
Virtual User Language Reference Beta Draft 10/7/24

Contents

Figures and Tables vi

1 Introduction1

Introduction 2

2 Value Types and Expressions 3

Value Types 4
Expressions 5

Variables 5
Numbers 5
Strings and Regular Expressions 6
Symbolic Identifiers7
Arithmetic Expressions 7
Lists 8

List Operators 8
Descriptor Expressions 9
Match Expressions 11
Collect Expressions 13
Dot Expressions 15
Unification 15
Perfect Match Expressions 17
Relational Expressions 17
Logical Expressions 19

3 Descriptor Traits 21

Window Descriptors22
Content Item Descriptors 23
Control Descriptors 23

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Menu Descriptors 24
Menu Item Descriptors 25
Keyboard Descriptors 27

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Mouse Descriptors 28
Screen Descriptors 28
Application Descriptors 30
Target Descriptors 30
System Descriptors 31
Actor Descriptors 32
Time Descriptors 32
Descriptor Shortcuts33

4 Statements 35

Print Statements 36
Assignment Statements 36
Commands 37

Selecting Menus 37
Selecting Menu Items 37
Selecting Windows 38
Dragging Windows 39
Sizing Windows 40
Closing Windows 41
Zooming Windows 41
Selecting Buttons 42
Selecting Radio Buttons 42
Selecting Check Boxes 42
Scrolling 42
Typing 44
Controlling the Mouse Directly 44

Exit Statement 46

5 Control Flow 47

If-Else Statements 48
For Loops 48
For Each Loops 50
While Loops 50

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

6 Making Scripts Modular 51

Tasks 52
Returning Values from Tasks 54

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

System Supplied Tasks 54
Libraries of Tasks 55
Commenting a Script 55

7 Message Passing 57

Multitasking Environment 58
Inter-process Communication 58

Example 58
VU Script Example 60
System Tasks that Enable Message Passing 61

8 How the Matcher Works 63

Introduction 64
The Algorithm 64
Regular Expression Matching 68

Character Expressions 69
Repeated Instances of Regular Expressions 71
Matching a Pattern at the Beginning or End of a Line 71
Inserting Invisible Characters 72

Solving Matching Difficulties 72

Appendix 73

A Grammar 74
B Reserved Words 77
C Operator Precedence 78
D Symbolic Identifiers79
E Trait Weights 80
F System Supplied Tasks 82

Index 91

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Figures and Tables

2 Value Types and Expressions 3

Figure 2-I Example on Match Expressions 12

3 Descriptor Traits 21

Figure 3-I Hierarchical Menus 25
Figure 3-II Hierarchical Menu Items 27
Figure 3-III Screen Configuration 29

4 Statements 35

Figure 4-I Selecting Hierarchical Menu Items 38
Figure 4-II Sizing Windows 41
Figure 4-III Scrolling (Example 1) 43
Figure 4-IV Scrolling (Example 2) 43
Figure 4-V Mouse Move (Absolute) 45
Figure 4-VI Mouse Move (Relative) 46

8 How the Matcher Works 63

Figure 8-I Matching Example 65
Table 8-I Table of Regular Expression Operators 69

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

® Macintosh
®

Virtual User Language Reference

©1990 Apple Computer, Inc.

DRAFT VERSION - 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Chapter 1 Introduction

You are about to be introduced to a new language
that has been designed particularly for specifying
user interface test suites. Virtual User interprets
scripts written in this language to run the tests.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Introduction

The Virtual User™ (VU) scripting language is at the core of the VU
testing environment. VU can interpret scripts and execute the test
described by the script remotely across AppleTalk™. This
document contains a description of the language. Appendix A
contains the grammar for the language.

A script is a set of statements that describes interaction between the
Virtual User and the application under test (often referred to as the
target application). Commands are the statements that specify the
actual “virtual using”. VU supports commands to do the following:

select menus select menu items select windows
close windows zoom windows size windows
drag windows select buttons select radio buttons
select check boxes select controls scroll scrollbars
type at the keyboard press a key release a key
move the mouse press mouse button release mouse button

An example of a script of two commands is shown below:
select [menuItem title:'Key Caps' menu:1];

type keystrokes: { "hello world", returnKey };

This script would direct the Virtual User to select the Key Caps item from the first menu and type the string, "hello world"

followed by a strike of the return key. (This is assuming that the application under test includes the apple menu as the first

one on the menubar and Key Caps is installed.) The components of this script will be described in the appropriate

sections.

In addition to commands, high level programming constructs are provided to provide control over the execution of

commands. At the present time, VU supports if-else conditionals, for loops, for each loops (to iterate over a list), and

while loops. Scripts can be written without worrying about case. The interpreter is case insensitive. It is possible to make

the matching of regular expressions to strings case sensitive using one of the command line options.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Chapter 2 Value Types and Expressions

Expressions are forms that combine variables
and constants using operators. Expressions
are evaluated to form values. This chapter
first introduces you to the various value types
available in this language and then describes
the different kinds of expressions that can be
formulated in your scripts.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Value Types

Before we discuss expressions, it is important to know the basic
value types that can exist during a VU driven test. Statements
contain expressions that are evaluated when a script is executed.
The Virtual User reads an expression and determines what its value
should be at that point during the test. Expressions will always
evaluate to one of the following value types:

1. Numeric Value

2. String/Regular Expression

3. Descriptor

4. List of Values

5. Symbolic Value

Most of these are common to familiar programming languages with
descriptors being an exception and symbolic values (or symbols) a
less frequently seen value type. Descriptors will be described in
detail in a later section. Basically they are descriptions of things that
the Virtual User understands. The most common descriptors will
contain information describing user interface items like windows,
menu items, buttons, etc. Symbolic values have meaning in and of
themselves. For example, each of the keys on a keyboard have a
corresponding symbol such as returnKey, enterKey, optionKey,
and commandKey.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

In VU scripts, there are no type declarations. Values materialize
from the evaluation of expressions or through unification.
Expressions will be discussed in the next section. Unification, in
short, is the binding of a variable to some value that exists in the
system as a side effect of the evaluation of certain expressions.
More often than not, unification will be used to find out information
about a particular trait of a user interface element (e.g. the bounding
rectangle of a window). Unifications are specified within
descriptors and will be discussed in the section on descriptor
expressions.

Boolean values exist implicitly. Any value can be truth tested. All
descriptors are considered true except the null descriptor, []. The
empty list, { }, is considered false while all other lists are true. All
numeric values are considered true except 0. All regular expressions
are considered true except '' (two single quotes), "" (two double
quotes), and // (two slashes). The symbolic values, false and
undefined, are false while all others are true. true is also a symbol
which evaluates to itself.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Expressions

Statements contain expressions that are evaluated when the
statement is interpreted. Expressions can be classified into the
following categories:

■ Variables

■ Numbers

■ Symbolic Identifiers

■ Strings/Regular Expressions and those that manipulate them

■ Arithmetic Operations

■ Those that create, access, or manipulate lists when evaluated

■ Those that evaluate to descriptors or access information from descriptors

■ Relational Expressions

■ Logical Expressions

Variables

Variables are named containers for values. Variable names must begin with a letter
or underscore, after which any number of letters, digits and underscores may occur.
Variables may get their values in three different ways. Variables can obtain values
through assignment statements, parameter passing (a formal parameter to a task), or
unification. Parameter passing is discussed in the section on tasks. Variables
evaluate to whatever value they contain and variables that have not been given a
value will evaluate to undefined.

Numbers

What's to say about numbers. Numbers permitted in this language are integers in the
range from -32768 to 32767. When VU evaluates an out of range number, it flags
an error and returns undefined.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Strings and Regular Expressions

Strings and regular expressions1 (hereafter jointly referred to as regular expressions since strings are a particular case of regular expressions) use

the same syntax as the MPW search tool. Meta-characters within a regular expression (e.g. ≈) are only applied while specifying traits in descriptor expressions. Descriptors will be

described in their own section.

Within strings or regular expressions delimited by either " or /, a variable may be embedded if delimited by curly braces ({ }). When the regular expression is evaluated, the string

representation of the variable's binding is embedded at that position in the string resulting from evaluation. This mechanism is currently only valid for variables bound to regular

expressions and numbers. If the variable is unbound or bound to a value of the wrong type, no string embedding is done and a warning is issued. For example, the following script

fragment illustrates the use of variables within regular expressions.

x := 4;

y := "VU 1.0b{x}";

z := /{x}{y}/;

Given that the above three statements have been executed, the following holds:
x would evaluate to 4
y would evaluate to "VU 1.0b4"
z would evaluate to /4VU 1.0b4/

The unary prefix operator, card, may be applied to a string/regular expression and the resulting expression

will evaluate to the number of characters contained in the evaluated result. ∂n (newline) and ∂t (tab) count as

1 character within strings/regular expressions delimited by " or /. Knowing the length of a string is useful in

cases such as when you want to know the length of some text that appears in an editable text box.
card "hello" would evaluate to 5
card "hello world∂n" would evaluate to 12
card /hello world≈/ would evaluate to 12

To reference a particular character within a string, the [] operator may be used. As with lists, an expression

that evaluates to a numeric value (call it n) must be contained within the brackets. The expression will then

evaluate to the nth-element of the string.

Example 1

"abcdef"[4] would evaluate to 'd'

Example 2

Assume the following relations are true:

1See the section on Regular Expression Matching for a complete definition of regular expressions

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

x = "window-1"

y = 5

then,
x[y] would evalute to 'o'

In addition to being able to concatenate strings using the MPW notation of embedding variables within strings

using curly braces (e.g. “{x}{y}” as above), one can concatenate two strings using the binary operator, +. For

example:

“first string” + “second string” would evaluate to “first stringsecond string”

Symbolic Identifiers

Symbolic identifiers are identifiers that have a reserved meaning for specific
contexts of use. Symbolic identifiers are not to be confused with reserved
words (e.g. for, while, each, window, menu, in) or variables which hold
values. Examples of symbolic identifiers include true, false, and returnKey.
There is a complete list of symbols in Appendix D. These special identifiers
evaluate to themselves and should make sense in the context of use. The short
script given at the beginning of this document illustrated a command that
directs the Virtual User to do some typing. That command is shown below.
This command shows the symbolic identifier, returnKey, being used to
specify that the return key should be typed after the characters in the string,
"hello world" have been typed.

Type k: { "hello world",returnKey };

Arithmetic Expressions

The following standard arithmetic binary arithmetic operators are supported:

+ - * / mod

along with the unary arithmetic operators:

+ -

Since only integer numbers are supported, / is naturally integer division. Please
refer to the precedence chart in appendix C.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Lists

Lists are specified by enclosing any number of expressions, separated by commas in
curly braces ({ }). Lists can be heterogeneous meaning that the expressions need
not evaluate to values of the same type.

The list,

{ 1, "focus", true, 5 + 6 / 2, ima_variable, [window o:4 + 3] }

will evaluate to:

{ 1, "focus", true, 8, undefined, [window o:7] }

(assuming the variable, ima_variable, is unbound when the list is evaluated).

List Operators

Some list manipulation operations are supported through operators in the language. These operations are

accessing individual elements of a list, counting the number of elements in a list, and concatenating two lists

together.

An expression that evaluates to a list can be followed by a suffix of the form, [exp] where exp is some

expression that evaluates to some positive numeric value call it n. The resulting expression will evaluate to

the n-th element of the list. The following examples should illustrate the use of subscripting:

{"focus", 3, false, "vision", "passion"}[4] would evaluate to "vision"

x := {5,4,3,2,1}

x[2] would evaluate to 4

card is a unary prefix operator that, when applied to a list, evaluates to the number of elements in the list. For

example:

card { a,b,c,d } would evaluate to 4

card { { 1,2,3 }, { 7,a,[window] }, false } would evaluate to 3

New lists can be built by combining existing lists. To specify the concatenation of two lists, the binary

operator, +, should be used. Take the following script:
x := { 1,2,3 };

y := { 4,5,6,7,8 };

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24
println x + y;

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

This script would produce the following output:

{ 1,2,3,4,5,6,7,8 }

Note that this list ceases to exist after println finishes with it. Both x and y retain their list values. The result

of a + on two lists is to create a new list with copies of both component lists. Naturally, this result may be

assigned to a different variable which would not destroy neither of x or y’s bindings.

Descriptor Expressions

Descriptor expressions are the means by which a script author describes something
that might exist during test execution. The most common use of descriptors will be
to describe user interface items in the application under test such as windows,
menus, and buttons. Using descriptors, the script writer can describe something to
whatever degree of detail is needed to distinguish the object from others of the same
type. For example, it may be enough to describe a window by giving only a title if
the application names all of its windows uniquely.

User interface items are not the only things described by way of descriptors. VU,
for example, allows time descriptors which can be used to specify a time to be used
as a time of a day or duration of time depending on the context of use.

Descriptors are delimited by brackets ([]) and the descriptor type is located inside
the left bracket. A descriptor type can be any of the following:

actor application button checkBox

contentItem control editText icon

keyboard menu menuItem mouse

picture popup radioButton screen

scrollBar staticText system target

time userItem window

After the descriptor type and before the closing right bracket, any number of traits
may be given for a descriptor (including zero). The basic structure of a descriptor is
shown below:

 [descriptor-type trait1 trait2 etc…]

Traits are things like the title of a window, a menu item's state of enablement, the
thumb position of a scroll bar, etc…

An example of a window descriptor follows:

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

[window title:'Untitled' ord: 3]

The following diagram shows the various components of this descriptor:

This descriptor expression describes a window with "Untitled" as its title and is the third visible one in an

application's window list. The trait specifiers title: and ord: are the first components of their respective traits.

