
®Macintosh
®

Virtual User General Reference

©1990 Apple Computer, Inc.

Beta Draft
Virtual User General Reference Beta Draft 10/7/24

August 13, 1990

© Apple Computer, Inc. 1990

Virtual User General Reference Beta Draft 10/7/24

Contents

Welcome to Virtual User i

1 Introduction1

The VU Architecture 1
Combatting the Combinatorial Explosion2

2 Getting Started 5

Hardware Needs 5
Target Setup 6
Host Setup 6

Easy Installation Method 7
Minimum Installation Method 7

3 Running VU as an MPW Tool 9

Using the Command Line 9
Commando Interface 15

Setting the Options 16
Running the Test 17

VU Runtime Execution Control 18

4 VU Extension 19

Using the VU Menu 19
VU Help Window Item 20
VU Execution Menu Items 21
Setting Predefined Variables 21
Other Items 24

Virtual User General Reference Beta Draft 10/7/24

5 Augmenting VU with VU Recorder 27

Invoking VU Recorder From VU 27
Setting Up 28
Script Development 28
Useful Preface 29
The General Process30
Test Execution 30
Multiple VU Recorders 31
Shutting Down 32

6 Running VU Against Applications Built With MacApp
35

The Agent VU Assistance Hook for MacApp Applications 35
Running VU Against MacApp Applications Under System 7.0

36

7 Scripting Hints 37

Reducing Execution Time 37
Guidelines for Creating Descriptors 39

Specifying Trait Values 39
Use of the Perfect Match Operator41

Altering Execution Time with System Tasks 41
Memory Efficiency 43
Debugging Scripts 44

8 Troubleshooting Guide 47

Target Installation Problems 47
Test Staging Problems 48
Runtime Problems 52

Virtual User General Reference Beta Draft 10/7/24

A Making Applications “VU-Friendly” 55

B A Rendezvous with Agent VU 57

C Status Codes Returned to the MPW Shell 61

Index 63

Virtual User General Reference Beta Draft 10/7/24

Welcome to Virtual User

It is time to test. You have installed the latest system on each
of the hardware configurations in your lab. Now you must
take an important application through its paces on each CPU.
The task before you is quite clear. You’ve done it many
times before. There are many other tests to run after this
one, and still more to design before the test coverage will be
complete. Surrounded on all sides by computers, you might
wonder if all this technology could be applied towards
freeing you from the chore of repetitive testing.

Virtual User™ (VU) is designed to do just that. VU is a system in which tests are described in a high-level

scripting language and executed on a target system remotely over AppleTalk. By specifying a test in a scripting language,

VU overcomes many of the limitations of early automation schemes. VU scripts are editable with any text editor, unlike

keyboard macros or literal recording mechanisms.

In the VU Scripting Language, the on-screen features you wish to have VU work with are described in abstract terms. VU

locates the desired feature at runtime based on your description, allowing it to execute the same command on different

screen configurations and on different revisions of the software under test. This represents a significant improvement over

literal recording tools, for which you must re-record portions of a test as the layout of windows and their contents change

from monitor to monitor and version to version .

The VU Scripting Language is a procedural language in which automated tests can be written with internal logic and

Virtual User General Reference Beta Draft 10/7/24

control flow that is inaccessible from macro or recording-driven systems. The language combines traditional

programming language features with a set of commands that direct the interpreter to manipulate the user interface of a

number of Macintoshes, each called a target, over an AppleTalk network. By separating the target software from the great

bulk of the test driving software, intrusion upon the target system is minimized to a small piece of resident code called

Agent VU, which patches no traps.

The core of the VU environment is available for use now. This release is in the form of an MPW shell tool with

Commando support. It can run multiple scripts on multiple targets in one test session. In the

Virtual User General Reference Beta Draft 10/7/24

interest of getting the tool out to you, we are delivering a subset of VU’s ultimate functionality. It is capable of

manipulating windows, menus, menuItems (including hierarchical and scrolling items) and the standard controls (buttons,

checkBoxes, radioButtons, and scrollBars). It also provides you with a means of moving the mouse to a particular

location, clicking, double clicking and typing keystrokes. To help compensate for the features it lacks in this release, VU

can control a sister application called VU Recorder under script control. VU Recorder is a literal recording tool. It is the

predecessor to the script-driven VU.

Future releases of VU will extend the utility and sophistication of the system in many ways. VU will become an

application environment with an interactive target picker and extensive features to monitor tests and debug scripts. Our

underlying metaphor of actors reading scripts will emerge, with the test engineer taking the role of playwright and director.

Currently, in VU , each actor is assigned a script to read and most often these actors have a target machine to test. Actors

can send messages to one another, and thus synchronize and influence each other's efforts. VU has been designed to be a

cooperative tool. In the future, external programs will be able to interact with VU actors, thereby becoming VU actors

themselves. These external actors might be test result validation tools such as screen comparison tools. Or, an external

tool may play the role of a test generator, feeding scripts to VU.

Virtual User General Reference Beta Draft 10/7/24

Chapter 1 Introduction

This chapter gives an overview of the VU
architecture. It also discusses the value of VU
in combatting what has been called the
“Combinatorial Explosion” of possible
hardware and software configurations.

The VU Architecture

Virtual User can emulate a number of users operating their respective
Macintoshes each in a different way. This means that VU can operate
against multiple targets with each target being assigned a different script. It
is recommended that, when staging a test using Virtual User, a private
network is used.

One machine on the network is configured as the VU host (a.k.a “VU
Machine”) and, for now, all others will be test machines hereafter referred to
as target machines (a.k.a. “targets”).

■ Figure 1-1 The Basic VU Hardware Configuration

Virtual User General Reference Beta Draft 10/7/24

Virtual User General Reference Beta Draft 10/7/24

The VU host currently needs MPW in which VU runs as a tool. In each target machine resides Agent VU, which is loaded as an init.

The overall architecture of VU is based on a theater metaphor. There are actors in the Virtual User system which play different roles and there is a director which stages, oversees, and directs the test

execution. A VU actor is any entity that plays a role in the testing process in the Virtual User system. The most prominent of these actors are the ones that play the role of the emulated (virtual) Macintosh

users during the test. Other actors which will be supported in the future include the human tester or any external tools which communicate with the director or virtual users.

The Virtual User architecture resembles that of a multi-tasking system. Actors in the VU system are different processes or threads, each of which is governed by the script associated with it. The ability to

have multiple actors simultaneously running multiple scripts makes VU a multi-tasking system. The actors are the process handlers, reading and executing scripts in their own runtime world.

Each VU process handler (actor) runs independent of the rest of the actors. One actor cannot inadvertently interfere with another actor. To allow for the coordination of actions between different users in a

testing process, the VU architecture provides a message passing scheme for actors. This message passing can be used for various purposes such as the coordination of actions between actors. Or, it could

be used to create a client-server relationship between actors where one actor (script) serves (computes) for other client actors (scripts).

Combatting the Combinatorial Explosion

The motivation behind the Virtual User concept arose from observing the
compatibility testing process. Every time a single piece in a configuration
of software or hardware is modified, the entire configuration must be tested.
With the increasing complexity in the configurations of work environments,
the problem of testing to maintain quality is growing exponentially. Virtual
User helps address this problem while preserving the sanity of the tester.

Once you develop your test suites (in the form of VU scripts and libraries),
the same test suite can be run against any number of configurations
simultaneously. You can set up a group of test machines consisting of 1)
various hardware platforms running a given version of system software or ,
2) the same hardware platform running different versions of the system
software or, 3) a

Virtual User General Reference Beta Draft 10/7/24

combination of both. You can even test against localized international
versions of software using a localized version of the test suite developed for
the US versions. Clearly, the potential time savings resulting from
automating compatibility testing using VU is enormous.

Apart from its value in compatibility testing, VU has other general
advantages. VU's virtual users will test for days and nights without breaks or
requests for salary increases. VU has also been proven useful in performing
reliability testing of hardware platforms in heat laboratories. More
importantly, VU scripts can be developed in parallel with the software
development from the software specification. This helps you start testing
early, catching problems at an early stage in the development cycle.

Virtual User General Reference Beta Draft 10/7/24

Chapter 2 Getting Started

This chapter outlines what you need to
do to start using VU. Setting up to
use Virtual User is quite simple. Two
classes of machines must be
configured, the target machines and
VU host machine.

Hardware Needs

The hardware needed to run VU varies with the extent of testing desired.
The greatest benefit comes with running one host with many targets, each
being either a different CPU model or configured differently in some way.
You can use any Macintosh in Apple's current product line as a VU target
machine. Currently, this includes any Macintosh from the Mac Plus to the
Macintosh IIfx (and including the Macintosh Portable).

The machine designated as the VU machine must have at least 1MB of
memory to run MPW 3.0 or higher.

Beyond that, you simply need to network this host machine with each of the
machines you wish to simulate user interaction upon. The physical medium
of networking them together isn’t important as long as AppleTalk™ is
supported. We recommend that you run your tests over a private network
Virtual User General Reference Beta Draft 10/7/24

for performance reasons. Obviously, a faster physical medium such as
Ethernet cabling will improve your test times.

