
// This file is an example of how one would write the initial
// frame of the animation. This file would be read by POVAnim and
// output as a series of files. Timothy A. Grubb - WallySoft - Dec 97

#include "colors.inc"
#include "textures.inc"
#include "stones.inc"

#declare SPHERE1_TRANS = <0,0,0> These are variables that can be
used in POV
#declare SPHERE1_ROTATE = <0,0,0> they are user defined. They enable
POVAnim
#declare SPHERE2_TRANS = <-10,0,0> to change the values over time
(Frames).
#declare SPHERE2_ROTATE = <0,0,0>
#declare SPHERE3_TRANS = <10,0,0> All that is happening here is I
declare the
#declare SPHERE3_ROTATE = <0,0,0> Initial positions of the SPHERE ,
CAM, and
#declare SPHERE4_TRANS = <0,6,0> PLANE objects. Please note that the
names
#declare SPHERE4_ROTATE = <0,0,0> that I used are not important. I
could
#declare SPHERE5_TRANS = <8,4,6> have used BITE_ME for SPHERE1_TRANS
if I
#declare SPHERE5_ROTATE = <0,0,0> had wanted. When POVAnim reads this
file
#declare CAM_ROTATE = <0,0,0> it will place all the vector based
variables
#declare CAM_TRANS = <0,0,-10> from #declare statements (ie. The
ones you
#declare PLANEX_ROTATE = <0,0,0> see here) in a selectable listbox.
From the
#declare PLANEY_ROTATE = <0,0,0> listbox you select a variable and
then click
#declare PLANEZ_ROTATE = <0,0,0> on the ADD button. The Add button
pops up

a dialog that allows you to enter
new vector

(x , y, z) coordinates and what
frame you

want your objects to be at those
coordinates.
camera { location <0,0,0>
 look_at <0,0,.1> After you have set all of the
values for your
 rotate CAM_ROTATE objects you will choose SAVE AS
from the file
 translate CAM_TRANS menu. NOTE: You can save your work
to the .pad
} format if you want but it's gonna
be a couple

weeks before I get a bug out of the
code that

reloads that file. The .paf format
is a

proposed (by me) animation scene
file desc.
 for POV. In order to write the file

series for animation you need to
choose the
sky_sphere .pov format. This will write out
the number
{ of files that equals what you have
entered for
 pigment frames per second * number of
seconds.
 { See easy.pov for a bare bones
example.
 gradient y
 color_map { [0.0 color blue 0.6] [1.0 color rgb 1] }
 }
}

// An infinite planar surface
// plane {<A, B, C>, D } where: A*x + B*y + C*z = D
plane
{
 z, // <X Y Z> unit surface normal, vector points "away from surface"
 10.0 // distance from the origin in the direction of the surface normal

// texture pigment/normal pattern
// cube checker pattern, alternates color1 and color2
pigment {
 checker
 color Black
 color White
 }
 finish { Shiny }
 rotate PLANEZ_ROTATE

}

// An infinite planar surface
// plane {<A, B, C>, D } where: A*x + B*y + C*z = D
plane
{
 y, // <X Y Z> unit surface normal, vector points "away from surface"
 -1 // distance from the origin in the direction of the surface normal

// texture pigment/normal pattern
// cube checker pattern, alternates color1 and color2
pigment {
 checker
 color Black
 color White
 }
 finish { Shiny }
 rotate PLANEY_ROTATE

}

// An infinite planar surface
// plane {<A, B, C>, D } where: A*x + B*y + C*z = D
plane
{
 x, // <X Y Z> unit surface normal, vector points "away from surface"
 10.0 // distance from the origin in the direction of the surface normal

// texture pigment/normal pattern
// cube checker pattern, alternates color1 and color2
pigment {
 checker
 color Black
 color White
 }
 finish { Shiny }
 rotate PLANEX_ROTATE

}

// An infinite planar surface
// plane {<A, B, C>, D } where: A*x + B*y + C*z = D
plane
{
 x, // <X Y Z> unit surface normal, vector points "away from surface"
 -10.0 // distance from the origin in the direction of the surface normal

// texture pigment/normal pattern
// cube checker pattern, alternates color1 and color2
pigment {
 checker
 color Black
 color White
 }
 finish { Shiny }
 rotate PLANEX_ROTATE
}

light_source { <1,1,-2> color White }

sphere { <0,0,0>, 1 texture { T_Stone21 Shiny }
 rotate SPHERE1_ROTATE translate SPHERE1_TRANS
}
sphere { <0,0,0>, 1 texture { T_Stone20 Shiny }
 rotate SPHERE2_ROTATE translate SPHERE2_TRANS
}
sphere { <0,0,0>, 1 texture { T_Stone19 Shiny }
 rotate SPHERE3_ROTATE translate SPHERE3_TRANS
}
sphere { <0,0,0>, 1 texture { T_Stone18 Shiny }
 rotate SPHERE3_ROTATE translate SPHERE3_TRANS
}
sphere { <0,0,0>, 1 texture { T_Stone17 Shiny }
 rotate SPHERE4_ROTATE translate SPHERE4_TRANS
 }
sphere { <0,0,0>, 1 texture { T_Stone16 Shiny }
 rotate SPHERE5_ROTATE translate SPHERE5_TRANS

}