The interpreter is only concerned with the first letter of a trait specifier and the colon. All characters in

between the first letter and the colon are ignored by the interpreter. Additional letters are allowed for script

readability purposes. The following descriptors are equivalent to the one given above:

[window t:'Untitled' o:3]

[window the_title:'Untitled' ordinal_position_in_window_list:3]

Each of the descriptor types along with their allowable traits will be presented in a separate section. Some

basic conventions are used to help script authors remember the various trait specifiers. In describing anything

by its primary textual trait, t: for text is used. This includes things like window titles, button text, radio button

text, etc… Most user interface items have a rectangle. For these traits, the trait specifier is r:. To specify the

rank of something, o: (meaning ordinality) is used. Examples of o: traits are the rank of a window in the

window list, the rank of a menu item within a menu, and the rank of a menu in a menubar. Here are some

examples of descriptors:

[window]

[window t:'Untitled' o:1 style:document]

[menuItem]

[menuItem title:'New' m:'File']

[menu]

[menu title:'File' i: { [menuItem t:'New'],[menuItem t:'Open'],[menuItem t:'Close'],[menuItem t:'Quit'] }]

[menu title:'File' ord:2]

[menuItem t:’hierarchical item’

m:[menuItem t:’I have a hier menu attached m:[menu t:’menubar menu’]]]

[button t:'OK']

[button t:'OK' window_owner:[window style:dialog ord:1]]

[checkBox title:'Open at Startup']

[radioButton title:'Use All']

[time year:1989 month:4 day:15 hours:605 secs:34]

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Descriptors are descriptions of things that might exist during a test. Matching is the process used by the

Virtual User to find the thing being described by way of descriptor. Most often, matching involves finding

windows, menus, menu items, and the like in a target application.

Matching is invoked in one of two ways. All descriptors that appear as operands to commands automatically

get matched as part of command execution. For example, the command shown below directs the Virtual User

to select a menu item. The menu item to be selected is described by way of descriptor as having "Quit" as its

item name. Before the Virtual User may select this item, it must find where the item is located. This match as

part of command execution is often referred to as an implicit match.
select [menuItem t:"Quit"];

Sometimes, a script author will want to use the Virtual User's spying capabilities without actually doing anything like

selecting menus or closing windows. An expression may be formed to cause matching to occur as part of that expression's

evaluation process. There are two types of such expressions, match expressions and collect expressions.

Match Expressions

Match expressions are formed by applying the match operator (a unary prefix
operator) to an expression that will evaluate to a descriptor when evaluated (the
operand to the match). Evaluation of a match expression proceeds by first
evaluating the operand and applying the match process to the resulting descriptor.
The resulting value is a descriptor with all of its traits filled in. This "completed" or
"fleshed out" descriptor is a description of what was actually found in the target
application or wherever the matcher looked to find it. So there are two classes of
descriptors, those that are placed in a script by a script author and those that are
generated by the Virtual User as the result of matching a descriptor.

Let's assume we want to look for windows in the target application represented as a
screen shot below. We'll use VU's script directed output facilities to show some
examples of match expressions. In the following examples, the output has been
formatted for this document.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

■ Figure 2-I Example on Match Expressions

The following statement says to print the result of matching a window whose rank is 1, namely the front window:

println match[window o:1];

The printed result of this statement is shown below. The result is a completed descriptor describing the actual window

found in the target application. The various traits shown for this window descriptor are described in a separate section on

window descriptors. Some of the basic traits include the window's title (t:'MacPaint 2.0') and its rank (o:1)

[window
t:'MacPaint 2.0'
s:document
o:1
c:true
z:true
g:true
r: { 87, 116, 297, 254 }
k: { [scrollBar t:'' r: { 87, 237, 281, 253 } s:{ 0, 0 } e:true],

[scrollBar t:'' r: { 280, 154, 296, 238 } s:{ 0, 0 } e:true] }]

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

We could have matched the window by its title as the following example shows:
println match[window t:'MacPaint 2.0'];

The result of this statement is the same as the output from the previous example.

If more than one thing matches the descriptor, only one is arbitrarily chosen to be the result of the match as the following

example shows. Here we are saying that we'd like to match a window whose title begins with "Mac" and ends with

something we're not sure about (using a MPW style regular expression). Looking at the target application illustrated

above, we see that there are two windows that could match this description. One has the title, "MacPaint 2.0", and the

other has the title, "MacWrite 5.0". The Virtual User chose the one titled "MacPaint 2.0". The important thing to

remember is that match expressions only generate one descriptor.

println match[window t:/Mac≈/];

[window t:'MacPaint 2.0'
s:document o:1 c:true z:true g:true
r: { 87, 116, 297, 254 }
k:{ [scrollBar t:'' r: { 87, 237, 281, 253 } s:{ 0, 0 } e:true],

 [scrollBar t:'' r: { 280, 154, 296, 238 } s:{ 0, 0 } e:true] }]

Collect Expressions

To generate all descriptors that match a certain descriptor, one can form a collect
expression in the same manner as a match expression by substituting collect for
match. A collect expression evaluates to a list of descriptors such that each
descriptor in the list matches the descriptor given as the operand to the collect
operator.

Collect expressions come in handy when you'd like to grab lists of things that
change dynamically, like a Windows menu that many applications have.

The following specifies a collection of all windows. As a result of executing this
statement against the target application we're using as an example, the list of 4
descriptors shown below would be printed.
println collect[window];

{ [window t:'MacPaint 2.0' s:document o:1 c:true z:true g:true
r: { 87, 116, 297, 254 }
k:{ [scrollBar t:'' r: { 87, 237, 281, 253 } s:{ 0, 0 } e:true],

[scrollBar t:'' r: { 280, 154, 296, 238 } s:{ 0, 0 } e:true] }],
[window t:'AppleLink Folder' s:document o:2 c:true z:true g:true

r: { 203, 93, 442, 246 }
k:{ [scrollBar t:'' r: { 203, 229, 426, 245 } s:{ 0, 0 } e:true],

[scrollBar t:'' r: { 425, 131, 441, 230 } s:{ 0, 800 } e:true] }],

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24
[window t:'MacWrite 5.0' s:document o:3 c:true z:true g:true

r: { 155, 59, 431, 176 }
k:{ [scrollBar t:'' r: { 155, 159, 415, 175 } s:{ 0, 0 } e:true],

[scrollBar t:'' r: { 414, 97, 430, 160 } s:{ 0, 48 } e:true] }],
[window t:'Applications' s:document o:4 c:true z:true g:true

r: { 29, 58, 188, 215 }
k:{ [scrollBar t:'' r: { 29, 198, 172, 214 } s:{ 0, 0 } e:true],

[scrollBar t:'' r: { 171, 96, 187, 199 } s:{ 0, 0 } e:true] }] }

When we used /Mac≈/ , a regular expression, to describe a window in one of the match expression examples

above, we only got one descriptor as a result. Using the same descriptor as an operand to a collect expression,

we could get a list of all window descriptors that meet all the requirements.
println collect[window t:/Mac≈/];

{ [window t:'MacPaint 2.0' s:document o:1 c:true z:true g:true
r: { 87, 116, 297, 254 }
k:{ [scrollBar t:'' r: { 87, 237, 281, 253 } s:{ 0, 0 } e:true],

[scrollBar t:'' r: { 280, 154, 296, 238 } s:{ 0, 0 } e:true] }],
[window t:'MacWrite 5.0' s:document o:3 c:true z:true g:true

r: { 155, 59, 431, 176 }
k:{ [scrollBar t:'' r: { 155, 159, 415, 175 } s:{ 0, 0 } e:true],

[scrollBar t:'' r: { 414, 97, 430, 160 } s:{ 0, 48 } e:true] }] }

If only one window satisfies the descriptor, a list of one descriptor will be returned. Collect expressions

always evaluate to a list. Since only one window can have a specific rank, the following statement will return

a list of one window descriptor with a rank of 1.
println collect[window o:1];

{ [window t:'MacPaint 2.0' s:document o:1 c:true z:true g:true
r: { 87, 116, 297, 254 }
k:{ [scrollBar t:'' r: { 87, 237, 281, 253 } s:{ 0, 0 } e:true],

[scrollBar t:'' r: { 280, 154, 296, 238 } s:{ 0, 0 } e:true] }] }

It is very useful to obtain specific trait values from a descriptor. Trait values include such things as a window

title, a menu item rank within a menu, a button's bounding rectangle, etc… There are two ways to get at

specific trait values. The first is by forming a dot expression, the second is called unification.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Dot Expressions

Dot expressions are the means by which a particular trait value can be obtained from
a descriptor. These expressions are very similar in concept to expressions that
access members of a structure in C. The dot operator (a period) is used to separate
an expression and a trait specifier. The first operand must yield a descriptor. Using
the same target application example, suppose we wanted to get the front window's
title. That could be done as follows:
x := match [window ord:1];

println x.t;

This script fragment would produce the following output:

MacPaint 2.0

As with trait specifiers use inside of descriptors, the interpreter is only concerned with the first character of a trait specifier

given as the second operand to a dot expression. So the above example could have been written as follows:

x := match [window ord:1];

println x.title_of_window;

Unification

Unification is a way to bind a variable to a trait value or a list of trait values as a side
effect of the matching process. Unifications only mean something when a descriptor
is matched, otherwise they are ignored with the unification variable's value binding
unchanged. Unifications are expressed as part of a trait within a descriptor. There
are two kinds of unification, simple unification and list unification.

Simple unification is specified by prefixing an identifier with ? after the trait
specifier corresponding to the value you'd like unified. Simple unification specifies
that the value for that trait in the descriptor resulting from the match is to be bound
to the variable that follows the ?. By extending one of the previous examples, we
can show how simple unification works.
println match[window t:?actual_title:/Mac≈/];

Here we've added a unification (?actual_title) to the title trait of the window descriptor. Execution of this statement

would proceed by matching the descriptor first. It would try to match windows that begin with "Mac" followed by

anything else. In the target application we've been using, there are two possible choices for this match so the matcher

picks one of them arbitrarily. After the match, actual_title will hold the title of the window which the matcher chose

("MacPaint 2.0" in this case).

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Remember, a match will evaluate to only one matched descriptor. It is possible, however, to grab traits from all things that

matched the descriptor. List unification is used to specify this process. To specify list unification, a $ should precede the

unification variable name. (List unifications should follow simple unifications which should be followed by the specified

trait expression.) List unification specifies that the unification variable should be bound to a list containing the trait values

from each of the things that equivalently matched the descriptor containing the list unification. Let's change the previous

example by making it a list unification rather than a simple unification.

println match[window t:$all_titles:/Mac≈/];

The match expression still results in only one descriptor, but now the variable, all_titles, will be bound to a list containing

the titles of the windows that could have been picked by the matcher. If there was only one window matching this

descriptor, the list would have had only one element. Variables given as list unifications will always be bound to lists

even if only one thing matched. In this example, there were two so all_titles would be bound to { 'MacPaint

2.0','MacWrite 5.0' }. The first element of the list will always contain the trait value of the descriptor chosen by the

matcher as the result of match. It might be easy to be confused between collect expressions and list unification.

Remember, collect expressions always evaluate to a list of descriptors that equally match a descriptor. List unification

does correspond to this in that if you were to build the collection and build a list of the traits that you wanted to unify from

all the descriptors in the collection, you'd have the same list as you would have using list unification.

If a simple unification is given along with the list unification, the simple unification variable will be bound to the same

value as the first element contained in the list that will be bound to the list unification variable.

It is possible to use unification within a descriptor that is nested within another descriptor. For example:

match [menuItem t:'Open' m:[menu t:?menu_title]];

As a result of this match statement, the variable, menu_title, will be bound to the name of the menu containing the menu

item with text “Open”.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Perfect Match Expressions

The matcher (that part of the Virtual User that does the matching) will always try to
match something to a descriptor if there exists something to match that suitably
matches the descriptor. It matches the thing that most closely matches the
descriptor. If there isn't something to match it will return the null descriptor, []. To
specify that you only want to match something that explicitly matches the
description you give, apply the postfix operator, ! (often referred to as “bang”) to the
expression that will evaluate to a descriptor. An expression formed by applying the
bang operator to an expression is called a perfect match expression.

Relational Expressions

The following relational operators are supported:

= <> < > >=
<= ~=

Equality (=), inequality (<>), less than (<), greater than (>), greater than or
equal to (>=), and less than or equal to (<=) are all defined for numeric values.

For both regular expressions and strings, the equality (=) and inequality relations
(<>) are defined to be straight character by character comparisons using
lexicographic ordering rules (same rules as used in a dictionary).

It is also possible to determine whether a string is in the language defined by a given
regular expression (i.e. does the string fit the pattern represented by the regular
expression). The binary relational operator used to make this test is ~=. The first
operand must be the string and the second operand must be the regular expression.

Examples:
'Virtual User' ~= /V≈U≈/ # would evaluate to true
'Virtual User' ~= /?irtual User/ # would evaluate to true
'Virtual User' ~= /Virtual Users/ # would evaluate to false

Three relations over descriptors are defined, equality (=), inequality (<>), and "twiddle equals" (~=). The

operators ‘=’ and ‘~=’ are defined as follows. Inequality (<>) is the negation of the equality operator (=).

If A and B are descriptors, A = B if and only if all of the following hold:

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

1. Descriptor A is the exact same type as Descriptor B

(e.g. a menu descriptor can never be equal to a window descriptor)

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

2. They have the same number of traits specified

3. For each of the traits specified in A, its value must be equal to the corresponding value

specified in B

If A and B are descriptors, A ~= B if and only if all of the following hold:

1. Descriptor A is either the exact same type or a subtype of Descriptor B

2. The set of traits specified in B is a subset of the set of traits specified in A

3. For each of the traits specified in B, its value must be equal to the corresponding value

specified in A

Twiddle equality is defined for descriptors so that a partially completed descriptor may be tested against a

completed descriptor (one with all its traits given). It is of greatest use in comparing incomplete descriptors to

fleshed-out descriptors resulting from match expressions (or contained within a list of descriptors resulting

from a collect expression).

The following descriptor equality expression would evaluate to false because the descriptors are of different

types:

[window t:'ABC' o:2] = [menu t:'ABC' o:2]

The following descriptor equality expression is true:

[window t:'ABC' o:2] = [window t:'ABC' o:2]

The following descriptor twiddle equality expression is true because i) they have the same descriptor type

(window); ii) the set of traits given in the second descriptor (only t:) is a subset of the set of traits given in the

first descriptor (t: and o:) and iii) the values given for the t: trait are equal.