Virtual User General Reference Beta Draft 10/7/24

Target Setup

■ Figure 2-1 Installing Agent VU

To set up a target for use with VU, you must first copy an Agent VU into each target machine’s system folder. When you reboot each machine, the agent will adopt the name entered in the respective

machine’s Chooser desk accessory. It will then join the parade of icons that starts in the lower left corner of the screen at system startup. The Agent VU learns its name at startup time, so if you want to

change its name, you must reboot the machine whose name has changed.

VU has been shown to run successfully on targets running versions of the system as early as System File Version 4.1. It will also run on targets running the very latest versions of the system, including

System 7.0.

It is also highly recommended that you turn off key repeat on each target machine using the Keyboard CDEV. If this is not done, characters typed by VU on the target machine may be unintentionally

repeated.

Host Setup

We offer two ways to install the host software needed to run VU. The first
method involves the installation of VU Extension. VU Extension is a set of
small utilities for VU users to enhance their script development
environment. VU is presently an MPW tool, but is intended to be an
application environment. To make up for the lack of a VU environment,
users of VU at Apple have

Virtual User General Reference Beta Draft 10/7/24

developed some MPW scripts. Using the first installation scheme will make
these features available to you. The second scheme will yield the minimum
configuration for running VU.

Of course, there are many ways to configure MPW given your own
preferences. These are just two quick schemes we have provided for you.

 ◆ Note: When using a Mac Plus as a host, you must first copy the AppleTalk 52.0 INIT into the system folder

of the Mac Plus. This INIT is included in the VU package.

Easy Installation Method

Installation of VU Extension for MPW is extremely simple. All you have to do is copy a file
named “UserStartup•VU” into the folder that contains the MPW shell application. Then copy
the folder, Virtual User, to anywhere on your hard disk. The Virtual User folder contains the
VU tool. Once you have done this, your VU scripting environment is ready to be used next
time you launch the MPW Shell. You can launch MPW by double-clicking on the VU tool.
This will set your working directory to Virtual User. You should always set your working
directory to the folder which contains your VU scripts. If you create another folder for your
VU scripts then use the MPW menu item “Set Directory” or the “Directory” command to
switch to the correct working directory.

Detailed information on how to use VU Extension is given in Chapter 4, VU Extension.

Minimum Installation Method

If you’d rather not use the extensions provided, you can do a minimum installation as follows:

1. Install MPW 3.0 or higher onto your hard disk

2. Place the VU tool in one of the following two places:

■ within the Tools folder within the MPW folder (i.e. “{MPW}:Tools:”)

■ a folder of your own which will be your working directory.

3. To avoid typing the full pathname to your scripts, set the working directory to the directory containing your scripts. If you haven’t put the VU tool in the {MPW}Tools folder, the

tool should be in this same working directory.

Virtual User General Reference Beta Draft 10/7/24

Chapter 3 Running VU as an MPW Tool

VU runs as an MPW tool. This chapter
describes the details involved in running VU
from MPW. The tool may be launched from
the command line or via MPW’s Commando
facility. Commando allows the user to
interactively specify VU’s parameters from a
dialog.

Using the Command Line

To run a script using the VU tool under MPW, you have to supply some
information to VU in the form of command line options. Here we describe
the arguments that VU accepts. A simple example of a VU command line
follows:

VU -a “Actor1” -t "*:TargetMac" -s Script.vu

An argument has two parts:

1. argument specifier

2. argument value

The argument specifier is one or more letters preceded by a hyphen. All VU arguments except “-vers”, “-dt” , “-c” and “-

cs” require a value to follow the specifier .

Virtual User General Reference Beta Draft 10/7/24

■ -t <target address> This specifies the target on which the test is to be performed. The target name is specified by giving its network path name, namely, <zone>:<target's

Chooser User Name>. If your target is in the same network zone as the VU machine, then the meta-character “*” (asterisk), meaning “this

zone”may be used. For example, consider a target having a Chooser User Name of “BOB”. If the target is
in the same zone as the VU host machine, you could specify the target address as -t “*:BOB”. Always

enclose the target name within single or double quotes.

Virtual User General Reference Beta Draft 10/7/24

■ -s <script file name> This specifies the name of the script file to be run. Enclose the file name in single or double quotes if the name has any blanks in it. In the absence of this

argument, the script will be read from standard input. In this case, you can type the script in any open window, select the whole script and press enter followed by command-enter

. It's recommended that you use the extension “.vu” in names of VU script files to make them distinct and easily identifiable.

■ -a <actor name> This specifies the name of an actor. An actor may be assigned a script and a target via the command line with the “-s” and “-t” options. If you do not specify an

actor name from the command line, VU creates an actor anyway to run the script on the specified target. The actor’s name is assigned to the target address, i.e.

“*:TargetMac”. If you haven’t specified a target from the command line, then you must specify an actor.

■ -c This indicates compile only. This is used if you just want to test the syntax of your script, without running it. If you use this option you need not specify the target.

■ -l <log file name> This specifies the name of the log file. The form of specification is the same as that of the -s option. If you use this option, VU tool will write some important

information about the test along with any error/warning messages in the specified file. Tracing also goes to this file.

■ -dt This indicates that diagnostic trace is to be enabled. This is used only if you have specified the log file. This option is used to trace the execution of the script for reporting bugs

and debugging purposes. Every statement will be written into the log file along with any effects due to that statement on the script variables.

■ -o <output file name> This is used to redirect the output of print and println statements from the standard output to another file. If only one script is being run, this has the same

effect as redirection of output using “>“ in MPW. This option is of greatest utility when running multiple actors or targets.

Virtual User General Reference Beta Draft 10/7/24

■ -m <mouse speed> This is used to set the speed of mouse movement on the target. The mouse always moves in steps. The speed specifies the number of pixels you want the

mouse to move in every step. Hence it should be a positive integer. If you want the mouse to make all movements in just one step, set the speed to 0. The default setting is 50.

■ -k <keystroke rate> This is used to set the maximum rate of keystrokes on the target in characters per second. The rate must be a positive integer. Note that the rate specified is

used as a maximum limit. Due to uncertainty in network transaction timing, VU cannot maintain a constant rate of keystrokes. The default setting is 20.

■ -p; <patience setting> This is used to set the “patience” of VU for the target. Patience must be a positive integer. VU's actions get slower (increased pauses between actions) as

patience increases. The default setting is 1.

■ -vers This is used to get the version information of VU. The following command line will give you Virtual User version information

VU -vers

This option directs VU to tell you the version of Virtual User (the package), VU (the tool), and the version of Agent VU which is compatible with the tool VU. Please use this

option to obtain version info when reporting problems. Note this will not tell you the version of the Agent VU you are actually using. It will tell you the version of Agent VU you

should be using with the VU tool you are running. The log file will tell you the currently executing version of a particular target's Agent VU.

■ -fail <n> This is used to set the maximum number of command failures (e.g. couldn't drag a window in the specified manner) you want to allow in your script execution. VU will

abort if the number of failures exceeds this number. During script development, you might want to set this to 1. The default setting is infinite. That is, VU will not stop until all

scripts have been completed or the user aborts execution.

Virtual User General Reference Beta Draft 10/7/24

■ -timeout <t> This is used to set the maximum time for VU to wait for a transaction with Agent VU to complete. If the transaction fails to complete within this time period then the

transaction is considered to have failed. The default setting is 20. For busy networks, this setting should be increased.

■ -retries <r> This sets the maximum number of times VU retries a transaction with the Agent VU. The default setting is 3. For busy networks, this setting should be increased. If

the transaction fails to complete despite this number of retries, then VU gives up. In such situations VU suspects target failure and tries to re-acquire the target.

■ -cs This is used to make VU's string matching case sensitive. By default, any string matching done by VU is not case sensitive.

■ -libs <search path> This is used to specify the search path for VU to access task libraries. VU always looks for the declared libraries in the current directory first. If not found, it

makes use of the search path provided on the command line (if any) and finally it checks the MPW variable “VULibraries” for a search path. By default this variable will be set to

your “…:Virtual User:Libraries” folder by the provided “UserStartup•VU” MPW script (if you are using it).

 ◆ Note: Make sure that you have exported the MPW variable “VULibraries” using the MPW command

“Export”. Otherwise, VU will not be able to access the path defined by this variable. (The

“UserStartup•VU” MPW script will do this for you.)

Example:

VU -a1 ‘Actor1’ -s1 ‘TestScript1.vu’ -l1 ‘TestScript1.log’ ∂

-o1 ‘TestScript1.out’ ∂

 -a2 ‘Actor2’ -s2 ‘TestScript2.vu’ -l2 ‘TestScript2.log’ ∂

-o2 ‘TestScript2.out’ ∂

 -libs ‘HD:Virtual User:MyScripts:Libraries:’

In the above command line either or both of the scripts can be using libraries. The same search path is used for all

scripts. Note that you are specifying only a search path to locate the libraries. Some of your libraries may reside in this

specified directory and some may reside in your current directory and some may even reside in another directory

whose path name is specified by setting the MPW shell variable “VULibraries”.

