
GBDK

Lars ’Gluemaster’ Malmborg

GBDK ii

COLLABORATORS

TITLE :

GBDK

ACTION NAME DATE SIGNATURE

WRITTEN BY Lars ’Gluemaster’
Malmborg

July 26, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

GBDK iii

Contents

1 GBDK 1

1.1 GameBoy Developer’s Kit . 1

1.2 GBDK . 2

1.3 Installing . 3

1.4 lcc . 3

1.5 lcc man pages . 4

1.6 Compiler . 8

1.7 Assembler . 8

1.8 Linker . 9

1.9 Libraries . 9

1.10 stdlib.o . 9

1.11 stdio.o, terminal.o . 11

1.12 drawing.o . 13

1.13 Test programs . 14

1.14 C & Assembly . 15

1.15 ILBMtoGB . 15

1.16 Gremlins . 16

1.17 General GameBoy . 17

1.18 Instruction set . 21

1.19 Custom Registers . 26

1.20 Disclaimer . 38

1.21 Authors . 39

GBDK 1 / 39

Chapter 1

GBDK

1.1 GameBoy Developer’s Kit

* \|/ *
* @ @ *
------------------------ooO-(_)-Ooo------------------------
* *
* GBDK *
* *

* *
* GameBoy Developer’s Kit © 1996 by Pascal Felber *
* Hardware info © 1996 by Pan/Anthrox *
* GBDK.guide © 1996 by Lars ’Gluemaster’ Malmborg *
* *
* Public Domain *
* *

Software
GBDK
Installing
lcc
Compiler
Assembler
Linker
Libraries
Test programs
C & assembly
ILBMtoGB
Gremlins

GameBoy hardware
General
Instructions
Registers

Disclaimer

GBDK 2 / 39

Authors

1.2 GBDK

What is the GBDK?
The name may sound pretentious. But with the GBDK, you can develop your own
programs for the GB system, either in C or in assembly. The GBDK includes
a set of libraries for the most common requirements and generates image
files for use with a real GB or with VGB.

Features

* A full featured C compiler (with the only limitation that a floating
point library has yet to be written)

* An assembler that generates relocatable code

* A linker that produces GB image files

* A set of basic libraries, with source code

* Some example programs in assembly and in C

* An imaging tool that generates GB source code for including image
files to GB programs

Well, the programs are not written from scratch.

The compiler is based on lcc, a retargetable compiler for
ANSI/ISO C. The orininal version generates code for the SPARC, MIPS R3000,
and Intel 386 and its successors. lcc is in production use at
Princeton University and AT&T Bell Laboratories. The man page gives usage
details.

The assembler and the linker are based on public domain programs developed
by Alan R. Baldwin.

The image tool in the UNIX distribution is based on Xloadimage,
a utility which will view many different types of images under X11, load
images onto the root window, or dump processed images into one of several
image file formats. One format it does not support is IFF ILBM, which is the
most common Amiga file format. Therefor it is not very useful on the Amiga,
and that is the reason you’ll find ILBMtoGB in the Amiga port instead. It will
generate about the same output as the Xloadimage, but it will only read IFF
ILBM. Keep in mind it is not a port, but a native Amiga application (written by
Lars Malmborg), hence it uses Amiga argument parsing.

For the time, only Unix is supported apart from this Amiga port.
The Unix version of GBDK has been tested on Sun Solaris 2.4 and Linux.

Limitations

* The C compiler is missing support for floats and doubles (the compiler
supports them, but libraries are missing. If someone is interested in writing
them...)

* The linker generates only 32kb images for the time. Generating 64kb
images is not a problem, but bigger images require bank switching.

* Do not use -0x8000 (minimum 16-bit signed integer) in divisions. -0x7FFF
is the limit.

Sites with info on the GB

* Nintendo GameBoy Homepage

GBDK 3 / 39

(http://www.freeflight.com/fms/GameBoy/)

* Pascal Felber’s GameBoy Developer’s Kit
(http://lsewww.epfl.ch/~felber/GBDK/)

* Jeff Frohwein’s Technical Information Page
(http://fly.hiwaay.net/~jfrohwei/gameboy/home.html)

How to run the programs developed
The programs developed can be run with either a real GameBoy somehow connected
to a hosting Amiga or with a GameBoy emulator. I have ported Virtual GameBoy,
AmigaVGB (Aminet:misc/emu/AmigaVGB.lha), and all testing of GBDK has been done
with it.

1.3 Installing

Installing the GBDK should be easy. Run InstallGBDK from Workbench.
It will create a directory GBDK where it installs all the files.
It will also insert an assign to GBDK: in the User-Startup.

1.4 lcc

The driver
lcc [option | file]...

except for -l, options are processed left-to-right before files
unrecognized options are taken to be linker options

-A warn about non-ANSI usage; 2nd -A warns more
-b emit expression-level profiling code; see bprint(1)
-Bdir/ use the compiler named ‘dir/rcc’
-c compile only
-C prevent the preprocessor from stripping comments
-dn set switch statement density to ‘n’
-Dname -Dname=def define the preprocessor symbol ‘name’
-E run only the preprocessor on the named C programs and unsuffixed files
-g produce symbol table information for debuggers
-help print this message
-Idir add ‘dir’ to the beginning of the list of #include directories
-lx search library ‘x’
-N do not search the standard directories for #include files
-n emit code to check for dereferencing zero pointers
-O is ignored
-o file leave the output in ‘file’
-P print ANSI-style declarations for globals
-p -pg emit profiling code; see prof(1) and gprof(1)
-S compile to assembly language
-t -tname emit function tracing calls to printf or to ‘name’
-Uname undefine the preprocessor symbol ‘name’
-v show commands as they are executed; 2nd -v suppresses execution
-w suppress warnings
-W[pfal]arg pass ‘arg’ to the preprocessor, compiler, assembler, or linker

All of these options are described in more detail in the man pages for the
original UNIX distribution of lcc.

GBDK 4 / 39

1.5 lcc man pages

man lcc
Arguments whose names end with ‘.c’ are taken to be C source programs; they
are preprocessed, compiled, and each object program is left on the file whose
name is that of the source with ‘.o’ substituted for ‘.c’.
Arguments whose names end with ‘.i’ are treated similarly, except they are not
preprocessed.
In the same way, arguments whose names end with ‘.s’ are taken to be assembler
source programs and are assembled, producing a ‘.o’ file.
If there are no arguments, lcc prints a message summarizing its
options on the standard error.
lcc deletes a ‘.o’ file if and only if exactly one source file (‘.c’,
‘.s’, or ‘.i’ file) is mentioned and no other file (source, object, library) or
-l option is mentioned.
lcc uses ANSI standard header files in preference to the ‘old-style’
header files normally found in include.
Include files not found in the ANSI header files are taken from the normal
default include areas, which usually includes include:.
lcc interprets the following options; unrecognized options are taken as
loader options unless -c, -S or -E precedes them.
Except for -l, all options are processed before any of the files and apply to
all of the files.
Applicable options are passed to each compilation phase in the order given.
-c
Suppress the loading phase of the compilation, and force
an object file to be produced even if only one program is compiled.

-g
Produce additional symbol table information for the local debuggers.
lcc warns when -g is unsupported.

-w
Suppress warning diagnostics, such as those
announcing unreferenced statics, locals, and parameters.
The line #pragma ref id simulates a reference to the variable id.

-dn
Generate jump tables for switches whose density is at least n,
a floating point constant between zero and one. The default is 0.5.

-A
Warns about declarations and casts of function types without prototypes,
missing return values in returns from int functions, assignments between
pointers to ints and pointers to enums, and conversions from pointers to
smaller integral types.
A second -A warns about unrecognized control lines, non-ANSI language
extensions and source characters in literals, unreferenced variables and
static functions, declaring arrays of incomplete types, and exceeding
some ANSI environmental limits, like more than 257 cases in switches.
It also arranges for duplicate global definitions in separately compiled
files to cause loader errors.

-P
Writes declarations for all defined globals on standard error. Function
declarations include prototypes; editing this output can simplify conversion

GBDK 5 / 39

to ANSI C. This output may not correspond to the input when there are several
typedef’s for the same type.

-n
Arrange for the compiler to produce code that tests for dereferencing zero
pointers. The code reports the offending file and line number and calls
abort.

-O
is ignored.

-S
Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed ‘.s’.

-E
Run only the preprocessor on the named C programs and unsuffixed file
arguments, and send the result to the standard output.

-o output
Name the output file output. If -c or -S is specified and there is
exactly one source file, this option names the object or assembly file,
respectively. Otherwise, this option names the final executable file generated
by the loader, and ‘a.gb’ is left undisturbed.
lcc warns if -o and -c or -S are given with more than one source file
and ignores the -o option.

