PEEKs+POKEs

Simon N Goodwin

PEEKs+POKEs

] COLLABORATORS
TITLE
PEEKs+POKEs
ACTION NAME DATE SIGNATURE
WRITTEN BY Simon N Goodwin July 25, 2024

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

PEEKs+POKEs iii

Contents

1 PEEKs+POKEs 1
LI main e e e 1
1.2 OVEIVIEW o o o e 2
1.3 examples e 2
L4 Warnings oo e e e e e e e e e 3
1.5 arguments e e 3
1.6 SCIIPES . . . o o o 4
1.7 files . . o e 5
1.8 authors. o e e e 6
1.9 IndeX o 6

PEEKs+POKEs

Chapter 1

PEEKs+POKEs

1.1 main

R IR b 2 dh b S db b db b dh b db b dh I b db b b db Sb b 2h S b Sb Sb b Jb Sb b 2h Sh b S Sb b b Sb b 2 db b b gb i g 4

** Structured PEEKs and POKEs for the Amiga Shell! xx

R b 2 b 4 b g b b b b b I b b b d b b b b b b b 4 b 2 b g b 4
INTRODUCTION
Would you like to be able to read analogue joysticks, switch the audio filter,
check library and device versions, reset MIDI devices, blink the power LED,
check your Amiga chip set or CPU type, start and stop floppy drive motors or
change the sex of the narrator device - all from the comfort of your shell or

a Script file?

All these and much more - including numerous ways to crash the machine - are
now available via structured PEEK and POKE extensions for the Amiga Shell.

These new, small, commands are either a great leap backwards or a small lunge
forwards for the Amiga. They are freely distributable with stand-alone source
in assembler, and run on any machine with at least Workbench 2.0.
SECTIONS IN THIS GUIDE

Overview

Examples

Scripts

Syntax

Warnings

Files

Authors

Index

PEEKs+POKEs

2/6

1.2 overview

OVERVIEW

Like old-fashioned BASIC PEEKs and POKEs, you can read or
the bytes at any memory address.
(16 or 32 bits wide)

write

The ’structured’

words

Unlike most BASICs,
and read null-terminated strings from RAM.

extensions mean that addresses can be specified relative to
the base of hardware or software resources,
can be relative to the start of CUSTOM chip or CIA registers,

(if you must) write
you can also read and

identified by name - so addresses
or any library,

device or resource you choose to name.

Numeric values can be read and written in decimal, hexadecimal or binary bases.

Decimal parameters may be signed or unsigned values.
available,

Indirect addressing is

and comes in handy when looking through pointers in a structure.

These commands were written for three purposes:

To allow low-level access to hardware and memory,

from the CLI.

To prevent the need to write little bits of code for each POKE.
To experiment with some non-trivial ReadArgs parameter parsing.
To annoy people who believe that POKEs are a thing of the past.

1.3 examples

SIMPLE EXAMPLES

These examples show the flexible format of various acceptable parameters:

POKE
POKE
PEEK
PEEK
PEEK
PEEK
peek
peek
POKE
POKE
peek
POKE
peek
peek
poke
PEEK
peek
POKE
poke
PEEK
peek
POKE
Peek
PEEK
PEEK

ciaa 0 2

CIAA 0 O

L 4

CUSTOM 18

CUSTOM 19

Res potgo WORD 20

word lib dos 22

lib exec long 42

CUSTOM WORD 48 511

WORD dev="narrator" 48 90
LONG 1lib "graphics" 50

W DEV "narrator" 54 1
lib="exec" 62 long

62 word lib graphics

w Dev narrator 62 16

W 1lib "graphics" 232

1ib graphics.library 236
CIAB 256 119

256 129 ciab

long library "exec" 276
LIBRARY="exec" w 296

LIB "exec.library" 297 1
LIB "exec" 530

531 1ib exec

LONG Library "exec" 568

Turns the audio filter off

Turns the audio filter on

Returns the EXEC library base address
Controller 0 left paddle position
Controller 0 right paddle position
Version number of POTGO.RESOURCE
Revision number of DOS.LIBRARY

Contents of EXEC cold-capture vector
Sends MIDI RESET to the serial port
Sets speech rate to 90 words/minute
Address of current Copper List

Narrator attempts a female voice
Returns the top of Chip Memory

Returns the current screen display mode
Set -12 dB Narrator speech volume
Microseconds per scan line x 256
ChipSet revision, e.g. OCS/ECS/AGA
Start motor of DFO, stop other drives
Stop all floppy disk drive motors
Returns base address of this task
Returns ATTN_FLAGS (CPU type)

Pretend this CPU is a 68010!

