
File

Paul Manias

File ii

COLLABORATORS

TITLE :

File

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Manias May 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

File iii

Contents

1 File 1

1.1 Object: File . 1

1.2 Object: File . 1

1.3 Object: File . 2

1.4 Object: File . 2

1.5 Object: File . 3

1.6 Object: File . 3

1.7 Object: File . 4

1.8 Object: File . 5

1.9 Object: File . 5

1.10 Object: File . 6

1.11 Object: File . 6

File 1 / 6

Chapter 1

File

1.1 Object: File

OBJECT DOCUMENTATION
Name: FILE
Version: 0.9 Beta
Date: December 1997
Author: Paul Manias
Copyright: DreamWorld Productions, 1996-1997. All rights reserved.

CHANGES VERSION 0.9B
Added: Query() to action support list.

File->Permissions

Edited: File->Comment
File->Date

1.2 Object: File

OBJECT
Name: File
Module: Files
Version: 1
Type: Simple

DESCRIPTION
The File object is used for basic file management purposes. Unlike file
handles in AmigaDOS, this object allows you to find out many details on a
file with almost no effort.

Files support auto-unpacking and finding capabilities. Since all File
objects are tracked, there is no chance of the system allowing you to
forget the closing of a File.

ACTIONS
The File object supports the following actions:

Free() Free the File object.

File 2 / 6

Get() Get a File structure.
Init() Initialise/Open a File.
Query() Get information on a file.

FUNCTIONS
Some functions relating to the File object are:

OpenFile() Prepare a file for reading and writing.
ReadFile() Read data from a file.
WriteFile() Write data to a file.

STRUCTURE
The File structure consists of the following public fields:

BytePos Current position in file.
Comment Comment for the file, if any.

+ Date Pointer to Time of last date stamping.
Flags File flags and options.
Next Next File in the chain (directories).
Permissions RWED and other permission flags.
Prev Previous File in the chain (directories).
Size Total size of the file.
Source Pointer to source of the file.

1.3 Object: File

FIELD
Name: BytePos
Type: LONG
Range: Between 0 and File->Size.
On Change: Dynamic
Status: Read/Write

DESCRIPTION
Specifies the current byte position in the opened file. You can change
this value to read or write from different positions in a File object.

1.4 Object: File

FIELD
Name: Comment
Type: BYTE *
Inheritance: Obtained from stored file, if possible.
To Change: SetFileComment()
Status: Read/IWrite

DESCRIPTION
This field points to a string that specifies the user commment for the
file. Although the File object supports comments of an unlimited length,
the file-system itself will have a cut-off point on the comment length. It
would be unwise to assume support for anything longer than 128 bytes. If
when setting a new comment you go over the limit, the extraneous characters

File 3 / 6

will be ignored.

NOTE
If you initalise an existing file and specify a comment, the old comment
will be over-written with your new one.

1.5 Object: File

FIELD
Name: Date
Type: struct Time *
Inheritance: Obtained from stored file, if possible.
To Change: SetFileDate()
Status: Read/IWrite

DESCRIPTION
This field points to a Time object, which specifies the date on which this
file was last stamped. This is usually considered to be the last date on
which the file was changed, but this does not always have to be the case.

NOTE
If you Init() a File that already exists on disk, and if you have specified
a Date, the old date will be over-written with your new one.

1.6 Object: File

FIELD
Name: Flags
Type: LONG
On Change: Cannot change dynamically.
Status: Read/IWrite.

DESCRIPTION
This field specifies the commands to use when opening the file. After
opening your file you may only refer to this field for historical purposes.

Here are the flags that you can specify - they are also the same flags you
can use in OpenFile().

FL_READ
This flag is the default and will open the file for reading data.

FL_WRITE
Prepares the file for writing data, starting at byte position 0. If you
want to start writing from the end of the file, copy the File->Size value
to File->BytePos after OpenFile() returns successfully.

FL_LOCK
Setting this will lock the file for exclusive access - no other process
will be able to open the file while you are using it. If this flag is not
set then the file will be open for shared access. Attempting to lock a
file that is already open with shared access results in failure.