Virtual User General Reference Beta Draft 10/7/24

Note that to support running multiple actors from one VU interpreter, each of the specifiers (expect “-libs”) can be repeated. Repeated

specifiers are followed by numbers which tell VU how the different specifiers match up. If you use a specifier in numbered form, then

its lower numbered forms must precede its higher numbered forms.

In cases where all of the actors are being run by the same script, it is not necessary to assign the script to each actor. Just specify the one

script with “-s” and all actors will be run by that script. The script will only be compiled once; no extra memory will be consumed by

mentioning the script more than once. With the exception of the “-t”, “-l”, and “-o” options, any specifier given without a number is

applied to all actors. It is an error to use a specifier in numbered and unnumbered form in the same command line.

Example:

VU -a1 "Admin" ∂
-t1 "*:gozer" ∂
-s1 "AdminTest.vu" ∂
-o1 "AdminTest.out" ∂

∂
-a2 "BusyTester" ∂
-t2 "*:chuck" ∂
-s2 "BusyWorkstation.vu" ∂
-o2 "BusyWS.out" ∂
-m2 1 ∂
-k2 50 ∂

∂
-a3 "LazyTester" ∂
-t3 "Farside:Twiddledee" ∂
-s2 "LazyWorkstation.vu" ∂
-o3 "LazyWS.out" ∂
-m3 1 ∂
-k3 5

 ◆ Note: the line continuation character “∂” (option-d) is only necessary if the command is broken into

multiple lines.

Virtual User General Reference Beta Draft 10/7/24

In this example there are three actors, each running different scripts. Actor 1 is “Admin”, who is running a test of the

AppleShare™ Administration software on the target “gozer”. Actor 2 is “BusyTester”, who is playing the role of a busy

AppleShare workstation user, with mouse and keyboard speed set to very high values. The third actor is “LazyTester”,

operating on “Twiddledee” in the “Farside” zone. “LazyTester” is playing the role of the lazy workstation user and has

mouse and keyboard rates set to a very low level.

Another example illustrates the use of -s without a number after it to specify the one script which will be run on all of the

targets:

VU -t1 "*:gozer" ∂
-m1 10 ∂

∂
-t2 "*:chuck" ∂
-m2 5 ∂

∂
-t3 "Farside:Twiddledee" ∂
-m3 1 ∂

∂
-s "Chooser QuickLook.vu" ∂
-k 30

Here, the quicklook test for the Chooser is being run on three targets. Each target has a different mouse speed, but all the

targets have a maximum keystroke rate of thirty characters per second.

Note that you can achieve a variety of effects by including and excluding various command options. If you specify an

actor (-a), a target (-t), or both without a script name, VU allows you to write a script “on the fly” in an open window.

This is useful for trying very small scripts or single-command scripts.

VU -a “*:The_N_MAN”

You may also specify an actor and a script without specifying a target. If you then want the actor to operate on a target,

you can acquire the target “on the fly” within the script using the VU Scripting Language. (Refer to the Virtual User

Language Reference Manual for details.)

VU -a “*:The_N_MAN” -s “*:SuperScript”

Or, you can specify a target and a script without specifying an actor name. VU will create an actor for you to run the

script (see the explanation for “-a” above). You may then change the name of the actor within the script, if desired, using

the VU Scripting Language.

VU -t “*:gozer” -s “*:SuperScript”

Virtual User General Reference Beta Draft 10/7/24

Commando Interface

■ Figure 3-1 The VU Commando dialog

VU provides you with a Commando interface to make it easier to build your command line to run your tests. To invoke Commando, just type “VU” and press option-enter (alternatively, type “Commando

VU” and press enter). This brings up a dialog window as shown in the above figure. All options are visible in this window, and help text for each option can be instantly accessed by holding the mouse

down over the option. The help information is displayed in the standard help window at the bottom of the Commando dialog. Some of the options come with default settings, which you can modify.

Virtual User General Reference Beta Draft 10/7/24

Setting the Options

■ Target: This edit text box comes with no default value. You should type in the network address of the target (<zone>:<user name>) in this box. If the target is on the same zone as

the VU machine, then you can use the meta-character “*” (asterisk) for your zone name.

■ Script file… : You can select your script file to be run by clicking the mouse on this button. The standard file dialog will pop up, and you may select the requisite script file, then

select OK or just double-click on the selection. Note that initially only the files in the working directory with the “.vu” extension in their names are listed. Selecting the

radiobutton “All text files” will cause all of the files in your working directory to be listed.

■ Libraries Path… : You can select the search path directory for libraries by clicking the mouse on this button. The standard file dialog will appear, and you may select the requisite

directory and then select the Directory button.

■ Log file… : You can select the name of the file into which you want the test information to be logged by clicking on this button. This will bring up the standard file dialog, allowing

you to type in the name of the file. You can select OK after you enter the name, or press return.

■ Trace On: If you specified the “Log file...” option, this checkbox will become active. You can click on this checkbox if you want to trace your script. The trace information goes

into the log file.

■ Mouse Speed: Type the desired mouse speed in this box.

■ Key Stroke Rate: Type the desired keystroke rate in this box.

■ Match Case Sensitive: This checkbox may be selected if you want VU's string matching to be case sensitive.

Virtual User General Reference Beta Draft 10/7/24

■ Network Timeout: Type the desired network timeout value in this box.

■ Network Retries: Type the desired number of network retries in this box.

■ Patience: Type the desired patience level in this box.

■ Failures Allowed: If you want to set a limit to the number of failures allowed by VU before it aborts, type your new limit in this box.

Running the Test

Commando constructs the command line as you set the options. The Command Line box
displays the command line resulting from the options you select from the dialog box. You can
copy all or part of this command line using Command-c or the Edit menu. But you cannot
type into this window directly.

Pressing Enter or clicking on the VU button (also known as the Do It button), passes the
command line to the MPW shell for execution. If you change your mind and want to exit the
Commando dialog without running the script, select the Cancel button.

You can get these special results by pressing the Option and/or Command keys while selecting
the VU button:

■ Option key. The command line is also written to standard error. This means that the command is executed and is echoed to the active window.

■ Command key. The command line is not passed to the shell. Nothing is executed.

■ Option-Command keys. The command line is written to the active window without being executed.

Virtual User General Reference Beta Draft 10/7/24

VU Runtime Execution Control

The VU tool also provides some limited real-time execution control. You
can ask VU to suspend execution of scripts while they are running by using
Command-S. To resume execution while in suspended mode use
Command-R. Note that it may take a while before VU suspends execution,
since it has to complete any pending AppleTalk transactions. You can abort
the execution of VU like any other MPW tool with a Command-period. VU
might take some time before it really aborts after you type in a Command-
period, as it has to abort all pending network transactions and do some other
necessary clean up before exiting.

Virtual User General Reference Beta Draft 10/7/24

Chapter 4 VU Extension

This chapter describes VU Extension. This is available to you if
you have used the Easy Installation Method described above.
The extensions are provided by way of MPW scripts and are set
up at the time the MPW shell is launched. A VU Menu is set up
by the “UserStartup•VU” script which makes the extensions
available to the user.

These extensions will help you avoid a cluttered worksheet as you
go through session after session of script development along with
many test execution cycles. In addition, they will provide
features that come in handy.

Using the VU Menu

This section provides a detailed guide to using the VU Menu. Once VU
Extension is installed into your MPW system, a VU Menu is appended to
your MPW shell application's menu bar every time you launch it. Under
that menu, you will find menu items that will invoke useful, VU-related
MPW scripts and tools.

Virtual User General Reference Beta Draft 10/7/24

■ Figure 4-1 The VU Menu

VU Help Window Item

VU Help Window, when selected, will bring up a new window containing
the VU Help information. This is the same help text which would be
obtained by the command “help VU” entered from the MPW worksheet.
The help text gives a brief description of the VU command line and
associated options.

Virtual User General Reference Beta Draft 10/7/24

VU Execution Menu Items

VU Active Window, when selected, will execute the contents of the
currently active window, which should more than likely be the script file
you have been working on. It runs the script in the active window against a
predefined target in a predefined zone, and redirects errors and standard
output to a predefined file. These predefined variables can be set using
other VU Menu items, described below in Setting Predefined Variables.

VU Selection executes only those lines in the active window that are
highlighted instead of executing the contents of the entire window. Again, it
uses the predefined variables indicating zone, target name, and output file.

VU Default Script executes a VU script from a predefined script file. The
predefined target and output file are again used.

VU Multiple Targets allows you to set up a multiple-target test using the
Commando interface. MPW commands for running VU against multiple
targets can become very long. One can make mistakes very often in
constructing these commands. So we have provided this menu item which
actually constructs the command for you and outputs it to the worksheet.
You can then select the command and hit the enter key to run it. You can use
this item as a way to invoke Commando for a single target as well.

Setting Predefined Variables

Virtual User General Reference Beta Draft 10/7/24

The next six menu items set or show the predefined variables that dictate
how the VU Execution Menu Items will behave. There are four variables
that concern us here. They define the zone in which the target CPU is
located, the Chooser name of the target, the name of the default VU script
file, and the name of file to which VU output is redirected. When you set
these variables they are saved in the “Settings_vu” file and used as defaults
until you change them again. Since the values are saved in a file, they will
not be lost when you quit MPW.

