.

Over the years the PNM format (often referred to as PBM) has grown to
support a wide variety of image formats and utilities. It's also become a bit
of an exchange format due to its architecture-independent storage
techniques and the ease with which it may be read and written.
Unfortunately, this independence means no file compression or other
techniques are employed, resulting in large images that require lots of disk
space for storage.

These formats are included in large part to make conversion from non-
specified formats easier. For example, since no PICT reader currently
exists, you could convert to PBM and then use the PNM utility package,
available from FTP, to convert to PICT.

TIFF

TIFF is probably the most versatile of all formats. Unfortunately, this also
means it can be unreliable when people and programmers don't properly
follow its specifications. This is most prevalent when coming from or going
to the Macintosh environment. I've often had difficulty when working with
TIFF's from this platform.

Some points of interest. The TIFF format is the NeXT platform's format of
first choice, so you'll most likely be storing many of your images in it. To
save space, note that JPEG within TIFF is supported, but be careful.
Some programs, especially older ones, will not support reading JPEG
compressed images, since they use older system calls to retrieve them.
When saving as JPEG, the default compression factor is the
recommended factor to preserve image quality, and yet get efficient use of
space. You may raise this value for smaller, but “fuzzier” pictures.

Also note, should you wish to read these TIFF's on another platform, you
should probably avoid using JPEG. Rather, choose PackBits™ or LZH.
PackBits, developed by Apple Computer™, is best for one bit images,
while LZH is better for color and grayscale images. However, don't expect
nearly as small file sizes with either of these methods. You can also
choose to save the images uncompressed, as may be necessary when

Final Draft Graphics Workshop
Page

reading them on other platforms.

XBM

The final format on my list of supported formats is XBM. This is probably
the most verbose and portable of any of the formats when traveling
between UNIX environments. However, it's very limited. Mainly, the files
generated are legal C code. This means that all bytes in the image are
stored in the form 0xFF with at least a comma as a separator. This can
produce massively large files. You will also lose all color data as XBM is a
one bit format only.

Final Draft Graphics Workshop
Page

Appendix D: References

Larkin, Don, Matt Morse, Jim Inscore, Sam Streeper, and Jackie Neider.
NeXTstep Reference Volume 1-2, 2nd ed. Redwood City: NeXT Computer,
Inc., 1990.

Larkin, Don, Matt Morse, Jim Inscore, Sam Streeper, and Jackie Neider.
NeXTstep Concepts, 2nd ed. Redwood City: NeXT Computer, Inc., 1990.

CompuServe Incorporated, GIF Graphics Interchange Format, 1st ed.
CompuServe Incorporated

Mish, Frederick C., Marchael Hawley, The NeXT Digital Edition of
Webster's Ninth New Collegiate Dictionary and Webster's Collegiate
Thesaurus, NeXT Computer and Merriam-Webster Incorporated, 1898,
1988

Final Draft Graphics Workshop
Page

Index

I apologize for a lack of index, but due to a bug in the release of WordPerfect that I own,
generating the index would cause WordPerfect to lock. I was unable to get the most
current release by turn-in time.

Final Draft Graphics Workshop
Page

Supplemental

Now that you've had a chance to see all the code that is part of my senior
project, you might be interested in some of the other code and
documentation. After this page follows the supplemental references, which
are followed by the code for GraphicsWorkshop itself.

Final Draft Graphics Workshop
Page

