
PicComment notes
126476_PixelRule.tiff ¬

 
Convert PICT 1.1 now recognizes all the PicComments documented 
in Inside Macintosh and the Macintosh Technical Notes.    For these 
PicComments, Convert PICT writes out any parameters to the 
comments as structured information to the eps file (if it doesn't 
recognize a PicComment, the parameters are written as a    hex 
string).

Thus, Convert PICT does the first step in converting these 
PicComments: it gets the information into an easily usable form.    
Many of the PicComments have no meaning in a NeXT eps file, and 
so are ignored.    For others, Convert PICT writes some PostScript 
code to support them.    While I've tried to provide support for some 
PicComments, none of my support in PostScript is exact, and I know 
that some is quite incomplete.    This is partially because I don't have 
easy access to a LaserWriter for testing).

In any case, this provides, at least, approximations of some of the 
PicComment behaviors.    Further, if you need one of these 
PicComments to behave better, it's just an issue of fiddling with the 
PostScript files in Convert PICT (See the `Technical Gabble' 
topic ;Techie stuff.rtfd;;¬ ).

The table below lists all the documented PicComments, and my level 
of support for them.    There are three levels of support listed: 

57736_paste.tiff ¬ none means that the piccomment and any 
parameters is ignored and no further processing is done in the 
eps file.    In many cases, this is appropriate support, since the 
piccomment may not have any real applicability in an eps file 
under NeXTSTEP

709369_paste.tiff ¬ minimal means that there is some 
processing of the piccomment and any parameters, but it does 



not fully implement the effects of the PicComment.

965645_paste.tiff ¬ mostlyAs far as the author can tell without 
comparative testing, these PicComments are completely 
implemented.

PicComment name Support Notes
picLParen none Not applicable here (?)
picRParen none Not applicable here (?)
TextBegin minimal While these do provide rotatation 

to the text, I'm very sure the effect 
is not 100% correct.    However, I 
have no examples to study to 
determine precise correctness.    
Thus, I'm leaving at this 
intermediate state.

TextCenter minimal See above
TextEnd minimal See above
StringBegin none Complex and probably not 

applicable to this environment
StringEnd none See above
LineLayoutOff none Not applicable here
LineLayoutOn none Not applicable here
ClientLineLayout none Too complex to implement now
PolyBegin none Too complex to implement without 

output examples.
PolyEnd none See above
Polynone none See above
PolySmooth none See above
PolyVerb none See above
PolyClose none See above
DashedLine minimal 1-pixel thick straight lines are 

dashed properly, but may not dash 
much of anything else.

DashedStop minimal See above.



SetLineWidth mostly Appears complete
PostScriptBegin none Not applicable here
PostScriptEnd none Not applicable here
PostScriptHandle none Not applicable here
PostScriptFile none Not implementable here
TextIsPostScript minimal This is implemented insofar as it 

causes all following text strings to 
be ignored.    We have to ignore 
them because they may be 
referencing Apple's PS dictionary 
which isn't here.

ResourcePS none Not implementable here
PSBeginNoSave none Not applicable here
SetGrayLevel mostly Appears complete
RotateCenter minimal While these seem to work better 

than the text rotation 
PicComments above, I suspect 
they're still skewed. Like the text 
rotation comments, at least this 
will tell you that things were 
rotated.    it's just that the rotation 
placement may be wrong.

RotateBegin minimal See above
RotateEnd minimal See above
FormsPrinting none Not applicable to an eps file
EndFormsPrinting none Not applicable to an eps file
BitMapThinningOff none Not applicable here
BitMapThinningOn none Not applicable here