Virtual User General Reference Beta Draft 10/7/24

Pick Target… brings up a dialog box as shown below listing all the available
target machines on the network. You can pick the desired target by selecting
it and hitting the OK button. The target address is saved in the
“Settings_vu” file and will be used as the default. Note that on networks
without zones, the dialog does not show any zone name. In these cases the
zone name is set to the meta-character “*” .

■ Figure 4-2 The Pick Target dialog box

You may also set the zone and target name separately using the following two items.

Set Target Zone... brings up a dialog box as shown below and asks you to enter the name of the zone. Simply type in the zone name and click the OK button or press the return key. Clicking on Cancel

causes the MPW script to abort, leaving the variable unchanged. Enter the meta-character “*” to indicate that the local zone should be used.

■ Figure 4-3 Set Target Zone dialog box

Virtual User General Reference Beta Draft 10/7/24

The menu item Set Target Name... brings up a dialog analogous to that resulting from selection of the Set Target Zone... item. The dialog allows the user to set the name of the target CPU to be used for

repetitive executions during script development.

Selecting Set Script... presents a standard file dialog box (as shown below) which can be used to select a script file that you will be using repetitively. The file you select in this dialog is executed every

time you select VU Default Script.

■ Figure 4-4 The Set Script dialog box

Set Output File... will let you set the name of the file to which you want all VU output redirected. You may want to set it

to the Worksheet as a default.

To see your current variable settings, select Show Settings.... A dialog box will display the settings that will govern how

the items in the VU Menu will be executed. An example of such a dialog is shown below.

Virtual User General Reference Beta Draft 10/7/24

■ Figure 4-5 The Show Settings dialog box

Other Items

Check Window Syntax checks the syntax of the VU script in the active
window and informs you of any errors in your script by printing error
messages to the predefined Output file. For this command, you probably
want to set the predefined Output file to be the Worksheet or another file for
which a window is currently open.

Comment Selection can be used to comment out one or more lines of a VU
script. First, select the lines that you wish commented. Then select this
menu item. All script lines within the current selection will be preceded by
a pound sign (#) and a tab. It is not necessary to select an entire line. As
shown below, selecting any part of the line will do.

Virtual User General Reference Beta Draft 10/7/24

■ Figure 4-6 Using the Comment Selection menu item

Uncomment Selection works exactly the same way, except it removes the pound sign and any white space characters at the beginning of each selected line.

The VU Menu is easily configurable to your liking. As you become more acquainted with VU, you might want to add some more useful commands to this menu. Or you might just want to add keyboard

equivalents of your own to these items. To be able to make any such changes you must learn the MPW command “AddMenu”. The VU Menu is set up by the Startup file in your Virtual User folder. You

can edit this file to your liking in MPW.

Virtual User General Reference Beta Draft 10/7/24

Chapter 5 Augmenting VU with VU Recorder

VU has many of the facilities needed to
automate manipulation of the standard
Macintosh user interface elements. What it
lacks in specific commands can usually be
built up from its primitive mouse movement
and keyboard commands. Common tasks
such as selecting a tool from a tools palette
can be made into a reusable task without an
extraordinary amount of effort. Freehand
drawing, however, does not lend itself well to
scripting in VU.

Virtual User General Reference Beta Draft 10/7/24

VU is not yet complete. One of the planned
additions to the system is the ability to record
a user’s activity so that actions otherwise
indescribable in the scripting language can be
included in test scripts. Until we reach that
point, VU can fall back on its predecessor,
VU Recorder, to reproduce literal mouse
movement and keyboard activities. This
chapter describes the use of VU Recorder
with VU. Refer to the VU Recorder
Reference Manual for more information on
VU Recorder.

Invoking VU Recorder From VU

VU Recorder can reproduce input with high fidelity, but sharing the CPU
with VU and the MPW Shell tends to cause playback to be slower than
normal. VU Recorder is much more sensitive than VU to changes in the
screen layout. You should try to minimize your dependence on VU
Recorder, as its recordings are more delicate than VU scripts.

The VU Scripting Language includes a statement which directs VU
Recorder to play back one of its recordings on the target VU is using. This
statement is called, for historical reasons and in the interest of backward
compatibility, callpp. It takes two arguments, one of which is the name of
the VU Recorder (p: for player) and the other is the file name containing the
recording created with VU Recorder. For example, the following call tells
VU Recorder to playback the recording called “freehand draw”.
Virtual User General Reference Beta Draft 10/7/24

callpp p:"VU Recorder" f:":freehand draw";

The f: argument specifies the name of a VU Recorder recording file. This can be a full or partial path name.

The p: argument names the VU Recorder program that the VU should contact. VU Recorders adopt their application name for the

purpose of announcing their availability for remote control. For arcane reasons, the VU Recorder must be running on the same machine

as the VU interpreter.

Setting Up

Running VU and VU Recorder together requires a machine with enough
memory to run both VU Recorder and the MPW Shell under MultiFinder.
So 2 megabytes is probably the low end of the workable range.

VU and VU Recorder will be communicating with each other via a special
feature of AppleTalk called intra-node delivery. Intra-node delivery allows
two programs to talk to one another as if they were running on different
machines on the network. This feature is normally disabled. It can be
activated by installing the SetSelfSend CDEV in the System Folder of the
machine on which you intend to run VU and VU Recorder. Once
SetSelfSend is in the System Folder, it can be reached through the Control
Panel and used to activate intra-node delivery.

Script Development

A grave weakness of VU Recorder is that playback of its recordings doesn’t have the
desired effect if anything significant on the target’s screen changes position between
the time the recording was made and the time it is replayed. VU can be used to

Virtual User General Reference Beta Draft 10/7/24

overcome many of these problems by aligning and sizing windows in the precise
manner required for successful playback. Getting this to work right takes a little
practice and patience, but it isn’t difficult.

Virtual User General Reference Beta Draft 10/7/24

Useful Preface

A common practice in the world of MPW Shell scripts is to put names of files and
directories into variables, so that as the script is run on different machines, the values of
the variables can change, but the script need not change. This practice carries over into
VU programming, especially in the case of scripts which use the callpp command.
Callpp makes references to files and to VU Recorder applications, both of which may
change from file system to file system. VU variables can be used to control all the
aspects of the script that are likely to change from machine to machine. One possible
header to a VU script is the following:

The following VU code could be included near the top of any
VU script which uses callpp. You would substitute the values
for these variables that describe your machine.

Recordings_path is the path to where the recordings
for this test are held.

Recordings_path := "HardDisk:TestProjectFolder:VURecordings:";

VU_recorder_name is the name of the VU Recorder application (as seen
in theFinder) with which this script should work.

VU_recorder_name := "VU Recorder";

These variables can be incorporated into the callpp command anywhere in the script following their definition or in tasks

which use the global declarations. The values of these variables can be changed elsewhere in the script, but it is probably

better to define other variables for the different directory paths and VU Recorders you want to reference.

Depending on the organization of your folders, it may be possible to set “Recordings_path” to a partial path name. A

partial path name describes the series of folders you open to find a file, starting from the one you are currently in. Using

partial paths make moving a collection of test files from one machine to another relatively easy in that so long as you keep

the folders containing the recordings in the same positions relative to one another, then “Recordings_path” does not need

to be changed.

Virtual User General Reference Beta Draft 10/7/24

The General Process

Start off by writing the VU portion of the script, leaving comments in the places where
you intend to call VU Recorder. With the script handy, step the target application
through the process until you reach a point where VU Recorder needs to be called.
This can be done manually or by executing the script piecewise. At this point, it is
desirable to have VU position the windows such that their placement can be recreated
when the script is run.

You might want to decide on a point on the screen where you want the top, left corner
of all your windows to line up. A good point might be just below the menu bar near the
Apple menu, at x = 5, y = 25. In VU, a window can be moved to this point with the
command:

VU code to position a document window for work with VU Recorder
drag [window] a:{ 5,25 };

Now that the windows are set up just as they will be when VU is running the test, run VU Recorder and record whatever

actions you want it to perform. When the recording is finished, save it and continue stepping through the test to make

whatever other recordings you need to support your VU script.

Test Execution

Running a test with VU and VU Recorder is much easier than writing and recording
one. With intra-node delivery (SetSelfSend) on, launch VU Recorder and the MPW
Shell. Bring VU Recorder into the foreground and choose Remote Control from the
Control menu. VU Recorder will hide its Target Picker window and the message
“Awaiting control from afar” will appear in the box at the top of its main window.
That's all you need to do to with VU Recorder. Now switch back to MPW.

You are now ready to use VU with VU Recorder. Run the VU script as you would any
Virtual User General Reference Beta Draft 10/7/24

other. VU will direct VU Recorder to run the recorded portions of the test and will
relay any errors VU Recorder encounters to the MPW worksheet. VU Recorder errors
will also be routed to the VU log file if you requested logging on the MPW command
line.