-D name=def
-D name
Define the name to the preprocessor, as if by ‘#define’. If no
definition is given, the name is defined as "1".

-U name
Remove any initial definition of name.

-I dir
‘#include’ files whose names do not begin with ‘/’ are always sought first in
the directory of the file arguments, then in directories named in
-I options, then in directories on a standard list.

-N
Do not search any of the standard directories for ‘#include’ files.
Only those directories specified by explicit -I options will be searched, in
the order given.

-B str
Use the compiler strrcc instead of the default version. Note that
str often requires a trailing slash.

-v
Print commands as they are executed; some of the executed programs are
directed to print their version numbers. More than one occurrence of -v causes
the commands to be printed, but not executed.

-help
Print a message summarizing lcc’s options on the standard error.

GBDK 6 / 39

-b
Produce code that counts the number of times each expression is executed. If
loading takes place, replace the standard exit function by one that writes a
prof.out file when the object program terminates.
A listing annotated with execution counts can then be generated with
bprint. lcc warns when -b is unsupported. -Wf-C is similar, but
counts only the number of function calls.

-p
Produce code that counts the number of times each function is called. If
loading takes place, replace the standard startup function by one that
automatically calls monitor at the start and arranges to write a
mon.out file when the object program terminates normally. An execution
profile can then be generated with prof. lcc warns when -p is
unsupported.

-pg
Causes the compiler to produce counting code like -p, but invokes a run-time
recording mechanism that keeps more extensive statistics and produces a
gmon.out file at normal termination.
Also, a profiling library is searched, in lieu of the standard C library. An
execution profile can then be generated with gprof. lcc warns
when -pg is unsupported.

-t name
-t
Produce code to print the name of the function, an activation number, and the
name and value of each argument at function entry. At function exit, produce
code to print the name of the function, the activation number, and the return
value. By default, printf does the printing; if name appears,
it does. For null char* values, "(null)" is printed.

-W xarg
Pass argument arg to the program indicated by x; x
can be one of p, f, a or l, which refer,
respectively, to the preprocessor, the compiler proper, the assembler, and the
loader. arg is passed as given; if a - is expected, it must
be given explicitly. -Woarg specifies a system-specific option, arg.

-pipe
Forces lcc to pipe the preprocessor output directly to the compiler
instead of using temporary files.

Other arguments are taken to be either loader option arguments, or C-compatible
object programs, typically produced by an earlier lcc run, or perhaps
libraries of C-compatible routines. Duplicate ‘.o’ files are ignored.
These programs, together with the results of any compilations specified, are
loaded (in the order given) to produce an executable program with name a.gb.

lcc assigns the most frequently referenced scalar parameters and
locals to registers whenever possible. For each block, explicit register
declarations are obeyed first; remaining registers are assigned to automatic
locals if they are ‘referenced’ at least 3 times. Each top-level occurrence of
an identifier counts as 1 reference. Occurrences in a loop, either of the
then/else arms of an if statement, or a case in a switch statement each count,
respectively, as 10, 1/2, or 1/10 references. These values are increased
accordingly for nested control structures. -Wf-a causes lcc to read a

GBDK 7 / 39

prof.out file from a previous execution and to use the data therein
to compute reference counts (see -b).

lcc is a cross compiler; -Wf-target= target-os causes lcc to
generate code for target running the operating system denoted by os.
The supported target-os combinations may include

mips-irix big-endian MIPS, IRIX 4.0
mips-ultrix little-endian MIPS, ULTRIX 4.3
sparc-sun SPARC, SunOS 4.1
sparc-solaris SPARC, Solaris 2.3
x86-dos [345]86, DOS 6.0
symbolic textual rendition of the generated code
null no output

The -v option lists the target-os combinations supported by specific
installations of lcc.

LIMITATIONS
lcc accepts the C programming language as described in the ANSI
standard and in the second edition of Kernighan and Ritchie. lcc is
intended to be used with the GNU C preprocessor, which supports the
preprocessing features introduced by the ANSI standard. The -Wp-trigraphs
option is required to enable trigraph sequences.
Wide-character literals are accepted but are treated as plain char literals.
Plain chars are signed chars, ints and long ints are the same size as are
doubles and long doubles, and plain int bit fields are signed. Bit fields are
aligned like unsigned integers but are otherwise laid out as if by the standard
C compiler, cc. Other compilers, such as the GNU C compiler, gcc,
may choose other, incompatible layouts.
Likewise, calling conventions are intended to be compatible with cc,
except possibly for passing and returning structures. Specifically, lcc
passes structures like cc on all targets, but returns structures like cc
on only the MIPS. Consequently, calls to/from such functions compiled with cc
or other C compilers may not work. Calling a function that returns a structure
without declaring it as such violates the ANSI standard and may cause a core
dump.

FILES
The file names listed below are typical, but vary among installations;
installation-dependent variants can be displayed by running lcc with the -v
option.

file.c input file
file.o object file
a.gb loaded output
T:lcc* temporaries
bin/cpp preprocessor
bin/rcc compiler
lib/crt0.o runtime startup
include headers

lcc predefines the macro ‘__LCC__’ on all systems and the macros ‘unix’ on
UNIX systems. It may also predefine some installation-dependent symbols; option
-v exposes them.

SEE ALSO
B. W. Kernighan and D. M. Ritchie,

The C Programming Language,

GBDK 8 / 39

Prentice-Hall, 2nd Ed., 1988.

American National Standard for Information Systems, Programming Language C,
ANSI X3.159-1989, American National Standards Institute, Inc., New York, 1990.

.PP
C. W. Fraser and D. R. Hanson,

A Retargetable C Compiler: Design and Implementation,
Benjamin Cummings, 1995. ISBN 0-8053-1670-1.

The Wide World Web page at URL http://www.cs.princeton.edu/software/lcc.

1.6 Compiler

The compiler
Pascal Felber has written a code generator for lcc that generates
code for the Z80. It does not produce optimal code, but it is usable. It took
him a long time to debug, but is now quite stable (according to himself!).
Note than due to the limitations of the Z80, sizeof(int) = sizeof(long) = 2.

For more information, read the docs included with the lcc distribution.

The following flags allow to pass options to the assembler and to the linker:
-Wa
-Wl

If the assembler generates an error message, you can produce an assembly
listing .lst to see where the error occurs using the flag:

-Wa-l
If you want to see the memory mop of the image file (where the functions
are located in ROM), you can produce a .map file using:

-Wl-m

1.7 Assembler

The assembler
The assembler accepts the following flags:

Usage: [-vdqxcgalosf] [-n filename] file1 [file2 file3 ...]
v verbose
d decimal listing
q octal listing
x hex listing (default)
k case sensitive
g undefined symbols made global
a all user symbols made global
l create list output file[LST]
o create object output file[O]
s create symbol output file[SYM]
f flag relocatable references by ‘ in listing file

ff flag relocatable references by mode in listing file
n name of output files (for following input file)

For more information, read the asmlnk.doc file.

GBDK 9 / 39

Also check out the instruction set and the custom registers of GameBoy.

1.8 Linker

The linker
The linker accepts the following flags:

Usage: [-options] -o outfile [file.o ... | @file.lst]
@file.lst file with list of files to link, separated by newlines
-c case sensitive
-v verbose

Relocation:
-b area base address = expression
-g global symbol = expression

Map format:
-m map output generated as file[MAP]
-x hexidecimal (default)
-d decimal
-q octal

Output:
-i Intel hex as file[IHX]
-s Motorola s19 as file[S19]
-z Gameboy image as file[GB]

For more information, read the asmlnk.doc file.

1.9 Libraries

The libraries
Three libraries are included in the GBDK. Their functions are described in
details below.

crt0.o
Basic C runtime, with GB initialization routines, C support (mul, div, mod)
and other essential things. This library is automatically linked with every
program.

stdlib.o
Standard functions to interface the hardware in the GameBoy to C.

stdio.o, terminal.o
Libraries for basic text input/output. Implements standard functions from
stdio, ctype and string.

drawing.o
Very primitive graphic library that allows to draw points to the screen,
and to display images. The drawing area is limited because of the way the
GB handles display.

