DPKernel

Paul Manias

DPKernel

COLLABORATORS
TITLE -
DPKernel
ACTION NAME DATE SIGNATURE
WRITTEN BY Paul Manias July 26, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

DPKernel iii

Contents

1 DPKernel 1
1.1 Library: DPKernel 1
1.2 DPKernel 2
1.3 Kernel: Activate() e e e e e 3
1.4 Kernel: AddSysEvent() L e 3
1.5 Kernel: AddSysObject() o e e e 4
1.6 Kernel: AddTrack() e e e e e 6
1.7 Kernel: AllocMemBlock() e 7
1.8 Kernel: AWtoStop() o o e e e e e 8
1.9 Kernel: Clear() e e e e e e e e e e e e e 8
1.10 Kernel: CloseDPK() e 9
1.11 Kernel: CopyStructure() o v it e e e e e e e e e e e e e e e e 9
1.12 Kernel: Deactivate() 0 o e e e e e e e e 10
1.13 Kernel: DeleteTrack() e 10
1.14 Kernel: Detach() e e e e e 11
1.15 Kernel: Display() e e 11
1.16 Kernel: DPKForbid() e 12
1.17 Kernel: DPKPermit() e e e e e e e 12
1.18 Kernel: Draw() e e e e 12
1.19 Kernel: FastRandom() e 13
1.20 Kernel: FindDPKTask() e e e e 13
1.21 Kernel: FindSysObject() e e 14
1.22 Kernel: Flush() e e 14
1.23 Kernel: Free() o o e e e e e 15
1.24 Kernel: FreeMemBlock() e 15
1.25 Kernel: Get() o e e e e 16
1.26 Kernel: GetMemSize() e e e e e e e e e e e 17
1.27 Kernel: GetMemType() o o o e e 17
1.28 Kernel: Hide() e 18
1.29 Kernel: Init() L e e e e e e e e e e 18

DPKernel iv
1.30 Kernel: InitDestruct() e e 19
1.31 Kernel: Load() e e e 19
1.32 Kernel: OpenModule() o e e e e e e e e 20
1.33 Kernel: Query() o o e e e e e 21
1.34 Kernel: Read() e 21
1.35 Kernel: RemSysEvent() e e e e e e 22
1.36 Kernel: Reset() o e e e e 22
1.37 Kernel: Save() o e e e e 22
1.38 Kernel: SelfDestruct() e e e 23
1.39 Kernel: SlowRandom() e e e e e 23
1.40 Kernel: Switch() e e e e e 24
1.41 Kernel: Taglnit() o L o e e 25
1.42 Kernel: TotalMem() e e e e e e e e e e 25
1.43 Kernel: WaitTime() o e e e e e 26
1.44 Kernel: Write() e 26
145 Kernel: () o o e 27

DPKernel 1/27

Chapter 1

DPKernel

1.1 Library: DPKernel

SYSTEM DOCUMENTATION

Name: DPKERNEL

Version: 0.9 Beta

Date: December 1997

Author: Paul Manias

Copyright: DreamWorld Productions, 1996-1997. All rights reserved.

Notes: This document is still being written and will contain errors
in a number of places. The information within cannot be

treated as official until this autodoc reaches version 1.0.

CHANGES VERSION 0.9B

Added: Flush ()
Read () (moved from files.guide)
Reset ()
Write () (moved from files.guide)
Detach ()
AutoStop ()

Moved from the master.guide
FastRandom ()

ReadKey ()

SlowRandom ()

WaitLMB ()

WaitTime ()

WriteDec ()

Deleted: SetUserPrefs ()
WaitLMB ()
WriteDec ()
ReadKey ()
AutoSwitch ()

Edited: WaitTime ()
CloseDPK ()
Activate ()

Jje

AddSysObject ()

DPKernel

2/27

1.2 DPKernel

OBJECTS
Module
RawData
Reference
Segment
SysObject
Task

Time

FUNCTIONS
AddSysEvent ()
AddSysObject ()
AllocMemBlock ()
AutoStop ()
CloseDPK ()
DPKForbid ()
DPKPermit ()
FastRandom ()
FindDPKTask ()
FindSysObject ()
FreeMemBlock ()
GetMemSize ()
GetMemType ()
OpenModule ()
RemSysEvent ()
SlowRandom ()
Switch ()
TagInit ()
TotalMem ()
WaitTime ()

Resource Tracking
AddTrack ()
DeleteTrack ()
InitDestruct ()
SelfDestruct ()

ACTIONS
Activate ()
Clear ()
CopyStructure ()
Deactivate ()
Detach ()
Display ()
Draw ()

Flush ()

Free ()

DPKernel

3/27

Reset ()
Save ()

Unlock ()
Write ()

1.3 Kernel: Activate()

ACTION
Name : Activate ()
Short: Perform the native action of the object.

Synopsis: LONG Activate (APTR Object [al0]);

DESCRIPTION
Executes the native action for a given object (but only if the object
supports Activate()). The action taken by each object class is extremely

varied, here are some examples of what some current objects do for
Activate () :

Sound — Plays sample data over the speakers.
Restore - Replaces destroyed backgrounds.
Directory - Grabs a list of directory contents.

Some objects will continue to perform their native action after they return
back to vyou, for example a Sound will play in the background while you
continue processing. If for some reason you wish to cancel an action, you
can attempt a call to Deactivate().

INPUT
Object - Pointer to an initialised object structure.

RESULT
Returns ERR_OK on success.

SEE ALSO
Kernel: Deactivate ()

1.4 Kernel: AddSysEvent()

FUNCTION
Name: AddSysEvent ()
Short: Adds a new event node to the system.