File 4 / 6

FL_FIND
This flag allows OpenFile to use some intelligence and try to find the file
if it is not immediately located at the given FileName. The process
involves a simple but powerful tree search.

Example
You try to load a file at Game:Data/PIC.Crocodile. However the Game:
assignment does not exist. You are being run from the directory
HD1:Game/Data/ which is a directory above the required logical assignment.
OpenFile() will find the file by using the following procedure:

Open - Game:Data/PIC.Crocodile (FAIL)
Data/PIC.Crocodile (FAIL - HD1:Game/Data/Data/PIC.Crocodile)
PIC.Crocodile (SUCCESS - HD1:Game/Data/PIC.Crocodile)

Note
The file finding feature is limited to localised searching, no attempt will
be made to do a tree search of all directories in an assignment (a lengthy
process).

FL_NOUNPACK/FL_NOPACK
If you specifically do not want packing/unpacking modes used on your file,
specify either one of these flags. Under most circumstances you should
never set these flags, because if the user does not want to use compression
he/she can say so in the system preferences.

FL_NOBUFFER
Setting this flag prevents the file data from being put in the file cache.
You may want to do this if it is imperative that the file physically
reflects its data at all points in time.

1.7 Object: File

FIELD
Name: Next
Type: struct File *
Inheritance: Links are automatically formed when listing directories.
Status: Read Only.

DESCRIPTION
The Next field is generally involved with the building of directory
structures. For example, if you Activate() a Directory object it will
build a list of all Files in that directory, and point to the first File in
the list. All further Files will then be joined via the Next field.

You can detach a File from the chain by using the Detach() action.

SEE ALSO
Field: Prev
Kernel: Detach()

File 5 / 6

1.8 Object: File

FIELD
Name: Permissions
Type: LONG
Inheritance: Init()
Default: FPF_READ|FPF_WRITE|FPF_DELETE
Status: Read/IWrite

DESCRIPTION
The permissions field gives information on the user rights for a particular
file or directory. Flags currently available are:

FPF_HIDDEN
If the file should be hidden from this user then this flag will be set.

FPF_DELETE
If the user has delete rights for this file then this flag will be set.

FPF_EXECUTE
Execute rights can only be given to executable files and scripts.

FPF_PASSWORD
This is a special flag that can lock a user out from a file until the
correct password is given. Note that support for this flag is still
under-way and currently most file-systems are not able to support it
directly.

FPF_READ
This flag allows the user to read the file so that its contents may be
viewed. Note that read access does not give execute access.

FPF_SCRIPT
Standard text files which are set with this flag will be treated as
scripts, which are capable of executing multiple commands. You will need
to set this flag in conjunction with EXECUTE in order to run the script.

FPF_WRITE
This flag allows the user to write data to the file. While this does not
give delete access, be warned that it is possible to clear a file to a size
of 0 bytes.

1.9 Object: File

FIELD
Name: Prev
Type: struct File *
Inheritance: Links are automatically formed when listing directories.
Status: Read Only.

DESCRIPTION
The Prev field is generally involved with the building of directory
structures. For example, if you Activate() a Directory object it will
build a list of all Files in that Directory, and point to the first File in

File 6 / 6

the list. The Prev field will assist in moving backwards through the
chain.

You can detach a File from the chain by using the Detach() action.

SEE ALSO
Field: Next
Kernel: Detach()

1.10 Object: File

FIELD
Name: Size
Type: LONG
Inheritance: Init()
Status: Read Only.

DESCRIPTION
Specifies the current byte size of the opened file. This field can only be
changed if a call to WriteFile() requires that the file size is expanded.
It cannot be dynamically changed and cannot be shrunk in size.

1.11 Object: File

FIELD
Name: Source
Type: APTR
On Change: Cannot change dynamically.
Status: Read/IWrite.

DESCRIPTION
Points to a source object, which may be either a FileName, MemPtr or
recognised system object. The source will be used to read data from or
write data to. Note that FileName and MemPtr are fully supported by the
system at all times, but not all objects can be expected to support
read/write actions.

	File
	Object: File
	Object: File
	Object: File
	Object: File
	Object: File
	Object: File
	Object: File
	Object: File
	Object: File
	Object: File
	Object: File

