
PCQ_Pascal

The Amiga Compiler

PCQ_Pascal ii

COLLABORATORS

TITLE :

PCQ_Pascal

ACTION NAME DATE SIGNATURE

WRITTEN BY The Amiga Compiler July 25, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

PCQ_Pascal iii

Contents

1 PCQ_Pascal 1

1.1 Introduction . 1

1.2 Distribution Disclaimer . 2

1.3 About the distribution . 2

1.4 About the author . 3

1.5 How to install the files . 4

1.6 How to use the package . 8

1.7 Incompatibilities . 11

1.8 PCQ Programs, reserved identifiers & structures . 12

1.9 Type declarations . 14

1.10 Constant declarations . 18

1.11 Variable declarations . 21

1.12 Procedure and Function declarations . 22

1.13 Label declarations . 31

1.14 Expressions . 31

1.15 Statements . 36

1.16 Input / Output . 42

1.17 Strings . 51

1.18 Memory management . 54

1.19 Exit procedures . 55

1.20 Compiler directives . 58

1.21 Type casts . 60

1.22 Small initialisation code . 61

1.23 External files . 63

1.24 Notes to assembly programmers . 64

1.25 Errors . 65

1.26 Source material . 65

1.27 Burner improvements & Update history . 67

1.28 Other notes & Copyright notice . 72

PCQ_Pascal 1 / 73

Chapter 1

PCQ_Pascal

1.1 Introduction

-----=====>>>>> Pascal ’PCQ’ 1.2b FreeWare <<<<<=====-----

By Patrick Quaid

ˆˆ

Contents - Main

1 Disclaimer

2 About the distribution

3 About the author

4 How to install the package

5 How to use the package

Contents - PCQ 1.2

6 Incompatibilities

7 PCQ Programs, reserved identifiers & structures

8 Type declarations

9 Constant declarations

10 Variable declarations

11 Procedure and Function declarations

12 Label declarations

13 Expressions

14 Statements

15 Input / Output

16 Strings

17 Memory management

18 Exit procedures

19 Compiler directives

20 Type casts

PCQ_Pascal 2 / 73

21 Small initialisation code

22 External files

23 Notes to assembly programmers

24 Errors

25 Source material

26 Burner improvements & Update history

27 Other notes & Copyright notice

This guide was compiled by Mike Foreman from the Pascal.DOC included

in the PCQ Pascal 1.2 archive from the AmiNet.

This guide was compiled using the very helpful ’GMake’ by Gary Greenhill.

1.2 Distribution Disclaimer

==

Disclaimer.....Sort of.

==

As there was no disclaimer in the PCQ archive I can only assume that

any errors or machine malfunctions that might occur by using PCQ is the

fault and responsibility of the user and not of Patrick Quaid.

With regards to this guide...

Any errors, machine malfunctions, detonation of nuclear devices, etc.,

are not the responsibility nor liability of Mike Foreman. * :-|

1.3 About the distribution

===

About PCQ

===

What have I got here?

What is included in the PCQ distribution depends on where you got

it from. If you got the disk from me, it most likely includes

everything. If you downloaded it, it probably does not include

several common files, nor does it include the source for the

compiler or runtime library. It does, however, contain some

combination of the following:

Pascal The compiler itself

Peep The peephole optimizer

PCQ_Pascal 3 / 73

Pascal.DOC This documentation file

Announcement Description of the registered version

Readme.PCQ A short description of PCQ

PCQ.lib The runtime library

Include.LZH The include file library, compressed with

the LHArc program.

Examples.LZH Several example programs, also compressed

with LHArc.

IDList.LZH A directory for the include files

PCQ.ced An Arexx program that lets you compile,

assemble, link and view errors all within

CygnusEd Professional.