Virtual User General Reference Beta Draft 10/7/24

Multiple VU Recorders

For multiple target tests where at least two assigned scripts require VU
Recorder playback via callpp, a uniquely named VU Recorder needs to be
executing for each such script. To help VU tell the VU Recorders apart,
each copy of the VU Recorder application should be renamed in the Finder
and each needs to be placed in a separate folder (so they can each write
their log files). A simple naming scheme like “VU Recorder 1”, “VU
Recorder 2”, “VU Recorder 3”, etc. will work fine. Each of those VU
Recorders will need a complete set of the recordings that are to be used in
the test. For a two-VU Recorder test, the directory setup might look like the
following diagram.

■ Figure 5-1 A sample VU/VU Recorder folder arrangement

Virtual User General Reference Beta Draft 10/7/24

It should be stressed that this is not the required arrangement. It simply meets the requirements of having VU Recorders with different names in different directories, each with its own copy of the

recordings.

Virtual User General Reference Beta Draft 10/7/24

The only tricky part of this whole arrangement is when there are multiple actors reading the same script (there is a metaphorical actor reading the script for each target). Each of these actors must use a

different VU Recorder when it comes time to execute the callpp statement. The only way for them to distinguish themselves from one another is to use the target's name, which is embedded in the target

descriptor. The script can then test the name with a cascading if - else - if until it runs out of known targets, at which points the script can report the error and shut down the test for this target (alternately, a

global variable could be set which would tell the script to skip the portions of the test that depend on VU Recorder).

match[target t:?target_name];
if target_name ~= /≈Target 1/ begin

recorder_name := "VU Recorder 1";
end;
else begin

if target_name ~= /≈Target 2/ begin
recorder_name := "VU Recorder 2";

end;
else begin # can't determine VU Recorder for target

println "I don∂'t know which Recorder to use for
target:",target_name;

exit; # terminate the run of this script against this target
end;

end;

Using partial path names eliminates the need to modify the value assigned to “Recordings_path”, as it is the same in both

cases.

Recordings_path := ":VU Recorder Recordings:";

If the set of recordings you want to use also depends on the target, you could add an assignment to the variable

“Recordings_path” at the places where recorder_name is assigned. The variables “recorder_name” and

“Recordings_path” can be used in the callpp statement like so:

callpp p:recorder_name f:"{Recordings_path}{recording_name}";

Shutting Down

Virtual User General Reference Beta Draft 10/7/24

When the test is completed, you can quit from both programs in whatever
order suits you. VU Recorder may complain that its target isn’t responding.
This is because VU released its agent without telling VU Recorder. Agent
VU’s unwillingness to take orders confuses VU Recorder, so it raves about
possible target crashes and network failures. In general, this is not
indicative of any problem in your VU/VU Recorder session.

Virtual User General Reference Beta Draft 10/7/24

Chapter 6 Running VU Against Applications
Built With MacApp

In order to find the location of items in
windows for VU, Agent VU peruses the
content list of windows and the item list of
dialogs. For applications which are not built
with MacApp, these data structures can be
accessed via global variables by Agent VU.
For MacApp applications, however, items in
windows are subclasses of the class TView,
which are not available to the Agent via
global data structures. As a result, Agent VU
can’t provide any information about these
items to VU in the normal way.

This chapter describes a way in which an
application built with MacApp can assist VU
so that full VU functionality is available for
that application.

The Agent VU Assistance Hook for MacApp Applications

Virtual User General Reference Beta Draft 10/7/24

Agent VU provides a hook facility which allows an application to assist
Agent VU by providing information about itself. We’ve provided such an
assistance hook for MacApp applications. A user can build a MacApp
application with the Agent VU assistance hook for MacApp applications;
and then test the application with VU just like any other application.

The hook exists as a unit called UVUAssist. The unit consists of four files:
VUAssist.p, VUAssist.inc1.p, VUAssist.inc2.p, and VUAssist.a.

You must hook this unit into your MacApp program in the following places:

In MyApplication.IApplication, you must execute the following three
statements:

NEW(gVUAssist);
FailNil(gVUAssist);
gVUAssist.IVUAssist;

In MyApplication.AboutToLoseControl you must execute this:

Virtual User General Reference Beta Draft 10/7/24

gVUAssist.SuspendMole;

In MyApplication.RegainControl you must execute this:

gVUAssist.ResumeMole;

See the assistance hook source code provided with the VU package for more
detailed comments regarding the use of the hook.

Running VU Against MacApp Applications Under System 7.0

The default behavior for MacApp 2.0 applications running under System 7.0
is to call WaitNextEvent in the main event loop with an unlimited sleep
time. Due to changes in MultiFinder for System 7.0, Agent VU does not get
execution time when it needs it in this case. (See Appendix A, Making
Applications “VU-Friendly”.) As a result, VU will fail to run against a
target machine with this configuration. You can work around this problem
by overriding the default MacApp 2.0 behavior so that WaitNextEvent is
always called with a finite sleep time such as 1 second.

Virtual User General Reference Beta Draft 10/7/24

Chapter 7 Scripting Hints

VU scripts, like most programs, can be written in ways which
help improve the performance of the script execution. This
chapter is dedicated to providing you with some techniques to
make your scripts run in less time and within smaller memory
configurations. Also included in this chapter are some hints on
debugging scripts. You may need to refer to the Virtual User
Language Reference Manual to fully understand the information
given.

Reducing Execution Time

Script execution goes through the following two steps:

1. Parsing and Loading: VU reads the script from the script file, checks for
syntax and builds a script representation in memory.

2. Interpreting: Each statement in the script is interpreted one after another.

The Parsing and Loading step is done in the beginning and takes a reasonably short
period of time. This time period increases linearly with the size of the script.
Therefore, your script file should be only as large as it is really needed to be. You
might want to make sure that your script file does not contain unused task definitions.

Script interpretation consumes most of your total execution time. A VU script consists
of two types of statements :

Virtual User General Reference Beta Draft 10/7/24

1. Statements whose interpretation is done without communicating with
Agent VU

2. Statements whose interpretation involves talking to Agent VU

Virtual User General Reference Beta Draft 10/7/24

The interpretation of the first type of statement takes less time in general than the
second type of statement. The parts of VU scripts with just the first type of statement
are like programs written in any other programming language. You can improve the
performance of these parts by the usual mechanisms such as the use of faster
algorithms.

The second type of statements are more critical to improving the time performance.
Statements which fall into this critical category are:

1. Any command which asks for some action to be performed on the target
machine. For example, Selections (Select [window/menu/menuitem/…]),
Drag/Scroll/Zoom commands, etc.

2. Any statement which uses an explicit “match’”or “collect” on an element
from the target. For example,

match[window t:?w_title o:1];
all_file_items := collect[menuItem m:[menu t:‘File’]];
while (not match[window s:dialog o:1]!);

Interpretation of most of these statements involve two steps:

1. find the appropriate target element

2. perform the operation asked for

VU cannot really do any time-saving in the second step since the script writer obviously wants the operation to be done to

completion. But a script writer can make the first step easier for VU and hence save some time. VU uses the description

provided by the script (in the form of a descriptor) to find the corresponding target element. You as a script writer can

speed up the process by constructing these descriptors wisely. The descriptors should be as specific as possible. This will

reduce the search space. The following guidelines will help you decide how specific to be.

Virtual User General Reference Beta Draft 10/7/24

Guidelines for Creating Descriptors

Specifying Trait Values

1. String valued traits: Provide complete strings if possible. If you do not know
the complete strings then use regular expressions. Avoid incomplete (non-regular
expression) strings.

For example, if you know a window title is ‘First Window’ don’t just indicate
‘First W’ even though it might do the job for you in your context. You can use a
regular expression like /First W≈/ instead.

2. Numerically specified traits: Do not specify these traits unless you are certain of their values. On the other hand

whenever you are certain of their values, do specify them. The “o:” trait is an example of a numerically specified trait.

3. Owner traits: Whenever applicable, always try to specify the owner trait for a descriptor. Some instances of

descriptors with owner traits are menuItems, buttons etc. For example:

Use

select [menuitem t:‘Monaco’ o:7 m:[menu t:’Font’ o:4]]!;

instead of

select [menuitem t:‘Monaco’ o:7]!;

and

select [button t:‘Cancel’ w:[window o:1]]!;

instead of

Virtual User General Reference Beta Draft 10/7/24

Select [button t:‘Cancel’]!;

4. Trait values which have descriptors (excluding owner traits): Traits such as the content list in a window, items list

in a menu or mouse trait in a target descriptor are at least partially built with descriptors. They should not be specified

unless absolutely necessary. When it does become necessary to specify them (in cases when that is the only

information you have) then specify as few such embedded descriptors as possible. For example, use

match [menu t:?m_title o:4];

instead of

match [menu t:?m_title o:4 i:{[menuItem t:‘Chicago’],
[menuItem t:‘Courier’]}];

If you do not the know the rank of the menu, then you have to specify the “i” trait. In such a case specify as few items

as required to make it unique.

match [menu t:?m_title i:{[menuItem t:‘Chicago’]}];

Similarly, use

match [window t:/Find≈/ o:2];

instead of

match [window t:/Find≈/ o:2 k:{[button t:‘Find Next’],
 [radiobutton t:‘Whole word’]}];

Virtual User General Reference Beta Draft 10/7/24

Use of the Perfect Match Operator

Whenever you are certain of your description, make use of the bang (!) operator. On the
other hand, never use the ! operator after a descriptor if you are not certain of the description
you have created. Never use the ! operator if any of the traits has an incomplete value
specified.