Synopsis: *Event AddSysEvent (LONG =*Tags)

DESCRIPTION
Note: This area of the 0S is currently under development, so you use it at
your own risk.

This function adds a new event node to the system. An event is a
representation of a particular occurance in the operating system. Such
examples of this are the appearance of a new task, detecting a disk
inserted by the user, low memory, a new screen on display, and so on.

DPKernel

4/27

Each event 1is handled by a particular area of the system. Sending floppy

disk events 1is handled by the I/O routines for example. When a certain
event 1s signalled by one of these handlers, the system will call all the
nodes that are chained into that event. For an application or module to

add a new node to one of these event chains, it needs to use AddSysEvent ().

Currently available events are:

OnNewTask

OnRemTask
EXAMPLE
This section of code will create a node that is linked to the OnNewTask
event. Note that the node that is created will need to be removed with

RemSysEvent () before the Task exits.

EVTOnNewTask = AddSysEventTags (TAGS,NULL,

EVA_Number, EVT_OnNewTask, /+ Event type =*/
EVA_Routine, &OnNewTask, /* Polnter to event routine =/
EVA_Priority, 3, /* Priority setting x/
TAGEND) ;
INPUT
Tags — Pointer to the event initialisation tags. See the Event object’s

documentation for details.

RESULT
Returns a pointer to the newly created Event node.

SEE ALSO
Kernel: RemSysEvent ()

1.5 Kernel: AddSysObject()

FUNCTION
Name: AddSysObject ()
Short: Adds a new object to the system.

Synopsis: *SysObject AddSysObject (APTR Tags [a0]);

DESCRIPTION

This function adds a new object to the system. The objective of this is to
allow vyour object to support the various "Action" functions, and to give
the system the necessary information about your object. Example:

JPEGObject = AddSysObjectTags (TAGS, NULL,

SOA_ObjectID, ID_HIDDEN,
SOA_ClassID, ID_PICTURE,

SOA_Name, "Picture~Jpeg",
SOA_CopyToUniverse, &PIC_CopyToUniverse,
SOA_CopyFromUniverse, &PIC_CopyFromUniverse,
SOA_Load, &PIC_Load,

TAGEND) ;

In this example, AddSysObject () will create a Child type (called Jpeg) that
belongs to the Picture class. Because child types inherit actions from the

DPKernel 5127

parent, this Jpeg object will also support actions such as Query (), Init(),
Get () and Free().

Master Objects

Any object that 1is initialised with a specific ID will be treated as a
master object. If you call AddSysObject () when the given ID is already in
use Dby another master object in the system, AddSysObject () will not create
a new SysObject. Instead, it will add your object specifications to the
existing SysObject.

For example, 1f vyou attempt to add a Picture master with a tag of
SOA_Activate, and the existing Picture does not support that action, your
supporting function will be added to the existing Picture master. If you
specify SOA_Activate|TREPLACE, then your Activate function will be placed
in the Picture master even 1if it already has support for Activate().
Please do not take the TREPLACE flag lightly - only do this if absolutely
necessary.

Hidden Obijects
You <can declare a "hidden" system object by passing ID_HIDDEN. What this

creates 1s an object that has no identification characters. This means
that no program will be able to specifically search for your object in the
system. For example, the Get() action will be completely useless in

looking for vyour object. The only way to get to your object will be via
the FindSysObject () function.

The main purpose for creating hidden objects is for simple object types
that will only be wused internally (in the system). For example, XPK
support was 1implemented via a hidden object, because as a programmer you
wouldn’t want to deal with unpacking when loading data. 1Instead, the
Load () function will invisibly detect XPK files for you and call upon the
hidden XPK object to deal with the data.

Child Obijects

To declare a <child object, wuse ID_HIDDEN in SOA_ObjectID, then use the
class identifer in SOA_ClassID (e.qg. ID_PICTURE) . This is useful in
situations where you might want to add support for a new data format to an
object. As an example, when a Jjpeg picture is loaded the master will fail
to recognise 1it, because it only uses IFF files. This failure will cause
the Load() function to look for child objects belonging to the Picture
class and use those instead.

The other advantage as a child object is that you get function inheritance
from the master. So if any action is unsupported by your object, you will
still be able to inherit support from the master’s functions.

INPUT
Tags - Pointer to a standard tag list.

RESULT
Returns a pointer to the created SysObject or NULL if failure.

SEE ALSO
Kernel: Free()

DPKernel 6/27

1.6 Kernel: AddTrack()

FUNCTION
Name: AddTrack ()
Short: Adds a resource tracking node.

Synopsis: LONG AddTrack (LONG Resource [dO0], LONG Data [d3], void *Routine [a0])

DESCRIPTION
This function is intended for use by the system modules, but you may use it
in your program if necessary.

About Resource Tracking

Each task has a special list of all system resources that are currently in
use. Each resource has its own list node that uniquely identifies it (eg
each memory allocation has 1its own resource node). When a particular
resource has been freed the 1list is checked and its related node is
deleted. When the program shuts down, any resources that are still in the
list can be freed by the kernel so that they are not lingering in the
system.

When you call AddTrack () you need to give it a resource ID which is made up
from one of the following resource types. This is important as resources
are freed from the system in an order based on these ID’s. The order looks
like this:

1. Free all hardware based resources (blitter, sound, etc).

2. Free complex resources (both hardware and software).

3. Free customised resources (user defined types etc).

4. Free memory (always freed last).

As vyou can see the correct order is vital, if memory was freed first it
would have adverse affects when freeing the complex and user resource
types. Always make sure that you give the correct ID when describing your
resource. The ID’s are RES_MEMORY, RES_HARDWARE, RES_COMPLEX and
RES_CUSTOM, as outlined in the include file "system/tasks.i".