A68k Charlie Gibbs’ assembler (1)

A68k.doc The documentation for A68k (1)

A68k2do.txt Improvements planned for A68k (1)

History.log Version-by-version changes of A68k (1)

Blink The Software Distillery linker (1)

Blink.doc The documentation for Blink (1)

(1) These files are often omitted from the BBS archive version

of the distribution to cut download times. They are

already available on most systems, but if you are

uploading PCQ to a system, you might want to point out

that A68k and Blink are also necessary, and verify that

they are also available.

1.4 About the author

==

Authors

==

PCQ Pascal v1.2b - (Patrick Quaid)

I can be contacted about questions or whatever at:

Pat Quaid

2250 Clarendon Blvd, Apt #1209

Arlington, VA 22201

USA

Telephone: (703) 524-8945

You are much more likely to be able to contact me by mail than by

PCQ_Pascal 4 / 73

phone, but I certainly don’t mind if you try. Enjoy the compiler.

PCQPascal.guide - (Mike Foreman)

This guide is made up of PASCAL.DOC included in the PCQ archive and

compiled by Gary Greenhill’s Gmake utility.

How to contact me:

Until Summer 1997:

Address: Flat G2.8,

Brook Street Halls,

Brook Street,

High Wycombe,

Buckinghamshire,

England.

E-Mail: n6111388@buckscol.co.uk 5:-)

After that I shall update this guide to include contact info. :)

Other software by me: :-)

KillClick: Stop that drive click - (Amiga)

Dirv’s Day: Graphic Adventure (M.I Style) - (Amiga)

Cookie2000: Futuristic fortunes - (Amiga)

!Switcher: Conversion program that converts almost ALL KNOWN

scales (Time, Weight, Distance, Speed, etc) - (Acorn)

!Cookie: A typical Amiga idea implemented on the Acorn. I have

never come across one of the on the Acorn - (Acorn)

!JukeBox: Multi-format module player - (Acorn)

1.5 How to install the files

===

Installing PCQ

===

How do I make a work disk?

Glad you asked. The answer is that I don’t know. There are

jillions of different system configurations out there, so I can’t

tell you exactly how to set your system up. But I can give you

some general guidelines.

First of all, somewhere in your command path you are going to need

the compiler, assembler, linker, and a text editor. Normally

PCQ_Pascal 5 / 73

these would go in the C: directory, but if you use the AmigaDOS

PATH command, they can go in any of the path directories.

If you don’t have a text editor, I heartily recommend CygnusEd

Professional from ASDG. TxEd is supposed to be about as good, but

I’ve never used it. Programmers on a budget can use MEMACS from

the Extras disk, ED from the Workbench disk, or a variety of

freely distributable editors like DME. ED isn’t a great choice,

MEMACS is fair, and from what I hear DME is really good. Take

your pick.

The other file you’ll definitely need is the runtime library,

which can go anywhere. I keep mine in my work directory, but

others like to keep it in their LIBS: directory. It’s up to you,

but don’t forget where you put it.

These files are all absolutely necessary for even the simplest

programs. If you want to use any Amiga routines, or use special

routines from PCQ.lib, you will also need to install the include

file library. This is where it gets a bit hairy, because the set

of include files is just under 800 disk blocks (a little less than

400k). That’s half a floppy disk right there. The size of these

files is going to make it awfully hard to use the complete system

on single drive systems. If you want to install the Include files

you’ll also need to find a copy of LHArc (or one of the compatible

archivers). LHArc is available on virtually all bulletin boards,

so you shouldn’t have much of a problem finding a copy (if you

have not yet done so, do yourself a favor and buy a modem. It’s

the best investment you’ll make).

So how do we organize all this stuff? It depends on your system,

of course, but here’s a few examples. If you want to install the

program on a hard drive, you could try the following. First, copy

Pascal, A68k, and Blink to your C: directory (also copy a text

editor if one is not already there). Then create a work

directory. Copy PCQ.lib to this new directory. Now make a

subdirectory of your work directory called something like

"Include". It’s actually not necessary that it’s a subdirectory,

but it will help you keep your disk structure straight. Then use

the AmigaDOS ASSIGN command to make an assignment of Include: to

your new include directory. Now you want to uncompress the

include file library into your new include directory, with a

command like:

PCQ_Pascal 6 / 73

LHArc -x -r x DistributionDisk:Include Include:

Use the actual path of the include archive, or course. Every time

you use the compiler, you should be sure to properly ASSIGN the

Include: directory - you’ll probably want to put that assignment

in the startup-sequence or an initialization script.