[window t:'ABC' o:2] ~= [window t:'ABC']

The following descriptor twiddle equality expression is true because i) button descriptors are a subtype of

contentItem descriptors; ii) the set of traits given in the second descriptor (only w:) is a subset of the set of

traits given in the first descriptor (t: and w:) and iii) the values given for the w: trait are equal.

[button t:'Select' w:[window o:1]] ~= [contentItem w:[window o:1]]

Lists can be tested for equality. Two lists are equal if they both have the same number of elements and their

corresponding elements are equal.

Symbolic values may be tested against each other for equality (=) or inequality (<>) only.

▲ Warning A relational expression will evaluate to undefined if any of its
operands evaluate to undefined. ▲

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Logical Expressions

Expressions can be connected by the logical operators and, or, and not to yield
either true or false. Remember that any value can be truth tested. A precedence
chart is given in Appendix C.

Examples:

"foo" and "bar" or false would evaluate to true

true and [] would evaluate to false

1 or 0 would evaluate to true

1 <> 3 and [] = [] would evaluate to true

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Chapter3 Descriptor Traits

Descriptor expressions, as introduced in the
previous chapter, are used to describe an object in
the test environment. This chapter describes each
type of descriptor allowed in this language in
detail. For each descriptor type, a list of all its
possible traits and their corresponding value types
is mentioned.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Window Descriptors

Window descriptors are used to describe the state of a window on the target machine. Its traits are as follows:

t: used to specify or unify a window's title. The expression that follows the trait specifier and optional

unification(s) must evaluate to a regular expression at runtime.

o: used to specify or unify the rank in the front-to-back ordering of the visible windows in the

application's window list. The expression that follows the trait specifier and optional unification(s) must

evaluate to a numerical value at runtime.

s: used to specify or unify a window's style. The expression that follows the trait specifier and optional

unification(s) must evaluate to one of the window style symbolic values. These values are as follows:

document dialog da shadow plain

c: used to specify or unify whether the window has a close box. The expression that follows the trait

specifier and optional unification(s) must evaluate to a boolean value at runtime. Every expression has a

boolean interpretation (for the context of use), but most often the symbolic identifiers, true and false will be

used.

z: used to specify or unify whether the window has a zoom box. The expression that follows the trait

specifier and optional unification(s) must evaluate to a boolean value at runtime. Every expression has a

boolean interpretation (for the context of use), but most often the symbolic identifiers, true and false will be

used.

g: used to specify or unify whether the window has a grow or size box. The expression that follows the

trait specifier and optional unification(s) must evaluate to a boolean value at runtime. Every expression has a

boolean interpretation (for the context of use), but most often the symbolic identifiers, true and false will be

used.

k: used to specify or unify the items that exist in the content region of a window. The expression that

follows the trait specifier and optional unification(s) must evaluate to a list of descriptors at runtime. The

descriptors must be one of the following types:
button checkBox contentItem control
editText icon picture popup
radioButton scrollBar staticText userItem

r: used to specify or unify the dimensions of the window's bounding rectangle (in global coordinates).

At runtime, the expression that follows the trait specifier and optional unification(s) must evaluate to a list of

four numerical values that will be interpreted to be a rectangle of the following form:

{ left, top, right, bottom }

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Content Item Descriptors

Content item is used here to refer to a class of descriptor types that
can be used to describe something in the content region of a window.
Descriptors that fall into this class include editText, icon, picture,
staticText, userItem and the whole class of control descriptors
defined later. These descriptor types basically have the same traits.
One difference is that the non-controls like editText and staticText
do not have control value (s:) and highlite state (h:). The traits for
content items are as follows:

t: used to specify or unify the text (text enclosed inside a button,
text attached to a radio button, editable text within an edit text box,
text in a static text box, title of a popup etc…). The expression that
follows the trait specifier and optional unification(s) must evaluate
to a regular expression at runtime.

w: used to specify or unify the window in which this object
resides. The expression that follows the trait specifier and optional
unification(s) must evaluate to a window descriptor at runtime. If
the expression evaluates to a regular expression, a window
descriptor with that regular expression specified as the title will be
assumed.

r: used to specify or unify the dimensions of its enclosing
rectangle (in global coordinates). At runtime, the expression that
follows the trait specifier and optional unification(s) must evaluate
to a list of numerical values that will be interpreted to be a rectangle
in global coordinates : { left,top,right,bottom }

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

e: used to specify or unify the enablement state of the item. The
expression that follows the trait specifier and optional unification(s)
must evaluate to a boolean value at runtime.

Control Descriptors

Control descriptor is used here to refer to a class of descriptor types
that form a subclass of content item descriptors. Descriptors that fall

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

h: (only valid for button, checkBox, control, radioButton, and scrollBar descriptors) used to specify or unify the highlight state of the control. The expression that follows

the trait specifier and optional unification(s) must evaluate to a numeric value at runtime. The value can range from 0 to 255.

s: (only valid for button, checkBox, control, radioButton, and scrollBar descriptors) This trait specifier is used to state or unify the control setting. At runtime, the

expression that follows the trait specifier and optional unification(s) must evaluate to a list of two numeric values. The first element will contain the current control value - the

minimum value of the control. The second element will represent the difference between the maximum and minimum values (contrlMax minus contrlMin) for the control. Think of it

as the control's value expressed as a fraction. Check boxes and radio buttons will typically have settings of { 0,1 } and { 1,1 }. For popups, the first element is the rank of the currently

selected item and the second is the number of items in the popup menu. For scroll bars, the top of a scroll bar is { 0,X } and the bottom is { X,X } where X is the difference between

the maximum and minimum values for the control.

Menu Descriptors

Menu descriptors are used to describe the state of a menu on the
target machine. Its traits are as follows:

t: used to specify or unify the menu title as it appears in the
menubar. The expression that follows the trait specifier and optional
unification(s) must evaluate to a regular expression at runtime.

o: used to specify or unify the rank of the menu in the menubar.
The expression that follows the trait specifier and optional
unification(s) must evaluate to a numerical value at runtime.

e: used to specify or unify the enablement of a menu (whether or
not it is currently dimmed). The expression that follows the trait
specifier and optional unification(s) must evaluate to a boolean
value at runtime. Every expression has a boolean interpretation, but
most often the symbolic identifiers, true and false will be used.

i: used to specify or unify the items contained in the menu. The
expression that follows the trait specifier and optional unification(s)
must evaluate to a list of menu item descriptors.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

■ Figure 3-I Hierarchical Menus

Example:

Using the menubar shown in Figure 3-I, the following print statements will show how the matcher will

interpret the given menu descriptors:
println match[menu t:’Hierarchy’];

The above statement would produce the following (formatted for this document)

[menu t:’Hierarchy’ o:3 e:true

i: { [menuItem t:’Level 1 Item 1’ o:1 k:’’ c:’’ e:true

h: { [menuItem t:’Menu 65 Item 1’ o:1 k:’’ c:’’ e:true],

[menuItem t:’Menu 65 Item 2’ o:2 k:’’ c:’’ e:true],

[menuItem t:’Menu 65 Item 3’ o:3 k:’’ c:’’ e:true] }

[menuItem t:’Level 1 Item 2’ o:2 k:’’ c:’’ e:true],

[menuItem t:’Level 1 Item 3’ o:3 k:’’ c:’’ e:true] }]

Menu Item Descriptors

Menu item descriptors are used to describe the state of a menu item
on the target machine. Its traits are as follows:

t: used to specify or unify the menu item text. The expression
that follows the trait specifier and optional unification(s) must
evaluate to a regular expression at runtime.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

m: used to specify or unify the entity which owns the item. The
expression that follows the trait specifier and optional unification(s)
must evaluate to either a menu or menuItem or a popup descriptor at
runtime. If a menu descriptor follows the m: specifier, the
menuItem is a standard menuItem within a first level menu. If the
menuItem’s m: trait is another menuItem, then the item being
specified is a hierarchical menuItem. If the expression evaluates to a
regular expression, a menu descriptor with that regular expression
specified as the title will be assumed. If the m: trait is a popup
descriptor then the item being specified belongs to a popup menu in
a window. An example of such an item is as follows:

[menuItem t:'9600' m:[popup t:'Baud Rate:' w:[window o:1]]]

o: used to specify or unify the rank of an item within the menu. The expression that follows the trait

specifier and optional unification(s) must evaluate to a numerical value at runtime.

k: used to specify or unify the keyboard alias or keyboard equivalent. The expression that follows the

trait specifier and optional unification(s) must evaluate to a string. The first character of this string will be

used as the keyboard alias character specification. Most often, a character enclosed in single or double quotes

should be specified.

c: used to specify or unify the mark character. The expression that follows the trait specifier and

optional unification(s) must evaluate to a string. The first character of this string will be used as the mark

character specification. Most often, a character enclosed in single or double quotes should be specified.

e: used to specify or unify the enablement of a menu item which is reflected in whether the item is

dimmed/grayed out. The expression that follows the trait specifier and optional unification(s) must evaluate

to a boolean value at runtime. Every expression has a boolean interpretation (for the context of use), but most

often the symbolic identifiers, true and false will be used.

h: used to specify or unify whether the menuItem has a submenu of items (hierarchical). The

expression that follows the trait specifier and optional unification(s) must evaluate to a list of menuItem

descriptors.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

■ Figure 3-II Hierarchical Menu Items

Using the menubar as shown in Figure 3-II, the following print statements will show how the matcher will

interpret the given menuItem descriptors:

Example1:
println match[menuItem t:’Level 1 Item 1’];

This statement would produce the following (formatted for this document)

[menuItem t:’Level 1 Item 1’ m:[menu t:’Hierarchy’ o:3 e:true] o:1 k:’’ c:’’ e:true]

Example 2:

println match[menuItem t:’Menu 65 Item 3’];

This statement would produce the following (formatted for this document)

[menuItem t:’Menu 65 Item 3’

m:[menuItem t:’Level 1 Item 1’

m: [menu t:’Hierarchy’ o:3 e:true] o:1 k:’’ c:’’ e:true]]

Keyboard Descriptors

Keyboard descriptors are used to describe the state of the keyboard
attached to the target machine. Its traits are as follows:

t: used to specify or unify the type of keyboard. The expression
that follows the trait specifier and optional unification(s) must
evaluate to one of the keyboard type symbolic values. These values
(derived from keyboardType constants in Inside Macintosh volume
V, page 8) are as follows:
Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

AExtendKbd ExtISOADBKbd MacAndPad
MacPlusKbd

PortADBKbd PortISOADBKbd StandADBKbd
StdISOADBKbd

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

UnknownKbd

s: used to specify or unify the keyScript or the script associated
with the keyboard (as defined in Inside Macintosh volume V, page
298). The expression that follows the trait specifier and optional
unification(s) must evaluate to a numeric value.

Mouse Descriptors

Mouse descriptors are used to describe the state of the mouse
attached to the target machine. Its traits are as follows:

p: used to specify a mouse position. At runtime, the expression
that follows the trait specifier and optional unification(s) must
evaluate to a list of 2 numerical values that will be interpreted to be
a point where the first element is the x-coordinate and the second is
the y-coordinate.

b: used to specify or unify whether the mouse button is down.
The expression that follows the trait specifier and optional
unification(s) must evaluate to a boolean value at runtime (true
means the button is down). Every expression has a boolean
interpretation (for the context of use), but most often the symbolic
identifiers, true and false will be used.

Examples:

Suppose the mouse currently has x-coordinate 234 and y coordinate
187 and the mouse button is currently down. Then the statement,

current_mouse := match[mouse];

would cause current_mouse to be bound to:

[mouse p: { 234,187 } b:true]

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Screen Descriptors

Screen descriptors are used to describe the state of a screen on the target machine. Its traits are as follows:

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

r: used to specify the rectangle surrounding the coordinate space that the screen is over. At runtime, the

expression that follows the trait specifier and optional unification(s) must evaluate to a list of four numerical

values that will be interpreted to be a rectangle of the following form:

{ left, top, right, bottom }

For a 9” screen it will be as follows:

{ 0,0,512,342 }

m: used to specify or unify whether that particular screen is the main screen and, therefore, contains the

menubar. The expression that follows the trait specifier and optional unification(s) must evaluate to a boolean

value at runtime. Every expression has a boolean interpretation (for the context of use), but most often the

symbolic identifiers, true and false will be used.

Example:

Suppose a MacII has two monitors and the monitors setting looks as follows in the control panel:

■ Figure 3-III Screen Configuration

Now execute the following assignment statement:

current_screen_config := collect[screen];

As a result, current_screen_config would be bound to the following list of screen descriptors:

{ [screen r:{ 0, 0, 640, 480 } m:true],

[screen r:{ -640, 0, 0, 480 } m:false] }

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Application Descriptors

Application descriptors are used to describe an application on the target machine. Its traits are as follows:

t: used to specify or unify the name or title of the application. The expression that follows the trait

specifier and optional unification(s) must evaluate to a regular expression at runtime.

Example:

If the foreground application running on the target under test was the MPW shell, the following statement that

follows would produce the application descriptor shown below the statement as output:

println match[application];

[application t:"MPW Shell"]

Target Descriptors

Target descriptors are used to describe the state of the target
machine. Its traits are as follows:

t: used to specify or unify a target name (the User name in the
Chooser on a Macintosh running system software 6.0.x). The
expression that follows the trait specifier and optional unification(s)
must evaluate to a string or a regular expression at runtime.

z: used to specify or unify a target’s network zone name. The
expression that follows the trait specifier and optional unification(s)
must evaluate to a string or a regular expression at runtime.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

n: used to specify or unify a target’s model name. The
expression that follows the trait specifier and optional unification(s)
must evaluate to one of the model name symbolic values. These
values are as follows:

MachUnknown MacII MacIIci MacIIcx MacIIfxMacIIx
MacPlus Portable SE SE30 a512KE

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

r: used to specify or unify the target’s RAM in kilobytes. The
expression that follows the trait specifier and optional unification(s)
must evaluate to a numerical value at runtime.

a: used to specify or unify the applications currently running in
the target. The expression that follows the trait specifier and
optional unification(s) must evaluate to a list of application
descriptors at runtime.

