
Directory

Paul Manias

Directory ii

COLLABORATORS

TITLE :

Directory

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Manias May 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Directory iii

Contents

1 Directory 1

1.1 Object: Directory . 1

1.2 Object: Directory . 1

1.3 Object: Directory . 2

1.4 Object: Directory . 3

1.5 Object: Directory . 3

1.6 Object: Directory . 3

1.7 Object: Directory . 4

1.8 Object: Directory . 4

1.9 Object: Directory . 5

1.10 Object: Directory . 6

1.11 Object: Directory . 6

Directory 1 / 6

Chapter 1

Directory

1.1 Object: Directory

OBJECT DOCUMENTATION
Name: DIRECTORY
Version: 0.9 Beta
Date: December 1997
Author: Paul Manias
Copyright: DreamWorld Productions, 1996-1997. All rights reserved.
Notes: This document is in the process of being written.

CHANGES VERSION 0.9B
Added: Directory->ChildDir

Directory->ChildFile
Directory->Next
Directory->Prev

Edited: Directory->Comment
Directory->Date

Renamed: Directory->UserFlags to Directory->Permissions

1.2 Object: Directory

OBJECT
Name: Directory
Module: Files
Version: 1
Type: Complex

DESCRIPTION
This object is used for file and directory management purposes.

FUNCTIONS
Some functions supporting the Directory object are:

WriteComment()
WriteDate()

Directory 2 / 6

ACTIONS
The Directory object supports the following actions:

Activate() Get a directory listing.
Free() Free a Directory object.
Get() Get a new Directory structure.
Init() Initialise a Directory.

STRUCTURE
The Directory structure consists of the following public fields:

ChildDir Pointer to first sub-directory in list.
ChildFile Pointer to first sub-file list.
Comment Comment for the directory, if any.
Date Pointer to Time of last date stamping.
DirList List of directories under this one.
FileList List of files in this directory.
Flags Directory flags and options.
Next Next directory in list.
Prev Previous directory in list.
Source Pointer to Directory source.
Permissions Permission flags, eg RWED.

1.3 Object: Directory

FIELD
Name: ChildDir
Type: struct Directory *
Inheritance: Activate()
Status: Read Only.

DESCRIPTION
This field points to the first structure of a linked-list of
sub-directories for your master Directory. This list is only built if you
call the Activate() function. The child structures will be Query()’d, so
they will contain Date, Comment information and so on. You may treat them
as normal objects and call Init() and Activate() on each child object to
start building complex tree structures if you wish.

Note that when you free your Directory object, all child directories on the
linked-list will be freed. If you want to keep a child directory, you may
use the Detach() action to do this. After you have extracted your object
you will be responsible for Free()ing it.

If there are no sub-directories then this field will be set to NULL after
an Activate() or Query().

SEE ALSO
Fields: ChildFile

Next
Prev

Directory 3 / 6

1.4 Object: Directory

FIELD
Name: ChildFile
Type: struct File *
Inheritance: Activate()
Status: Read/Write

DESCRIPTION
This field points to the first structure of a linked-list of sub-files for
your master Directory. This list is only built if you call the Activate()
function. The child structures will be Query()’d, so will contain Date,
Comment information and so on. You may treat them as normal objects and
use the various action functions for files.

Note that when you free your Directory object, all child files on the
linked-list will be freed. If you want to keep a child File, you may
use the Detach() action to do this. After you have extracted your object
you will be responsible for Free()ing it.

If there are no sub-files then this field will be set to NULL after an
Activate() or Query().

SEE ALSO
Fields: ChildDir

Next
Prev

1.5 Object: Directory

FIELD
Name: Comment
Type: BYTE *
Inheritance: Obtained from the existing directory, if possible.
To Change: SetFileComment()
Status: Read/IWrite

DESCRIPTION
This field points to a string that specifies the user commment for the
Directory. Although the Directory object supports comments of an unlimited
length, the file-system itself will have a cut-off point on the comment
length. It would be unwise to assume support for anything longer than 128
bytes. If when setting a new Comment you go over the limit, the extraneous
characters will be ignored.