Passing a Data pointer is optional, but vyou will need it to uniquely
identify your resource later on (eg AllocMemBlock () uses this to store a

pointer to the allocated memory) .

The Routine points to code that will free the resource if it is still in

use when the program exits. It will be passed the Data field of the
resource node in register dO0, and the Key field in register dl. This
routine must save all the CPU registers that it uses and can only free its
resource - it may not make new allocations of any sort. It may send debug

and error messages, which will help to work out what the problem is if
anything goes wrong.

INPUT

Resource - Correct resource identifier from system/tasks.i.

Data — Optional data pointer to store in the resource node.
Routine - Pointer to the routine to call when freeing the resource.
RESULT

Returns a key that AddTrack () has used to uniquely identify the resource.
You will need to store the key somewhere for when you call DeleteTrack().

DPKernel 7127

SEE ALSO
Kernel: DeleteTrack()
Include: system/tasks.i

1.7 Kernel: AllocMemBlock()

FUNCTION
Name : AllocMemBlock ()
Short: Allocate a new memory block.

Synopsis: APTR AllocMemBlock (LONG Size [d0], LONG MemType [dl1l]);

DESCRIPTION

This function allocates a memory block from the system memory pool and
returns 1t to vyour program. By default all memory is public. This open
memory model is used to enhance the communication levels between tasks and
functions. If vyou need private memory make sure that you ask for it and
that vyou will be the only Task using it. An AllocPrivate() macro has been
included to make this type of allocation easier.

Protection and Resource Tracking

Header and Tail 1ID’s are used to offer a security system similar to
MungWall, acting as cookies at each end of a memory block. You will be
alerted by FreeMemBlock() if the ID’s are damaged. This is a permanent
debugging feature, so there is little need to run MungWall for debugging
your programs.

Resource tracking 1s automatic, so vyou will be warned if you allocate
memory and forget to free it on exit (ie when you close down). Any memory
that is found will be freed for your convenience.

By default all memory is cleared before it is given to you. Here are the
memory types:

MEM_DATA
Suitable for storing data and variables. This is the default. Note that
you are disallowed from running code from this type of memory.

MEM_CODE
This can store and execute CPU instructons. It also fits the
requirements of MEM_DATA, so you can store variables and data in it.

MEM_VIDEO
Is for displaying graphics, and 1is also compatible with the Blitter
interface.

MEM_BLIT

Is memory that 1is compatible with the blitter module. Currently this
module only uses chip memory, but future versions could also support CPU
drawing from fast if the graphic is located in that area.

MEM__SOUND
For memory that is compatible with the Sound interface.

You may also use the following extra flags when making your memory

DPKernel

8/27

allocation:

MEM_PRIVATE
If other programs should not have access to your memory.

MEM_UNTRACKED
If vyou don’t want resource tracking on your allocation. You should only
use this flag if the memory is part of a complex resource that is already
being tracked.

INPUT
Size — Size of the required memblock in bytes.
MemType - The type of memory to allocate, eg MEM_VIDEO.

RESULT
Pointer to the start of your allocated memblock or NULL if failure.

SEE ALSO

Kernel: FreeMemBlock ()
GetMemSize ()
GetMemType ()

1.8 Kernel: AutoStop()

FUNCTION
Name : AutoStop ()
Short: Pauses your task when the user leaves your screen or windows.

Synopsis: void AutoStop (void)

DESCRIPTION

If the user moves away from your task by switching to a different screen or
window, you may want to pause your actions until the user returns the focus
back to vyour task. This 1s very useful in games and other "non-stop"
programs which can continue regardless of any user interaction. Such
non-stop programs can be counter productive if the user is at a different
task, and your program is stealing resources in the background.

If this function finds that the user has moved away, it pauses your task
immediately. When the user returns to your task, this function returns to

execute the next instruction in your program.

SEE ALSO
Kernel: Switch ()

1.9 Kernel: Clear()

ACTION
Name : Clear ()
Short: Clears an object’s graphic from its container.

Synopsis: LONG Clear (APTR Object [a0])

DESCRIPTION

DPKernel

9/27

This action will <clear an object’s graphic from its container. For
example, Clear(Bob) will clear a Bob graphic from its assigned Bitmap.
Note that it will not restore what was previously under the graphic - it
just clears it all away. This means that you will get a empty rectangle or
mask of the object, most likely with a colour of black.

INPUT
Object - Pointer to an initialised obiject.

RESULT
Returns ERR_OK if successful.

SEE ALSO
Kernel: Draw()

1.10 Kernel: CloseDPK()

FUNCTION
Name : CloseDPK ()
Short: Closes the kernel library.

Synopsis: void CloseDPK (void)

DESCRIPTION
Before vyour program exits you will have to call this function so that the
system knows you are shutting down. If you do not close the kernel before

you exit you will leave certain memory allocations unfreed and there may be
other adverse system effects.

This function will perform a resource tracking check, so if you have not
freed any system resources you will be notified here (if you get a yellow
alert Dbox, you will need to use IceBreaker to get a detailed list of the
errors) .

CloseDPK() 1is responsible for handling the OnRemTask event. This event
will be activated as soon as CloseDPK() is called by your task.
NOTE

Remember that you may not call any more functions after calling CloseDPK() .