◆ Note: At present, unifying this trait will only return a list containing one application descriptor describing

the front most application layer.

s: used to specify or unify the screens currently connected to the target. The expression that follows the

trait specifier and optional unification(s) must evaluate to a list of screen descriptors at runtime.

m: used to specify or unify the state of the mouse attached to the target. The expression that follows the

trait specifier and optional unification(s) must evaluate to a mouse descriptor at runtime.

k: used to specify or unify the state of the keyboard attached to the target. The expression that follows

the trait specifier and optional unification(s) must evaluate to a keyboard descriptor at runtime.

System Descriptors

System descriptors are used for describing the system software
running on the target machine. They have the following traits:

v: used to specify or unify the version of the system software on
the target. The expression that follows the trait specifier and
optional unification(s) must evaluate to a string or a regular
expression value.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

s: used to specify or unify the system script or the script
associated with the system software on the target. The expression
that follows the trait specifier and optional unification(s) must
evaluate to a numeric value.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Actor Descriptors

Actor descriptors are used to describe the actors in the Virtual User
system. They have the following traits:

t: used to specify or unify the name of the actor. The expression
that follows the trait specifier and optional unification(s) must
evaluate to a string or a regular expression value.

u: used to specify or unify the name of the target under the actor’s
control. The expression that follows the trait specifier and optional
unification(s) must evaluate to a target descriptor.

Time Descriptors

Time descriptors are used to describe a certain time of day. The
expression,

match [time]

will evaluate to the current time as set in the host system's clock.
Time descriptors are handy for adding pauses to scripts, printing the
current time at certain points in a script, keeping track of how long a
certain operation is taking, etc… The possible traits for a time
descriptor are listed below:

y: used to specify or unify a year (e.g. 1989). The expression that
follows the trait specifier and optional unification(s) must evaluate
to a numerical value at runtime.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

m: used to specify or unify a month. The expression that follows
the trait specifier and optional unification(s) must evaluate to a
numerical value at runtime.

d: used to specify or unify a day. The expression that follows the
trait specifier and optional unification(s) must evaluate to a
numerical value at runtime.

h: used to specify or unify hours. The expression that follows the
trait specifier and optional unification(s) must evaluate to a
numerical value at runtime. In specifying a time of day, this trait is
specified using military time. For example, 1300 would be 1PM.

s: used to specify or unify seconds. The expression that follows
the trait specifier and optional unification(s) must evaluate to a
numerical value at runtime.

Virtual User Language Reference Beta Draft 10/7/24

Virtual User Language Reference Beta Draft 10/7/24

Descriptor Shortcuts

It's possible to give a string/regular expression for either a w: trait
within a content descriptor or a m: trait within a menuItem
descriptor and have VU assume a descriptor with a valid t: trait
specified as that string/regular expression. It is also possible to give
a numeric value for those two traits and have VU assume a
window/menu descriptor with the rank specified as that numeric
value. The following examples should clarify this shortcut
mechanism:

[menuItem t: 'Open…' m: 'File']

is equivalent to:

[menuItem t: 'Open…' m:[menu t: 'File']]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[menuItem t: 'Key Caps' m: 1]

is equivalent to:

[menuItem t: ' Key Caps' m:[menu o: 1]]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[button t:'OK' w: 1]

is equivalent to:

[button t:'OK' w: [window o:1]]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[editText t:'hello' w: 'untitled']

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

is equivalent to:

[editText t: 'hello' w: [window t: 'untitled']]

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Chapter 4 Statements

A scriptis made up of statements. A statement is 
terminated using a semicolon as in:
x := 1;

Statements can be grouped to form compound statements and blocks. Blocks are similar to those in 

Pascal. Begin…End;  is used to group the statements forming a block.  This chapter describes the 

simple statements namely the print statements, assignment statements and the commands.  Compound 

statements are discussed in the following chapters.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Print Statements

When expressions are evaluated, runtime values materialize.  To 
view the results of these evaluations, print statements are supported. 
This special statement should be formed by giving the keyword, 
print, followed by any number of expressions separated by commas. 
To format the output, use strings that contain tabs, spaces, and 
carriage returns.

Examples:

print “hello∂t”, [window t:’hello’],”∂t”, 34;  # yields the following output3 

hello [window t:’hello’] 34

In the above example, the insertion point would be left at the end of the output line produced.  By giving println rather 

than print, one can force a carriage return following the last printed expression evaluation result for that statement.

Assignment Statements

Assignment statements are statements which allow us to give values 
to variables. These statements have the variable on the left of the 
operator ':=' and an expression on the right of it.  The variable on the 
left is assigned the value that the expression on the right evaluates 
to. Some examples of assignment statements follow:
str := "hello world";

desc := match[window o:1]!;

3∂t denotes the tab character. See section on Regular Expression Matching for further information.

# sign is used to start a comment. See section on Commenting a Script in Chapter 6 for details.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Commands

◆ Note:  Since the subject of this section is not on descriptors, the descriptor examples will be given the 

form [descriptor-type … ] where … is shorthand notation for some set of traits appropriate for the 

descriptor type specified (see the section on descriptors).  The ellipses is not part of the language.

Selecting Menus

Dropping a menu can be done by way of script by giving the keyword, select, 
followed by an expression that will evaluate to a menu descriptor.  There are no 
arguments that may be applied at this time.
select [menu t:"Tools"]; # momentarily drops a menu called tools

Selecting Menu Items

Selecting a menu item is done by specifying the keyword, select, followed by an 
expression that will evaluate to a descriptor of type, menuItem.  One argument is 
allowed for menu item selections specifying whether the Virtual User should use the 
keyboard equivalent in making the selection.  That argument's description follows:

k: if the expression following this argument evaluates to true, the Virtual User 
will use the keyboard equivalent in making the selection.  If it evaluates to false, the 
mouse will be used as in the default case.

Example:
select [menuItem t:/Plain≈/ m:'Style'] k: true;

The above selection will be done using the keyboard equivalent found for the menu item described.  Note that 

no specific keyboard equivalent is specified.  Whatever keyboard equivalent that is found in making the 

match will be used.  If no equivalent is present, an error message will be generated and the statement is 

skipped.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

■ Figure 4-I Selecting Hierarchical Menu Items

A number of command formulations could be used to specify the hierarchical menuitem selection shown in 

Figure 4-I.  Here are just a few:
select [menuItem t:'Menu 76 Item3' 

m:[menuItem t:'Menu 67 Item 3'

m:[menuItem t:’Level 1 Item 3’ 

m:[menu t:’Hierarchy’]]]];

select [menuItem t:'Menu 76 Item3' 

m:[menuItem t:'Menu 67 Item 3'

m:[menuItem t:’Level 1 Item 3’ 

m:’Hierarchy’]]];

select [menuItem t:'Menu 76 Item3'];

select [menuItem t:'Menu 76 Item3' m:[menuItem t:’Menu 76 Item 3]];

select [menuItem t:'Menu 76 Item3' m:[menuItem m:[menuItem m:[menu]]]];

Selecting Windows

Window selections are specified by giving the keyword, select, followed by an 
expression that will evaluate to a window descriptor .

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Examples:

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

select [window … ]; 

This command selects the window matching the descriptor by clicking in any exposed region.

Dragging Windows

Window dragging can be specified by giving the keyword, drag, followed by an 
expression that will evaluate to a descriptor of type window.  Following the 
descriptor, one argument is needed to specify how the dragging should be done.  The 
possibilities follow along with their semantics:

a: means you would like the window moved to an absolute position in global 
coordinates.  A two member list of expressions that should yield numeric values is 
given where the first value will be interpreted to be the  x-coordinate of the 
window's upper left corner and the second the y-coordinate. 

◆ Note:  The coordinates specified are to be the coordinates of the upper left corner of the entire window, 

not that of the window's content region.

r: means you would like to specify a relative change in position.   Again, a two member list of 

expressions yielding numeric values is specified.  The first is interpreted to mean "change in horizontal 

position" and the second to mean "change in vertical position".

Examples:

1. drag [window … ] a: { 10,100};

would drag the window matching the descriptor such that after the drag operation the window's upper left corner 

would be at (10,100) in global coordinates.

2. drag [window … ] r: { 20,-10 };

would drag the window matching the descriptor such that after the drag operation the window's left edge will have 

moved 20 pixels to the right and the windows top will have moved 10 pixels up.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Sizing Windows

Sizing windows involves specifying the keyword, size, followed by an expression 
that will evaluate to a descriptor of type window.  Following the descriptor, one 
argument is needed to specify how the sizing should be done.  The possibilities 
follow along with their semantics:

h: means you would like to specify what the window's height should be after the 
size operation.  Following the h: should be an expression that evaluates to a 
numerical value which will be interpreted to be the window's resulting height.

w: means you would like to specify what the window's width should be after the 
size operation.  Following the w: should be an expression that evaluates to a 
numerical value which will be interpreted to be the window's resulting width.

r: means you would like to specify a change in size relative to the current size.  
A two-member list of expressions that will yield numerical values should be given 
following the argument specifier (r:).  The first value will be interpreted to mean a 
change in the width of the window and the second will specify how the window 
should change in height.

Examples:
1. size [window … ] w: 34;

means that after the command is executed, the window matching the descriptor will be 34 pixels wide ( if the 

application cooperates)

2. size [window … ] h:114;

means that after the command is executed, the window matching the descriptor will be 114 pixels high. ( if the 

application cooperates)

3. size [window … ] w:223 h:110;

means that after the command is executed, the window matching the descriptor will be 223 pixels wide and 110 pixels 

high. ( if the application cooperates)

4. size [window … ] r: { 35,-25};

means that after the command is executed, the window matching the descriptor will be 35 pixels wider and 25 pixels 

shorter.  This sizing action is depicted below:

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

■ Figure 4-II Sizing Windows

Closing Windows

Closing windows involves specifying the keyword, close, followed by an expression 
that will evaluate to a descriptor of type window.  The matching window will receive 
a click in its close box.

Zooming Windows

Zooming windows involves specifying the keyword, zoom followed by an 
expression that will evaluate to a descriptor of type window.  The matching window 
will receive a click in its zoom box.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Selecting Buttons

Button selection is specified by giving the keyword, select, followed by an 
expression that will evaluate to a button descriptor.  (No arguments are needed or 
allowed)

Selecting Radio Buttons

Radio button selection is specified by giving the keyword, select, followed by an 
expression that will evaluate to a descriptor of type radioButton.  (No arguments are 
needed or allowed.)

Selecting Check Boxes

Check box selection is specified by giving the keyword, select, followed by an 
expression that will evaluate to a descriptor of type checkBox.  (No arguments are 
needed or allowed.)

Scrolling

Scrolling involves specifying the keyword, scroll,  followed by an expression that 
will evaluate to a descriptor of type scrollBar.  Following the descriptor, one 
argument is needed to specify how the scrolling should be done.  The argument 
possibilities are listed below.  To understand the arguments, it is helpful to review 
the s: trait for a scrollBar descriptor.  This trait is used to specify or unify the current 
scrollbar setting expressed as a fraction.  The denominator of the fraction represents 
the total number of values the scrollbar can range over.  The numerator is the current 
value.

a: this argument must be followed by a fraction specified as a list of 2 numbers. 
The fractions can be thought of as a percentage denoting the position where the 
thumb should be left after the scrolling operation.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

r: this argument again takes a list of two numbers which will be interpreted as a 
fraction (or percentage) change relative to the current position.  If the fraction is 
positive the relative change will be in the positive direction (towards the 
downArrow) and if negative the change will be towards the upArrow.

Examples:

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

1. scroll [scrollBar … ] absolute: { 1,2 };

the diagram below shows the scrollbar state before and after the above example 
has been executed.  The fraction { 1,2 } indicates that the scrollbar should be 
scrolled such the thumb is 50% of the total range of values.

■ Figure 4-III Scrolling (Example 1)

2. scroll [scrollBar … ] relative: { 1,2 };

would drag the thumb of the scrollbar to a position halfway between where it currently is and the 

downArrow of the scrollbar.  The scrollbars below show before and after states for the above scroll 

command.

■ Figure 4-IV Scrolling (Example 2)

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Typing

To specify typing, the keyword, type, is given followed by a number of arguments.  
At present only one argument is allowed.  A description of this argument follows:

k: can be used to specify the keystrokes to be typed by the Virtual User.  It 
should be followed by some expression that will evaluate to a possibly 
heterogeneous list.  The list may contain expressions that evaluate to strings or any 
of the special keystroke symbolic identifiers.  A list of the special keystroke 
symbolic identifiers follows along with some command examples.

Keystroke symbolic identifiers:

backspaceKey capslockKey clearKey commandKey controlKey
delKey downarrowKey endKey enterKey escapeKey
f1Key f2Key f3Key f4Key f5Key
f6Key f7Key f8Key f9Key f10Keyf
f11Key f12Key f13Key f14Key f15Key
helpKey homeKey leftarrowKey optionKey pagedownKey
pageupKey returnKey rightarrowKey shiftKey tabKey
uparrowKey

Example:
Type k: { "abc",tabKey,"def",tabKey,"ghi" };

The nine letters will be typed with a tab inserted after every three characters

Type causes the keystrokes to be both pressed and released in one statement.  To press and release keys separately, the 

same mechanism is used as with the type command.  The only difference is that one of pressKey or releaseKey should be 

substituted for the keyword, type .

Controlling the Mouse Directly

It is possible to have VU directly control the mouse.  Primitive operations such as 
moving the mouse position, clicking, double-clicking, pressing the mouse button, 
and releasing the mouse button are available.  