1.10 stdlib.o

GBDK 10 / 39

Library
stdlib.o

Include files
stdlib.h

Source files
crt0.s

Functions
void mode(int m);

Change current working mode (M_DRAWING or M_TEXT).
This is normally implicitely done when using library functions.

void delay(int d);
Small pause.

void pause(int p);
Longer pause.

int joypad();
Read the joypad status. Joypad keys are J_START, J_SELECT, J_B, J_A,
J_DOWN, J_UP, J_LEFT and J_RIGHT.

int waitpad(int mask);
Wait for one of the specified joypad keys to be pressed.

void waitpadup();
Wait for the joypad to be released.

void enable_interrupts();
void disable_interrupts();

Enable or Disable interrupts (must be enabled for displaying sprites).

void display_on();
void display_off();

Switch screen on or off.

void show_bkg();
void hide_bkg();

Show or hide the background display.

void set_bkg_data(int first_tile, int nb_tiles, unsigned char *data);
Set the data of part of the background tiles.

-128 <= first_tile <= 127
-128 <= first_tile+nb_tiles <= 127
nb_tiles >= 1

void set_bkg_tiles(int x, int y, int w, int h, unsigned char *tilelist);
Set the tile number of part of the background.

0 <= x <= 31
0 <= y <= 31
1 <= w <= 32-x
1 <= h <= 32-y

void scroll_bkg(int x, int y);

GBDK 11 / 39

Scroll the background.

void show_window();
void hide_window();

Show or hide the window display.

void show_sprites();
void hide_sprites();

Show or hide the sprites display.

void sprites8x8();
void sprites8x16();

Set the size of all sprites.

void set_sprite_data(int first_tile, int nb_tiles, unsigned char *data);
Set the data of part of the sprite tiles.

0 <= first_tile <= 255
0 <= first_tile+nb_tiles <= 255
nb_tiles >= 1

void set_sprite_tile(int nb, int tile);
Set the tile number of a sprite.

0 <= nb <= 39
0 <= tile <= 255

void set_sprite_prop(int nb, int prop);
Set the properties of a sprite. Sprite properties bits are S_PALETTE,
S_FLIPX, S_FLIPY and S_PRIORITY.

0 <= nb <= 39

void move_sprite(int nb, int x, int y);
Change the position of a sprite.

0 <= nb <= 39
0 <= x <= 255
0 <= y <= 255

1.11 stdio.o, terminal.o

Library
stdio.o, terminal.o

Include files
stdio.h

Source files
stdio.c
terminal.s

Functions
int atoi(char *s);

Return the integer value of a numeric string.

int abs(int num);
Return the absolute value of an integer.

GBDK 12 / 39

int isalpha(char c);
int isupper(char c);
int islower(char c);
int isdigit(char c);
int isspace(char c);

Functions that classify character-coded integer values.

int toupper(char c);
int tolower(char c);

Change character case.

int index(char *s, char *t);
Find index of string t in s.

char *itoa(int n, char *s);
Transform an integer in its ascii representation.

void printn(int number, int radix);
Print a number in any radix.

char *reverse(char *s);
Reverse a character string.

char *strcat(char *s1, char *s2);
Concatenate s2 on the end of s1. s1 must be large enough. Return s1.

int strcmp(char *s1, char *s2);
Compare strings:

s1>s2: >0
s1==s2: 0
s1<s2: <0

char *strcpy(char *s1, char *s2);
Copy string s2 to s1. s1 must be large enough. Return s1.

int strlen(char *s);
Return length of string.

char *strncat(char *s1, char *s2, int n);
Concatenate s2 on the end of s1. s1 must be large enough. At most n
characters are moved. Return s1.

int strncmp(char *s1, char *s2, int n);
Compare strings (at most n bytes):

s1>s2: >0
s1==s2: 0
s1<s2: <0

char *strncpy(char *s1, char *s2, int n);
Copy s2 to s1, truncating or null-padding to always copy n bytes. Return s1.

void puts(char *str);
Print a string with a carriage return.

void print(char *str);
Print a string without carriage return.

GBDK 13 / 39

void printf(char *fmt, ...);
int scanf(char *fmt, ...);

Print a formatted string. printf and scanf support the following types:
%c char
%d decimal int
%o octal int
%p pointer
%s string
%x hexadecimal int

When waiting for a user input, a kind of keyboard appears at the bottom
of the screen, which allows to enter characters. The following buttons are
used:

Arrow keys: Move the cursor
A: Enter a character
B: Delete a character
START: End of line (carriage return)
SELECT: Temporarily hide the keyboard

void putchar(char c);
Print a character.

char getchar();
Read a character.

char *gets(char *s);
Read a string.

void gotoxy(int x, int y);
Move the cursor to a specific position

int posx();
int posy();

Return the current cursor position

void setchar(char c);
Set the character at cursor position, without character interpretation
(’\n’ does not move to the next line) and without moving the cursor.

1.12 drawing.o

Library
drawing.o

Include files
graphics.h

Source files
drawing.s

Functions
void plot(int x, int y, int color, int mode);

Draw a pixel on screen with specific color and mode. Colors are WHITE,
LTGREY, DKGREY and BLACK. Modes are AND, OR, XOR and SOLID.

void draw_image(unsigned char *data);

GBDK 14 / 39

Draws a complete image to screen. Image size must be 0x80 * 0x78 pixels.

1.13 Test programs

The test programs

Test programs in the examples directory:
space.s

Assembly program that demonstrates the use of sprites, window, background,
fixed-point values and more. The following keys are used:

Arrow keys: Change the speed (and direction) of the sprite
Arrow keys+A: Change the speed (and direction) of the window
Arrow keys+B: Change the speed (and direction) of the background
START: Open/close the door
SELECT: Basic fading effect

sound.c
Program for experimenting with the soung generator of the GB (to use on
a real GB). The four different sound modes of the GB are available. It also
demonstrates the use of bit fields in C (it’s a quick hack, so don’t expect too
much from the code). The following keys are used:

UP/DOWN: Move the cursor
RIGHT/LEFT: Increment/decrement the value
RIGHT/LEFT+A: Increment/decrement the value by 10
RIGHT/LEFT+B: Set the value to maximum/minimum
START: Play the current mode’s sound (or all modes if in control screen ←↩

)
START+A: Play a little music with the current mode’s sound
SELECT: Change the sound mode (1, 2, 3, 4 and control)
SELECT+A: Dump the sound registers to the screen

sprite.c
Program that demonstrates the use of sprite form C.

rpn.c
Basic RPN calculator. Try entering expressions like 12 134*
and then 1789+.

Test programs in the tst directory (from the lcc distribution.)
8q.c

The classic 8 queens problem (place 8 queens on a chessboard so that
none of them threaten the others).

array.c
Test program with arrays.

init.c
Test program with variable initializations.

sort.c
Sorting algorithm that uses arrays and pointers.

struct.c
Test program with structures.

GBDK 15 / 39

test.c
Test program for terminal and drawing libraries.

1.14 C & Assembly

Mixing C and assembly
For mixing C and assembly, you must use different files (you cannot embed
C code with assembly) and link them together. Here are the things you must
know:

* A C identifier i will be called _i in assembly

* Results are always returned into the HL register

* Parameters are always passed on the stack (starting at SP+2 because the
return address is also saved on the stack)

* Assembly identifiers are exported using the .globl directive

* Registers must be preserved across function calls (you must store them at
function begin, and restore them at the end), except HL.

Example of how to mix assembly with C:
main.c

main()
{

int i;
int add(int, int);

i = add(1, 3);
}

add.s
.globl _add
_add: ; int add(int a, int b)

PUSH BC ; Save used registers (except HL)
PUSH DE
LDA HL,2(SP)
LD C,(HL) ; Get a
INC HL
LD B,(HL)
INC HL
LD E,(HL) ; Get b
INC HL
LD D,(HL)
LD H,D ; Move DE into HL
LD L,E
ADD HL,BC ; Add BC to HL
POP DE ; Restore registers
POP BC
RET ; Return result into HL

1.15 ILBMtoGB

ILBMtoGB
ILBMtoGB allows conversion from a 4-color ILBM image into assembly or C code to
be included into a GB program. The image will be analysed and tiles that appear

GBDK 16 / 39

more than once will be generated only once. The dump extension generates both
data for the tiles and a table for the mapping of tiles in the image.
This program is only present in this Amiga port. The UNIX version has a
modified version of Xloadimage instead. Since Xloadimage doesn’t support IFF
ILBM, there was no point in porting it, so I sat down and wrote a native Amiga
application, hence it uses Amiga argument parsing. It will generate about the
same output as the xloadimage, but it will only read IFF ILBM.

You can specify the starting tile to use for the image. This allows to generate
data for different images that will use different sets of tiles.

An option allows to store the four common tiles (all black, all dark grey,
all light grey and all white) in tiles 0xFC to 0xFF, which is a strategic
location since it can be accessed with the same number (signed or unsigned)
for the window and the background. This is especially useful when you have
more that one image that uses these tiles.

