General

Paul Manias

General

] COLLABORATORS
TITLE :
General
ACTION NAME DATE SIGNATURE
WRITTEN BY Paul Manias July 26, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

General

Contents

1 General
1.1 General Information

1.2 File-Based Objects

1.3 Structure Layout .
14 Lists
1.5 Tags
1.6 Error Codes

1.7 Data Checking . .

General

1/12

Chapter 1

General

1.1 General Information

SYSTEM DOCUMENTATION

Name: GENERAL INFORMATION
Version: 0.9 Beta.

Date: October 1997
Author: Paul Manias

Copyright: DreamWorld Productions, 1996-1997. All rights reserved.

DESCRIPTION
This documentation covers how the Games Master System behaves, how it was
designed and why those design methods are in place. If you have any

questions in these areas hopefully they can be answered here.

Data Checking
File-Based Objects
Error Codes

Lists

Structures

Tags

o U b W N

CHANGES VERSION 0.9B
Added: ERR_MEMORY
ERR_NOSUPPORT

Edited: Tags Information (example code)
List Information (LIST2)
Almost all of this document has been edited
in various parts.

1.2 File-Based Objects

FILE-BASED OBJECTS

One of the problems with conventional games programming is that after the

General

2/12

game has been compiled, all the structures and object data is often fixed
in place, impossible to edit from a user point of view, and has no
potential of future expansion.

By providing support for external data objects, we can achieve the
possibility of wup to 100% of data editing with very little effort. This

opens up a large number of avenues for the future of your product. Even if
you stop developing it, other wusers can still make improvements. For
example:

Graphic Artists may edit your graphics in all areas, such as upgrading them
to 24bit quality, changing resolutions from 320x256 to 1280x1024, altering
the size, amount of animation frames, and clipping of your bobs, adding and
changing rasterlist commands, and so on.

Programmers may change existing code segments to create new effects,
improve compatibility, make time critical sections faster, and generally
change whatever you allow them to.

Game Players could design new levels, change attack plans, game settings,
and edit the game to suit their own tastes.

THE OBJECT FILE FORMAT

Object data 1s compiled into standard Amiga segmented files. The easiest
way to learn how it works is to view one; here is an example of a Screen
and a Picture located in an object file:

INCDIR "GMSDev:Includes/"
INCLUDE "games/dpkernel.i"

SECTION "Start",DATA

;All object files start with "OBJF" and then the data objects start
;immediately after this.

Objects:
dc.1l "OBJE" ;File identification.

; The Screen object starts with the compulsory object header,
;which also contains the name of the object in question. You need
;to remember the names of all your objects as this is the only way
;jto correctly identify them. The structure data then follows in
;the data section

OBJ_Screen:

dc.l "TAGS" ;Object type.

dc.l OBJ_Picture ;Pointer to next object.
dc.b "Screen", 0 ; Name.

even

.data dc.l TAGS_SCREEN,O0
dc.l GSA_AmtColours, 16
dc.l GSA_ScrWidth, 640
dc.l GSA_ScrHeight, 256

General

3/12

dc.l GSA_Attrib,CENTRE
dc.l GSA_ScrMode,HIRES|LACED
dc.l TAGEND

; The overall layout of the Picture object is identical to the
;Screen, we have Jjust changed the name and entered the

;correct structure data.

OBJ_Picture:

dc.l "TAGS" ;Object type.

dec.l End ;Pointer to next object.
dc.b "Picture", 0 ; Name.

even

.data dc.l TAGS_PICTURE,QO

dc.l PCA_AmtColours,16

dc.l PCA_Width, 640

dc.l PCA_Height, 256

dc.l PCA_ScrMode, HIRES|LACED
dc.l PCA_Options, IMG_RESIZE
dc.l PCA_File,.file

dc.l TAGEND

.file FILENAME "GMS:demos/data/IFF.Pic640x256"
;All lists must terminate with an OEND string.
End: dc.l "OEND"

-——END---

In time there will be an editor for object files, so everyone will be able
to create and edit them in a GUI interface rather than with an assembler.