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

To move the mouse directly, a move command may be used.  move takes one 
argument which may either be a: (absolute move) or  r: (relative move).  Following 
the argument specifier chosen must be an expression that will evaluate to a list of 
two numeric values.  If the argument specifier is  a:, the list of two numeric values 
will be interpreted as a point in the coordinate system to which the mouse should be 
moved.  The first element of the list will be the x-coordinate and the second, the y-
coordinate.  If the argument specifier is r:, the list of two numeric values will be 
interpreted to mean a relative change in the mouse position.  The first element of the 
list will indicate the relative change in the x-direction and the second element will 
give the relative change in the y-direction.  Both use the Mac coordinate system 
where values in the y-direction increase as you move downwards on the screen.  The 
following example would move the mouse such that its hot spot would be at the 
point (20,30):

move absolute: { 20,30 }; # this action is depicted below

■ Figure 4-V Mouse Move (Absolute)

The next example would direct the mouse to be moved 39 pixels to the right and 17 pixels down:

move relative: { 39,17 }; # this action is depicted below

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

■ Figure 4-VI Mouse Move (Relative)

To click the mouse at any point in the script, the word, click, should be used followed by nothing but a semicolon.  Similarly, to double click, the word, doubleClick, should be used.  

It is also possible to press the mouse without releasing.  The word, pressMouse, should be used in this instance.  To release the mouse, use releaseMouse.  It is always best to use click 

and doubleClick statements rather than a combination of pressMouse and releaseMouse statements.  The reason for this is that in a multiple target test, the time between a release of 

the mouse and the next click may be dependent on the network traffic.  Both click and doubleClick do their pressing and releasing in one AppleTalk transaction.

Exit Statement

While the language provides constructs to promote structured 
programming of scripts, there are times when a situation occurs 
when one wishes to bail from a script.  The exit statement may be 
used for these situations.  Upon encountering an exit statement, the 
Virtual User will no longer continue reading that script for the target 
that took the path to the exit statement.  Only the target which 
reached the exit in the script it is reading will stop executing.  Other 
targets currently reading the script which have not encountered the 
exit statement will continue to run as will targets reading other 
scripts.  Exit statements appear as shown below:
exit;

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Chapter 5 Control Flow

This chapter describes the statements which decide 
the order in which computations are performed.  
The control flow statements in this language are If-
Else, For loops, For-Each loops and While loops.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

If-Else Statements

If-Else statements are supported to enable conditional 
statement executions.  When an If-Else construct is 
encountered, the expression following if is evaluated and 
truth tested.  If the resulting value is true, the statement or 
block of statements following the expression is executed.  If 
the resulting value is false one of two things can happen.  If 
there is an else associated with the if , the statement or block 
of statements following the else is executed.  If there is no 
else, control skips to the next statement in the script.

If-Else constructs can be used to handle unforeseen 
situations like dialogs popping up.  The following statement 
will cause the Virtual User to dismiss the front most window 
(if one exists) if it has an OK button:
if match [button text:'OK' w:[window ord:1]]!

select [button text:'OK' w: [window ord:1]]!;

For Loops

Iterative For-loops are supported in the scripting language.  The 
form is very similar to Pascal.  All expressions must evaluate to 
numerical values.  From the grammar in Appendix A, the form of a 
For loop looks as follows:

<for_loop> ::= for <variable> := <expression> to <expression> 
<optional_step> 

<optional_do> <executable_statement>

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

All expressions in the control portion of the For loop must evaluate 
to numerical values.  The loop body can be either a single statement 
or a block of statements enclosed with begin and end.  A For loop 
with no statements will simply be skipped.  It is not possible to use a 
For loop with no body as a delay.  To put delays into a script, use 
system tasks described in Appendix F.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

When a For loop is encountered the loop control variable becomes 
bound to the first expression's resulting value.  A For loop is 
controlled by whether the expression following step evaluates to a 
negative number or not.  If it evaluates to a numerical value greater 
than or equal to 0, the loop body is entered if the loop control 
variable is not greater than the value resulting from the evaluation of 
the expression to the immediate right of the to.  If the step 
expression evaluates to a numerical value less than zero, the loop 
body is entered if the loop control variable is not less than the value 
resulting from the evaluation of the expression to the immediate 
right of the to.  If a step expression is not given, it is assumed to be 
1.  After each iteration of the loop, the result of the step expression 
evaluation is added to the loop control variable.  The loop body is 
then repeatedly entered as long as the rule given above holds.  

Examples:
1. for i := 1 to 5 select [window o:i];

Assuming the target application currently has at least 5 selectable windows, this construct will direct the Virtual User 

to make 5 window selections with successively higher ranks beginning with 1.  It should be noted that after selecting 

each of the windows the ranks of the windows change so selection may not proceed as one might expect.

2. for font_item := 1 to 10 begin

select [menuItem m: 'Font' o: font_item];

for font_size_item := 1 to 5 begin

select [menuItem m: 'FontSize' o:font_size_item];

end;

end;

Assuming the target application has a "Font" menu with 10 fonts and a "FontSize" menu with 5 sizes, the construct 

above will direct the Virtual User to select each of the fonts from the font menu following each font selection with a 

selection of each of the font sizes in the order they exist in the "FontSize" menu.

3. for i := 5 to 1 step -3 close [window];

Assuming there are at least two windows to be closed in the target application, this construct will direct 

the Virtual User to close two of them.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

For Each Loops

For Each loops  can be used to iterate over an entire list.  The 
general form of a For Each loop is as follows:

for each <variable> in <expression> <optional_do> 
<executable_statement>

When a For Each loop is encountered during execution, the 
expression following the reserved word, in, is evaluated.  The result 
of this evaluation must be a list (if it doesn't, the For Each loop is 
skipped).  This evaluation is done only once each time the loop is 
initially entered, not for each iteration of the loop.  The loop body is 
executed once for each element in this list.  The loop control 
variable is bound to the first element in the list for the first iteration, 
the second element for the second iteration, and so on until it has 
iterated over the entire list.

Using For Each loops with collect expressions is a handy 
mechanism.  Suppose an application maintains a Windows menu 
that contains the titles of all the selectable windows that are part of 
the current application state.  The following script fragment will 
instruct the Virtual User to select each of the windows:
window_items := collect [menuItem m: [menu t:'Windows']];

for each item in window_items

select [window t:item.title]!;

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

While Loops

The language also supports While loops.  The standard While loop 
semantics are used.  Each time a While loop is encountered, the 
expression immediately following the word, while, is evaluated.  As 
long as the resulting value is true, the loop body is executed.  The 
loop body will be executed until the expression evaluates to a value 
that is considered false (e.g. 0,false,[ ],{ })

While loops can be used to wait for a specific situation as the 
following example illustrates:

while match [window style:dialog]! ;

When this While loop is encountered, the script will pause until no dialog is present.  As another example, the following 

loop could be used to close all the windows up to the first window without a close box:

while match [window]

close [window];

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Chapter 6 Making Scripts Modular

Function-like definitions are supported in VU's 
scripting language in the form of tasks.  This 
chapter describes modularization of scripts using 
tasks.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Tasks

Tasks are specified by giving task followed by the task name 
followed by the task's formal parameter list.  After the formal 
parameter list, the task body is given as a block (begin … end;).  
Formal parameters are separated by commas and are specified by 
name only.  There are no type declarations in a formal parameter list. 
An optional default expression may be given for each formal 
parameter.  If no corresponding value is passed for that parameter at 
runtime, the default expression is evaluated and the parameter takes 
the resulting value.  A parameter with a default expression is 
specified using the same syntax as assignment.  The parameter name 
is given followed by the assignment operator (:=) followed by the 
default expression.

Variable scoping is simple.  Variables can be either local to a task or 
global to a script.  All variables referenced within a task are local to 
that task (including the task's formal parameter list).  A variable 
within a task may be considered global if it is preceded by the word, 
global, before or during its first use.  Global declaration statements 
may be given within a task by giving global followed by any 
number of variable names separated by commas.  The global 
declaration statement should also be terminated with a semi-colon.  
The same variable name may not be used as both a local variable 
and as a global variable.  Its first use determines its scope.  The task 
below declares X and Y to be global so after the invocation of this 
task X will persist and will have the value 1, as will Y with the value 
3.  Note that X is declared to be global using a global declaration 
statement while Y is declared at the point of its first use.  A variable 
may be prefixed with the word global, anywhere within a task.  All 
variables outside a task are global by default.
task A begin

global X;

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
X := 1;

global Y := 3;

end;

Examples:

The following script illustrates the task definition and calling syntax.  It consists of a task called printit that simply prints 

the value passed.  If no value is passed, it will print the message, "no value was passed".  In this example, the string, "no 

value was passed",  is the default expression for the formal parameter variable called value_to_print.

Task printit(value_to_print := "no value was passed") begin

println value_to_print;

end;

printit(4);

printit;

printit( {1,2,3,4} );

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

The above script would produce the following as output:

4

no value was passed

{ 1,2,3,4 }

As another example of a task definition, the following handles the "Do you want to save your changes" dialog that appears 

in most applications when the user closes a window before saving the file associated with that window.  

Task handle_dirty_document( should_save := true,

affirmative := "Yes",

negative := "No" )

begin

if match [window o:1 s:dialog k: { [button title: affirmative],

[button title: negative] } ]

begin

if should_save button_to_select := affirmative;

else button_to_select := negative;

select [button t:button_to_select]!;

end;

end;

The above task can be called from any script that wishes to handle the "Do you want to save your changes" type dialog.  

The caller may may pass in three values.  The first indicates which button the user should select to dismiss the dialog.  If 

the parameter, should_save, is passed any true value the Virtual User will select the button that tells the application to save 

the document.  Otherwise it will select the button indicating that no save is necessary.  Following this first actual 

parameter, the caller may give the text used in the buttons for the application under test.  If no button text strings are 

passed, the task assumes they are called "Yes" and "No".  Assuming that you'd like to use this task for an application that 

presents the dialog with Save and Discard buttons, the following call could be used:

handle_dirty_document(true,"Save","Discard");

To force the use of a default parameter, simply leave that actual parameter blank in the call.  For example, suppose we 

want to make the same call as above only we want the second parameter to take the default.  That call would look as 

follows:

handle_dirty_document(true,,"Discard");

Within the task now, affirmative has the value "Yes" and negative has the value "Discard".

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Returning Values from Tasks

Tasks can return values by way of return statements.  return statements may only 
appear within a task definition, but can return any arbitrary expression.  Therefore 
task calls can appear anywhere an expression can.  If a task does not return a value 
and the result of a task is used, the resulting value is undefined.  Following are some 
examples:

1. The following task returns a string and the task is called within a println 
statement:

task stupid_task() begin

return "stupid";

end;

println stupid_task();

The output to the above task appears below:

stupid

2. The next example shows that any arbitrary expression may be returned from a task.

task send_list_of_garbage() begin

x := 1;

y := document;

z := { "this","is","a","list" };

a_window := [window t:'Doc A'];

return { x,y,z,a_window,56,'abc' };

end;

println send_list_of_garbage();

The output to the above script is shown below:

{ 1,document,{ "this","is","a","list" },[window t:'Doc A'],56,'abc' }

3. As a final example, a recursive task to compute n-factorial is shown:

# computes n factorial

task factorial(n) begin

if (n = 1) return 1;

else return n * factorial(n - 1);

end;

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

System Supplied Tasks

A number of built-in tasks can be called like any other user-defined 
task only the task implementation is part of the environment.  In 
other words, these tasks should be viewed as "black-boxes" that can 
be called, but not seen.  See Appendix F for a list of system supplied 
tasks along with their semantics.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Libraries of Tasks

User defined tasks can be grouped to build task libraries.  These 
libraries can then be shared by multiple scripts.  A script that uses 
tasks defined in task libraries has to declare the names of the 
libraries.  The following declarative statement is provided to do this:

Libraries <library name>, <library name>, … ;

Libraries is a keyword which is followed by library names separated 
by commas.  The names of libraries that are required by the script 
are specified as strings.

Examples:
Libraries ‘StringsLibrary’,  ‘FinderOperationsLib’;

This declares that the script is going to use tasks defined in the libraries StringsLibrary and FinderOperationsLib.  The 

library name is basically the name of the file that contains the library. 

Commenting a Script

Its generally a good idea to comment your scripts and task libraries 
for making maintenance easier.  Commented scripts become more 
readable.  Whenever the compiler sees the character, #, it ignores the 
rest of the characters on that line.   A commented version of a script 
follows:
# this script opens the "Key Caps" DA types into it

select [menuItem title:'Key Caps' m: [menu ord:1]]; # select Key Caps

type keystrokes: { "hello world", returnKey }; # do some typing

For multiple line comments, the opening and closing delimiters are (* and *).  It is legal to nest comments.  Below is an 

example of a multiple line comment:

(* This is a

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
multiple line comment with a (* nested

multiple line comment *) contained within *)

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Chapter 7 Message Passing

This chapter exemplifies the multitasking nature of 
the Virtual User environment.  It describes how the 
different test processes can communicate amongst 
each other through the message passing constructs 
in the language.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Multitasking Environment

Virtual User provides you with a multitasking environment.  It 
allows you to run multiple scripts simultaneously.  Each script 
execution is treated as a separate process in the VU architecture.  
Each process has its own process handler called the actor.  
Currently each VU process handler  (ie., actor) runs independent of 
the rest of the actors.  The actors are created only to run a process.  
Currently,  VU provides the user with only one way of creating a 
process, that is by means of a script.  

In the current architecture, one actor cannot inadvertently interfere 
with another actor.  This is generally a virtue.  But it also prevents an 
actor from intentionally signalling the other actors.  The signal can 
be used to enable the actors to synchronize before attempting a time 
critical operation.  An example of such a situation is two machines 
attempting to copy files to a common destination on a file server.  

Inter-process Communication

This section describes the protocol which dictates the process used 
by an actor to communicate with another actor.  The phrase "actor 
communicating with another actor" here means one actor's process 
communicating with another actor's process.  Of course, both the 
actors could be following the same script.  To start a conversation 
between two actors, both the actors have to be aware of each other's 
intent.  This intent is conveyed to them by a master entity in the VU 
architecture called the Director.  The director plays the role of the 
dispatcher in our protocol.  The director is transparent to the script 
author.  It is mentioned here only for the sake of explaining the 
message passing process.
Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

In the following pages, we have an example of a session between 
two actors in VU.  First we go through the steps in a typical session 
in English.  This is followed by a VU script example.