This function 1s wused in the STARTDPK macro and the dpk.o file, so C and
assembler programmers do not need to call this function explicitly.
Programs that are started natively or from the StartDPK executable, will
not have to call CloseDPK(). This is because the call will be handled
within the system for these cases.

1.11 Kernel: CopyStructure()

ACTION
Name: CopyStructure ()
Short: Copies details from one structure to another.

Synopsis: LONG CopyStructure (APTR Source [a0], APTR Destination [all]);

DPKernel

10/27

DESCRIPTION

Copies one structure’s data across to another. The structures can be
similar or completely different (even a Screen —-> Sound copy is possible,
although there won’t be much of a result).

This action only copies fields that are currently present in the Universe
object. This action DOES NOT copy fields that contain option flags, fields
that contain pointers to the main area of data (eg screen bitplanes), or
fields designated as private.

Only the NULL fields in the Destination structure will be written to. If
the Destination structure has already been initialised, you may find that

CopyStructure () has no effect due to this condition.
INPUT
Source — Points to the source object.

Destination - Points to the destination obiject.
RESULT

Returns ERR_OK on success, otherwise may fail due to unrecognised objects
or invalid arguments.

1.12 Kernel: Deactivate()

FUNCTION
Name : Deactivate ()
Short: Stop the object from performing its native action.

Synopsis: void Deactivate (APTR Object [a0]);

DESCRIPTION

Stops the given object from continuing its native action. This function
only works if the object has recently had Activate() called on it. If the
object 1is not performing any actions, then this function will simply do
nothing.

INPUT
Object - Pointer to an initialised object structure.

SEE ALSO
Kernel: Activate ()

1.13 Kernel: DeleteTrack()

FUNCTION
Name: DeleteTrack ()
Short: Delete a resource tracking node.

Synopsis: void DeleteTrack (LONG Key [dl]);

DESCRIPTION

Deletes a resource node allocated from AddTrack(). If resource nodes are
not deleted they will stay 1linked to the program and the system will
attempt to free them when the program shuts down.

DPKernel 11/27

Note that this function only deletes the resource node, it will
not attempt to deallocate the resource from its deallocation function.

INPUT
Key - A key that was obtained from AddTrack() .

SEE ALSO
Kernel: AddTrack ()

1.14 Kernel: Detach()

ACTION
Name: Detach ()
Short: Detach an object from a parent structure.

Synopsis: LONG Detach (APTR Object [a0], APTR Parent [all])

DESCRIPTION

This action will separate an object from a parent structure, without
causing any undue harm to either object. If this operation is successful,
you can then use the detached object independantly of its parent.

Some detachments are impossible or too dangerous to attempt, e.g. a Screen
object cannot survive without its Bitmap.

INPUTS

Object - The object that needs to be detached.

Parent - Pointer to the parent object that you want to be detached from.
RESULT

Returns ERR_OK if successful. This call can fail if the object does not
support the Detach() action, or if it is not attached to a parent object in
the first place.

1.15 Kernel: Display()

ACTION
Name: Display ()
Short: Displays an object inside its Container.

Synopsis: LONG Display (APTR Object [a0]);

DESCRIPTION

Calling this action will display the object in its specified container. If
the object cannot Dbe displayed, or if the required container was never
specified on Init (), the the call will fail.

INPUT
Object - The object to be displayed.

RESULT
Returns ERR_OK on success.

DPKernel

12/27

SEE ALSO
Kernel: Hide ()

1.16 Kernel: DPKForbid()

FUNCTION
Name: DPKForbid ()
Short: Stop other tasks/processes from executing.

Synopsis: void DPKForbid (void)

DESCRIPTION

Stops all other tasks and processes from executing until you call
DPKPermit () . This call will not turn off interrupts.

NOTE

This function has little effect in systems that do not multi-task.

SEE ALSO
Kernel: DPKPermit ()

1.17 Kernel: DPKPermit()

FUNCTION
Name: DPKPermit ()
Short: Allow other tasks to continue their processing.

Synopsis: void DPKPermit (void);

DESCRIPTION
Reverses a previous <call to DPKForbid(), so that all tasks can continue
their normal processes.

SEE ALSO
Kernel: DPKForbid

1.18 Kernel: Draw()

ACTION
Name: Draw ()
Short: Draws an object’s graphic to its container.

Synopsis: LONG Draw (APTR Object [a0]);

DESCRIPTION
This action will draw an object’s graphic to the container that it was
originally initialised to. If the object was never initialised to a

container that supports drawing, this action will have no effect.
Secondly, 1f the object has no graphical representation, then nothing can
be drawn.

This action is most often used in the drawing of Bobs and MBobs.

DPKernel

13/27

INPUT
Object - Points to an initialised object that you wish to draw.

RESULT
Returns ERR_OK if successful.

SEE ALSO
Kernel: Clear ()

1.19 Kernel: FastRandom()

FUNCTION
Name: FastRandom ()
Short: Generate a random number between 0 and <Range>.

Synopsis: LONG FastRandom (WORD Range [dl]);

DESCRIPTION

Creates a random number as quickly as possible. The routine uses one
divide to determine the range and will automatically change the random seed
value each time vyou call it. This routine has now been fully tested and

generates 100% patternless numbers.

Remember that all generated numbers fall BELOW the Range. Add 1 to your
range if you want this number included.

INPUTS
Range - A range between 1 and 32767. An invalid range of 0 will result in
a division by zero error.

RESULT
A number greater or equal to 0, and less than Range.

SEE ALSO
Kernel: SlowRandom ()
Demos: demos/randomplot

1.20 Kernel: FindDPKTask()

FUNCTION
Name: FindDPKTask ()
Short: Find the DPKTask structure for the current task.

