
Character conversion
126476_PixelRule.tiff ¬

When converting in either direction, any character below 127 is left 
unchanged (with the exception of single quote conversion, and four 
characters mentioned below).

To determine what conversions would be needed for the upper 128 
characters, I used the character encoding found in Mac type families 
like Times.    This is a superset of the character set defined in Inside 
Mac volume I.    For the NeXT, I used the character encoding 
documented in the NeXTSTEP 2.1 Summaries/06_KeyInfo 
document.    Note that: ZapfDingbats and Symbol turn out to have 
identical encodings, so are not touched, of course.

When converting from the Macintosh to the NeXT, many of the 
characters above 127 have straight forward conversions (e.g. 
Mac bullet to NeXT bullet).    Some characters in the Mac 
encoding, however, don't have an equivalent in the NeXT 
encoding, but do have an equivalent in Symbol.    So, Convert 
RTF converts these Symbol in the NeXT rtf document (and adds 
a font table entry for Symbol if needed).    For those few 
remaining characters that can't be converted, I decided to write 
them out with their PostScript names in brackets.    While this has 
the potential for messing up a document, it does make it pretty 
clear when it could not be converted properly, and what should 
have been there instead (I feel that `[apple]' is much clearer than 
`ð' in my converted document when there was an apple character 
in the source one).    The following list shows the characters that 
can't be converted.    On the left is the character's number in hex, 
and on the right is the name displayed in the document (an 
example of 0xD9, in Geneva on the mac, is a picture of a sheep, 
or in New York it is a picture of a robot):

0x11 commandsymbol



0x12 check
0x13 diamond
0x14 apple
0xD9 Ydieresis (often a picture in `old' fonts)
0xF0 apple

The NeXT to Mac conversion is, in some ways, simpler.    All 
characters in the NeXT encoding either map to a character in the 
standard Mac encoding, or they don't, and there's no chance for 
using Symbol instead.    The characters that can't be converted are 
also written as bracketed PostScript names.    The following table, 
with the same format as the one above, lists the characters that can't 
be converted directly onto the Macintosh:

0x90 Eth
0x9B Yacute
0x9C Thorn
0x9E multiply
0xB5 brokenbar
0xC0 onesuperior
0xC9 twosuperior
0xCC threesuperior
0xD2 onequarter
0xD3 onehalf
0xD4 threequarters
0xE6 eth
0xE8 Lslash
0xF7 yacute
0xF8 lslash
0xFC thorn
0xFE not assigned
0xFF ascii control char

Another issue relevant to character conversions is how characters 
are stored in the rtf document.    Mac RTF files that I have seen 
generally use the \'AA notation to encode a character above 127.    



NeXT, on the other hand, seems to avoid this and use the literal 8 bit 
character values instead.    Regardless of my opinion on which is a 
better scheme, I felt only safe maintaining each platform's 
conventions. Thus, all Mac \' are converted to 8 bit characters on the 
NeXT, and 8 bit characters on the NeXT are converted to \' for the 
Mac.    I do make the assumption that all Mac applications write out 
the \' notation.    If I am wrong, then some characters will not be 
converted to the NeXT properly, and you should let me know what 
application generates such files.