Example

Consider the situation when Actor1 wants to convey the message "hello there" to 
another actor Actor2.   Actor1 is following Script1 and Actor2 is following Script2.

■ Step 1

Actor1 : Declares the intent of wanting to talk with Actor2.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Director : Checks if Actor2 wants to listen to Actor2.

(If Actor2 wants to listen to Actor1, it declares its intent)

Actor2 : Declares the intent of wanting to talk with Actor1.

Director : Conveys to both actors that the communication session is open.

■ Step 2

Actor1 : Sends the text ‘hello there’ to the recipient actor Actor2.

Director : Delivers the message to Actor2.

(Now, if Actor2 wishes to receive a message from Actor1 then)

Actor2 : Receives the message string from Actor1.

■ Step 3

(Actor1 can now either close the session or keep sending more messages and/or receive messages from Actor2.  Actor2 also can now either close the session or keep receiving 

more messages and/or send messages to Actor1)

Actor2 : Sends the message ‘howdy’

Director : Delivers the message to Actor1.

(Now, if Actor1 wishes to receive a message from Actor2 then)

Actor1 : Receives the message string from Actor2.

…

■ Step 4

(Actor1 wishes to close session)

Actor1 : Declares intent to close the communication session.

Director : Closes the session for Actor1 (that is,  Actor1 cannot receive any messages from Actor2 and Actor2 cannot send any messages to 

Actor1 anymore.)

(For the purpose of symmetry, Actor2 must also close the session once it's done receiving all messages from Actor1)

Actor2 : Declares intent to close the session with Actor1.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

This example illustrates the use of the protocol in one session.  An actor can have as many open sessions as needed at any time.  But only one session can be set up between a given 

pair of actors.  All the communication is done asynchronously.  That is all the operations (openSession, send, receive and closeSession) terminate without any waiting.  There is no 

need for completion routines.  Instead, the script can repeat these operations any number of times.  Each of these operations is provided as a system task in the scripting language.  

Hence, they all have return values which indicate the success of the call.

The next page illustrates the use of the protocol in a real VU script example.  These scripts make use of the new system tasks which are provided to perform the session operations.  

The semantics of these system tasks are listed after the example.

VU Script Example

Following are 2 example VU scripts which talk to each other.  An actor named 
‘Elvis’ is supposed to run Script1 while another actor named ‘Jimmy’ is to run 
Script2.

Script1 -
status := '';

recipient := 'Jimmy';

while  not(status = 'open')

begin

println "not open yet now trying…";

status := openSession([actor t:recipient]);

println "Status = ", status;

end;

if (send([actor t:recipient],{"hi", "how","are","you?"}))

println "Send successful";

x := '';

for i:= 1 to 5 do 

begin

x := receive([actor t:recipient]);

println "Message received = ", x;

end;

closeSession([actor t:recipient]);

Script2 -

status := '';

recipient := 'Elvis';

while  not(status = 'open')

begin

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
println "not open yet now trying…";

status := openSession([actor t:recipient]);

println "Status = ", status;

end;

if (send([actor t:recipient],{"hello", "how","are","you?"}))

println "Send successful";

x := '';

for i:= 1 to 5 do 

begin

x := receive([actor t:recipient]);

println "Message received = ", x;

end;

closeSession([actor t:recipient]);

System Tasks that Enable Message Passing

The following is a list of system tasks that are provided in the language to facilitate 
scripts to pass messages between actors (see Appendix F for further description):

1. openSession(recipientActor) - This system task call takes in a single parameter, 
an actor descriptor.  It returns either undefined or a string with one of the 
following values: ‘open’ or ‘wait’.  A session becomes open only when the value 
returned is ‘open’.  If the value returned is ‘wait’ it means that the recipient actor 
has not performed a corresponding openSession yet.  In such a case, you should 
retry the openSession (maybe after a while).  Undefined is returned in error cases 
such as when there exists no match for the actor descriptor passed as the recipient.

2. send(recipientActor, listOfMessages) - This task takes two parameters.  The first 
one is the descriptor of the recipient actor.  The second is a list of messages.  A 
message can be a regular expression value or a number or a variable with such a 
value.  For example, “this is a {object}”, ‘value is xyz’, /failed/, object and 1200  
are all valid messages (where ‘object’ is a variable with a value such as “ball”).  
The message is converted into a string and sent in the form of a string.  Send 
returns a boolean which is true if the send was successful otherwise it returns 
false.  Send can fail if the recipient actor was not found or if there was no open 
session with the recipient actor.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

3. receive(senderActor) - This task takes one parameter, the descriptor of the actor 
from which the message is to be received.  If such an actor exists and an 
unreceived message sent by that actor exists then that message is returned in the 
form of a string.  If no unreceived message exists then a null string will be 
returned.  An undefined value will be returned in cases where no such actor is 
found.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

4. closeSession(recipientActor) - This task takes one parameter, the actor descriptor. 
It returns the string value ‘done’ if there exists such an actor and a session with it 
is open at this end (it may already be closed from the other end).  Otherwise, the 
task returns undefined.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Chapter 8 How the Matcher Works

Matching is the process of finding the intended 
object to act upon.  This chapter describes in detail 
how Virtual User finds the objects described in the 
script statements.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Introduction

Matching was introduced in the language design mainly to allow the 
user to find the state of the target.  This concept has been extended 
to provide a means to get at the state of the whole environment 
(which includes the target and the actors, time, etc.).  In the current 
state of the system we support matching for time, target, window, 
menu, menuitem, controls (including button, radiobutton, checkbox 
and scrollbar), edit text and static text.  In this description of the 
process of matching, we will concentrate on the target end, which 
will be used more often.  The same mechanism, however, is applied 
to non-target elements too.

From here on in this chapter, matching has been treated as the 
process of comparing a description of a target element with the 
actual elements existing on the target.  Target element here, refers to 
the various interface objects on the target like windows, menus,  
controls, etc.  To perform matching VU builds up a model of the 
target in its knowledge base.  This model is built by peeking into the 
target through a target resident agent. 

There are two distinct causes that invoke the matcher.  First, any 
command which requests an action at the target end invokes the 
matcher.  Some examples of this are: 
select [menuItem t:"Quit"];

drag [window t:"Untitled"] a:{100, 100};

Second, the script can directly invoke the matcher through a match or collect expression.

For example:

first_window := match[window o:1];

all_menus := collect[menu];

In both cases the input to the matcher is a description of a target element from the script (that is, a descriptor).  The 

objective of the matcher is to find a (or all) corresponding element(s) in the target model which meets the specified 

description.  Now we will see how the search is undertaken.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

The Algorithm

As discussed earlier, a descriptor is made up of zero or more traits.  
A simple algorithm for finding the matching element is to look for 
an element of the specified type (say, window) whose traits are the 
same as the ones specified in the descriptor.  This approach does not 
address many issues.  Some issues which remain unsolved by this 
approach include:

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

1.how to handle situations where the descriptor is not complete, that 
is, it has fewer traits specified than those present in the candidate 
target elements

2.how to deal with partially specified trait values

3. are some traits more important for comparison than others; and if 
they are, how are their importance levels decided.

The matching scheme we use tries to solve these issues in the 
following way.  First, if the descriptor is partially specified, the 
unspecified traits are not taken into consideration in the matching 
process.  To elucidate the point, let us consider the situation where 
the target screen looks as shown in Figure 8-I.

■ Figure 8-I Matching Example

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

The target model has a window with the following description (in rough descriptor syntax):

[window title:"Window1"  o:1  zoom:true  closebox:true k: {[scrollbar…],[scrollbar…]}]  

and the script provides a descriptor as follows:

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

select [window title:"Window1"];

It is expected that the window with the title "Window1" be chosen from the target model for selection (or for any other 

purpose that the context may demand).  This expectation is justified despite the omission of several other characteristics of 

the window in the descriptor.  The justification is that the script writer either did not consider the other traits important 

enough to be specified or that the writer did not know their values.  By ignoring the unspecified traits about the window, 

in this example, the matcher will be able to pick the right window to select.

Second, the descriptor may contain a trait whose value has been partially specified.  This feature is allowed only for 

certain traits like the ones which have a string value (titles etc.) and the ones which have a list value (content list of a 

window and menu items list of a menu).  Continuing with our previous example, say the script includes the following 

statements:

select [window t:"Window"]; 

select [window t:"Window11"];

select [window t:"1Window"];

In the first case ("Window" Vs "Window1") the title string is not complete but 6 out of 7 characters are present and match 

correctly with the title in the model.  The matcher recognizes the fact that there was a 86% (6/7) match for this trait.

The second case has a title ("Window11" Vs "Window1") with a 100% match and 1 extra non-matching character.  The 

matcher treats this as a mismatch.  The third case has exactly the same characters as the actual title but the ordering of 

characters are not correct.  This one is also treated as a  total mismatch.  The order in which the characters occur is the 

most important factor.  The second factor is that the there should not be any extraneous characters.  A similar strategy is 

applied to a content list trait of a window and the menu items list of a menu.  You can specify as many controls (menu 

items) as you know/care about and the matcher will get a percentage match from the corresponding model.  But the order 

in which the list elements are specified is not a factor for these lists(since there is no well defined ordering for them).

For example,

select [window t:"Window1" k:{[scrollbar]}];

Here the 'k' trait gets a 50% match since the window has two controls (scroll bars are controls) but only one has been 

specified.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Finally, it remains to be decided if there is a difference in the significance of traits for the purpose of matching.  Is the title 

of a window a more important trait than its having/not having a close box?  The need for this decision arises when there 

are multiple candidates for the match which are very similar.  For instance, in the figure the target has two windows  with 

description as follows:

[window t: "Window1" o:1 …] (call it w1) and

[window t: "Window" o:2 …] (call it w2)

with most other traits (indicated here by …) being the same (all except the rectangle trait).

Consider the following statement in the script:

select [window t: "window1" o:2];

The matcher now faces the following choices:

1. say, 'sorry no match'

2. pick the window (w2) with rank 2, since its rank trait has a match (100%) and title has 86% match while for window 

w1 the title has a 100% match but rank has a 0% match. The cumulative match result of all the traits will give w2 

more points than w1.

3. pick the window (w1) with title "Window1", since the title trait is more significant than the rank trait.

Choice one is correct, but serves little purpose.  The second one seems to be more like what we would like to have, that is, 

accumulating the results of each trait comparison.  On the other hand the third choice seems useful too, since the rank of a 

window is a volatile trait which will change after every selection/rotation action on windows.  The script author may have 

made a mistake on that trait value.  The author may have intended the window w1, since the title is exactly same and 

windows are more commonly referred to by name than rank.  Alternatively, since the titles are very similar, the author 

may have spelled it wrong or may have made a plain mistake.  The rank specification acts as confirmation to this.  This 

would mean pick the second choice.

Our matcher tries to incorporate a combination of both the second and third strategies.  Each trait of a descriptor is 

assigned a weight (significance level), based on common knowledge (very debatable, though).  In our example, the title 

could have a weight 35 and the rank a weight 25.  Before taking the cumulative match result we multiply each trait's result 

by its corresponding weight.  So in this example, w1 gets a lower weighted cumulative result (100*35 + 0*25 = 3500)  

than w2 (86*35 + 100*25 = 5510).  With this strategy the matcher would return window w2.  The utility of this scheme 

will increase if the weights were not preassigned but user assignable.  So in different contexts, the script writer may 

change the weights of the traits.  Currently, VU doesn't provide this additional feature.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Another important mechanism of matching is the partitioning of traits into Significant and Non-significant groups.  In our 

last example, consider if w1 had title "Window" and w2 had title "Folder".  In this case, w1 will be the choice with our 

scheme discussed till now.  But if the weights were different w2 might still be a viable candidate (because of its valid 

rank).  To avoid such situations we mark some traits as Significant by giving them a weight higher than or equal to a 

Significance Threshold.  In this case, if the Significance Threshold was 35 then the title falls in the significant group.  The 

matcher always compares the traits which fall in this group first and if any of the traits in this group return a 0% match (no 

match) then that candidate is rejected with no consideration to the non-significant trait values.  This feature provides a 

veto power to the Significant traits over the rest.

Appendix E gives a listing of the weights assigned to the traits of descriptors of various types.

Regular Expression Matching

Regular expressions are a shorthand language for specifying text 
patterns.  Regular expressions can be used anywhere in place of 
strings.  Its usefulness shows up mainly in specifying traits in 
descriptors, like the title of a window or the title of a menu.  Regular 
expressions are always used within pattern delimiters "/" 
(example, /VU≈/).  A special set of metacharacters, called regular 
expression operators, is used in regular expressions.  The regular 
expression operators are listed in Table 8-I. The rest of this section 
describes the use of regular expressions.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
■ Table 8-I  Table of Regular Expression Operators

Operator Meaning

c Any character matches itself (unless it’s one of the special characters listed below)
∂ c Defeat the special meaning of the following character (c is taken literally) except 

∂n  =  return and ∂t  =  tab
'…' Literalize enclosed characters
"…" Literalize enclosed characters, except ∂, and {
? Any single character (other than a return)
≈ Any string of 0 or more characters that does not contain a return
[character…] Any character in the list
[¬character…] Any character not in the list (¬ is Option-L on the keyboard)
regularExpr* Regular expression 0 or more 
regularExpr+ Regular expression 1 or more regularExpr«n» Regular expression n times (« is 

Option-\ ; » is Option-Shift-\)
regularExpr«n,» Regular expression n or more times
regularExpr«n1,n2» Regular expression n1 to n2  times
(regularExpr) Grouping(regularExpr)
regularExpr1regularExpr2 regularExpr1 followed by regularExpr2
•regularExpr Regular expression at the beginning of a line
regularExpr ∞ Regular expression at the end of a line

These characters are considered special in the following circumstances:
∂ Special everywhere except within single quotation marks ('…')

?   ≈   *  +   [   «   (   ) Special anywhere except within […], '…', and "…"
• Special as the first character of an entire regular expression
∞ Special as the last character of an entire regular expression
/ Special if used to delimit a regular expression
¬ Special only after a left bracket, [
- Special in brackets, except immediately following a left  bracket, [

Their precedence (from highest to lowest) is as follows:
1. (    )
2. ? ≈ * + [ ] «  
3. • ∞

Character Expressions

In the simplest case, regular expressions consist of literal characters enclosed in 
slashes. For example:

/what the ?/

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Notice one complication, however—if the literal character happens to be one of the 
regular expression operators (such as ?), it will be specially interpreted rather than 
taken as a literal character.  If you want to specify a literal character that happens to 
have a special meaning within the context of regular expressions, you’ll have to 
precede it with the escape character, ∂, or enclose it in quotation marks.  The 
character ∂ has the effect of “literalizing” the character that follows it.  For example, 
to find the literal expression given above, you would use one of the following forms:

/what the ∂?/ or /what the '?'/ or /'what the ?'/

You could also use double quotation marks, that is  "what the ?".