Synopsis: xDPKTask FindDPKTask (void)

DESCRIPTION

This function will return the DPKTask structure for the task that called
it. The DPKTask structure 1is used for storing data that is specific to
your task - things like preference settings for example. Almost all of the
DPKTask fields are private and vyou you cannot write to this structure
unless you are a system module.

For the curious, 1t only takes 3 assembler instructions to grab the task
node, so there is no time wasted in calling this function.

DPKernel

14 /27

RESULT
Pointer to the DPKTask structure.

SEE ALSO
Include: system/tasks.i

1.21 Kernel: FindSysObject()

FUNCTION
Name : FindSysObject ()
Short: Finds a system object based on the ID.

Synopsis: *SysObject FindSysObject (LONG ID [dO], =*SysObject [a0]);

DESCRIPTION

This function begins finding a SysObject structure when given an ID and an
initial SysObject of NULL. If a matching SysObject is found in the system,
it will be returned immediately. Otherwise this function will go through
the object reference 1list to see if the object is available on disk. If
this 1is the case, then the relevant module will be loaded and then the
SysObject will be returned. If not, NULL is returned to indicate a failure
in the search.

The first matching SysObject to be returned is always the master object of
that particular class. If you want to find the child objects of the class,
call FindSysObject() again and supply the previously returned SysObject.
The next matching object will Dbe found and returned, otherwise NULL is
returned 1f no more objects are left. Note that if you are looking for a
specific child or hidden object you will need to check the SysObject->Name
string.

NOTE
The only way to find hidden objects are to search on ID_HIDDEN.

INPUT

ID - A system object ID as specificed in system/register.i.

SysObject - Last received SysObject if continuing a search, otherwise NULL
to start a new search.

RESULT

Pointer to the SysObject that has been found as a result of the search, or
NULL if no matching objects were found.

SEE ALSO
Include: system/register.i

1.22 Kernel: Flush()

ACTION
Name: Flush ()
Short: Flush buffered data from an object.

Synopsis: LONG Flush (APTR Object [a0])

DPKernel

15/27

DESCRIPTION

This action will flush all Dbuffered data from an object. It is mostly
intended for file objects that may buffer data to speed up processing time.
As a result of flushing, any un-written data will be dumped to its physical
location, if this is practical for the object in question (eg files).

Note that any object using a buffering technique will automatically flush
its data when you Free() it.

INPUT
Object - Pointer to an initialised object.

RESULT
Returns ERR_OK on success. All errors returned from Flush() are non-fatal,
so you may continue to use the object after failure.

SEE ALSO
Kernel: Reset ()

1.23 Kernel: Free()

ACTION
Name : Free ()
Short: Frees an object and any of its associated parts.

Synopsis: void Free (APTR [a0])

DESCRIPTION
This action will take any system object and free its resources. It accepts
lists for multiple deallocations.

If there is no Free action for the object, then it will be assumed that the
object does not require freeing. However, such an instance would be highly
unusual.

Once the object has been freed, the original pointer that you passed to
Free () immediately becomes invalid. For this reason, any references to the
object should be driven to NULL to prevent bugs from appearing in your
program.

INPUT
APTR - Pointer to one of the following:

Object, ListVl, ListV2, TaglList, ObjectList
SEE ALSO

Kernel: Get ()
Init ()

1.24 Kernel: FreeMemBlock()

DPKernel 16 /27

FUNCTION
Name : FreeMemBlock ()
Short: Free a previously allocated mem block.

Synopsis: void FreeMemBlock (APTR MemBlock [d0])

DESCRIPTION
Frees a memory area allocated by AllocMemBlock(), AllocVideoMemn(),
AllocBlitMem(), or AllocSoundMem (). If the mem header or tail is missing,

then it 1is assumed that something has written over the boundaries of your
memblock, or you are attempting to free a non-existant allocation.
Normally this would cause a complete system crash, but instead we simply
send a message to IceBreaker and leave the memory block in the system.

Bear in mind that it does pay to save your work and reset your machine if
such a message appears, as it indicates that important memory data may have
been destroyed.

NOTE
Never attempt to free the same MemBlock twice.

INPUT
MemBlock - Points to the start of a memblock. If NULL, then no

action will be taken (function exits).

SEE ALSO
Kernel: AllocMemBlock ()

1.25 Kernel: Get()

FUNCTION
Name: Get ()
Short: Gets the latest version of a specified object.

Synopsis: APTR Get (LONG ID [dO])

DESCRIPTION
This function will get the latest version of any object that you specify by
the ID argument. That 1s o0of course, if the object has been correctly

installed and is registered within the sytsem.

Screens, Pictures and Sounds are permanent and therefore always recognised,
while something 1like a CardSet is an extra and must have been installed
first [Get() will find such objects by wusing the reference files in
GMS:System/References/].

All objects going through Get () are tagged with a resource key. Before
your program exits you will need to free the object with the Free() action.
If you want your program to exit and leave certain objects in the system
(ie for other programs to use), then you can logical OR the ID argument
with GET_NOTRACK.

The structure will return with empty fields, so you can fill them out to
suit your requirements.

This function 1s the only way you can legally obtain a system object. If

DPKernel

17 /27

you ever think of compiling objects directly inside your program, forget it
- your program will crash.

INPUT
ID - One of the ID’s as specified in the system/register.i file.

RESULT
The latest version of the specified object or NULL if failure (caused by
lack of memory or unrecognised ID).