Arguments
From - The ILBM to convert. Must be 128 x 120 x 2!
To - Destination file for the tiles.

(Defaults to input file name plus extension ".c" or ".asm".)
Assembler - Generate assembler source instead of C.
FirstTile - The first tile number to use.

(Defaults to 0.)
StandardTiles - Use standard tiles in 0xFC to 0xFF.
DataName - Part of the label names in the generated data.

(Defaults to "image".)
Flat - Generate an image to use with draw_image() in drawing.o.

Input must be 128 x 120 x 2!
Verbose - Write verbose information while generating source code.

Most options have an abbreviation. By typing ’ILBMtoGB ?’ will display the
argument string. If you don’t enter any options, a short summary of the
available arguments will be displayed.
Examples

ILBMtoGB sky.iff FirstTile 16 StandardTiles To sky.c DataName sky

ILBMtoGB From foo FT 64 STD DN foo V

1.16 Gremlins

Errors
Messages of the type:

u 0226
a 0329
u 0333

are error messages from the assembler. To see where these errors occur, you
should produce an assembly listing using the -Wa-l flag of lcc. An object file
is generated, but must be corrupted.
For more information on the different types of errors, read the asmlnk.doc file.

Messages of the type:
?ASlink-W-Undefined Global .count referenced by module Demo

are error messages from the linker. You probably forgot a library when linking,
An image file is generated, but must be corrupted.

GBDK 17 / 39

Warnings
Do not declare initialized variables at the file level, except when they are
read-only, because they will be located in ROM, e.g.

int i1; /* OK : will be located in RAM */
char *s1; /* OK : will be located in RAM */
int i2 = 0; /* Error : will be located in ROM */
char *s2 = "Hi"; /* Error : will be located in ROM */

void main() { ... }</CODE> </PRE>

Both terminal.o and drawing.o libraries use a lot of tiles and sprites from
the GB. You should not use your own tiles or sprites with these libraries.

If you use both libraries in a same program, keep in mind that there will be a
"mode switch" when using a function from a library after one of the other and
all your work will be lost (if in drawing mode you use a terminal function,
your drawing will be lost).

1.17 General GameBoy

CPU
The Game Boy uses a custom/updated/or modified Z80 processor. Comparing
the Game Boy’s Z80 instruction set with a book on the Z80 (circa 1982)
shows that the GB Z80 has a few different instructions.

Screen
Physical screen: 160*144 VRAM screen image: 256*256
Screen scrolling is wrap around type; when a part of the image is off the
screen it will be shown on the opposite side of the screen.

Although the screen can contain 1024 tiles, only 256 of them may be UNIQUE.
Each tile may have up to 4 colors. You may change the color of the pixel
value. There are 4 shades of gray. You can select which shade you want
for that pixel value. However, when you change the color for that pixel value
EVERY tile that has a pixel with the same value will also be affected.
This is good for a routine which fades out the screen or performs a GLOWING
effect of some kind.
The tile graphics are 8*8 pixels, each pixel contains 2 bits of data to
create 4 numbers. Each number is the color value for that pixel.
The graphics are stored as interleaved bitmapped tiles.

A tile for an ’A’ of color 1 with the background of color 0.

.11111.. <- first plane

........ <- second plane
11...11.
........
11...11.
........
1111111. <- first plane
........ <- second plane
11...11.
........
11...11.

GBDK 18 / 39

........
11...11.
........
........
........

Graphics VRAM location for OBJ and BG tiles start at $8000 and end at $97FF

Sprites
40 Sprites! They may be 8*8 or 8*16.
Each sprite has up to 4 colors. There are 2 palettes to chose from
The sprites can be flipped on the X and/or Y axis
Sprite OAM ram is localted at $FE00 to $FE9F
Each sprite data contains 4 bytes of info. They are:

Byte 1: Y screen position; 8 bits
Byte 2: X screen position; 8 bits
Byte 3: Character code; tile number $00-$FF
Byte 4: Palette, X, Y, Priority; Most Significant 4 bits.

First 4 bits are NOT USED!

Bit 7 - Priority
Bit 6 - Y flip
Bit 5 - X flip
Bit 4 - Palette number; 0,1
Bit 3-0 - NOT USED!

Sound
There are only 2 channels; left and right.
But there are 4 different ways to produce sound:

Sound 1: produces quadrangular wave patterns with sweep and envelope
functions

Sound 2: produces quadrangular wave patterns with envelope functions
Sound 3: produces a voluntary wave pattern (samples can be possible if done

right)
Sound 4: produces white noise

You tell the channel which sound number you want to use and it will produce the
sound when you’ve set the according data.

ROM & RAM
Display RAM size: 64k bit
Work RAM size: 64k bit

$FFFF +----------------------------------+
| ??? |

$FFFE +----------------------------------+
| Work and stack area (127 bytes) |

$FF80 +----------------------------------+
| Sound control registers |
+----------------------------------+
| LCDC control registers |
+----------------------------------+
| port/mode registers |

$FF00 +----------------------------------+
| OAM RAM (40*4 bytes) |

$FE00 +----------------------------------+
| ??? |

GBDK 19 / 39

$F000 +----------------------------------+
| ??? |

$E000 +----------------------------------+
| Work area (8 kbyte RAM) |

$C000 +----------------------------------+
| Expanded work area (8 kbyte RAM) |

$A000 +----------------------------------+
| Background display data (2) |

$9C00 +----------------------------------+
| Background display data (1) |

$9800 +----------------------------------+
| Character data |

$8000 +----------------------------------+
| User program area (32 kbyte ROM) |

$0000 +----------------------------------+

There are 2 Memory Bank Controllers (MBC) that can be used. MBC1 is the
standard that is used on most cartridges.
MBC2 is used with cartridges which need Save-RAM.
It controls extended Save-RAM banks.

Extended RAM may go up to 256k bit.

MBC1 - When controlling ROM only you may read up to 16 megabits! (2 MBYTES)
When controlling RAM only you may read up to 4 megabits (512 kbytes)

and read up to 256kbit RAM

MBC2 - Controls Back-Up RAM (Save-RAM) (512 * 4 bit) which can be extended
to 2 megabits (16 kbyte * 16) 256k byte

$FFFF +---------------------+
| Internal RAM |

$C000 +---------------------+
| Expanded banked RAM |

$A000 +---------------------+
| Display RAM |

$8000 +---------------------+
| Banked ROM |

$4000 +---------------------+
| Home ROM |

$0000 +---------------------+

Writing @$01 - #$0F in CPU address $2000 - $3FFF will select ROM bank.
Writing @$00 - #$03 in CPU address $4000 - $5FFF will select RAM bank.

Bank switching
The Z80 can only work with 16 bit addresses $0-$FFFF, so to access the other
data you must trick the machine into pointing to another piece of memory.

ROM is located from $0000 - $7FFF, RAM is from $8000-$FFFF

All game programs are ROM so we know it is from $0000-$7FFF
But the Game Boy has a fixed memory area from $0000-$3FFF; when you
access it, it will always be BANK 0. It is called the FIXED HOME ADDRESS.

That means the only other ROM addresses available are $4000-$7FFF.

GBDK 20 / 39

Bank 0 is read by the CPU as being at $0000-$3FFF
Bank 1 is read by the CPU as being at $4000-$7FFF
Bank 2 is read by the CPU as being at $4000-$7FFF
Bank 3 is read by the CPU as being at $4000-$7FFF

See the pattern? Only the FIXED HOME ADDRESS has it’s own special location.
Banks and addresses starting at $4000 is called the CPU address.

CPU Address $014000 is actually Bank #$01 address $4000
CPU Address $014000 is equal to ROM address (offset) $004000
CPU Address $024000 is equal to ROM address (offset) $008000
CPU Address $044000 is equal to ROM address (offset) $010000

The CPU uses the CPU ADDRESS.