If you have one disk drive, I recommend the following disk

structure. The problem here is that I don’t have a one-drive

system on which to test this, so you may have to adjust it

somewhat.

Root:

PCQ.lib

C (dir)

A68k Assign

Avail Blink

CD Copy

Date Delete

Echo Ed

Else EndCLI

EndIf EndSkip

Execute Failat

If Info

Join Lab

List LoadWB

Makedir NewShell

Pascal Path

Prompt Protect

Quit Relabel

Rename Resident

Run SetPatch

Stack Type

Libs (dir)

diskfont.library icon.library

mathtrans.library version.library

Devs (dir)

ramdrive.device system-configuration

S (dir)

Startup-Sequence Make

L (dir)

Disk-Validator Newcon-Handler

PCQ_Pascal 7 / 73

Port-Handler Ram-Handler

Shell-Seg

Include (dir)

All the include files...

Trashcan (dir)

To make this sort of disk, first make a copy of a standard

Workbench disk. Then prune away everything, and I mean

everything, that you don’t absolutely need. You’ll note for

example that the list above doesn’t even have the serial.device

and the parallel.device, so you can’t use your modem or printer.

These sorts of sacrifices will have to be made. Next, copy

Pascal, A68k and Blink to the :c directory, then copy Make to the

:s directory and PCQ.lib to the new disk’s root. Make a new

directory called Include, then CD to it. Uncompress the Include

file directory by using the following command:

LHArc -x -r x Distribution:Include WorkDisk:Include/

Use the actual path for LHArc and the archive itself. You might

have to run Install on the disk to make it bootable, but you’ll

have yourself a barely usable work disk for Pascal. You will have

virtually no free space, so you’ll have to edit and compile files

in RAM:, copying them to a separate disk as often as possible. It

will be a hard life. If you are only writing very simple,

standard Pascal programs, which use none of the Amiga’s special

features, you can leave out the include directory (thus freeing up

nearly 400k), but you won’t be able to create very interesting

programs. Single drive users probably have several tricks up

their sleeves to get around disk space problems, so if you know of

a better plan, by all means use it.

If you have two disks, I would recommend a setup similar to the

single drive system. Move the include directory to the second

disk, however, and flesh out the system files on the boot disk (so

you can use your printer, especially). Use the ~400k of free

space on your second drive as your work area. This is the sort of

setup I used when I originally developed PCQ.

If you have lots of RAM (say, a megabyte or more), you might want

to copy some of this stuff into RAM: or RAD: to free up work

space. For example, if you have one megabyte of RAM you might be

able to copy the entire Include directory to the RAM: disk and

still have enough memory to compile medium sized programs.

PCQ_Pascal 8 / 73

The one optional part of the system is the peephole optimizer,

Peep. This program takes the assembly output of the compiler and

makes it somewhat more efficient and slightly smaller. If you are

compiling on floppy disks you’ll probably want to skip it, but if

you are working in RAM or on a hard disk it’s doesn’t add much to

the compilation time. Peep should be copied to the same place as

Pascal.

However you end up configuring your system, you’ll have to

define the Include: assignment to point to your include file

directory. This assignment is just the convention I used in the

include files and example programs - it’s not part of the compiler

itself, in other words - so if you are willing to modify all the

include files you can use whatever assignment you like. The only

other assignment of interest is the T: directory. This one is

automatically created by AmigaDOS, and since it is used by the

Make script to store intermediate files, assigning it to a RAM:

directory speeds up the whole compilation cycle dramatically.