SEE ALSO
Kernel: Free ()
Init ()
Include: system/register.i

1.26 Kernel: GetMemSize()

FUNCTION
Name: GetMemSize ()
Short: Identifies the size of a given memory block.

Synopsis: LONG GetMemSize (APTR MemBlock [a0])

DESCRIPTION

This function will get the size of any memory block legally obtained from
AllocMemBlock () . Illegal pointers will result in a return of NULL.

INPUT

MemBlock - Pointer to the start of the memory block to be identified.

RESULT
The size of the memory block in bytes.

SEE ALSO
Kernel: GetMemType ()

1.27 Kernel: GetMemType()

FUNCTION
Name: GetMemType ()
Short: Identifies the type of memory in use by a particular memory block.

Synopsis: LONG GetMemType (APTR MemBlock [a0])

DESCRIPTION

This function will get the memory type of any memory block legally obtained
from AllocMemBlock (). Illegal pointers will result in a return of -1.
INPUT

MemBlock - Pointer to the start of the memory block to be identified.

RESULT
Type - Memory flags identifying the block (see AllocMemBlock()).

DPKernel 18/27

SEE ALSO
Kernel: GetMemSize ()

1.28 Kernel: Hide()

ACTION
Name: Hide ()
Short: Hides a displayed object from view.

Synopsis: void Hide (APTR Object [a0])

DESCRIPTION

If vyou have successfully displayed an object, then you can call Hide () to
take it off the display. If the object has not been displayed, then the
call is ignored.

INPUT
Object - Pointer to an initialised object that has been displayed.

SEE ALSO
Kernel: Display ()

1.29 Kernel: Init()

ACTION
Name: Init (), InitTags()
Short: Initialises an object so that it is ready for active use.

Synopsis: APTR Init (APTR Data [a0], APTR Container [all)
APTR InitTags (APTR Container, LONG tagltype, ...)

DESCRIPTION

This function initialises any recognised system object. The container
argument 1s dependent on the type of object that you are initialising (eg
Bob requires a Screen or Bitmap) so it is not always necessary to supply
one.

If you provide a List or ObjectList then be aware that Init () will pass the
original container to ALL the objects in the list. For this reason all
objects must share some commonalities to the container (eg do not
initialise a Sound in a list of Bobs).

If the initialisation action fails, then Init() will look for any child
classes that can handle initialisation of the object. If a child class
succeeds it will gain full ownership of the object and the master will lose
it.

This action will return NULL on error, you can get very informative error

messages by using IceBreaker.

Note to Module Programmers
If vyour module fails to initialise the object, Init() will free the object
for you - do not attempt to free the object yourself.

DPKernel

19/27

INPUT

Data - Pointer to an: Object, TaglList, ListV1l, ListV2 or an ObjectList.

Container - Some objects need to be initialised to a "container" or parent
object. If this is the case, specify that object here.

RESULT

Pointer to the initialised object.
SEE ALSO

Kernel: Free()
Get ()

1.30 Kernel: InitDestruct()

FUNCTION
Name: InitDestruct ()
Short: Initialise the task for use of SelfDestruct ().

Synopsis: void InitDestruct (APTR DestructCode [a0], APTR DestructStack [all])

DESCRIPTION
This 1s a special function that is called in the STARTDPK macro, gms.O
startup file and StartDPK program only. You should never call this

function explicitly unless you are writing your own startup code.

InitDestruct () will ©prepare your task so that it may be destroyed by the
SelfDestruct () function. DestructCode must point to the exit code for your
task. The exit code must call CloseDPK() at some point if you are to free
your tasks resources. DestructStack must point to the correct stack area
for vyour exit code, otherwise vyour task cannot return to the system
correctly.

To see an example of how this function works look at the STARTDPK macro in
file "dpkernel.i".

INPUTS
DestructCode - Points to the code at which your task makes its exit.

DestructStack - Points to the stack that will be used for the exit.

SEE ALSO
Kernel: SelfDestruct ()

1.31 Kernel: Load()

ACTION
Name: Load()
Short: Load a file and initialise it as a system object.

Synopsis: APTR Load(APTR Source [a0], LONG ID [dO0])

DESCRIPTION
Loads 1n a file, finds its native object and then returns an object that
has been initialised and ready for use.

DPKernel

20/27

If you supply a special ID of ID_MEMBLOCK, Load() will allocate a MEM_DATA
memory block, load all of the files contents into it, and then return the
memory block pointer back to you. You will need to free this pointer with
FreeMemBlock () when you are finished with it.

The file will be loaded in according to the object’s preferred format, eg
loading of Pictures will always result in the data being in video ram. If
you require more power 1in the loading of a particular object, use the
Init () function instead of Load().

NOTE

If this function cannot find an object that immediately recognises this

structure, Load() will most ©probably open the file using the RawData

object.

INPUT

Source — File name or Memory location pointer.

ID — Forces the type of object that you want to be returned. Use NULL
if you want Load() to assess the file and return its appropriate
object.

RESULT

Pointer to the initialised object or NULL if failure. Remember that

RawData is used if no other object recognises the source file.
SEE ALSO

Kernel: Free()
Init ()

1.32 Kernel: OpenModule()

FUNCTION
Name: OpenModule ()
Short: Provides a quick way of opening a module.

Synopsis: *Module OpenModule (LONG ID [dO], BYTE xName [a0])

DESCRIPTION
INPUT
ID — ID of the module to open (can be NULL if name is supplied).

Name - Name of the module to open (not required if ID is known).

RESULT
Pointer to an initialised Module structure or NULL if failure.