Switching banks
Using MBC1 (Memory Bank Controller 1):
Writing to ROM Address (CPU FIXED HOME ADDRESS) $2000-$3FFF the ROM bank can be
selected. The values are from #$01-#$0F

LD A,#$01
LD ($2000),A <- this selects ROM BANK #$01

Writing to ROM Address (CPU FIXED HOME ADDRESS) $4000-$5FFF the RAM bank can be
selected. The values are from #$00-#$03

LD A,#$03
LD ($4000),A <- this select RAM BANK #$03

Using MBC2 (Memory Bank Controller 2):
Writing to ROM Address (CPU FIXED HOME ADDRESS) $2100-$21FF the ROM bank can be
select. The values are from #$01-#$0F

GameBoy cartridge information
The Internal Info block begins at $100 and it’s format is as follows:

$100-$101 - 00 C3 (2 bytes)
$102-$102 - Lo Hi (Start Address for Game, usually $150 it would be written

as 50 01)
$100-$133 - Nintendo Character Area, if this does not exist the game

will not run!
000100: 00 C3 50 01 CE ED 66 66 CC 0D 00 0B 03 73 00 83
000110: 00 0C 00 0D 00 08 11 1F 88 89 00 0E DC CC 6E E6
000120: DD DD D9 99 BB BB 67 63 6E 0E EC CC DD DC 99 9F
000130: BB B9 33 3E

$134-$143 - Title Registration Area (title of the game in ASCII)
$144-$146 - NOT USED
$147 - CARTRIDGE TYPE

0 - ROM ONLY
1 - ROM+MBC1
2 - ROM+MBC1+RAM
3 - ROM+MBC1+RAM+BATTERY
5 - ROM+MBC2
6 - ROM+MBC2+BATTERY

$148 - ROM SIZE
0 - 256kbit
1 - 512kbit
2 - 1M-Bit
3 - 2M-Bit
4 - 4M-Bit

GBDK 21 / 39

$149 - RAM SIZE
0 - NONE
1 - 16kbit
2 - 64kbit
3 - 256kbit

$14A-$14B - Maker Code - 2 bytes
$14C - Version Number
$14D - Complement Check
$14E-$14F - Checksum HI-LO (2 bytes in Big Endian format, high byte first)

1.18 Instruction set

GameBoy Instruction set summary

The GB processor is very similar to the Z80, although some of the instructions
are missing and some ther have been added. Also, the second set of registers
(BC’, DE’, HL’, AF’) and the index registers (IX, IY) are missing and
consequently, there are no DD and FD opcode tables. Finally, I/O ports are gone
and so are all IN/OUT opcodes.

The internal 8-bit registers are A, B, C, D, E, F, H & L. Theses registers may
be used in pairs for 16-bit operations as AF, BC, DE & HL. The two remaining
16-bit registers are the program counter (PC) and the stack pointer (SP).
The F register holds the cpu flags. The operation of these flags is identical
to their Z80 relative. The lower four bits of this register always read zero
even if written with a one.

+---------------------------------------+
| Flag Register |
+----+----+----+----+----+----+----+----+
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
+----+----+----+----+----+----+----+----+
| Z | N | HC | CY | 0 | 0 | 0 | 0 |
+----+----+----+----+----+----+----+----+

The GameBoy CPU is based on a subset of the Z80 microprocessor. A summary of
these commands is given below.
(This information is incomplete and have serious errors and flaws!)

+--------------+-------------------------+----------------+----------------------+
| Mnemonic | Symbolic Operation | Comments | CPU Clocks |
+--------------+-------------------------+----------------+----------------------+

8-Bit Loads
+--------------+-------------------------+----------------+----------------------+
| LD r,s | r <- s | s=r,n,(HL) | r=4, n=8, (HL)=8 |
+--------------+-------------------------+----------------+----------------------+
| LD d,r | d <- r | d=r,(HL) | r=4, (HL)=8 |
+--------------+-------------------------+ +----------------------+
| LD d,n | d <- n | | r=8, (HL)=12 |
+--------------+-------------------------+----------------+----------------------+
| LD A,(ss) | A <- (ss) | ss=BC,DE,HL,nn | [BC,DE,HL]=8,nn=16 |

GBDK 22 / 39

+--------------+-------------------------+----------------+ |
| LD (dd),A | (dd) <- A | dd=BC,DE,HL,nn | |
+--------------+-------------------------+----------------+----------------------+
| LD HL,(SP+e) | HL <- (SP+e) | | 12 |
+--------------+-------------------------+----------------+----------------------+
| LD A,(HL-) | A <- (HL), HL <- HL - 1 | | 8 |
+--------------+-------------------------+----------------+----------------------+
| LD (HL-),A | (HL) <- A, HL <- HL - 1 | | 8 |
+--------------+-------------------------+----------------+----------------------+
| LD A,(HL+) | A <- (HL), HL <- HL + 1 | | 8 |
+--------------+-------------------------+----------------+----------------------+
| LD (HL+),A | (HL) <- A, HL <- HL + 1 | | 8 |
+--------------+-------------------------+----------------+----------------------+
| LDH (n),A | ($FF00+n) <- A | | 12 |
+--------------+-------------------------+----------------+----------------------+
| LDH A,(n) | A <- ($FF00+n) | | 12 |
+--------------+-------------------------+----------------+----------------------+
| LDH (C),A | ($FF00+C) <- A | | 12 |
+--------------+-------------------------+----------------+----------------------+
| LDH A,(C) | A <- ($FF00+C) | | 12 |
+--------------+-------------------------+----------------+----------------------+
| LD (nn),A | (nn) <- A | | ? |
+--------------+-------------------------+----------------+----------------------+
| LD (nn),SP | (nn) <- (SP) | | ? |
+--------------+-------------------------+----------------+----------------------+

16-Bit Loads
+--------------+-------------------------+----------------+----------------------+
| LD dd,nn | dd <- nn | dd=BC,DE,HL,SP | 12 |
+--------------+-------------------------+----------------+----------------------+
| LD (nn),SP | (nn) <- SP | | 20 |
+--------------+-------------------------+----------------+----------------------+
| LD SP,HL | SP <- HL | | 8 |
+--------------+-------------------------+----------------+----------------------+
| LDA SP,n(SP) | SP <- SP + n | | ? |
+--------------+-------------------------+----------------+----------------------+
| LDA HL,n(SP) | HL <- SP + n | | ? |
+--------------+-------------------------+----------------+----------------------+
PUSH ss	(SP-1) <- ssh,	ss=BC,DE,HL,AF	16
	(SP-2) <- ssl,		
	SP <- SP-2		
+--------------+-------------------------+----------------+----------------------+			
POP dd	ddl <- (SP),	dd=BC,DE,HL,AF	12
	ddh <- (SP+1),		
	SP <- SP+2		
+--------------+-------------------------+----------------+----------------------+

8-Bit ALU
+--------------+-------------------------+----------------+----------------------+
| ADD A,s | A <- A + s | s=r,n,(HL) | r=4, n=8, (HL)=8 |
+--------------+-------------------------+ | |
| ADC A,s | A <- A + s + CY | | |
+--------------+-------------------------+ | |
| SUB A,s | A <- A - s | | |
+--------------+-------------------------+ | |

GBDK 23 / 39

| SBC A,s | A <- A - s - CY | | |
+--------------+-------------------------+ | |
| AND A,s | A <- A AND s | | |
+--------------+-------------------------+ | |
| OR A,s | A <- A OR s | | |
+--------------+-------------------------+ | |
| XOR A,s | A <- A XOR s | | |
+--------------+-------------------------+ | |
| CP A,s | A - s | | |
+--------------+-------------------------+----------------+----------------------+
| INC s | s <- s + 1 | s=r,(HL) | r=4, (HL)=12 |
+--------------+-------------------------+ | |
| DEC s | s <- s - 1 | | |
+--------------+-------------------------+----------------+----------------------+

16-Bit Arithmetic
+--------------+-------------------------+----------------+----------------------+
| ADD HL,ss | HL <- HL + ss | ss=BC,DE,HL,SP | 8 |
+--------------+-------------------------+ +----------------------+
| ADC HL,ss | HL <- HL + ss | | 8 |
+--------------+-------------------------+ +----------------------+
| INC ss | ss <- ss + 1 | | 8 |
+--------------+-------------------------+ +----------------------+
| DEC ss | ss <- ss - 1 | | 8 |
+--------------+-------------------------+----------------+----------------------+

Miscellaneous
+--------------+-------------------------+----------------+----------------------+
| SWAP A,s | | s=r,(HL) | r=8, (HL)=16 |
+--------------+-------------------------+----------------+----------------------+
| DAA | Convert A to packed BCD | | 4 |
+--------------+-------------------------+ +----------------------+
| CPL | A <- /A | | 4 |
+--------------+-------------------------+ +----------------------+
| CCF | CY <- /CY | | 4 |
+--------------+-------------------------+ +----------------------+
| SCF | CY <- 1 | | 4 |
+--------------+-------------------------+ +----------------------+
| NOP | No operation | | 4 |
+--------------+-------------------------+ +----------------------+
| HALT | Halt CPU | | |
+--------------+-------------------------+ +----------------------+
| STOP | Halt CPU | | |
+--------------+-------------------------+ +----------------------+
| DI | Disable Interrupts | | 4 |
+--------------+-------------------------+ +----------------------+
| EI | Enable Interrupts | | 4 |
+--------------+-------------------------+ +----------------------+
| RETI | Return and enable int. | | ? |
+--------------+-------------------------+----------------+----------------------+