1.6 How to use the package

===

Compiling a Program

===

Turning a Pascal source file into an executable program is (at

last count) a four step process. You start off with your source

code (one of the example programs, for example), which probably

ends with ".p". The first step is to use the compiler to turn

this source file into an equivalent assembly language program. To

do this, invoke the compiler with the following command format:

Pascal InputPascal OutputAssembly [-q] [-s] [-b]

"InputPascal" should be replaced with the complete filename

(including path, if necessary) of your source file, and

"OutputAssembly" is the filename (optionally with a path) of the

assembly language output file. I normally use the extension

".asm" on the output file. The command line arguments can be

placed anywhere on the command line, in upper or lower case, and

have the following meaning:

-q Run in "quiet" mode, i.e. the compiler does not

write anything to the screen except error

PCQ_Pascal 9 / 73

messages. This makes it easier to parse the

output of the compiler in an ARexx script, for

example.

-s Small initialization. Small programs use a

different initialization routine that does not

have all the overhead of the standard routine,

but it means that you will not be able to use any

Pascal IO (e.g Writeln(), Readln(), etc).

-b Disable short-circuit Boolean expressions.

Normally, PCQ abandons evaluation of a Boolean

expression as soon as its overall value becomes

known (if the left side of an AND expression is

false, for example, there is no point in

evaluating the right side). Thus some parts of

the program will not be executed. This option

forces PCQ to fully evaluate all Boolean

expressions.

The second step takes the assembly language file and creates a new

file that’s slightly more efficient. This is done using the

program Peep, which is invoked with the following command format:

Peep InputAssembly OutputAssembly

I normally use the extension ".s" for assembly files that have

been run through the peephole optimizer, but it is entirely up to

you.

The third step takes the .asm or .s file and creates an object

file. An object file is mostly the same machine-readable

instructions and data as the executable file, but it does not

contain all the routines the final program will need. The

assembler, in this case Charlie Gibbs’ A68k, converts assembly

language programs to object files, and is invoked with the

following command line:

A68k InputAssembly OutputObject

A68k is a very powerful, flexible program with lots of options -

be sure to read its documentation file for a complete description.

If all these steps finished without errors, you can link the

object file to all the routines in the runtime library it needs to

be an executable program. The Software Distillery linker, Blink,

handles this part of the process. It is invoked with the

following command line:

PCQ_Pascal 10 / 73

Blink InputObject to OutputExec library PCQ.lib

Blink also has many options, and comes with a documentation file

that completely explains them. Note that you might have to use a

full path to specify where PCQ.lib is - if it’s in the LIBS:

directory, for example, you would use LIBS:PCQ.lib instead.

You now have, finally, a finished executable file. That seems

like a lot of steps, and a lot to remember, just to make one

program. It is. Therefore I use, and have included in the

distribution, a couple of AmigaDOS scripts that automate the whole

process. The first is called Make, and it compiles a program in

the T: directory, leaving just the executable program on the

disk. It looks like this:

.key source

Pascal <source>.p T:<source>.asm

A68k T:<source>.asm T:<source>.o

Delete T:<source>.asm

Blink T:<source>.o to <source> library PCQ.lib

Delete T:<source>.o

You’ll note that my preferences for extensions are built in to

this script - the Pascal file ends in .p, the assembly language

file ends in .asm, and the object file ends in .o. If you prefer

other names, just change the script. Also note that you might

have to change the script if your compiler, assembler and linker

are not on the normal path, or if PCQ.lib is not in the current

directory (in both cases, just use the complete path in place of

the file name). To run this script, you just invoke it like this:

Make ProgramName

Note that you leave off any extensions. If everything works OK,

you’ll have an executable program called ProgramName left in the

current directory. One problem with this script is that you can’t

use any command line options on the compiler. I actually have

several different versions of Make scripts that handle all the

combinations I use.