Returns the vertical blanking frequency
Returns power supply frequency in Hertz
Number of timer ’"E clocks’ per second

PEEKs+POKEs 3/6

PEEK CIAB 2048 — Low byte of 24 bit scan-line counter
PEEK dev=parallel string long 10 - "parallel.device", or "pit.device" if
MapDevice parallel 0 to pit 0 is active.

See Mapping The Amiga, The Amiga Guru Book and the Include files for lots
more interesting and dangerous offsets. The ’'best’ and most hazardous ones
are secret. If you’re not sure, PEEK first and POKE afterwards (perhaps)!'!
If you find any interesting or useful examples, please tell us about them.

Authors

1.4 warnings

IMPORTANT WARNING

Library, device and resource offsets can vary between software releases,
but all these have worked on all Amigas tested so far - with the exception
of the narrator device POKEs which are version dependent. If in doubt,
check the documentation (include files) for the devices (etc.) you are
using, and use some precautionary PEEKs to determine the version you’ve
got before you POKE into it.

POTENTIAL PITFALLS

There is deliberately no check for uneven-addressed words or long words.
These cause an odd address guru on 68000/68010 systems, but work fine on
later processors including all the current 32 bit Amiga models.

Attempts to access non-existent memory on a Zorro 3 Amiga cause a bus error
after a delay of a fraction of a second, unless the relevant area is remapped
by the MMU. Utilities such as WarpKick can do this, if required.

Some debugging utilities are designed to prevent direct access to memory,
restricting the usefulness (and potential for problems) of PEEK and POKE.
These include Enforcer and phase 5’'s equivalent CyberGuard. If these are

active when PEEK is used, access to protected addresses will return zero

and cause a ’'hit’ to be reported. POKE will cause a hit and no value will
be stored.

1.5 arguments

DETAILED ARGUMENT SYNTAX

PEEK and POKE support (and may engender) lots of arguments, but almost all
are optional. The simplest case is PEEK 4, which returns the byte from RAM
address 4. PEEK LONG 4 returns the 32 bit contents of the address ExecBase.
POKE 4 255 crashes the system by changing the first byte of that pointer!

First, a summary for those who grok Regular Expression templates:

PEEK W=WORD/S, L=LONG/S, LIB=LIBRARY/K, DEV=DEVICE/K, RES=RESOURCE/K,
C=CUSTOM/S,CIAA/S,CIAB/S,AT/S, ADDRESS/A, VALUE/A

PEEKs+POKEs 4/6

POKE W=WORD/S, L=LONG/S, LIB=LIBRARY/K, DEV=DEVICE/K, RES=RESOURCE/K, AT/S
C=CUSTOM/S,CIAA/S,CIAB/S,H=HEX/S,BIN=BINARY/S, STRING/S, ADDRESS/A

Human beings may find it easier to understand the options by examining the
examples, above, or by experimentation - the way most PEEKs and POKEs are
traditionally worked out. What follows is a discussion of some less-obvious
details of the way arguments are handled.

The Device option always selects unit zero, with 0 in the ’flags’ field.

Numeric values may be specified in decimal, binary with a % prefix, or
hexadecimal if prefixed with $, 0X or Ox. Excessive values are reduced
modulo the transfer size, e.g. POKE 0 $123 stores $23 and POKE WORD 0
$123456 stores $3456. Thus conventional (decimal only) ReadArgs numeric
parsing cannot be used for value and address arguments, so the /N does
not appear in the argument template. Nonetheless, VALUE and ADDRESS
arguments are numeric.

By default PEEK returns a decimal number, but it can be a string up to
32 bytes long (stopping after 32 bytes or at the first null) returned
in quotes, if the STRING switch is supplied, a wvalue in binary, or in
hexadecimal, indicated by the HEX or H switch and $ prefix before the
number for base 16. The BIN or BINARY switch sets base 2 and a % prefix.