GRABBING DATA FROM OBJECT FILES

You <can grab a pointer to an object by first loading in the object-file,
then call the GetObject() function. You need to supply the name of the
object you wish to grab, the function will do the rest.

Note that identifiable tag structures (eg TAGS_SCREEN) will be
pre-processed by GetObject(), so vyou will usually be returned a Screen
object that already contains the values from the tag-list. Your next step
would then be to write out vyour own fields, and then call Init () to
complete the initialisation process.

If you want to find more than one object, you can use an object list. This
is a special list designed for the GetObjectList () function. It looks like
this:

dc.l OBJECTLIST,O
dc.l <Name>,<Object>
dec.l ...

dc.l LISTEND

General

4/12

<Name> points to the name of the object you wish to find. <Object> will be
initialised by the GetObjectList () function, ie it will point to the object
if it finds 1it. Normally you will set this field to NULL before calling
the function. If vyou place something in the <Object> field then
GetObjectList () will ignore that particular entry. You may also mix
different kinds of objects in the same list, eg Screens and Sounds if that
makes things easier for you.

1.3 Structure Layout

STRUCTURE LAYOUT

All structures have been designed with just one commonality: They all
start with a standard system header. Following this are whatever fields
are relevant for that structure type.

The structure header looks like this:

STRUCTURE Head, 0

WORD HEAD_TID

WORD HEAD_Version
APTR HEAD_SysObject
APTR HEAD_Stats

LABEL HEAD_STZEOF

The ID consists of a word length object identifier. An example for Screens

is ID_SCREEN. The ID 1s important to uniquely identify what class the
object Dbelongs to. Whenever we want to identify an object as quickly as
possible, this is where we look first. Obviously it is important that this

ID 1is correct at all times, otherwise you will confuse the system.

ID's can Dbe wused for more than just examining structures. One such is
example 1is the LIST 1ID header, which tells a function that it needs to
perform the same action to two or more structures (you can read more about
this in Lists).

The Version field can be wused for jump tables to deal with the various
structure types and handling the future expansion of the structure. It
starts at 1 and goes upwards.

The Stats field is reserved for low-level system use and cannot be read
by normal programs.

The SysObject field points to the object’s class details and should not be
read unless vyou really know what you are doing. It serves no purpose to
99% of developers but is very important to the system, so try to leave it
alone.

STRUCTURE AUTO-INITIALISATION

A standard policy for initialisation is to initialise all empty fields to
either the user defaults, or values determined by any related fields. For

General

5/12

example, omitting the Width and Height values from a screen would cause the
screen to open at the user’s Width and Height defaults. On the other hand
if you were to omit the child bitmap’s Width and Height settings, these
would inherit the values present in the parent screen’s Width and Height.

Sometimes 1f there is a file present, the fields will receive values from
that file’s header structure. For example, IFF pictures will fill out most
of a picture object when one is loaded.

The only fields that are not auto-initialised are the ones containing
programmer flags (Attrib, Option) and Data fields.

FUTURE COMPATIBILITY

It 1s illegal to define a structure in your code and compile it into the
final binary. The only way you can legally obtain a structure is via a
call to Get () or Init(). This rule solves all future concerns in relation
to structure handling and size increases.

1.4 Lists

LISTS

A 1list 1is intended for processing 2 or more structures inside a function.
This is the fastest way that you can process a whole lot of objects without
having to make heaps of function calls. Lets say you wanted to load in 10
sounds from your hard-drive using Init (). Normally Init () takes a standard
object, but it can also identify a list by checking the header ID.

To illustrate, a typical list for initialising/loading sounds looks like
this:

SoundList:
dec.l LIST1 ;List identification header.
dc.l SND_Boom ;jPointers to each sound to load and
dc.l SND_Crash ; initialise.
dc.l SND_Bang
dc.l SND_Ping
dc.l SND_Zoom
dc.l SND_Zig
dc.l SND_Zag
dc.l SND_Wang
dc.l SND_Whump
dc.l SND_Bong
dc.l LISTEND ;Indicate an end to the list.