The other script, OMake, is virtually the same, except it also

invokes the peephole optimizer to make slightly more efficient

programs. It looks like:

.key source

Pascal <source>.p T:<source>.asm

Peep T:<source>.asm T:<source>.s

PCQ_Pascal 11 / 73

Delete T:<source>.asm

A68k T:<source>.s T:<source>.o

Delete T:<source>.s

Blink T:<source>.o to <source> library PCQ.lib

Delete T:<source>.o

Again, you might have to make modifications to suit your set up.

If you are working on a fairly complex project, you will probably

find it convenient to make a set of specialized scripts to

automate the compile-assemble-link process.

1.7 Incompatibilities

===

Incompatibilities

===

PCQ Pascal is incompatible with standard Pascal, and by

extension Turbo Pascal, in several ways. Briefly, they are:

(1) Sets are not supported.

(2) The standard Pascal declaration of pointers to records is

not supported. For example, the following syntax is legal

in standard Pascal:

type

WindowPtr = ˆWindow;

Window = record

NextWindow : WindowPtr;

...

That’s an exception in standard Pascal - the only time you

can use an identifier before you declare it. In PCQ

Pascal, that syntax will fail with an Unknown ID error.

In its place, use something of this form:

type

Window = record

NextWindow : ˆWindow;

....

end;

WindowPtr = ˆWindow;

(3) Variant records are not supported.

(4) The familiar syntax for specifying a single quote

character constant, which in standard Pascal looks like

PCQ_Pascal 12 / 73

””, is not supported. Instead PCQ Pascal uses C escape

conventions, which are explained in the section called

Strings.

(5) The way you open a file is different from Standard Pascal,

although once it’s open the commands are basically the

same.

Although PCQ Pascal was not designed to be compatible with Turbo

Pascal, in order to make porting programs easier I’ll point out a

few of the more important differences (in addition to those

above).

(1) PCQ Pascal handles strings completely differently from

Turbo Pascal. PCQ strings are similar to C strings, which

are not as easy to manipulate as Turbo strings. In fact,

PCQ strings are the most difficult of the three. They are

fully explained in the Strings section.

(2) In a PCQ Pascal function, assigning a value to the

function name causes you to leave the function. In Turbo

Pascal, the function name is treated as a write-only

variable, and you have to use the Exit command explicitly.

All the examples in the Pascal Report skirt the issue by

assigning the value as the last statement.

(3) Speaking of Exit, Exit in PCQ Pascal quits the program,

whereas in Turbo it quits the current function or

procedure. Turbo’s "Exit" is like PCQ’s "return", and

Turbo’s "Halt" is like PCQ’s "Exit". Got that?

1.8 PCQ Programs, reserved identifiers & structures

===

PCQ Programs

===

For the most part, PCQ Pascal programs look very much like

standard Pascal programs. Apart from the incompatibilities

described above, in fact, PCQ should compile plain Pascal programs

directly. PCQ makes several extensions to Pascal, however, so in

order to explain them I’ll go over what is and is not allowed in

PCQ programs.

===

Reserved Words

PCQ_Pascal 13 / 73

===

Reserved words are symbols that cannot be used as identifiers in

your program. They have special meaning to the compiler, and

cannot be overridden. The reserved words of PCQ are as follows:

and for procedure

array forward program

begin function record

by goto repeat

case if return

const in set

div label then

do mod to

downto not type

else of until

end or var

external packed while

file private with

As you can see, even the unimplemented stuff is reserved.

===

Pascal Program Structure

===

The normal structure of Pascal programs is as follows:

<Program> ::= Program <Identifier> ; <Block>. |

Program <Identifier> (<Identifier List>); <Block>.

<Block> ::= <Declarations> begin <Statements> end |

begin <Statements> end

<Identifier List> ::= <Identifier> , <Identifier List> |

<Identifier>

Does everyone read Backus-Naur? The idea is that the objects to

the left of the definition sign ::= are being defined by the rule

to the right. Objects in angle brackets are defined elsewhere in

the list, and the vertical bar character separates alternatives.