For example, if you know for sure that the front-most window has a radio button called
“Partial Word” then use:

 select [radiobutton t:‘Partial Word’ w:[window o:1]]!;

But if you are providing a partial title (maybe you are unsure) then do not use “!”

 select [radiobutton t:‘Partial’ w:[window o:1]];

Similarly, if you want to select the window with the radio button “Partial Word”, but you are not sure of other controls

present in that window then do not use perfect match:

 select [window k:{[radiobutton t:‘Partial Word’]}];

Altering Execution Time with System Tasks

The system tasks patience, mouseSpeed, typeSpeed and wait can be used
in a script to modify the speed of execution. As you may have observed,
VU’s actions are generally quite swift. Hence more often than not these
tasks will be used to decrease the pace of VU’s actions. Overuse of these
tasks is detrimental to the script’s performance.

Virtual User General Reference Beta Draft 10/7/24

Patience can be thought of as a measure of “intra-command” delay time.
The wait statement, on the other hand, can be thought of as an “inter-
command” delay. A single VU command statement such as menu selection
may involve several distinct actions against the target machine (i.e moving
to the menu, dropping the menu bar, moving to the item, etc.). Patience is a
relative measure of the delay time in-between each of these actions. The
wait statement, however, only affects delay time in-between whole VU
statements. In general, patience is more effective in dealing with systems
which are responding slowly due to the particular hardware and software
combination.

Before you use any of these tasks, however, make sure that you really need
it. Once you know that you have to slow down VU (probably to
accommodate slower responses from the test applications), try to localize
the portion of the script which needs to be run at the slower speed. Do not
slow down the whole script when the intention is to slow down just two
statements. Once you have determined the portions of the script which have
to be slowed down, try to find the optimal combination of mouse and
keyboard speed, patience, and wait statements required. After this you can
wrap the proper portions of the scripts with their corresponding settings. Do
not forget to reset the changes made to any of these settings after the slower
part of the script is finished.

For example, if increased patience is required in opening and closing the
Chooser, the script segment could be written as follows:

patience_for_chooser := 3; # pre-determined patience setting for
selecting Chooser menuitem

save_patience := patience(patience_for_chooser);# set patience to new
#value

select[menuItem t:‘Chooser’ m:[menu o:1]]!; # select Chooser with
increased patience

close [window t:‘Chooser’ o:1]!; # close Chooser window with
increased patience

patience(save_patience); # reset patience to original
value

Virtual User General Reference Beta Draft 10/7/24

Summary :

■ Have as few (if any) waits in your script as possible.

■ Change patience, mouseSpeed or typeSpeed only if absolutely necessary.

■ Localize the changes to any of these settings to where needed and then reset back.

■ Try to avoid setting patience, mouseSpeed or typeSpeed from the command line.

■ Try increasing patience instead of wait if the intent is to slow the pace.

Virtual User General Reference Beta Draft 10/7/24

Memory Efficiency

Sometimes when running long scripts and/or multiple scripts, VU might run out of
memory. In this case, MPW reports “Unable to swap segment”. Of course, you can
always try giving the MPW shell a bigger partition of memory. But since this is not
always possible, we have to find ways to make the script memory efficient as well.

The VU Scripting Language provides two compound data types, descriptors and lists.
Both of these structures can grow quite large at times. Hence they have to be used
carefully. The scripting language does not provide any explicit means of freeing these
structures when not in use. VU frees these structures for you when no variable in the
script refers to them. So when you are done using a list or descriptor, reassign the
variable containing the list or descriptor value to their respective null values (i.e. { }
and []). This will indicate to VU that you are not interested in keeping the list or
descriptor around anymore. One rule of thumb is to avoid carrying large lists or
descriptors around as variable values through large parts of the script.

In the case of descriptors, most often your interest lies in particular trait values. In such
cases, use unification in the first place to bind these trait values to variables. For
example, consider the following script:

front_window := match[window o:1]!;
if (front_window.style = dialog) #if a dialog window
begin

if (match [button t:‘OK’ w:front_window]) #if OK button exists
select [button t:‘OK’ w:front_window]!;

else if (match [button t:‘Cancel’ w:front_window]) # if Cancel
button

select [button t:‘Cancel’ w:front_window]!;
end;

In this script fragment, the complete description of the window,

[window t:'window1' s:dialog o:1 z:false g:false k:{[button t:'OK',

Virtual User General Reference Beta Draft 10/7/24

[button t:'Cancel']}]

Virtual User General Reference Beta Draft 10/7/24

is carried on through all the statements as the value of the variable “front_window”. This not only uses up memory for a

longer duration, it also slows down the matching since the description contains the ‘k’ trait, which could be a very long list

of descriptors.

Since the interest is only in checking if the window is a dialog, we can unify the style trait instead of assigning the

complete descriptor to a variable. You can also unify the title trait to use in later matchings.

The same script fragment can be rewritten as:

match[window o:1 s:?front_style t:?front_title]!;
if (front_style = dialog) #if a dialog window
begin

if (match [button t:'OK' w:[window t:front_title o:1]]!)
#if OK button
select [button t:'OK' w:[window t:front_title o:1]]!;

else if (match [button t:‘Cancel’ w:[window t:front_title o:1]]!) #if
cancel button

select [button t:‘Cancel’ w:[window t:front_title o:1]]!;
end;

As a last resort, if you cannot get your script running due to less memory, try running the tool with the command line

option “- noThreads”. With this option VU might give a slower performance but will be less memory intensive.

Debugging Scripts

The tracing of VU script execution in log files has been proven to be very
useful for debugging or monitoring scripts. Setting the trace on allows you
to get a verbose description of the script execution in the associated log file.
Obviously, it's necessary to specify a log file on the command line to be able
to use this feature. Remember that you can open this log file up within
MPW and view the trace as the script is executing. For multiple target tests,
you can keep all the log files open and the windows tiled while running the
tests.

The command-line designator is '-dt '. For example:

Virtual User General Reference Beta Draft 10/7/24

VU -t1 "*:SE1" -s1 "Script1" -l1 "Logfile1" -dt1 ∂
-t2 "*:SE2" -s2 "Script2" -l2 "Logfile2" -dt2

Virtual User General Reference Beta Draft 10/7/24

You can also turn debugging trace on and off within a script. Use the system task, trace, to turn debug trace on/off within

a script. The default trace value is false. You can continue to set trace on from the command line in MPW.

Virtual User General Reference Beta Draft 10/7/24

Chapter 8 Troubleshooting Guide

This chapter is dedicated to helping the VU
user diagnose problems that may be
encountered in using VU. The problems have
been divided into three categories. The first
category of problems involves Agent VU
installations on target machines. The second
category is test staging problems. These are
the problems that occur in specifying VU’s
parameters in the command line or the
Commando dialog . The third category of
problems involves problems that may be
encountered once VU begins running.

Target Installation Problems

 Troubleshooting Agent VU Installation

To prevent the embarrassment of accidentally taking over the wrong
machine with VU, Agent VU will refuse to install itself if the Chooser name
is not unique in the zone. In this case Agent VU’s icon will appear with a

Virtual User General Reference Beta Draft 10/7/24

sign saying “Name Clash” plastered over its face. There can only be one
Agent VU with an empty name in a given zone so remember to give your
target machines names.

Three other error conditions can prevent Agent VU from successfully
initializing on the target machine. If there isn’t enough memory in the
target’s system heap, Agent VU will back out, and the message “Memory’”
replaces the agent’s mug.

Virtual User General Reference Beta Draft 10/7/24

This should be a very rare condition. If the test permits it, you might try
removing other startup documents to make room for Agent VU. The
remaining installation error occurs if it cannot link up with the AppleTalk
driver. In this case, the abbreviation “A-Talk’” is displayed.

The recourse in this case is to make sure that AppleTalk is activated in the
Chooser. If the “A-Talk” message persists, then reinstallation of the system
may be in order.

Agent VU installs a driver at startup time. This driver is installed in a slot in
the driver table normally reserved for desk accessories which are specific to
applications. Agent VU tries to find an unused slot in this portion of the
driver table to prevent conflicts with other drivers. However, it is still
possible that a driver slot table conflict may cause Agent VU or another
driver to fail. If you suspect that this is happening, you might try changing
the DRVR resource ID of the driver with a resource editor or removing the
driver altogether if it isn't necessary to the test.

If there is a failure to open Agent VU's driver due to a numbering conflict or
any other problem, the following icon will appear on the desktop.

Virtual User General Reference Beta Draft 10/7/24

Test Staging Problems

This section documents some common problems users have in staging a
Virtual User test session using the MPW command line interface. Common
error messages with associated explanations are also given.

Some basic things to remember when dealing with command line problems
are as follows:

Virtual User General Reference Beta Draft 10/7/24

■ Always make sure that the command line has blanks at the appropriate places as delimiters.

■ Delimit the strings with single quotes, whenever possible. If your string contains a single quote then use double quotes as a delimiter. For example, -t “Bob’s Mac”.

