Overview:

BitmapTest is a simple program to test the speed of animating bitmaps on the
screen. It also allows various optimizations to be turned on and off, to see how much
they help. This program is intended as a demo program for developers, and is in the
Public Domain. No claims are made to the usefulness or suitability of this program, or its
source code.

This program demonstrates animating bitmaps, use of timer & event handling,
use of the List object, limiting window resizing, and includes a simple generic object to
handle moving a bitmap.

Comments are welcomed to help make this a better demo program. The code is
intended to provide clear, correct use of the App Kit, rather than fast, but dirty code.

Basic Operation:

The simplest way to use the program is to click the "Create" button once, and
then click the "Start" button. a small bitmap should appear and then begin bouncing



around the view. Clicking "Create" again will add another bitmap. The check boxes in
the Control section allow various optimizations described below.

New Bitmap Options:

Create: Creates a new bitmap using the parameters described below.

Bitmap Size: Sets the size of the bitmap used for the next bitmap. The bitmaps were
made with the Icon App, and added to the .nib file in the tiff files section of the project
inspector. You can replace them and re-compile. Alpha values other than 0 and 1, and
nicer pictures could easily have been used.

Remove Last One: Removes the last created bitmap.

Number: Shows how many bitmaps are on the screen.

Initial Velocity: Lets you set the initial bitmap velocities in units/move. The units are
points, or screen pixels. The initial position is always the center of the view. The



"Random" check box will disable these inputs and assign random velocities from -5 to 5
on creation.

Control Options:

Start: Toggle to start and stop the motion of the bitmaps.

Allocate G State: Allocates/de-allocates a graphics state for the View. This takes a lot
of memory, and is only recommended for computationally intensive and important Apps.
Note that the Tight Draw Loop (below) is actually faster and more efficient.

NX_PING: Synchronizes the window server after each draw for smoother animation.
Erase Background: Erases the whole view before each redraw step. This is slower
than erasing just the bitmaps for big views, and few numbers of bitmaps. Click this on

and off to clear the view.

Erase Bitmaps: Erases the area behind each bitmap before each step of the animation.



This is faster than erasing the whole screen for a small number of bitmaps, but as the
number gets larger, the overhead of messaging and erasing each bitmap has a bigger
effect.

Tight Draw Loop: Makes the animation go in a continuous loop until an event is
received. The graphics state is locked and unlocked just once. In this program, the
timer is ignored when using this optimization, but that could have been easily allowed for.
Notice that using a tight draw loop is the fastest way to keep the animation going. It will
stop for events, and doesn't take a lot of Display PostScript memory like allocating a
GState does.

Timer Period: Lets you specify the time in seconds between each redraw (decimal
fractions are OK). Note that this will not have an effect if a tight drawing loop is used,
although that funtionality could be easily added.