Everything else is to be taken literally. Thus a Pascal program

begins with the literal word Program, followed by an identifier,

followed by a semicolon, followed by a block (whatever that is),

and ending with a period. On the other hand, it can also consist

of Program followed by an identifier, followed by a left

parenthesis, followed by an identifier list, followed by a right

parenthesis, a semicolon, a block, and finally a period. Once you

PCQ_Pascal 14 / 73

get used to them, BNF diagrams will tell you exactly what you need

to know about the syntax of a program. BNF grammars can also be

represented as "railroad diagrams", and if this weren’t a

text-only document I’d be using them instead.

We’ve left a few things undefined, so we better start filling it

out.

<Declarations> ::= <Declaration> , <Declarations> | <Declaration>

<Declaration> ::= <Type Declaration> |

<Constant Declaration> |

<Variable Declaration> |

<Label Declaration> |

<Procedure Declaration> |

<Function Declaration>

Note that standard Pascal imposes an order on the declarations:

it says there should be one constant block, followed by one type

block, etc. PCQ Pascal removes that restriction, so you can have

as many declarations in whatever order you see fit.

Subject to the definition of the rest of those objects, this is

the format for any normal PCQ Pascal program. There is an

exception (of course): the separately compilable file. Turbo

Pascal provides a Unit structure so you can write, compile and

debug units, then use them in many programs. PCQ provides a

similar, although not as powerful, feature in the form of external

files. Consider the following extension of our basic rule:

<Program> ::= Program <Identifier>; <Block>. |

Program <Identifier> (<Identifier List>); <Block>. |

External ; <Declarations>

According to this, an external file is just the reserved word

External followed by a semicolon, then a series of procedures,

functions, whatever. See the section called External Files for

more information.

1.9 Type declarations

===

Type Declarations

===

Type declarations take the following form:

<Type Declaration> ::= Type <Type Definitions>;

PCQ_Pascal 15 / 73

<Type Definitions> ::= <Type Definition>; <Type Definitions> |

<Type Definition>

<Type Definition> ::= <Identifier> = <Type Specification>

<Type Specification> ::= <Identifier> |

<Range> |

ˆ<Type Specification> |

(<Identifier List>) |

<Array Definition> |

<Record Definition> |

file of <Type Specification>

<Range> ::= <Constant Expression> .. <Constant Expression>

<Array Definition> ::= array [<Range>] of <Type Specification> |

array <Identifier> of <Type Specification>

<Record Definition> ::= record <Variable Definitions> end

Once you digest the BNF, I think you’ll find that straight-

forward. Constant expressions are discussed in the Expressions

section below - for now let’s look at the types that are

predefined in PCQ Pascal.

Numeric Types

PCQ Pascal supports a variety of numeric types that should give

you the flexibility you need to carry out whatever math you might

require. The types, from smallest to largest range, are:

Byte This is a 1-byte, unsigned integer, capable of holding

a value from 0 to 255.

Short A Short is a 2 byte (16 bit) signed integer, with a range

of -32768 to 32767.

Integer Integer is the largest ordinal type. It holds a 32-bit

signed integer, with a range of about -2 billion to

2 billion.

Real A floating point value, in Motorola Fast Floating Point

format. A Real value is 4 bytes (32 bits), and can

express floating point values from about 10 x 10ˆ18 to

about 5 x 10ˆ-20, positive or negative. I’m not sure

what the accuracy of FFP is, but I wouldn’t count on

more than 5 or 6 digits.

The numeric types are interchangeable in expressions. If you use

two different types in, for example, a plus expression, the

compiler will automatically promote both values to the smallest

PCQ_Pascal 16 / 73

"container type". A container type is a numeric type whose range

covers both of the arguments. For example, the result of adding a

Short to an Integer is an Integer. The result of most binary

operations involving Real values will be a real value.

