
Restore

Paul Manias

Restore ii

COLLABORATORS

TITLE :

Restore

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Manias May 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Restore iii

Contents

1 Restore 1

1.1 Object: Restore . 1

1.2 Object: Restore . 1

1.3 Object: Restore . 2

1.4 Object: Restore . 2

1.5 Object: Restore . 3

1.6 Restore: Activate() . 3

1.7 Restore: Reset() . 3

Restore 1 / 4

Chapter 1

Restore

1.1 Object: Restore

OBJECT DOCUMENTATION
Name: RESTORE
Version: 0.9 Beta.
Date: December 1997
Author: Paul Manias
Copyright: DreamWorld Productions, 1996-1997. All rights reserved.

1.2 Object: Restore

OBJECT
Name: Restore
Module: Blitter
Version: 1
Type: Complex

DESCRIPTION
A Restore object is required whenever you specify the CLEAR or RESTORE
flags in a Bob/MBob object.

Restore objects are vital in double or triple buffered environments, as it
can be very difficult to keep track of the background areas that need to be
replaced. By using a Restore object and the CLEAR and RESTORE flags, you
will eliminate this problem completely. A Restore object is list-based, so
you can use one Restore object for as many Bobs as you like.

The Restore object is made up of a number of entries, 1 for each Bob that
has been blitted to screen. Each entry currently takes up about 28 bytes
of memory, multiplied by how many buffers there are (eg 56 bytes for double
buffering). How many entries you require is dependent on the type of game
you are writing, but 50 entries will be plenty in most cases. If you run
out of entries, the Draw() functions will allocate extra space on the fly.
If you find that this is occuring (your game may slow down when too many
objects appear on screen), we recommend that you bump up the number of
entries you are allocating on initialisation.

Restore 2 / 4

There is a significant speed difference between restoring and clearing
which you should be aware of. CLEARing is fast because the blitter is
using fewer channels and the CPU can be used more effectively. RESTOREing
is slower as the blitter has to move data between two different areas, plus
it has to perform this action twice (once to save the background, and once
to return the background). Use the CLEAR option whenever possible (if
background is blank) otherwise you will probably have to use RESTORE.

ACTIONS
The Restore object supports the following actions:

* Activate() Restores Bob backgrounds.
Get() Get a new Restore object.
Init() Initialises a Restore object to a Bitmap.
Free() Free a Restore object from the system.

* Reset() Reset a Restore object.

STRUCTURE
The Restore structure consists of the following public fields:

Buffers Amount of screen buffers.
Entries Amount of entries.
Owner Owner of the Restore object (must be a bitmap).

1.3 Object: Restore

FIELD
Name: Buffers
Type: WORD
Inheritance: Init() [Container: Screen]
Default: 1
On Change: Cannot change after initialisation.
Status: Read/IWrite

DESCRIPTION
This field specifies the amount of Bitmap buffers that the Restore object
is based around. It is vital that this value matches the amount of buffers
in the given screen. For example, if the screen is double buffered then
this value will be 2. If triple buffered the value, will be 3.

If the value does not match you will get unpredictable results.

1.4 Object: Restore

FIELD
Name: Entries
Type: WORD
Default: 1
On Change: Cannot actively change after initialisation.
Status: Read/IWrite

DESCRIPTION

Restore 3 / 4

This field specifes the amount of entries that are in the Restore object’s
list of Bob buffers.

When you first initialise your Restore object, you need to specify a
generous amount of entries here -- 1 entry for every Bob that may be on
screen at any time. If you under-estimate this value then everything will
still work, but memory will need to be allocated on the fly to create
enough space for all of your Bobs.

1.5 Object: Restore

FIELD
Name: Owner
Type: struct Bitmap *
Inheritance: Init()
On Change: Cannot change after initialisation.
Status: Read Only.

DESCRIPTION
This field references the Bitmap that your Restore object is linked to. It
is initially inherited from the container object that you gave to Init().
If you provided a Screen as the container, a Bitmap will be derived from
that.

1.6 Restore: Activate()

ACTION
Name: Activate()
Object: Restore
Short: Restores all buffered images by clearing or replacing backgrounds.

DESCRIPTION
This action will restore all the backgrounds that have been destroyed by
Bobs that are using the RESTORE and CLEAR flags.

The positioning of this function is quite important - it should go BEFORE
any Draw*() functions to be effective, otherwise you may get graphical
glitches or even a system crash.

1.7 Restore: Reset()

ACTION
Name: Reset()
Object: Restore
Short: Resets a Restore object by clearing old image history.

DESCRIPTION
Resets a Restore object’s image history so that any currently buffered
images are no longer waiting to be restored. This is useful in
circumstances such as completely changing the background imagery and no

Restore 4 / 4

longer blitting the previous set of images.

SEE ALSO
Restore: Flush()

	Restore
	Object: Restore
	Object: Restore
	Object: Restore
	Object: Restore
	Object: Restore
	Restore: Activate()
	Restore: Reset()