When you want to load all your sounds in, Jjust use this piece of code:

move.l DPKBase (pc),ab
lea SoundList (pc), a0 ;a0 = Pointer to the soundlist.
sub.1 al,al

General 6/12
CALL Init
tst.1l do
bne.s .error

Or: if (Init (&SoundList,NULL) IS NULL) {
return (ERR_FAILED) ;
}

Some functions are specially written to be given 1lists only, eg
DrawBobList (). This is mainly for speed reasons, as we don’t want to waste
time checking if a structure is a list or not in time critical situations.

There 1is a second LIST type, suitably referred to as LIST2. This is a
special 1list intended for the initialisation and freeing processes, and
looks 1like this:

List: dc.l1 LIST2,NULL
dc.l <TagList>,<Object>
dc.l LISTEND

The advantage of this list is that you can specify tags on the left, then
when you call Init () it will place pointers to the allocated objects on the
right. This makes things a lot easier when you want to Free() all of your
object pointers.

That’s Dbasically the summary on lists. You may be interested to know that
this 1is the only system that supports structures in this way. You will
learn more about lists and how ID fields will help you in other areas of
the system documents.

1.5 Tags

TAGS AND TAGLISTS

Tags are supported in a way that is essentially identical to the Amiga OS.
The only major difference is that an internal change in design allows them
to be processed much faster.

Tags allow you to support all future structure versions, and they are very
convenient for use in C. Because pre-compiled structures are illegal, you
will have to use tags a lot. Make sure that you look at the demos so that
you understand how to use them. The most important function with regards
to tags 1is Init (), or for C programmers InitTags (). There are not many
other functions that require such heavy use of tag lists.

On the lowest level, tags are represented like this:
dc.l TAGS_ID,<Structure>
dc.l <ti_Tag>,<ti_Data>

dc.l TAGEND

Example:

General 7/12
dc.l TAGS_SCREEN, NULL
dc.l GSA_Width, 320
dc.l GSA_Height, 256
dc.1l TAGEND

If you do not give a structure pointer (as in this example), the structure

will be allocated for vyou, via a call to Get (). The newly allocated
structure will be placed in the structure pointer in your tag-list (useful
for assembler programmers), and will also be returned by the function. If

a tag <call results in a return of NULL then an error has occured and the
call has failed. To find out why the failure occured you would have to use
a system debugger like IceBreaker.

Here is an example of using tags in C:
struct Screen *xScreen;
if (Screen = InitTags (NULL,
TAGS_SCREEN, NULL,

GSA_Palette, Palette,
GSA_ScrMode, LORES,

GSA_Width, 320,
GSA_Height, 256,
GSA_ScrAttrib, DBLBUFFER,
TAGEND)) {

/* Code Here =/

Free (Screen) ;

}

STEPPING INTO CHILD OBJECTS

A very interesting and quite important feature of the tags support, is the
fact that vyou can "step into" <child objects. For example the CardSet
object has its own relevant fields, but as it is based on the Bob object,
it also inherits the use of the Bob fields and its functionality. Now if
you are initialising your CardSet object, you might want to set one of the
Bob fields, such as the X and Y coordinates. But how do you do this if the
fields are in an underlying structure? Here’s how:

struct CardSet =*CardSet;

if (CardSet = InitTags (NULL,
TAGS_CARDSET, NULL,

CSA_Source, file_CardSet,
CSA_BobTags, NULL, <- Gain access to the Bob object.
BBA_XCoord, 100, <- Set the Bob X Coordinate.
BBA_YCoord, 125, <- Set the Bob Y Coordinate.
TAGEND, NULL, <- Return back to the CardSet tags.
TAGEND)) {

/* Code Here «/

Free (CardSet) ;
}

Notice how the prefix for the tags changed from CSA_ to BBA_ once we

General

8/12

entered the Bob object, and that we ended the Bob’s section with TAGEND and
NULL. We also indented the list to make it very clear that the tag list
was moving into a child object.