Other Ordinal Types

Integers, Shorts and Bytes are all Ordinal types. This means they

are discrete values that can be represented exactly in binary

(unlike floating point values, which are approximated). The other

ordinal types are:

Char A one-byte value, stored as the ASCII value.

Boolean Also one byte long, a Boolean value is either -1 (all

binary ones) for true, or 0 for false. Anything else

could produce unpredictable results. Incidentally,

the Boolean type can be considered an enumerated type

with the values True and False. In most

implementations False < True and Succ(False) = True,

but not in PCQ.

Enumerated The values of an enumerated type are specified within

the program. If there are 256 or fewer values, the

enumerated type will be stored in one byte. If there

are more, it will be stored in two bytes. In either

case, each enumeration is associated with an integer

value, starting with 0.

Pointer Types

Pointer types hold the address of another variable. They are all

32-bit values. The predefined pointer types are:

Address Address is a special pointer type that is compatible

with all other pointer types. It should not be

dereferenced, but you can use it to avoid cumbersome

type casts.

String The String type in PCQ is actually defined as a

pointer to char, although it has other special

qualities like allowing array-like subscripts.

Strings are explained in the section called Strings.

File Types

Files in PCQ are based on normal AmigaDOS files, but provide

PCQ_Pascal 17 / 73

automatic buffering and access to the handy Pascal IO routines

(Writeln, et al). File variables come in two varieties:

Text A Text file is any normal ASCII file (this

documentation, for example.

Typed Files A typed file, declared as "File of Type", only stores

values of the given type. If you issue a Write()

command on a typed file, PCQ will output the actual

binary representation of the object to the file. For

example, if you have a "File of Integer", the typed

file will store each Integer as a four-byte binary

representation. A text file, on the other hand, will

store each Integer as a series of ASCII characters

from ’0’ to ’9’. You cannot use Writeln and Readln on

typed files.

Type Compatibility

There are two kinds of type checking. One is for normal type

compatibility. That’s used for comparing arguments in an

expression, or for formal and actual value parameters. The second

kind checks for identical types, and is used for more strict

circumstances: in assignment operations and between formal and

actual parameters passed by reference (using the VAR keyword).

PCQ Pascal is, relative to Standard Pascal, generous in its

enforcement of these rules. For simple type compatibility, the two

types have to pass on of the following tests:

o They are the same type, or

o They are both number types (real, integer, etc), or

o They are both arrays with the same size range and the

element types are compatible, or

o They are both pointers to compatible types, or

o They are both files of compatible types.

Synonym types (e.g. "TYPE ByteSynonym = Byte") are considered

identical types. For the more strict type identity check, remove

the second rule.

PCQ_Pascal 18 / 73

1.10 Constant declarations

===

Constant Declarations

===

Constants are normally declared in the Standard Pascal fashion,

which looks like the following in BNF:

<Const Block> ::= Const <Const Declarations>;

<Const Declarations> ::= <Const Declaration> |

<Const Declaration> ; <Const Declarations>

<Const Declaration> ::= <Identifier> = <Constant Expression> |

<Identifier> : <Type Specification> =

<Typed Constant Value>

<Typed Constant Value> ::= <Constant Expression> |

(<Constant Expressions>) |

@ <Identifier>

Constant expressions will be defined below, but you can think of

them as any normal expression that can be completely evaluated

during the compilation (i.e. they use no user-defined functions

and access no variables).

Normal constants are easy to understand - they are just like

read-only variables, but they actually take up no memory. The

constant value is just inserted in the program instead of the

identifier. Since they are formed by constant expressions, normal

constants can only have a few different types: integer, real,

char, Boolean, string and array of char. They can’t have any

user-defined type, and can’t be record or array types.

Typed Constants

That’s where typed constants come in. Typed constants are best

thought of as pre-initialized variables, and they can be of any

type you can define, besides file types. I have no idea why Turbo

Pascal decided that these objects should be called constants

rather than variables, but I’m following their lead. Your program

loads with these values already in place, and they will not be

refreshed until the program is reloaded. They will, therefore,

screw up resident programs if used incorrectly.