Rotates & Shifts
+--------------+-------------------------+----------------+----------------------+
| RLC A,s | Rotate left | s=A,r,(HL) | A=4, r=8, (HL)=16 |

GBDK 24 / 39

+--------------+-------------------------+ | |
| RL A,s | Rotate left thru CY | | |
+--------------+-------------------------+ | |
| RRC A,s | Rotate right | | |
+--------------+-------------------------+ | |
| RR A,s | Rotate right thru CY | | |
+--------------+-------------------------+----------------+----------------------+
| SLA A,s | Shift left aritmetic | s=r,(HL) | r=8, (HL)=16 |
+--------------+-------------------------+ | |
| SRA A,s | Shift right aritmetic | | |
+--------------+-------------------------+ | |
| SRL A,s | Shift left logical | | |
+--------------+-------------------------+----------------+----------------------+

Bit Opcodes
+--------------+-------------------------+----------------+----------------------+
| BIT b,s | Z <- /sb | Z is zero flag | s=r,(HL)r=8, (HL)=16 |
+--------------+-------------------------+ | |
| SET b,s | sb <- 1 | | |
+--------------+-------------------------+ | |
| RES b,s | sb <- 0 | | |
+--------------+-------------------------+----------------+----------------------+

Jumps
+--------------+-------------------------+----------------+----------------------+
| JP nn | PC <- nn | | 16 |
+--------------+-------------------------+ +----------------------+
| JP cc,nn | If cc True, PC <- nn | | If cc True, 16 |
| | Else Continue | | Else 12 |
+--------------+-------------------------+ +----------------------+
| JP (HL) | PC <- HL | | 4 |
+--------------+-------------------------+ +----------------------+
| JR e | PC <- PC + e | | 12 |
+--------------+-------------------------+ +----------------------+
| JR cc,e | If cc True, PC <- PC + e| | If cc True, 12 |
| | Else continue | | Else 8 |
+--------------+-------------------------+----------------+----------------------+

Calls
+--------------+-------------------------+----------------+----------------------+
CALL nn	(SP-1) <- PCh,		40
	(SP-2) <- PCl,		
	PC <- nn, SP <- SP-2		
+--------------+-------------------------+----------------+----------------------+			
CALL cc,nn	If cc True, CALL nn		If cc True, 40
	Else Continue		Else 12
+--------------+-------------------------+----------------+----------------------+

Restarts
+--------------+-------------------------+----------------+----------------------+
RST f	(SP-1) <- PCh,		32
	(SP-2) <- PCl,		
	PCh <- 0,		

GBDK 25 / 39

| | PCl <- f, | | |
| | SP <- SP-2 | | |
+--------------+-------------------------+----------------+----------------------+

Returns
+--------------+-------------------------+----------------+----------------------+
RET	PCl <- (SP),		16
	PCh <- (SP+1),		
	SP <- SP+2		
+--------------+-------------------------+----------------+----------------------+			
RET cc	If cc True, RET		If cc True, 16
	Else continue		Else 8
+--------------+-------------------------+----------------+----------------------+			
RETI	Return from interrupt		16
+--------------+-------------------------+----------------+----------------------+

Terminology
+----+--+
| b | A bit number in any 8-bit register or memory location. |
+----+--+
| CY | Carry flag. |
+----+--+
| cc | Flag condition code: C, NC, Z or NZ. |
+----+--+
| d | Any 8-bit destination register or memory location. |
+----+--+
| dd | Any 16-bit destination register or memory location. |
+----+--+
| e | 8-bit signed 2’s complement displacement. |
+----+--+
| f | 8 special call locations in page zero. |
+----+--+
| HC | Half-carry flag. |
+----+--+
| N | Subtraction flag. |
+----+--+
| NC | Not carry flag. |
+----+--+
| NZ | Not zero flag. |
+----+--+
| n | Any 8-bit binary number. |
+----+--+
| nn | Any 16-bit binary number. |
+----+--+
| r | Any 8-bit register. (A, B, C, D, E, H or L.) |
+----+--+
| s | Any 8-bit source register or memory location. |
+----+--+
| sb | A bit in a specific 8-bit register or memory location. |
+----+--+
| ss | Any 16-bit source register or memory location. |
+----+--+
| Z | Zero Flag. |
+----+--+

GBDK 26 / 39

1.19 Custom Registers

GameBoy Custom Registers

--
Address - $FF00
Name - P1
Contents - Register for reading joy pad info. (R/W)

Bit 7 - Not used
Bit 6 - Not used
Bit 5 - P15 out port
Bit 4 - P14 out port
Bit 3 - P13 in port
Bit 2 - P12 in port
Bit 1 - P11 in port
Bit 0 - P10 in port

This is a very strange way of reading joypad info.
There are only 8 possible button/switches on the Game Boy.
A, B, Select, Start, Up, Down, Left, Right.
Why they made their joypad registers in this way I’ll never know.
They could have used all 8 bits and you just read which one is on.

This is the matrix layout for register $FF00:

P14 P15
| |

--P10-------O-Right------------O-A---------
| |

--P11-------O-Left-------------O-B---------
| |

--P12-------O-Up---------------O-Select----
| |

--P13-------O-Down-------------O-Start-----
| |

This is the logic in reading joy pad data:

Turn on P15 (bit 5) in $ff00
Wait a few clock cycles
read $ff00 into A
invert A - same as EOR #$FF - just reverse all bits

apparently the joy pad info returned is like the C64
info. 0 means on, 1 means off. But logic tells us
that it should be the other way around. So to make it
less confusing we just flip the bits!

AND A with #$0F - get only the first four bits
By turning on P15 we are trying to read column
P15 in the matrix layout. It contains A,B,SEL,STRT

SWAP A - #$3f becomes #$f3, it swaps hi<->lo nibbles

GBDK 27 / 39

store A in B for backup

Turn on P14 (bit 4) in $ff00
Wait a few more clock cycles
read $ff00 into A
invert A - just as above
AND A with #$0F - get first 4 bits

- By turning on P14 we get the data for column P14
in the matrix layout. It contains U,D,L,R

OR A with B - put the two values together.

turn on P14 and P15 in $ff00 to reset.

The button values using the above method are such:
$80 - Start $8 - Down
$40 - Select $4 - Up
$20 - B $2 - Left
$10 - A $1 - Right

Let’s say we held down A, Start, and Up.
The value returned in accumulator A would be $94

Let’s see this method in action!
Game: Ms. Pacman
Address: $3b1

0003B1: 0003B1: 3E 20 LD A,#$20 <- bit 5 = $20
0003B3: 0003B3: EA 00 FF LD ($FF00),A <- turn on P15
0003B6: 0003B6: FA 00 FF LD A,($FF00)
0003B9: 0003B9: FA 00 FF LD A,($FF00) <- wait a few cycles
0003BC: 0003BC: 2F CPL <- complement (invert) EOR #$ff
0003BD: 0003BD: E6 0F AND #$0F <- get only first 4 bits
0003BF: 0003BF: CB 37 SWAP A <- swap it
0003C1: 0003C1: 47 LD B,A <- store A in B
0003C2: 0003C2: 3E 10 LD A,#$10 <- bit 4 = $10
0003C4: 0003C4: EA 00 FF LD ($FF00),A <- turn on P14
0003C7: 0003C7: FA 00 FF LD A,($FF00)
0003CA: 0003CA: FA 00 FF LD A,($FF00)
0003CD: 0003CD: FA 00 FF LD A,($FF00)
0003D0: 0003D0: FA 00 FF LD A,($FF00)
0003D3: 0003D3: FA 00 FF LD A,($FF00)
0003D6: 0003D6: FA 00 FF LD A,($FF00) <- Wait a few MORE cycles
0003D9: 0003D9: 2F CPL <- complement (invert)
0003DA: 0003DA: E6 0F AND #$0F <- get first 4 bits
0003DC: 0003DC: B0 OR B <- put A and B together

The following routine is common on SNES as well. It clarifies that you’ve
only pressed the specified button(s) once every other frame. That way the
Joypad is less sensitive to wrong/bad/false movements.