SPECIAL FLAGS

Lastly there are also some special flags that you can use for advanced Tag
handling. It 1s unlikely that you will ever need to use these, but they
are available 1if you require them. These flags are identified in ti_Tag,
and they are:

TAG_IGNORE - Skips to the next Tag entry.

TAG_MORE - Terminates the current TagList and starts another one (pointed
to in the ti_Data field).

TAG_SKIP — Skips this and the next ti_Data items.

That’s all you need to know, just remember to terminate all your tag calls
with TAGEND.

1.6 Error Codes

ERROR CODES

A universal set of error codes is used by all functions with a return type

of ErrorCode. This enables you to easily identify errors and debug these
problems when they occur. ErrorCodes are sent to IceBreaker with full
descriptions, so use this program for easy identification of errors. Here

is a description of current error codes and what they mean:

[0] ERR_OK
No error occurred, function has executed successfully.

[1] ERR_NOMEM
Not enough memory was available when this function attempted to allocate a
memory block.

[2] ERR_NOPTR
A required address pointer was not present.

[3] ERR_INUSE
This structure has previous allocations that have not been freed.

[4] ERR_STRUCT
You have given this function a structure version that is not supported, or

you have passed it an unidentifiable memory address.

[5] ERR_FAILED
An unspecified failure has occurred.

[6] ERR_FILE
Unspecified file error, eg file not found, disk full etc.

[7] ERR_DATA

General

9/12

This function encountered some data that has unrecoverable errors.

[8] ERR_SEARCH

An internal search was performed and it failed. This is a specific error
that can occur when the function 1is searching inside file headers for
something, eg the BODY section of an IFF file.

[9] ERR_TYPE
Bitmap Type not recognised or supported, eg currently True Colour modes are
not available.

[10] ERR_MODULE
This function tried to initialise a module and failed.

[11] ERR_RASTCOMMAND
Invalid raster command detected. Check your rasterlist for errors and make
sure it terminates with a RASTEND.

[12] ERR_RASTERLIST
Complete rasterlist failure. You have tried to do something which is not
possible under present conditions.

[13] ERR_NORASTER
Raster object was missing from Screen->Raster.

[14] ERR_DISKFULL
Disk full error, time to get more space.

[15] ERR_FILEMISSING
File not found, this occurs when a FileName references a file that does not
exist.

[16] ERR_WRONGVER
Wrong version or version not supported.

[17] ERR_MONITOR
Monitor driver not found or not supported.

[18] ERR_UNPACK
Problem with unpacking of data.

[19] ERR_ARGS
You tried to pass invalid arguments to this function, such as a NULL value
where you should have placed a pointer.

[20] ERR_NODATA
This function expected some data which you have not supplied.

[21] ERR_READ

Occurs 1f vyou attempt to read a file and a failure occurs. Perhaps there
is nothing left to read, the file object has been invalidated, or there are
surface errors on the media in question.

[22] ERR_WRITE
Occurs 1f vyou attempt to write to a file and a failure occurs. Usually
this is due to a hardware problem such as lack of space or surface errors.

General

10/12

[23] ERR_LOCK

This error <can occur 1if vyou attempt to get a lock on an object that is
already locked out by another task, or if you try to lock an object that
does not exist.

[24] ERR_EXAMINE

This error applies to file and directories. It can occur for various
reasons, a probable cause could be a corrupt/invalidated area of a disk
structure.

[25] ERR_LOSTCLASS

This is a very serious error, which occurs if an object loses its reference
to its SysObject. This basically means that the Object->Head.SysObject has
been cleared or invalidated.

[26] ERR_NOACTION
If you call an action on an object, and if the object does not support that
action, you will receive this message. An example of this could be:

Draw (Segment) ;
[27] ERR_NOSUPPORT
Can be caused if an object fails to initialise, often due to an unsupported
data format.
[28] ERR_MEMORY

General memory error, such as no memory available, or memory too
fragmented.