Wildcard Operators

In addition to literal characters, regular expressions can include the operators ?, ≈ 
(Option-X), and [  ], which are used as follows:

? Any character other than a return
≈ Any string not containing a return, including the null string (this is the same a ?*)
[characterList] Any character in the character list (as defined below)
[¬ characterList] Any character not in the list

A character list is an expression consisting of one or more characters enclosed in brackets   ( […] ).  It 

matches any character found in the list.  The case sensitivity of characters in the list is governed by the 

CaseSensitive (for Match) setting in the Commando dialog (ie., -cs option in the command line).  A list may 

consist of individual characters or a range of characters, specified with the minus sign (–).  For instance, the 

following two forms are equivalent:/[ABCDEF]/ /[A-F]/

You can also mix the two notations:/[0-9A-F$]/

This form specifies any of the characters 0 through 9, A through F, and $.  To specify the ] or - character, place 

it at the beginning of the list or literalize it with the escape character, ∂.

The negation symbol, ¬ (Option-L), lets you specify any character not in the list.  For example:  /[¬A-Z]/

This example specifies all characters except the letters A through Z.  (To specify the ¬ character itself, place it anywhere 
in the list other than the beginning, or literalize it by preceding it with the escape character, ∂.)

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Repeated Instances of Regular Expressions

The asterisk character (*) matches zero or more occurrences of the immediately preceding regular 

expression.  The plus sign (+) matches one or more occurrences of an expression.  For example, the form

/[0-9]+/

will find any string of one or more digits.

You can also specify an expression that occurs an explicit number of times by using the «n» notation:

regularExpr«n» Regular expression n times
regularExpr«n,» Regular expression at least n times
regularExpr«n1,n2» Regular expression at least n1 times and at most n2 times

For example,

/' '«4,»/

This form specifies any string of four or more spaces.

Matching a Pattern at the Beginning or End of a Line

In the context of regular expressions, the • metacharacter (Option-8) means that the 
subsequent expression must be matched at the beginning of a line.  For example, the 
regular expression:

/•main/

will match a string that begins with “main” but not a string that begins with “space main”. The beginning of a 

line is either the first character after a return or the first character of the file.

Likewise, the ∞ metacharacter (Option-5) means that the previous expression must be matched at the end of a 

string.  The regular expression

/main∞/

will match a string that ends with “main” but not a string that ends with “main space ”.  The end of a string is 

the last character of the string.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Inserting Invisible Characters

You can use the escape character, ∂ (Option-d), to insert the following special 
characters in text:

∂n return
∂t tab

Solving Matching Difficulties

What if a regular expression doesn’t match what you intended?  Ask 
yourself questions like these:
■ Am I quoting special characters?  For example, the ( character is special.  If you are matching for this character, then you must use "∂(".

■ Do I remember the definitions of special characters?  Review the special character definitions.

■ Is my precedence and usage correct?

■ Do the individual pieces match what I intended?  Break the difficult expression down into small parts.  Try each part separately to make sure that it does what you want.  Then 

add each new, tested part to create more complicated expressions.

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

Appendix

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

A Grammar

Terminals that appear as they would in a script are shown in bold.  Terminals whose token value appears in 

the script appear in outline.  Nonterminals are bracketed between < and >.  E is the empty string.

<script> ::=
<statement_list>

<statement_list> ::=
<statement_list> <statement>  |  E

<variable> ::=
identifier  |
global identifier

<statement> ::=
<executable_statement>  |
task  identifier <formal_parameters> begin <task_statement_list> end ;

<formal_parameters> ::=
( <parameter_list> )  |  E

<parameter_list> ::=
<parameter>  |
<parameter_list> , <parameter>  |  E

<parameter> ::=
identifier  |
identifier := <expression>

<task_statement_list> ::=
<task_statement_list> <task_statement>

<task_statement>  ::=
<executable_statement>  
return <expression> ; |
global identifier ;

<executable_statement> ::=
; |
<compound_statement>  |
<command>  |
identifier (<expression_list>) ;  |
<match_expression>  ;  |
<variable> := <expression> ;
if <expression> <optional_do> <executable_statement>   |
if <expression> <optional_do> <executable_statement> else <optional_do> <executable_statement> |

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
while <expression> <optional_do> <executable_statement>   |
for <variable> := <expression> to <expression> <optional_step> <optional_do> <executable_statement>   |
for each <variable> in <expression> <optional_do> <executable_statement>   |
print <expression_list> ;  |
println <expression_list> ; |
return <expression> ; |
libraries <expresssion_list>; |
exit;

<optional_do> ::=
do  |  E

<optional_step> ::=
step <expression>  |  E

<compound_statement> ::=
begin <executable_statement_list> end ;

<executable_statement_list> ::=
<executable_statement_list> <executable_statement>  |  E

<command> ::=
<keyword> <expression> <argument_list> ; |
<keyword> <argument_list> ;

<keyword> ::=
click  |  close  |  doubleClick  |  drag  |  move  |  pressKey  |
releaseKey  |  pressMouse  |  releaseMouse  |  scroll  |  select  |
size  |  type  |  zoom

<argument_list> ::=
<argument_list>  identifier : <expression>  |  E

<descriptor> ::=
[ <descriptor_type> <trait_list> ] |
[ ]

<descriptor_type> ::=
actor  |  application  |  button  |  checkBox  |  contentItem  | control  |  editText  |
icon  |  keyboard  |  menu  |  menuItem  |  mouse  |  picture  |  popup  |  radioButton  |
scrollBar  |  staticText  |  screen  |  system  |  target  |  time  |  userItem  |  window

<trait_list> ::=
<trait_list> <trait>  |  E

<trait> ::=
identifier :  <trait_expression>

<trait_expression> ::=

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
<expression>  |
? <variable>  |
$ <variable>  |
? <variable> : <expression>  |
$ <variable> : <expression>  |
? <variable> : $ <variable>  |
? <variable> : $ <variable> : <expression>

<match_expression> ::= match <expression>

<expression> ::=
integer  |
<variable>  |
<descriptor>  |
regular_expression  |
symbolic_identifier |
<expression> . identifier  |
<expression> [ <expression> ]  |
<match_expression>  |
collect <expression>  |
<expression> !  |
( <expression> )  |
<list_of_expressions>  |
<expression> + <expression>  |
<expression> - <expression>  |
<expression> * <expression>  |
<expression> / <expression>  |
<expression> mod <expression>  |
- <expression>  |
+ <expression>  |
not <expression>  |
<expression> = <expression>  |
<expression> <> <expression>  |
<expression> ~= <expression>  |
<expression> < <expression>  |
<expression> > <expression>  |
<expression> <= <expression>  |
<expression> >= <expression>  |
<expression> and <expression>  |
<expression> or <expression>

<list_of_expressions> ::=
{ <expression_list> }

<expression_list> ::=
<expression>  |
<expression_list> , <expression>  |  E

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
B Reserved Words
The following is a list of VU reserved words.  This list does not include symbolic values listed in Appendix 
D. Symbolic values (symbols) are also reserved.  Reserved words will never contain an underscore.  If your 
variable names or task names contain an underscore, it will never conflict with a reserved word.

acquireTarget actor actorName and
application assoc begin button
callpp card checkBox click
close closeBox closesession collect
contentItem control dialog do
doubleClick drag each editText
else end exit for
getIndString getString global icon 
if in insert isMember
isUndefined keyboard match menu
menuItem mod mouse mouseSpeed
move not openSession or
pageDown pageUp patience picture 
popup pressKey print println 
radioButton random receive releaseKey
releaseMouse releaseTarget remove replace 
return screen scroll scrollBar
select send shadow size
sizeBox staticText step system
target task time to
trace type typeOf typeSpeed
upArrow userItem wait while
window zoom zoomBox

The following is a list of words reserved for future use.  The compiler will warn of, but not prohibit, their use 

for now.

absolute acquire agent beep
bitmap break case continue
cursor director evaluate event
execute extern external feature
file finderItem font generic
goto onFailure persist play
playBack record recording relative
release script static tearoff
text universal view windoid

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
 C Operator Precedence

( )

. [ ]

!

- + not match collect card

* mod /

+ -

= <> < > <= >= ~=

and or

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
 D Symbolic Identifiers
The following is a list of symbolic values available in the language.  Symbolic values (symbols) are also 
reserved words in the language.  Appendix B  lists the remaining reserved words. 

aextendkbd backspaceKey capslockKey clearKey
commandKey controlKey da delKey
dialog document downarrowKey endKey
enterKey escapeKey helpKey homeKey
extisoadbkbd macandpad macpluskbd f1Key
f2Key f3Key f4Key f5Key
f6Key f7Key f8Key f9Key
f10Key f11Key f12Key f13Key
f14Key f15Key false leftarrowKey
machunknown macii maciici maciicx
maciifx maciix macplus portable
se se30 a512ke optionKey
pagedownKey pageupKey plain portadbkbd
portisoadbkbd standadbkbd stdisoadbkbd returnKey
rightarrowKey shadow shiftKey tabKey
true undefined uparrowKey unknownkbd

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
E Trait Weights

Actor Descriptors
name t 80
target u 20

Application Descriptors

text t 100

ContentItem Descriptors
( EditText/StaticText/Icon/

Picture/UserItem )
text t 35
enabled e 25
rectangle r 20
window owner w 20

Control  Descriptors
text t 35
setting s 15
enabled e 15
highlite state h 15
rectangle r 10
window owner w 10

Keyboard Descriptors
type t 50
keyscript s 50

Menu Descriptors
title t 50
rank o 30
enabled e 10
items list i 10

Menu Item Descriptors
text t 35
rank o 25
owner m 12
keyboard equivalent k 10
check (mark) character c 9
enabled e 8
submenu h 1

Mouse Descriptors

position p 50
button state b 50

Popup Descriptors
text t 30
window owner w 30
rectangle r 10
enabled e 10
items list i 10
setting s 10

Screen Descriptors
main screen m 70
rectangle r 30

System Descriptors
version v 50
system script s 50

Target Descriptors
text t 40
mouse m 10
screen list s 10
application list a 10
name n 10
keyboard n 10
RAM(memory) r 5
zone n 5

Time Descriptors
year y 20
month m 20
day d 20
hour h 20
seconds s 20

Window Descriptors
title t 35
rank o 25
style s 10
close box c 6
contents list k 6
grow box g 6
rectangle r 6
zoom box z 6

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

▲ ImportantAt present the Significance Threshold  has been set to 35.  Hence all traits 

whose weight equal/exceed 35 fall in the category of Significant  traits.  To remind you, if in a 

match a significant trait fails to match, then the match will fail, with no consideration to other 

traits. ▲

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

F System Supplied Tasks

The following is a list of interfaces to system supplied tasks available:

task acquireTarget(targetName, zone := ‘*’) begin
# black box

end;

- does a lookup for a machine with the specified targetname on the network in the given zone.  If zone 
parameter is not supplied, the local zone is assumed.  If such a machine is found with an Agent VU registered 
on the network then the current actor is given the control of that target.  This task returns a number indicating 
the result of the acquire.  Acquire is successful only if you get back a 0 as the return code.

return codes :

undefined bad arguments passed to the task(an error message will accompany)
0 successful
1 Target failure  (like target not responding, network failure etc.)
2 Actor already has a target under control; an actor is allowed only one target
3 Target with the specified name not registered on the network
4 Target has other host (one target cannot have two controlling hosts)

example usage: 
acquireTarget(“Target1”) - this will acquire a target with chooser name ‘Target1’ in the current/local 
zone.
acquireTarget(‘Target2’, ‘Grace Land’) - this will acquire a target with chooser name ‘Target1’ in 
the zone ‘Grace Land’.

task actorName(newName :=(match[actor]).t) begin
# black box

end;

- sets the name of the actor executing the script to the new name passed as a parameter.  If no parameter is 

passed, the actor name remains unchanged.  This task returns the current actor name (before the change).  The 

following changes the actor name to “Elvis” and returns the actor name that existed before the change
prev_name := actorName(“Elvis”);

The following statement prints the current actor name:
println actorName();

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

task assoc(object, list) begin
# black box

end;

This task is equivalent to the 'assoc' in Lisp.  It gets the value associated with the 'object' in the association list 

provided in the 2nd argument 'list'. 

Association List: A list of the form: {{<object1>,<value1>},{<object2>,<value2>},...}
where <object> and <value> are any expressions.

The <value> associated with the given 'object' is returned by the task.  If there are multiple associations for 

the given 'object' then the <value> in the first association is returned.  If there is no association is found then 

the value returned is false.

example usage:
bobs_age := assoc(“bob”, {{“art”, 0}, {“bob”, 5}, {“tom”, 10}});

bobs_age is assigned to 5 (the value associated with the string “bob”)

task closeSession(recipientActor) begin
# black box

end;

- takes one parameter, the actor descriptor.  It returns the string value ‘done’ if there exists such an actor and a 

session with it is open at this end (it may already be closed from the other end).  Otherwise, the task returns 

undefined.

task descType(descriptor) begin
# black box

end;

- takes one parameter, a descriptor.  It returns the string value denoting the descriptor type if there exists such 

a descriptor in the language.  Otherwise, the task returns undefined. The section on Descriptors enumerates all 

the descriptor types available in the language.

example usage:
d_type := descType([window t: ‘Untitled-1’ o:1]);

d_type is assigned to the string ‘window’.

task getIndString(strListId, index, filename := (match[actor]).scriptfile) begin
# black box

end;

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

- returns a string from the string list resource (resource type ‘STR#’) that has the resource ID as strListID.  