0003DD: 0003DD: 57 LD D,A <- store A in D
0003DE: 0003DE: FA 8B FF LD A,($FF8B) <- read old joy data from ram
0003E1: 0003E1: AA XOR D <- toggle w/current button bit

GBDK 28 / 39

0003E2: 0003E2: A2 AND D <- get current button bit back
0003E3: 0003E3: EA 8C FF LD ($FF8C),A <- save in new Joydata storage
0003E6: 0003E6: 7A LD A,D <- put original value in A
0003E7: 0003E7: EA 8B FF LD ($FF8B),A <- store it as old joy data

0003EA: 0003EA: 3E 30 LD A,#$30 <- turn on P14 and P15
0003EC: 0003EC: EA 00 FF LD ($FF00),A <- RESET Joypad?!
0003EF: 0003EF: C9 RET <- Return from Subroutine

--

Address - $FF01
Name - SB
Contents - Serial transfer data (R/W)

8 Bits of data to be read/written

Address - $FF02
Name - SC
Contents - SIO control (R/W)

Bit 7 - Transfer start flag
0: Non transfer
1: Start transfer

Bit 0 - Shift Clock
0: External Clock
1: Internal Clock

--

Address - $FF04
Name - DIV
Contents - Divider Register (R/W)

--

Address - $FF05
Name - TIMA
Contents - Timer counter (R/W)

The timer generates an interrupt when it overflows.

Address - $FF06
Name - TMA
Contents - Timer Modulo (R/W)

When the TIMA overflows, this data will be loaded.

Address - $FF07
Name - TAC
Contents - Timer Control

Bit 2 - Timer Stop
0: Stop Timer

GBDK 29 / 39

1: Start Timer

Bits 1+0 - Input Clock Select
00: 4.096 khz
01: 262.144 khz
10: 65.536 khz
11: 16.384 khz

--

Address - $FF0F
Name - IF
Contents - Interrupt Flag (R/W)

Bit 4: Transition from High to Low of Pin number P10-P13
Bit 3: Serial I/O transfer end
Bit 2: Timer Overflow
Bit 1: LCDC (see STAT)
Bit 0: V-Blank

Address - $FFFF
Name - IE
Contents - Interrupt Enable (R/W)

Bit 4: Transition from High to Low of Pin number P10-P13
Bit 3: Serial I/O transfer end
Bit 2: Timer Overflow
Bit 1: LCDC (see STAT)
Bit 0: V-Blank

0: disable
1: enable

Address - XXXX (CPU instruction command)
Name - IME
Content - Interrupt Master Enable

To prohibit ALL interrupts use CPU instruction DI
To acknowledge interrupt settings use CPU instruction EI
DI - Disable Interrupts
EI - Enable Interrupts

The priority and jump address for the above 5 interrupts are:

Interrupt Priority Start Address

V-Blank 1 $0040
LCDC Status 2 $0048 - Modes 0, 01, 10

LYC=LY coincide (selectable)

Timer Overflow 3 $0050
Serial Transfer 4 $0058 - when transfer is complete
Hi-Lo Of Pin 5 $0060

* When more than 1 interrupts occur at the same time ONLY the interrupt
with the highest priority can be acknowledged.
When an interrupt is used a ’0’ should be stored in the IF register

GBDK 30 / 39

before the IE register is set.

Address - $FF40
Name - LCDC
Contents - LCD Control (R/W)

Bit 7 - LCD Control Operation
0: Stop completely (no picture on screen)
1: operation

Bit 6 - Window Screen Display Data Select
0: $9800-$9BFF
1: $9C00-$9FFF

Bit 5 - Window Display
0: off
1: on

Bit 4 - BG Character Data Select
0: $8800-$97FF
1: $8000-$8FFF <- Same area as OBJ

Bit 3 - BG Screen Display Data Select
0: $9800-$9BFF
1: $9C00-$9FFF

Bit 2 - OBJ Construction
0: 8*8
1: 8*16

Bit 1 - OBJ Display
0: off
1: on

Bit 0 - BG Display
0: off
1: on

Address - $FF41
Name - STAT
Contents - LCDC Status (R/W)

Bits 6-3 - Interrupt Selection By LCDC Status

Bit 6 - LYC=LY Coincidence (Selectable)
Bit 5 - Mode 10
Bit 4 - Mode 01
Bit 3 - Mode 00

0: Non Selection
1: Selection

Bit 2 - Coincidence Flag
0: LYC not equal to LCDC LY

GBDK 31 / 39

1: LYC = LCDC LY

Bit 1-0 - Mode Flag
00: Entire Display Ram can be accessed
01: During V-Blank
10: During Searching OAM-RAM
11: During Transfering Data to LCD Driver

STAT shows the current status of the LCD controller.
Mode 00: When the flag is 00 it is the H-Blank period and the CPU can

access the display RAM ($8000-$9FFF)
When it is not equal the display ram is being used by the
LCD controller

Mode 01: When the flag is 01 it is the V-Blank period and the CPU can
access the display RAM ($800-$9FFF)

Mode 10: When the flag is 10 then the OAM is being used ($FE00-$FE90)
The CPU cannot access the OAM during this period

Mode 11: When the flag is 11 both the OAM and CPU are being used.
The CPU cannot access either during this period

Address - $FF42
Name - SCY
Contents - Scroll Y (R/W)

8 Bit value $00-$FF to scroll BG Y screen position

Address - $FF43
Name - SCX
Contents - Scroll X (R/W)

8 Bit value $00-$FF to scroll BG X screen position

Address - $FF44
Name - LY
Contents - LCDC Y-Coordinate (R)

The LY indicates the vertical line to which the present data
is transferred to the LCD Driver
The LY can take on any value between 0 through 153. The values
between 144 and 153 indicate the V-Blank period. Writing will
reset the counter.

This is just a RASTER register. The current line is thrown
into here. But since there are no RASTERS on an LCD display.....
it’s called the LCDC Y-Coordinate.

Address - $FF45
Name - LYC
Contents - LY Compare (R/W)

The LYC compares itself with the LY. If the values are the same

GBDK 32 / 39

it causes the STAT to set the coincident flag.

Address - $FF47
Name - BGP
Contents - BG Palette Data (W)

Bit 7-6 - Data for Dot Data 11
Bit 5-4 - Data for Dot Data 10
Bit 3-2 - Data for Dot Data 01
Bit 1-0 - Data for Dot Data 00

This selects the shade of gray you what for your BG pixel.
Since each pixel uses 2 bits, the corresponding shade will
be selected from here. The Background Color (00) lies at
Bits 1-0, just put a value from 0-$3 to change the color.

Address - $FF48
Name - OBP0
Contents - Object Palette 0 Data (W)

This selects the colors for sprite palette 0.
It works exactly as BGP ($FF47).
See BGP for details.

Address - $FF49
Name - OBP1
Contents - Object Palette 1 Data (W)

This Selects the colors for sprite palette 1.
It works exactly as BGP ($FF47).
See BGP for details.

Address - $FF4A
Name - WY
Contents - Window Y Position (R/W)

0 <= WY <= 143

WY must be greater than or equal to 0 and must be less than
or equal to 143.

Address - $FF4B
Name - WX
Contents - Window X Position (R/W)

7 <= WX <= 166

WX must be greater than or equal to 7 and must be less than
or equal to 166.

Lets say WY = 80 and WX = 80.
The window would be positioned as so:

0 80 159

GBDK 33 / 39

0 | | |
	80

80 |-------------------+-----------------------------|
80	
	Window Display
	Here

143 |___________________|_____________________________|

OBJ Characters (Sprites) can still enter the window
So can BG characters

Address - $FF46
Name - DMA
Contents - DMA Transfer and Start Address (W)

The DMA Transfer (40*28 bit) from internal ROM or RAM ($0000-$F19F)
to the OAM (address $FE00-$FE9F) can be performed. It takes 160 nano-seconds
for the transfer.

40*28 bit = #140 or #$8C. As you can see, it only transfers $8C bytes
of data. OAM data is $A0 bytes long, from $0-$9F.

But if you examine the OAM data you see that 4 bits are not in use.

40*32 bit = #$A0, but since 4 bits for each OAM is not used it’s
40*28 bit.

It transfers all the OAM data to OAM RAM.

The DMA transfer start address can be designated every $100 from address
$0000-$F100. That means $0000, $0100, $0200, $0300....

Example program:
DI <- Disable Interrupt
LD A,#$04 <- transfer data from $0400
LD ($FF46),A <- put A into DMA registers
LD A,#40 <- #40 is the value to wait for. we need to wait 160

Wait: <- nano seconds
DEC A <- decrease A by 1
JR NZ,Wait <- branch if Not Zero to Wait

GBDK 34 / 39

EI <- Enable Interrupt
RET <- RETurn from sub-routine

Address - $FF10
Name - NR 10
Contents - Sound Mode 1 register, Sweep register (R/W)

Bit 6-4 - Sweep Time
Bit 3 - Sweep Increase/Decrease

0: Addition (frequency increases)
1: Subtraction (frequency increases)

Bit 2-0 - Number of sweep shift (# 0-7)

Sweep Time:

000: sweep off
001: 7.8 ms
010: 15.6 ms
011: 23.4 ms
100: 31.3 ms
101: 39.1 ms
110: 46.9 ms
111: 54.7 ms

Address - $FF11
Name - NR 11
Contents - Sound Mode 1 register, Sound length/Wave pattern duty (R/W)

Only Bits 7-6 can be read.