1.7 Data Checking

DATA CHECKING
AND

VALIDATION PROCEDURES

This system has been designed to allow for the inclusion of simple and
efficient data checking mechanisms. All kernel based functions support
null handling, data checking, and data validation. Due to the presence of
IceBreaker vyou can quickly find out where a program has failed, as
functions report errors directly to you in english (not error codes or
software failure numbers) .

GARBAGE PROTECTION

The simplest example of garbage protection is that of functions checking
that they have been passed the correct data structures before they actually

do anything with them. This offers the programmer more security when
developing, as passing the wrong data to a function is not uncommon and can
often result 1in disaster. In the past, protection from such actions has

been employed at the level of a language compiler, such as C’s type

General

11/12

checking feature. However this has obvious problems as there is never any
assurance that what you are passing is correct - there is no way of knowing
that the data has not been tampered with, if the pointer is simply pointing
to the wrong structure or if the object was not initialised in the first
place.

Therefore the only sure-fire way of protecting a system and the programmer
from such accidents is at the function level, where the data is checked for
validity before hand and not processed until it passes the various tests
employed. This does not mean checking each field for valid values, a
simple ID test <can perform wonders. Surprisingly I do not know of any
other OS that consistently offers such a feature.

Other garbage protection features include software based memory protection.
This 1s significantly different to hardware based memory protection which
requires the addition of a memory management system with the CPU. Although
memory protection on a software level will always be less stringent than at
hardware, it has an advantage of being able to deal with errors in a more
suitable way, rather than exceptions being generated that often result in
the program being shut down by the 0S. A good example of all this is the
TagInit () function.

TagInit () takes an empty structure and a list of data tags, then processes
the data tags and writes out the wvalues to the given structure. The
procedure to do this is straight forward and takes no more than a few lines
of assembler to implement. However if the tag list has bad data values
there 1is nothing to stop data being written outside of the structures
memory boundary. To stop this TagInit() finds out the size of the

destination structure and compares it to the destination given in each tag.
If a problem is discovered the function stops operations, passes an
informative message on to IceBreaker, then returns to the program with an
error code. The program can then exit in its own way, and the programmer
can 1immediately find out what went wrong without "exception code X at
address $X" and a list of incomprehensible assembler registers.

DATA INTERFERENCE

There are two types of data interference: ’Accidental’ interference (which
is the result of a programming error), and ’'Deliberate’ interference (you
change the data of a program on purpose).

Deliberate Data Interference is a feature written into many GMS objects and
functions. When a system routine finds a data value that is in error or is
extremely inappropriate, it will be changed. This can prevent a program
from crashing, or unexpectedly exiting for small mistakes. An example of
this might Dbe attempting to open a screen at 640x1024, when the user’s
system only supports 640x512. 1In this case the screen object will alter
its height so that it opens at the correct screen size. To alert the
programmer of the mistake, a message will be sent to the system debugger.
In the current AmigaOS this checking never happens, and a common problem is
with windows that open at sizes that do not fit on screen.

Here is a second example:

Lets say a programmer was loading a picture that was 4 planes in depth.

General

12/12

Although this was specified in the picture structure he forgot to set the
screen type to ILBM. Because it was already set in his preference settings
for GMSPrefs it works anyway, so the problem goes unnoticed. Later, a user
with a setting of CHUNKYS8 tries the program. Now normally this could crash
the system or cause the program to never work at all, because a CHUNKYS8
screen cannot have a plane setting of 4. However Init (Picture) will pick
up on this and immediately change the setting to 8. The problem is now
solved, and the program continues to work fine.

This kind of checking and comparisons are often used and it allows a
certain amount of extra future-proofing to the general functionality. A
small programming flaw made now, which might not show up until future GMS
versions, can now be dealt with quickly and without incident.

	General
	General Information
	File-Based Objects
	Structure Layout
	Lists
	Tags
	Error Codes
	Data Checking