■ If your command line is long and you want to distribute it over multiple lines then make sure you escape each end of line (return key) with the character ”∂” (Option-d).

For example,

VU -t 'target1' ∂
 -s 'script1' ∂
 -o 'output'

To support logging and redirected output for multiple targets it may prove necessary to increase the number of open files allowed by the

operating system. This number is normally set to a relatively small number such as ten. To change it, you need to use a disk and file

editor to edit the maximum number of open files, which is stored in the boot blocks of the volume. A conservative estimate of the

number of open files you will need is (3 * number-of-actors) + 4.

While executing the VU tool if you make an error on the command line, you might get one or more error messages of the

form described below:

ill-formed command line, cannot proceed

This message is usually accompanied by some other specific message which tells you more specifically what was wrong

on the command line.

Improper <argument> <specified value> (a positive integer expected)

Messages of this generic form such as:

Improper Mouse speed five (a positive integer expected)

are largely self-explanatory. In this case, a positive integer was expected but something else was encountered. The

“something else” is also printed in the message to give you a better idea of what you should fix.

<switch> option already used

Or, more specifically,

Virtual User General Reference Beta Draft 10/7/24

'-dt' option already used

This message indicates that your command line contains a repetition of switches. If you are running multiple targets and

want to specify different switches for each target then follow the switch with the target index (i.e. “-dt1”, “-dt2”, etc.).

Maximum number of targets allowed is 12

This message indicates that either you've really tried to run against more than 12 targets or you've given an incorrect target

index to one of the switches. For example “-t13” or “-s-l” with no delimiting blank between -s and -l.

<switch> option repeated as <specified string>

Or more specifically,

'-dt' option repeated as -dt2

In multiple target configurations, you can omit the switch index if you want that switch to apply to all the targets. But

after doing so, it is not acceptable to re-specify that switch with an index for a particular target.

parameter not used --> <switch>

Or, more specifically,

parameter not used --> -l

This message is given for switches which follow earlier uses of the same switch with faulty arguments. The remaining

switches are processed, ignoring the one with the problem.

Improper Target Specification: <specified string>

The target can be specified in two forms. The more commonly used form is:

<zone name>:<Target’s Chooser name>

An alternate form uses the network node and socket numbers,

#<network>:<node>:<socket>

Virtual User General Reference Beta Draft 10/7/24

Other error messages which could result from an improperly specified target are:

if preceded by '#' then the target should be specified as
'#network:node:socket'

target should be specified zone:name (default zone is '*')

Improper target (discontinuity/repeat in target numbers): <string>

Or, specifically,

Improper target (discontinuity/repeat in target numbers): t5

If you are specifying multiple targets, then the switch index has to go up in increments of one starting with 1. This

message indicates that you are not doing so. You might have specified “-t1” and then gone on to “-t5”, omitting t2, t3 and

t4.

<argument value> must follow <switch>

Or,

<switch> should be followed by <value indicator>

For example,

target name must follow '-t'

Or,

'-t2' should be followed by a target specification

This indicates that you have forgotten to specify a value after a switch.

illegal switch -- ignored

This message indicates that there was some switch on the command line which could not be interpreted. Such switches

are ignored.

Target not found: <address>

This message indicates that VU was unable to find a machine with an Agent VU on the network at the target address

specified.

Virtual User General Reference Beta Draft 10/7/24

Runtime Problems

The following is a list of some problems that may be encountered during VU execution. Explanations follow.

■ Loss of contact with Agent VU

A number of error messages, shown below, may be generated by VU due to this general problem.

Unable to construct a <???> model

The most commonly seen such message is:

Unable to construct a display model

This usually happens when VU somehow loses contact with its agent during initialization. This is the initialization performed

by VU before script execution actually begins. In such a case this message will be followed by another message such as:

loss of target during initialization prevented execution of
script

VU will quit soon after this message.

Loss of contact with the agent running on a target may cause other messages to be given by VU during script

execution. You may get a series of messages such as:

Target failure suspected, will attempt reacquisition
Target failure suspected, will attempt reacquisition
Target failure suspected, will attempt reacquisition
Target failure suspected, will attempt reacquisition
Target failure suspected, will attempt reacquisition
Target not responding
Aborting Script at 4:06:25 PM

Virtual User General Reference Beta Draft 10/7/24

What's happening here is that VU actually tries to re-initialize communication with the agent five times before it

gives up. This situation may be simulated on a busy network. On a very busy network, the default network

timeout value used by VU for network transactions may not be sufficiently large. VU might be led to believe that

the agent failed to respond when what actually happened was that the response from the agent took too long to

reach VU. Since the traffic on any network is a constantly changing factor, in most cases VU is able to re-acquire

after a few tries. The following message informs you of this re-acquisition:

Target re-acquired: retrying execution###

However, you might want to increase the “-timeout” and “-retries” parameters on your command line when running on busy

networks to avoid this completely.

One reason for a loss of contact with Agent VU is the failure of the target's foreground application to give drivers execution

time at some point in the application. An easy way to verify this is to display the Alarm Clock DA such that it is visible when

your application is active. If the time in the Alarm Clock is not changing at the suspect point in the application, then you've

verified that the application is not giving drivers execution time at this point.

■ Problems running VU Recorder with VU

When accessing a target which is in the same zone as the VU host machine in a multi-zoned network, the user can specify the zone from the command line with the “*” meta-

character. However, in a network with zones, VU Recorder expects to see the full zone name in the target name.
If VU passes the target name with an “*” to VU Recorder, VU Recorder will not find the target. So, when using

VU Recorder with VU in such a network, always specify the full zone name in the VU command line. If you

don't, you'll see the following error message.

callpp error VU Recorder is unable to grab the target's mole.

As indicated in Chapter 5, Augmenting VU With VU Recorder, to use VU Recorder with VU, you must have the

CDEV SetSelfSend installed on the VU machine and turned ON. Otherwise, you'll get the error message:

callpp error unable to find specified VU Recorder.

Virtual User General Reference Beta Draft 10/7/24

You'd get the same error message if you did not have VU Recorder running on the VU machine. Failing to put VU Recorder

in Remote Control mode would also generate the above error message.

Virtual User General Reference Beta Draft 10/7/24

Appendix A Making Applications “VU-Friendly”

An application is “VU-friendly” if VU scripts can be run
against it at all times without loss of VU functionality. In
general, applications which adhere to Apple’s Macintosh
software compatibility guidelines get “VU-friendliness” for
free. However, there are certain things in particular to watch
out for to insure that an application is “VU-friendly”.

■ Make sure that there is no point in the execution of your application where drivers are “locked out”. Agent VU is a driver which needs to be able to get periodic execution time to

provide VU with information about the application and to perform various actions on the target machine.

There are a couple of ways in which Agent VU might become “locked out”.

1. The application goes into an event loop where GetNextEvent is called to do event processing but SystemTask is not called.

2. Due to changes to MultiFinder in System 7.0, if the application running under System 7.0 calls WaitNextEvent with an infinite sleep time, Agent VU will not get execution

time with the front-most application’s context switched in. Agent VU must get execution time with the front-most application’s context switched in to get information about

that application’s windows and menus.

■ The standard MDEF maintains the global variables MenuDisable and TopMenuItem (see Inside Macintosh vol. 5). If you use a custom MDEF, you should maintain these

variables as well. Menu Disable is set to the menu item number each time a new item is highlighted. This is particularly useful to VU in finding and verifying menu item

selections. TopMenuItem contains the global coordinates indicating where the first menu item is to be drawn. This is useful to VU in handling scrolling and popup menus.

Virtual User General Reference Beta Draft 10/7/24

■ To get VU support of popup menus, use the popup CDEF resource ID 63 which is available in System 7.0 or in the Macintosh Communications Toolbox. With these

implementations of a popup, VU can find and select a popup menu item much like any other menu item with the simple “select” command. Unfortunately, for technical reasons,

VU is unable to support the popup menu implementation described in Inside Mac vol. 5.

Virtual User General Reference Beta Draft 10/7/24

Appendix B A Rendezvous with Agent VU

It is important to know how a test tool might itself impact the
testing and potentially compromise the results. In the
interest of supplying that knowledge, the authors have sought
out the least understood, most maligned component of the
Virtual User system, Agent VU, for an interview. We found
it hanging around in the system heap, where it was relaxing
between assignments.

VU: Sitting here with you, you seem to be a pleasant
enough piece of code. How do you account for your
somewhat sinister reputation, even among those who
know you fairly well?

Agent VU: Part of it is that darn icon I’ve been
saddled with since version 0.01d1. To borrow a line
from a more famous ‘toon character, “I’m not bad,
I’m just drawn that way.” Another big part of it is the
environment in which I work. Personal computer
users have an instinctive fear of an entity that allows
anyone to reach across the network and take over
their machine.

Virtual User General Reference Beta Draft 10/7/24

VU: You don’t sound terribly sympathetic.

Agent VU: On the contrary, I am. What people fail to
appreciate about me is that installing me is voluntary,
removing me is as easy as pulling me out of the
System Folder and rebooting, and that I do a good
job as part of a testing system, which is all I am
intended to do.