SEE ALSO
Object: Module
Kernel: Init ()

DPKernel 21/27

1.33 Kernel: Query()

ACTION
Name : Query ()
Short: Gets the latest information on a particular object.

Synopsis: LONG Query (APTR Object [a0])

DESCRIPTION

Calling the Query() action will update all fields in the given object to
reflect any changes since the last Query () or initialisation.

Examples of using the Query() action are to get information on picture

files (such as width, height, amount of colours) and obtaining consistently
changing data, such as joystick information.

INPUT
Object - Pointer to an object allocated from Get ().

RESULT
ErrorCode - ERR_OK on success.

1.34 Kernel: Read()

ACTION
Name: Read ()
Short: Read data from an object into a buffer.

Synopsis: LONG Read(APTR Object [a0], APTR Buffer [al], LONG Length [dO0]);

DESCRIPTION

This action will read the amount of bytes as determined by Length, from the
Object and into the given memory Buffer. The read will start at the
position determined by the object’s Byte Position field. This field will
be incremented to BytePos+Length if the call succeeds. Further calls to
Read () will therefore start from where you left off.

If the Length exceeds the total size of the data then this function will
only read as many bytes as there are left in the file. You can always
compare the BytePos and Size fields to see how many bytes are left to read
in the object.

INPUT

Object - Pointer to an initialised Object.

Buffer - Pointer to a memory area in which the data will be written to.
Length - Amount of bytes to read from the object.

RESULT
Returns the total amount of data read into the buffer. NULL can indicate
an error, or maybe there is no more data left to read.

SEE ALSO
Kernel: Write ()

DPKernel 22 /27

1.35 Kernel: RemSysEvent()

FUNCTION
Name : RemSysEvent ()
Short: Removes an event tag from the system.

Synopsis: void RemSysEvent (xEvent [a0])

DESCRIPTION
Not documented yet.

INPUT
Event -

SEE ALSO
Kernel: AddSysEvent ()

1.36 Kernel: Reset()

ACTION
Name: Reset ()
Short: Resets an object to a receptive state.

Synopsis: LONG Reset (APTR Obiject [a0])

DESCRIPTION
This action will &reset an object to a state that is receptive to new
processes. Its Dbehaviour depends greatly on the object at hand. Files

will reset their byte position to 0 for all further I/O operations, while
the Restore object dumps all current restore states and forgets about any
buffered data.

NOTE
Reset () is not the same as Flush{(). Some objects will flush themselves
before performing the reset action, others may not. It depends on the

circumstances, but if vyou want the data flushed then use the Flush{()
action.

INPUT

Object - Pointer to an initialised obiject.

RESULT

An error will be returned if the action could not execute. This can happen
if the object does not support or require the Reset () action.

SEE ALSO

Kernel: Flush ()

1.37 Kernel: Save()

ACTION
Name: Save ()
Short: Writes all of an object’s information to a destination file.

Synopsis: LONG Save (APTR Object [a0], APTR Destination [all])

DPKernel

23/27

DESCRIPTION

This action will save an object’s data to a file, in a data format that is
suitable for the Load() action. For example: As a default, the Picture
object saves all pictures in IFF format, and it also supports the loading
of pictures in IFF format.

It will be possible for a child object to save a file in its own format (ie
instead of the master format). This way the wuser can perform file
conversions, such as load a picture as IFF and save it out as JPEG. The
method for doing this is still under-way, but to simplify the process for
programmers, the wuser will ©probably be able to choose preferred saving
types from GMSPrefs.

INPUT

Object — Pointer to an initialised object.

Destination - Pointer to a Source/Destination structure, such as a
FileName, MemPtr or File object.

RESULT
Returns ERR_OK on success.

SEE ALSO
Kernel: Load()

1.38 Kernel: SelfDestruct()

FUNCTION
Name: SelfDestruct ()
Short: Destroys the task and frees resources.

Synopsis: void SelfDestruct (void)

DESCRIPTION
Destroys the task that called this function and then proceeds to free all
of its resources according to the resource nodes. This is a completely

safe and effective way of destroying a task, and can be used for
deconstructing a task when it has got into unrecoverable circumstances.

You must have called InitDestruct () before calling this function. If you
are programming in C or assembler this initialisation is already in the
STARTDPK macro and gms.o startup file, so this does not concern you.

NOTE

This function will not return. However if InitDestruct () has not been
called then the function will not be able to do anything and will return
back to the task.

SEE ALSO
Kernel: InitDestruct ()

1.39 Kernel: SlowRandom()

DPKernel 24 /27

FUNCTION
Name : SlowRandom ()
Short: Generate a random number between 0 and <Range>.

Synopsis: LONG SlowRandom (WORD Range [dl])

DESCRIPTION
Generates a very good random number in a relatively short amount of time.
This routine takes approximately two times longer than FastRandom(), but is

guaranteed of giving excellent random number sequences.

Remember that all generated numbers fall BELOW the Range. Add 1 to your
range if you want this number included.

INPUTS
Range - A range between 1 and 32767.

RESULT
A number greater or equal to 0, and less than Range.

SEE ALSO
Kernel: FastRandom ()
Demos: demos/randomplot

1.40 Kernel: Switch()

FUNCTION
Name : Switch ()
Short: Stops the task that called this function.

Synopsis: void Switch(void);

DESCRIPTION

Switches your task over to the next task in the queue. This function will
not return until the user reactivates your task, so your tasks execution is
effectively stopped. Any secondary processes and interrupts that you have
spawned will continue to execute, so multi-tasking can still be effective.