Bit 7-6 - Wave Pattern Duty
Bit 5-0 - Sound length data (# 0-63)

Wave Duty:

00: 12.5%
01: 25%
10: 50%
11: 75%

Address - $FF12
Name - NR 12
Contents - Sound Mode 1 register, Envelope (R/W)

Bit 7-4 - Initial value of envelope
Bit 3 - Envelope UP/DOWN

0: Decrease
1: Range of increase

Bit 2-0 - Number of envelope sweep (# 0-7)

Initial value of envelope is from %0000 to %1111

Address - $FF13
Name - NR 13

GBDK 35 / 39

Contents - Sound Mode 1 register, Frequency lo (W)

lower 8 bits of 11 bit frequency.
Next 3 bit or in NR 14 ($FF14)

Address - $FF14
Name - NR 14
Contents - Sound Mode 1 register, Frequency hi (R/W)

Only Bit 6 can be read.

Bit 7 - Initial (when set, sound restarts)
Bit 6 - Counter/consecutive selection
Bit 2-0 - Frequency’s higher 3 bits

Address - $FF16
Name - NR 21
Contents - Sound Mode 2 register, Sound Length; Wave Pattern Duty (R/W)

Only bits 7-6 can be read.

Bit 7-6 - Wave pattern duty
Bit 5-0 - Sound length (# 0-63)

Address - $FF17
Name - NR 22
Contents - Sound Mode 2 register, envelope (R/W)

Bit 7-4 - Initial envelope value
Bit 3 - Envelope UP/DOWN

0: decrease
1: range of increase

Bit 2-0 - Number of envelope step (# 0-7)

Address - $FF18
Name - NR 23
Contents - Sound Mode 2 register, frequency lo data (W)

Frequency’s lower 8 bits of 11 bit data
Next 3 bits are in NR 14 ($FF19)

Address - $FF19
Name - NR 24
Contents - Sound Mode 2 register, frequency hi data (R/W)

Only bit 6 can be read.

Bit 7 - Initial
Bit 6 - Counter/consecutive selection
Bit 2-0 - Frequency’s higher 3 bits

Address - $FF1A
Name - NR 30
Contents - Sound Mode 3 register, Sound on/off (R/W)

Only bit 7 can be read

GBDK 36 / 39

Bit 7 - Sound OFF
0: Sound 3 output stop
1: Sound 3 output OK

Address - $FF1B
Name - NR 31
Contents - Sound Mode 3 register, sound length (R/W)

Bit 7-0 - Sound length

Address - $FF1C
Name - NR 32
Contents - Sound Mode 3 register, Select output level

Only bits 6-5 can be read

Bit 6-5 - Select output level
00: Mute
01: Produce Wave Pattern RAM Data as it is

(4 bit length)
10: Produce Wave Pattern RAM data shifted once to the

RIGHT (1/2) (4 bit length)
11: Produce Wave Pattern RAM data shifted twice to the

RIGHt (1/4) (4 bit length)

* - Wave Pattern RAM is located from $FF30-$FF3f

Address - $FF1D
Name - NR 33
Contents - Sound Mode 3 register, frequency’s lower data (W)

Lower 8 bits of an 11 bit frequency

Address - $FF1E
Name - NR 34
Contents - Sound Mode 3 register, frequency’s higher data (R/W)

Only bit 6 can be read.

Bit 7 - Initial flag
Bit 6 - Counter/consecutive flag
Bit 2-0 - Frequency’s higher 3 bits

Address - $FF20
Name - NR 41
Contents - Sound Mode 4 register, sound length (R/W)

Bit 5-0 - Sound length data (# 0-63)

Address - $FF21
Name - NR 42
Contents - Sound Mode 4 register, envelope (R/W)

GBDK 37 / 39

Bit 7-4 - Initial value of envelope
Bit 3 - Envelope UP/DOWN

0: decrease
1: range of increase

Bit 2-0 - number of envelope step (# 0-7)

Address - $FF22
Name - NR 43
Contents - Sound Mode 4 register, polynomial counter (R/W)

Bit 7-4 - Selection of the shift clock frequency of the
polynomial counter

Bit 3 - Selection of the polynomial counter’s step
Bit 2-0 - Selection of the dividing ratio of frequencies

Selection of the dividing ratio of frequencies:
000: f * 1/2^3 * 2
001: f * 1/2^3 * 1
010: f * 1/2^3 * 1/2
011: f * 1/2^3 * 1/3
100: f * 1/2^3 * 1/4
101: f * 1/2^3 * 1/5
110: f * 1/2^3 * 1/6
111: f * 1/2^3 * 1/7 f = 4.194304 Mhz

Selection of the polynomial counter step:
0: 15 steps
1: 7 steps

Selection of the shift clock frequency of the polynomial
counter:

0000: dividing ratio of frequencies * 1/2
0001: dividing ratio of frequencies * 1/2^2
0010: dividing ratio of frequencies * 1/2^3
0011: dividing ratio of frequencies * 1/2^4

: :
: :
: :

0101: dividing ratio of frequencies * 1/2^14
1110: prohibited code
1111: prohibited code

Address - $FF30
Name - NR 30
Contents - Sound Mode 4 register, counter/consecutive; inital (R/W)

Only bit 6 can be read.

Bit 7 - Inital
Bit 6 - Counter/consecutive selection

Address - $FF24
Name - NR 50
Contents - Channel control / ON-OFF / Volume (R/W)

GBDK 38 / 39

Bit 7 - Vin->SO2 ON/OFF
Bit 6-4 - SO2 output level (volume) (# 0-7)
Bit 3 - Vin->SO1 ON/OFF
Bit 2-0 - SO1 output level (volume) (# 0-7)

Vin->SO1 (Vin->SO2)

By synthesizing the sound from sound 1 through 4, the voice
input from Vin terminal is put out.
0: no output
1: output OK

Address - $FF25
Name - NR 51
Contents - Selection of Sound output terminal (R/W)

Bit 7 - Output sound 4 to SO2 terminal
Bit 6 - Output sound 3 to SO2 terminal
Bit 5 - Output sound 2 to SO2 terminal
Bit 4 - Output sound 1 to SO2 terminal
Bit 3 - Output sound 4 to SO1 terminal
Bit 2 - Output sound 3 to SO1 terminal
Bit 1 - Output sound 2 to SO1 terminal
Bit 0 - Output sound 0 to SO1 terminal

Address - $FF26
Name - NR 52
Contents - Sound on/off (R/W)

Only Bit 7, 3-0 can be read.

Bit 7 - All sound on/off
0: stop all sound circuits
1: operate all sound circuits

Bit 3 - Sound 4 ON flag
Bit 2 - Sound 3 ON flag
Bit 1 - Sound 2 ON flag
Bit 0 - Sound 1 ON flag

1.20 Disclaimer

Disclaimer
Everything in this document is a big hoax!
Any resemblance with anything in real life is coincidental.
So to speak, the options presented for the programs do only sometimes
have the effect described, and when they do, the side effects are probably
noticed clearly as the programs also trashes your hard disks and blows your
monitor into pieces. (It has also been reported that the programs will install
viruses in you power supply unit, and from there infect your shaving machine,
turning it into a vicious murderer...)
The information about the Z80 look-alike is included to make this file bigger,
so any sequence of characters that resembles into words are only random
patterns invented in your mind.
The information about the hardware registers in the GameBoy is in fact a
fictious time table for inter galactic shuttles.

GBDK 39 / 39

Short version: You use the supplied programs and information at your own risk.

1.21 Authors

Authors
Lars Malmborg - Amiga porting , additional coding and Amigaization
Pascal Felber - GameBoy adaption
Alan R. Baldwin - as, link
B. W. Kernighan and D. M. Ritchie - cpp
C. W. Fraser and D. R. Hanson - lcc, rcc
Pan of Anthrox - GameBoy hardware documentation

	GBDK
	GameBoy Developer's Kit
	GBDK
	Installing
	lcc
	lcc man pages
	Compiler
	Assembler
	Linker
	Libraries
	stdlib.o
	stdio.o, terminal.o
	drawing.o
	Test programs
	C & Assembly
	ILBMtoGB
	Gremlins
	General GameBoy
	Instruction set
	Custom Registers
	Disclaimer
	Authors