The AT parameter indicates indirect addressing. The long word at the
specified address is read and used as a pointer to the required data.
Absolutely no validity checks are performed.

The STRING parameter expects that the argument is the offset of a pointer
to the required string rather than the offset of the start of the string.

Numeric parameters are 32 bit signed or unsigned decimal values. Results are
unsigned bytes or words, signed long words. The default data size is BYTE -
this is not a switch. Words and bytes are reduced modulo 65536 and modulo 256
respectively. Device, Resource and library names are case- sensitive and the
.suffix is assumed if not explicitly presented. All other keywords are
case—insensitive. Quotes, verbose qualifiers and equals signs are optional.
PEEK returns an ASCII string followed by a trailing space and a newline, or
nothing if an error occurs.

You may specify the transfer size and device/resource/library/hardware base
in any order, so PEEK WORD CUSTOM 18 means the same as PEEK 18 WORD CUSTOM or
PEEK W 18 CUSTOM or PEEK CUSTOM WORD 18. The choice is yours. Unfortunately
qualifiers (LIB, LIBRARY, RES, DEVICE etc) must appear Jjust before the name
of the library, resource or device which you want to use, so you need to say
PEEK LIB exec 530 as PEEK exec LIB 530 will not work. This limitation is
imposed by Commodore’s READARGS function.

Combinations of switches are additive, so PEEK LIB exec CUSTOM 2 reads the
byte at ExecBase + SDFF000 + 2, - which is unlikely to be very useful!

1.6 scripts

PEEKs+POKEs

5/6

SCRIPT EXAMPLES

PEEKs and POKEs can be useful in scripts, where they may be combined with
conditional tests and arithmetic, using the other features of the Amiga
shell. They can also be used from ARexx when the existing memory-access
functions of ARexx are inadequate.

PEEK lib exec 297 returns a byte identifying the processor on the current
computer. You can redirect this to an environment variable and use its value
later in your shell script. For instance, this code checks the current CPU
and writes an appropriate message if it’s a 68040 and 68060:

PEEK lib=exec 297 >env:CPU
IF S$CPU equ 127

ECHO "68040 processor"
ELSE

IF S$CPU equ 255

ECHO "68060 processor"

ENDIF

ENDIF

A similar script on the author’s machine selects a 68040’ or ’'68060’ banner
when the machine is started, depending on the processor installed that day.

EVAL can be very useful with PEEK environment variables. For instance this
sequence finds the start address of any Commodore Kickstart ROM:

PEEK LONG SFFFFEC >env:ROMsize
EVAL 65536%256-SROMsize

The result from EVAL can be re-directed to an environment variable, as in the
first line, if further processing is required.

1.7 files

FILES

One source file is used to implement both PEEK and POKE commands, depending
on the setting of the symbol PEEK (1 for PEEK, 0 for POKE). Most of the
comments in this document are also included in the assembler source, with
lots of relatively trivial information about the precise implementation.

Name Bytes Version Date

PEEK 1532 37.6 28 March 1997
POKE 1056 37.6 28 March 1997
PEEK+POKE .ASM 23917 37.6 28 March 1997

No include files are needed to re-—assemble the code as all necessary constants
are in the single source file.

The documentation is supplied in two forms (three if you count the assembler
source) - a flat file, for people who like to print out their documentation,
PEEK+POKE.TEXT, and this AmigaGuide (PEEK+POKE.GUIDE) in the fashionable

PEEKs+POKEs 6/6

heirarchical structure (actually it’s still fairly flat, but prettier).

1.8 authors

AUTHORS

PEEK and POKE was written by Simon N Goodwin (simon@studio.woden.com) with
help from Tadek Knapik (tadek@student.uci.agh.edu.pl). YOUR suggestions for
extra features or improvements are very welcome. In fact any response at all
will be gratefully received. This is not cardware or shareware, but we’d
still like to know if anyone (besides us) is using it. Please get in touch.

AMIGA FOREVER - the greatest home computer ever made!

1.9 index

INDEX TO SECTIONS

Authors
Documentation
Examples
Files
Introduction
Overview
Scripts
Syntax
Templates
Warnings

	PEEKs+POKEs
	main
	overview
	examples
	warnings
	arguments
	scripts
	files
	authors
	index