This task reads the string list resource from the resource file specified.  It returns the string specified by the 

index parameter, which can range from 1 to the number of strings in the list.  If the resource can't be read or 

the index is out of range,  undefined is returned.  If no filename is specified the resource is read from the 

resource fork of the script file.

task getString(strId, filename := (match[actor]).scriptfile) begin
# black box

end;

-  returns the string associated with the string resource (resource type ‘STR ’) with the given resource ID.  It 

reads the string resource from the resource file.  If the resource can't be read, getString returns undefined.  If 

no filename is specified the resource is read from the resource fork of the script file.

◆ Note:  If your application uses a large number of strings, storing them in a string list in the resource file 

will be more efficient.  You can access strings in a string list with GetIndString, as described above.

task insert(element, position, list) begin
# black box

end;

- this task inserts an 'element' at 'position' in the ‘list’ and returns a newly formed list.  The cardinality (size) of 

the returned list is one more than that of ‘list’.  The argument ‘list’ remains unchanged after the call.

◆ Note : 'position' must be  an integer > 0, else undefined is returned.

example usage:
list := {‘a’, ‘b’, ‘d’, ‘e’};

newlist := insert(‘c’, 3, list);

# newlist now becomes {‘a’, ‘b’, ‘c’, ‘d’, ‘e’}

task isMember(element, list) begin
# black box

end;

-  checks if the 'element' is a member of the list contained in the 2nd argument 'list'.  The comparison criteria 

for the membership test is same as that for the ‘=’ operator.  This task returns true if the element is a member 

and false if it isn’t.

example usage:
list := {‘a’, ‘b’, ‘d’, ‘e’};

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
isMember(‘c’, list); # returns false

isMember(‘d’, list); # returns true

task isUndefined(expression) begin
# black box

end;

-  checks if the 'expression' evaluates to undefined.  This task returns true if the expression evaluates to 

undefined and false if it doesn’t.

example usage:
str := getIndString(1000, 128);

# getIndString returns undefined if no such string is found

# now:

isUndefined(str); # will return false if a string was found

isUndefined(str); # will return true if no string was found

task mouseSpeed(newSpeed := (match[actor]).mousespeed) begin
# black box

end;

- sets the mouse speed to the speed passed as a parameter.  If no parameter is passed, the mouse speed remains 

unchanged (do not worry about the default expression for now).  This task returns the current mouse speed 

(before the change).  The following changes the mouse speed to 10 and returns the mouse speed that existed 

before the change:
prev_speed := mouseSpeed(10);

The following statement prints the current mouse speed:
println mouseSpeed();

◆ Note:   Mouse movements are made in distinct steps.  The mouse speed is expressed as a positive number 

which represents pixels per step.  Passing 0 tells the Virtual User that any mouse movements should be 

done in one step (as opposed to 0 pixels per step which would get you nowhere).

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

task openSession(recipientActor) begin
# black box

end;

- this system task call takes in a single parameter, an actor descriptor.  It returns either undefined or a string 

with one of the following values: ‘open’ or ‘wait’.  A session becomes open only when the value returned is 

‘open’.  If the value returned is ‘wait’ it means that the recipient actor has not performed a corresponding 

openSession yet.  In such a case, you should retry the openSession (maybe after a while).  Undefined is 

returned in error cases such as when there exists no match for the actor descriptor passed as the recipient.

example usage:
status := '';

while not (status = 'open')

begin

     status := openSession([actor t:‘recipient’]);

end;

task patience(newSetting := (match[actor]).p) begin
# black box

end;

- sets the patience to the setting passed as a parameter.  The parameter may be any positive integer value.  VU 

sets the patience to 1 at script startup time unless it is set differently from the command line for the particular 

target.  If no parameter is passed, the patience remains unchanged (do not worry about the default expression 

for now).  This task returns the current patience setting (before the change).  

The patience of VU determines the duration of pauses that VU goes through while performing any action on 

the target.  Since the performance (speed) of all target applications are not the same and its not currently 

possible  for VU to assess the performance of the target, we want the script writer/tester to help VU.  An 

example, of its utility is in dealing with systems and/or applications which are in early stages of development. 

You can deal with these problems by increasing the patience  of VU.  How do you determine Patience for 

VU?   The best way is experimentation.  There is no well defined way to figure out the patience level you will 

need to set in your scripts.  We suggest that you run the scripts with the default setting (1) and if that fails try 

increasing the patience by one and keep repeating this process until things work smoothly.

The following changes the patience to 3 and returns the patience setting that existed before the change:
save_patience := patience(3);

The following statement prints the current patience setting:
println patience();

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

task random(low_bound := 0,hi_bound := 32767) begin
# black box

end;

- returns a random number in the range from low_bound to hi_bound.  By default, random returns a number in 

the range from 0 to 32767.  For example if you wanted to print a random number between 1 and 10, the 

following statement could be used:
println random(1,10);

task receive(senderActor) begin
# black box

end;

- takes one parameter, the descriptor of the actor from which a message is to be received.  If such an actor 

exists and an unreceived message sent by that actor exists then that message is returned in the form of a string. 

If no unreceived message exists then a null string will be returned.  An undefined value will be returned in 

cases where no such actor is found.

example uasge:
msg := recieve(from_actor);

task releaseTarget() begin
# black box

end;

- used to release a target during a script execution.  This allows the script to either acquire a new target later or 

run without a target.  The release also enables another host(another VU actor or an external application) to 

take control over the target.  Note that a target can have only a single host at this time.  

return codes :

undefined bad arguments passed to the task(an error message will accompany)
0 successful
1 target failure (like target not responding, network failure etc.) ,

release failed 
3 target with the specified name not registered on the network 

(released anyway)
4 target has other host (released anyway)
5 no target under control (so no release needed)

If releaseTarget returns 1 then VU has not released the target (Agent VU).  This means you cannot do an 

acquireTarget on this failure.  You may have to retry releasing till you get one of the other return codes.

example usage: 

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
if (releaseTarget() = 1) 

   println “failed to release. try again”;

# this will release the target which the actor has acquired earlier 

# else if release fails print error message.

task remove(position, list) begin
# black box

end;

- this task removes the element at 'position' in the ‘list’ and returns a newly formed list.  The cardinality(size) 

of the returned list is one less than that of ‘list’.  The argument ‘list’ remains unchanged after the call.

example usage:
list := {‘a’, ‘b’, ‘c’, ‘d’};

newlist := remove(3, list);

# newlist now becomes {‘a’, ‘b’, ‘d’}

◆ Note : 'position' must be  an integer > 0, else undefined is returned.

task replace(element, position, list) begin
# black box

end;

-  replaces the element at 'position' in the 3rd argument 'list' with 'element' and returns a newly formed list. 

The cardinality (size) of the list remains unchanged.  The argument ‘list’ remains unchanged after the call.

example usage:
list := {‘a’, ‘b’, ‘d’, ‘e’};

newlist := replace(‘c’, 3, list);

# newlist now becomes {‘a’, ‘b’, ‘c’, ‘e’}

◆ Note: 'position' must be  an integer > 0 and <= card ‘list’, failing which undefined is returned.

task send(recipientActor, listOfMessages) begin
# black box

end;

-  this task takes two parameters.  The first one is the descriptor of the recipient actor.  The second is a list of 

messages.  A message can be a regular expression value or a number or a variable with such a value.  For 

example, “this is a {object}”, ‘value is xyz’, /failed/, object and 1200  are all valid messages (where ‘object’ is 

a variable with a value such as “ball”).  The message is converted into a string and sent in the form of a string. 

Send returns a boolean which is true if send was successful, otherwise it returns false.  Send can fail if the 

recipient actor was not found or if there was no open session with the recipient actor.

example  usage:

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
recipient_actor := [actor t:‘joe’];

msg_list := {“hi john?”, “how are you?”};

status := send(recipient_actor, msg_list);

task trace(traceSetting := (match[actor]).t ) begin
# black box

end;

- turns debug trace on/off.  If the parameter passed evaluates to true, trace is turned on.  If it evalutes to false, 

trace is turned off.  If no parameter is passed, the trace setting remains unchanged (Do not worry about the 

default expression for now.  It specifies that the speed should remain unchanged).  This task returns the 

current setting (before the change).  

◆ Note:  tracing is only visible within the log file (if specified).  You can watch the trace (or traces for 

multiple targets) as the script(s) execute if you have a window open for the log file(s).

task typeOf(expression) begin
# black box

end;

-  returns the type of value that the 'expression' evaluates to.  This task returns a string denoting the type.

example usages:
type := typeOf(/Untitled≈/);

# type is now assigned the value ‘regularExpression’

type := typeOf(“Untitled-1”);

# type is now assigned the value ‘string’

type := typeOf([menuItem t: ‘open’ m:[menu t: ‘File’]]);

# type is now assigned the value ‘descriptor’

The various possible return values are:

‘descriptor’

‘integer’

‘list’

‘regularExpression’

‘string’

‘symbol’

‘undefined’

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

task typeSpeed(newSpeed := (match[actor]).k ) begin
# black box

end;

- sets the rate at which the Virtual User types at the keyboard.  If no parameter is passed, the speed remains 

unchanged (Do not worry about the default expression for now.  It specifies that the speed should remain 

unchanged).  This task returns the current type speed (before the change).  The following changes the mouse 

speed to 5 and returns the type speed that existed before the change:
prev_speed := typeSpeed(5);

The following statement prints the current type speed:
println typeSpeed();

◆ Note:  the type speed is to be interpreted as the maximum number of characters the Virtual User will type 

in a given second.  The number must be positive and represents a maximum number of characters to be 

typed because the Virtual User cannot maintain a constant rate of keystroking due to uncertainty in 

network traffic.

task wait(seconds := 0,minutes := 0,hours := 0) begin
# black box

end;

- waits/pauses for the specified amount of time. 

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24

   Index

! 17
* 7
+ 7, 8
- 7
/ 7
? 15
~= 17
< 17
<= 17
<> 17
= 17
> 17
>= 17
[ ] operator 6, 8
a512KE 30
acquireTarget 82
actor 9, 58
 32
actorName 82
 27
and 19
application 9
 30
 7
 36
assoc 83
backspaceKey 44
blocks 35
 4
button 9, 22, 23
capslockKey 44
card 6, 8
 69
checkBox 9, 22, 23
clearKey 44
click 46
closeSession 62, 83
 41
 13
collect operator 13
commandKey 44
 2
 55
compound statements 35
 23
contentItem 9, 22
control 9, 22, 23

 23
 47
controlKey 44
 44
da 22
default parameter 53
delKey 44
 9
 33
 21
descriptor type 9
 4, 9
descType 83
dialog 22
 58
document 22
 15
dot operator 15
doubleClick 46
downarrowKey 44
 39
editText 9, 22, 23
 6
endKey 44
enterKey 44
escapeKey 44
 58
 46
expressions 4, 5
 27
f10Keyf 44
f11Key 44
f12Key 44
f13Key 44
f14Key 44
f15Key 44
f1Key 44
f2Key 44
f3Key 44
f4Key 44
f5Key 44
f6Key 44
f7Key 44
f8Key 44
f9Key 44
false 4, 19
for 48
 50

 48
formal parameter 52
getIndString 83
getString 84
global 52
 74
greater than 17
greater than or equal to 17
helpKey 44
hierarchical 26
homeKey 44
 63
icon 9, 22, 23
 48
implicit match 11
in 50
inequality 17
insert 84
 72
 58
isMember 84
isUndefined 85
keyboard 9
 27
keyScript 28
leftarrowKey 44
less than 17

Virtual User Language Reference Beta Draft 10/7/24



Virtual User Language Reference Beta Draft 10/7/24
less than or equal to 17
 55
 8
 4
 16
 8
 19
 27
MachUnknown 30
MacII 30
MacIIci 30
MacIIcx 30
MacIIfx 30
MacIIx 30
MacPlus 30
 27
 51
 11
match operator 11
 11
menu 9
 24
 25
menuItem 9
 57
mod 7
mouse 9
 28
mouseSpeed 85
move 45
 58
not 19
null descriptor, [ ] 17
 5
 4
openSession 61, 86
 78
optionKey 44
or 19
pagedownKey 44
pageupKey 44
patience 86
 17
picture 9, 22, 23
plain 22

popup 9, 22, 23
Portable 30
 27
 27
pressKey 44
pressMouse 46
 36
println 36
radioButton 9, 22, 23
random 87
receive 87
 68
 4, 6
 17
releaseKey 44
releaseMouse 46
releaseTarget 87
remove 88
replace 88
 77
return statements 54
 54
returnKey 44
rightarrowKey 44
scoping 52
screen 9
 28
 2, 35
scrollBar 9, 22, 23
 42
SE 30
SE30 30
 42
 42
 37
 37
 42
 38
send 61, 88
shadow 22
shiftKey 44
 40
 72
 27
statements 35

staticText 9, 22, 23
 27
step 49
 7
 4, 6
submenu 26
 7, 79
 4
symbols 4, 7, 79
system 9
 31
 54
 61
tabKey 44
target 9
 30
task 52
that most closely matches 17
 64
time 9
 32
to 48
trace 89
trait specifiers 10
 80
traits 9
true 4, 19
twiddle equals 17
typeOf 89
typeSpeed 90
 44
undefined 4
 4, 15
 27
uparrowKey 44
userItem 9, 22, 23
 4
 5
wait 90
 50
 70
window 9
 22
 41

Virtual User Language Reference Beta Draft 10/7/24