NOTE
If you initialise an existing Directory and specify a Comment, the old
comment (in the file system) will be over-written with your new one.

1.6 Object: Directory

Directory 4 / 6

FIELD
Name: Date
Type: struct Time *
Inheritance: Obtained from the existing directory, if possible.
To Change: SetFileDate()
Status: Read/IWrite

DESCRIPTION
This field points to a Time object, which specifies the date on which this
Directory was last stamped. This is usually considered to be the last date
on which the Directory was changed, but this does not always have to be the
case.

NOTE
If you initialise an existing directory with a Date pointer, the old Date
will be over-written with your new one.

1.7 Object: Directory

FIELD
Name: Flags
Type: LONG
On Change: Cannot change dynamically.
Status: Read/IWrite.

DESCRIPTION
Specifies the Flags to use when opening the Directory. Here are the
flags you can specify for OpenFile() and Init():

FL_LOCK
Setting this will lock the directory for exclusive access - no other
process will be able to open the directory while you are using it. If this
flag is not set then the directory will be open for shared access.
Attempting to set a lock on a directory that is already in use by another
Task results in failure. Keep in mind that the effects of locking a
Directory will not flow onto any child directories.

FL_FIND
This flag allows OpenFile() to use some intelligence and try to find the
directory if it is not immediately located at the given FileName. The
process involves a simple but effective tree search. This feature is
limited to localised searching, no attempt will be made to do a tree search
of all directories in an assignment (a lengthy process).

FL_NOBUFFER
Setting this flag prevents the directory data from being put in the cache.
You may want to do this if it is imperative that the directory physically
reflects its data at all points in time.

1.8 Object: Directory

Directory 5 / 6

FIELD
Name: Next
Type: struct Directory *
Inheritance: Activate()
Status: Read Only.

DESCRIPTION
This field only applies when a Directory object forms part of a linked-list
of directories. It points directly to the next Directory in the chain. If
the value is NULL, then this is the last link.

SEE ALSO
Fields: ChildDir

Prev

1.9 Object: Directory

FIELD
Name: Permissions
Type: LONG
Inheritance: Init()
Default: FPF_READ|FPF_WRITE|FPF_DELETE
Status: Read/IWrite

DESCRIPTION
The permissions field gives information on the user rights for a particular
file or directory. Flags currently available are:

FPF_HIDDEN
If the directory should be hidden from this user then this flag will be
set.

FPF_DELETE
If the user has delete rights for this directory then this flag will be
set. Note that if there are sub files/directories that the user does not
have permissions to delete, then the user will be prevented from deleting
the entire directory structure.

FPF_PASSWORD
This is a special flag that can lock a user out from a directory until the
correct password is given. If a directory contains sub files and
directories, access to these will also be affected by the password setting.
Note that support for this flag is still under-way and currently most
file-systems are not able to support it directly.

FPF_READ
This flag does not apply to directories.

FPF_SCRIPT
This flag does not apply to directories.

FPF_WRITE
This flag does not apply to directories.

Directory 6 / 6

1.10 Object: Directory

FIELD
Name: Prev
Type: struct Directory *
Inheritance: Activate()
Status: Read/Write

DESCRIPTION
This field only applies when a directory object forms part of a linked-list
of directories. It points directly to the previous directory in the chain.
If the value is NULL, then this is the first link.

SEE ALSO
Fields: ChildDir

Next

1.11 Object: Directory

FIELD
Name: Source
Type: struct FileName *
On Change: Cannot change dynamically.
Status: Read/IWrite.

DESCRIPTION
Points to a source object, which may be either a FileName or recognised
system object. The Source will be used to read data from or write data to.

Note that only the FileName source type is fully supported at the moment.

	Directory
	Object: Directory
	Object: Directory
	Object: Directory
	Object: Directory
	Object: Directory
	Object: Directory
	Object: Directory
	Object: Directory
	Object: Directory
	Object: Directory
	Object: Directory