VU: Shifting gears a bit, how did you get into this
business?

Agent VU: My file type is INIT, which means that if
I’m in the System Folder at startup, the INIT 31
mechanism loads me in and turns me loose.

VU: What exactly is it that you do at startup?

Virtual User General Reference Beta Draft 10/7/24

Agent VU: Oh, lots of things. Roughly it goes like
this:
I initialize the code that displays my icon.
I make sure that the .ATP driver is loaded, if that fails
I back out and show my A-Talk icon.
Otherwise, I try to open my driver, which is the bulk
of my code, into the System heap. If that fails, I back
out and show my Driver icon.
Once my driver is in memory, I detach it and lock it
down.
In the course of opening it, a locked block to hold my
state variables and buffers is allocated. If that went
well, I try to initialize my variables and register
myself with NBP.

How, I ask you, can they think of me as sneaky if I post my existence on the network for all to see?!

VU: Doesn’t seem terribly fair to us either. All this loading and allocating, how much space do your various

pieces take?

Agent VU: The driver is about 10K. The variables are about 3K. The INIT is 4K, but it hardly counts since

it’s purged when it finishes.

VU: Is that it for start-up?

Agent VU: There’s a bit more to it. If the rest of installation goes all right, I queue up a request with ATP.

Then I show my icon and kick back until someone sends me something over the network.

VU: You’re completely inactive if there’s no message for you?

Virtual User General Reference Beta Draft 10/7/24

Agent VU: Well, my driver gets periodic time, but it doesn’t do anything with it.

VU: How about when a message does come in?

Agent VU: When a message does come in, the ATP driver calls me as a completion routine. Depending on the

message, I either execute it immediately or I put it in a buffer to be executed at SystemTask time by my

driver. Once the task is completed I queue up another GetRequest and am ready for the next message.

Virtual User General Reference Beta Draft 10/7/24

VU: What sorts of things do you do immediately, and what do you defer?

Agent VU: Mouse and keyboard stuff I do right away. Same with offers of employment and firing notices. If

I’m working for you, you can ask me about the contents of memory and I’ll tell you, or I can plop a block

you’ve sent into memory. The latter is something VU or VU recorder has never asked me to do. I’ll also

tell anyone who wants to know about the machine I’m on and who I’m working for. These are all things

that are safe to do at interrupt time.

Some of my work involves peeking around the windows and dialogs. I don’t change them, I just look, and

at this point I’m restricted to the foreground layer under MultiFinder. It’s better to look at these things

when memory isn’t being shuffled around.

VU: The ‘mouse and keyboard stuff’, could you be a little more specific?

Agent VU: Sure. I try to make my work indistinguishable from the actions of the real mouse and keyboard.

To that end I set the same low memory locations that the mouse does and call the cursor task to pin the

point. Once the point is set, I post mouse events if the new button state my boss has sent over disagrees

with the current button state.

For the keyboard, I locate the driver in the ADB device table and call it with the same arguments that the

ADB interrupt handler would pass it. The whole deal is wonderfully invisible. An application would

really have to work to tell the difference between my input and what comes from a user manipulating one

of the input devices.

VU: Mac Plus users might not agree. There is the issue of the mouse button…

Virtual User General Reference Beta Draft 10/7/24

Agent VU: (Growls.) Yeah, people gripe about that. Let me tell you the real story. The Mac Plus vertical

blanking interrupt handler samples the state of the mouse button at approximately 1/60th of a second

intervals. If the state of the button disagrees with a low memory variable, the variable is updated and a

mouse event is posted. I also manipulate that variable and post events. The VBL handler and I used to fight

over the state of the mouse button, causing a steady stream of mouse events. Now what I do (and this is

only on the Mac Plus!) is copy the interrupt handler down out of ROM and “NOP-out” the part that checks

the button. I swap this modified VBL handler in for the real one when VU sends me a message that it

wants to use me. I swap the old one back in when VU sends me the lay-off notice.

VU: So it’s a matter of necessity. You mentioned the ADB keyboard driver, but as we all know the Macintosh

Plus has no such unified driver for you to call.

Agent VU: Tell me about it! For the Plus I wind up doing most of the work of the keyboard driver. VU sends

me the ASCII and processed keycode for the keystroke, leaving me the work of posting the events.

VU: Gee, it seems like you’re an industrious, upstanding piece of code after all!

Agent VU: I like to think so!

Virtual User General Reference Beta Draft 10/7/24

Appendix C Status Codes Returned to the MPW
Shell

0 Normal Termination
1 Command Line Problem
2 Some Error Occurred
3 System Error/Resource not available
4 Compilation Error
5 Runtime Semantic Error
6 Problem Staging Test

Virtual User General Reference Beta Draft 10/7/24

Index
- noThreads 44
-a 10
-c 10
-cs 12
-dt 10
-fail 11
-k 11
-l 10
-libs 12
-m 10
-o 10
-p 11
-retries 11, 53
-t 9
-timeout 11, 53
-vers 11
.vu 10
A-Talk 48
Actor 2, 10, 31
Actor name 10
AddMenu 25
Agent VU 6, 55, 57
Agent VU assistance hook for

MacApp applications 35
Agent VU Installation 47
Altering Execution Time 41
AppleTalk 5, 48
AppleTalk 52.0 INIT 7
Argument specifier 9
Argument value 9
Bang (!) operator 41
Basic VU Hardware Configuration 1
Busy networks 11, 52
Callpp 27, 29, 53
Case sensitive 12
Check Window Syntax 24
Chooser 6
Chooser name 50
Chooser User Name 9
Collect 38
Combinatorial Explosion 2
Command failures 11
Command line options 9
Command line problems 48
Command-period 18
Command-R 18
Command-S 18
Commando 9, 15

Commando dialog 15
Comment Selection 24
Compatibility testing 2
Compile only 10
Debugging Scripts 44
Descriptors 38, 39, 43
Development cycle 3
Diagnostic trace 10
Directory command 7
Driver 48, 58
Driver table 48
DRVR resource ID 48
Easy Installation 7
Error messages 48, 49, 52
Ethernet 5
Export 12
Failures Allowed 17
Freehand drawing 27
GetNextEvent 55
Help VU 20
Host Setup 6
INIT 57
Initialization 52
Intra-node delivery 28, 30
Key repeating 6
Keyboard CDEV 6
Keystroke rate 11, 16
Libraries 12
Libraries Path 16
Line continuation character “∂” 13,

49
Lists 43
Log file 16, 44
Log file name 10
Loss of contact with Agent VU 52
Mac Plus 5, 7, 59
MacApp 35
Macintosh Communications

Toolbox 56
Macintosh IIfx 5
Macintosh Portable 5
Macintosh software compatibility

guidelines 55
Match 38
Match Case Sensitive 16
MDEF 55
Memory 47
Memory Efficiency 43
MenuDisable 55

Message Passing 2
Meta-character “*” 9, 16, 22, 53
Minimum installation 7
Mouse speed 10, 16, 41
MPW i, 5, 6, 7
MPW Shell 7
MPW tool 9
Multi-tasking system 2
MultiFinder 55
Name Clash 47
Network path name 9
Network Retries 17
Network Timeout 17, 53
Null values 43
Number of open files 49
Numerically specified traits 39
Output file name 10
Owner traits 39
Partial path name 29, 32
Patience 11, 17, 41
Pick Target… 22
Popup CDEF resource ID 63 56
Popup menus 56
Println statements 10
Re-acquisition 53
Reducing Execution Time 37

Virtual User General Reference Beta Draft 10/7/24

Remote Control 30, 53
Resume 18
Runtime Execution Control 18
Runtime Problems 52
Script file 16
Script file name 10
Scripting Hints 37
Search path 12
Set Directory 7
Set Output File... 23
Set Script... 23
Set Target Name... 23
Set Target Zone... 22
SetSelfSend 28, 30, 53
Setting Predefined Variables 21
Settings_vu 21, 22
Show Settings... 23
Software development 3
Status Codes 61
String matching 12
String valued traits 39
Suspend 18

System 7.0 6, 36, 55, 56
System File Version 4.1 6
SystemTask 55, 58
Target 1, 16, 50
Target address 9
Target failure 52
Target Installation 47
Target Setup 6
Test Staging 48
Test suites 2
The_N_MAN 14
Tools folder 7
TopMenuItem 55
Trace 44, 45
Trace On 16
Trait Values 39
Troubleshooting 47
TypeSpeed 41
Uncomment Selection 25
Unification 43
UserStartup•VU 7, 12, 19
UVUAssist 35

Version information 11
Virtual User Language Reference

Manual 14, 37
VU Active Window 21
VU Architecture 1
VU command line 9
VU Default Script 21
VU Execution Menu Items 21
VU Extension 6, 7
VU Help Window 20
VU host 1
VU Menu 19
VU Multiple Targets 21
VU Recorder 27, 53
VU Recorder Reference Manual 27
VU Scripting Language i, 14, 27, 43
VU Selection 21
VU-Friendly 55
VULibraries 12
Wait 41
WaitNextEvent 36, 55
Working directory 7

Virtual User General Reference Beta Draft 10/7/24