If the next task is screen-based, then your screen display will be removed
and the new screen will be displayed. 1If you have any secondary tasks
running, then take note: You must not allow them to wuse the
drawing/blitter operations as your display memory may be temporarily moved
to free wup video memory. Blitting to an invisible display is also
considered to be Dbad practice as most GMS tasks require all available
blitter time. We also ask you to refrain from using the audio functions as
the next task will probably be needing all available channels.

If there are no more tasks 1in the queue, then the screen display will
return to intuition. GMS supports two methods of screen switching to
intuition, Switch-To-Window and Switch-To- Screen. The method used depends
on the setting in the GMSPrefs utility.

Switch-To-Window drops out to workbench and places a window on the screen.
It will wait wuntil the close gadget is pressed, whereupon your game will
continue where it left off.

DPKernel

25/27

Switch-To-Screen opens an intution screen and busy-waits until that screen
comes to the front. At that point the intuition screen will be closed and
your game will resume execution.

SEE ALSO
Kernel: AutoStop ()

1.41 Kernel: Taglnit()

FUNCTION
Name: TagInit ()
Short: Initialise a structure according to a tag list.

Synopsis: LONG TagInit (APTR Structure [a0], APTR TaglList [al])

DESCRIPTION
This function 1s intended for system modules but may be used by normal
programs if required.

It will process a standard tag list and store specified values in the given
structure, which should be empty although this is not a pre-requisite. It
is important that the tags themselves have been correctly defined using the
TBYTE, TWORD and TLONG flags. Check the include files for examples.

This function has some software based memory protection and will prevent
values from being written outside of the structure’s memory area. Detected
errors will be sent to the system debugger.

INPUTS

Structure - Pointer to allocated structure memory.
TagList - Pointer to a standard tag list (see tags).
RESULT

Returns ERR_OK if successful.

SEE ALSO
Kernel: Get ()

1.42 Kernel: TotalMem()

FUNCTION
Name: TotalMem ()
Short: Gets the total amount of memory used by a task.

Synopsis: LONG TotalMem (*DPKTask [a0], LONG Flags [d0])

DESCRIPTION

Gets the total amount of memory currently in use by a Task. This total can
be calculated from a specific type of memory, or a total of all memory in
use 1f -1 is specified. If DPKTask is passed as NULL then this function
will sum up the total amount of memory used by all Tasks in the system.

INPUT
DPKTask - Pointer to a DPKTask object, or NULL to calculate from all tasks.

DPKernel

26/27

Flags - The memory type that vyou want to be calculated (MEM_VIDEO,
MEM_SOUND, MEM_DATA or MEM_BLIT). If you want a complete total
of all memory in use, specify -1 here.

RESULT
The total amount of memory in use.

1.43 Kernel: WaitTime()

FUNCTION
Name: WaitTime ()
Short: Wait for a specified amount of micro-seconds.

Synopsis: void WaitTime (LONG MicroSeconds [dO])

DESCRIPTION

Waits for a specified amount of micro-seconds. During this time it will
reduce the task priority and make regular calls to AutoStop () for you.
INPUT

MicroSeconds - Amount of micro-seconds to wait for (100 = 1 Second).

1.44 Kernel: Write()

ACTION
Name: Write ()
Short: Writes a given amount of bytes to an object’s data space.

Synopsis: LONG Write (APTR Object [a0], APTR Buffer [al], LONG Length [dO])

DESCRIPTION
This action will write the amount of bytes as determined by ’'Length’, from
the memory buffer and into the Object’s data space. The write will start

at the position determined by the object’s BytePos field. This field will
be incremented to BytePos+Length if the call succeeds.

If the BytePos+Length exceeds the total size of the file, then the object
may 1increase 1its data space to <cope with writing out the rest of the
buffer. This will always happen with Files, but memory based objects will
rarely be able to do this.

INPUTS

Object - Pointer to an initialised object.

Buffer - Pointer to data that will be written to the object.
Length - Amount of bytes to write.

RESULT
Returns the amount of bytes written. NULL indicates an error.

SEE ALSO
Kernel: Read()

DPKernel 27 127

1.45 Kernel: ()

FUNCTION
Name: ()
Short:
Synopsis:
DESCRIPTION
NOTE

INPUT

RESULT

SEE ALSO

	DPKernel
	Library: DPKernel
	DPKernel
	Kernel: Activate()
	Kernel: AddSysEvent()
	Kernel: AddSysObject()
	Kernel: AddTrack()
	Kernel: AllocMemBlock()
	Kernel: AutoStop()
	Kernel: Clear()
	Kernel: CloseDPK()
	Kernel: CopyStructure()
	Kernel: Deactivate()
	Kernel: DeleteTrack()
	Kernel: Detach()
	Kernel: Display()
	Kernel: DPKForbid()
	Kernel: DPKPermit()
	Kernel: Draw()
	Kernel: FastRandom()
	Kernel: FindDPKTask()
	Kernel: FindSysObject()
	Kernel: Flush()
	Kernel: Free()
	Kernel: FreeMemBlock()
	Kernel: Get()
	Kernel: GetMemSize()
	Kernel: GetMemType()
	Kernel: Hide()
	Kernel: Init()
	Kernel: InitDestruct()
	Kernel: Load()
	Kernel: OpenModule()
	Kernel: Query()
	Kernel: Read()
	Kernel: RemSysEvent()
	Kernel: Reset()
	Kernel: Save()
	Kernel: SelfDestruct()
	Kernel: SlowRandom()
	Kernel: Switch()
	Kernel: TagInit()
	Kernel: TotalMem()
	Kernel: WaitTime()
	Kernel: Write()
	Kernel: ()