One handy side effect is that variables local to some procedure

can retain their value throughout a program’s execution (like

PCQ_Pascal 19 / 73

static variables in C, right?). In other words, if you declare a

typed constant within a procedure, it will not be accessible to

any code outside of that scope, and it will not lose its value

between calls to the procedure. Looks like a local, acts like a

global.

Declaring typed constants is error prone, and you invariably spend

most of the time counting a list of numbers or trying to match

parentheses or something equally mind-numbing. Nonetheless, they

are awfully handy. The syntax corresponds to the second

alternative of the <Const Declaration>, but that doesn’t tell the

whole story. Perhaps it’s best to look at some examples:

Type

ExampleRec = record

Field1 : Integer;

Field2 : Char;

Field3 : Boolean;

Field4 : ˆInteger;

Field5 : Array [-1..1] of Byte;

end;

MultiDim = Array [0..1,0..1] of Integer;

Const

Message1 : String = "An example string";

Message2 : Array [0..9] of Char = ’String2 ’;

Message3 : Array [0..9] of Char = (’a’,’b’,’c’,’d’,’e’,

’f’,’g’,’h’,’i’,’j’);

Value1 : Integer = 456;

Record1 : ExampleRec =

(34, ’r’, True, @Value1, (34,56,12));

Multi1 : MultiDim = ((34,12), (45,15));

Note that all the "Message" constants and Value1 could also be

specified as normal constants. Message1 and Value1, in that case,

would not take up any memory, but Messages 2 and 3 would be the

same. The format of the Message3 declaration is typical for

arrays, but the Message2 format is a special abbreviation for

arrays of char.

There are several differences between this and Turbo Pascal’s

syntax (all, if I may say so, in favor of PCQ). First of all,

definitions of constant records in Turbo Pascal requires that you

use the field identifier, followed by a colon, the value, and

PCQ_Pascal 20 / 73

possibly a semicolon. That’s far too cumbersome for me, so I just

use the same idea as arrays: you specify each field, separated by

commas, in order.

The second difference with Turbo Pascal is that, until version 6.0,

it only allowed pointer types to be initialized to Nil. PCQ

Pascal allows you to initialize a pointer type as Nil, or as the

address of a preceding global variable or typed constant. To do

this, you normally use the ’@’ operator, which returns the address

of a specified variable.

The last difference is that you can use some typed constant values

in subsequent constant expressions. You can’t use any structured

types (i.e. records and arrays), but you can use integers, reals,

and other so-called "simple" types.

Standard Constants

There are several standard constants (i.e. they are built in to

the compiler itself - you don’t have to declare them or use an

include file). They are:

False False is an enumeration of the type Boolean, and has the

value 0.

MaxInt MaxInt is the largest integer that can be stored in the

32-bit Integer type. It is: 2,147,483,647, which is

$7FFFFFFF in hex. Thus you can say that the range of an

Integer variable is +MaxInt to -MaxInt.

MaxShort MaxShort is the largest number that can be stored in the

16-bit Short type. It turns out to be 32,767, or $7FFF

in hex. Just as with MaxInt, you can say that the range

of a Short variable is +MaxShort to -MaxShort (to be

precise, the range is actually +MaxShort to

-(MaxShort+1), and MaxInt is analogous).

Nil Nil is a constant of type Address. It is defined as

something like:

Nil = Address(0);

In Standard Pascal, "Nil" is a reserved word. In PCQ

Pascal it isn’t reserved, for the simple reason that it

doesn’t have to be.

True True is an enumeration of the type Boolean, and actually

has the value -1. In some cases, any non-zero number

will suffice, but the "not" operator will behave

erratically if you use weird values.

PCQ_Pascal 21 / 73

1.11 Variable declarations

===

Variable Declarations

===

Variable declarations are handled just like standard Pascal:

<Var Declaration> ::= Var <Var Definitions> ;

<Var Definitions> ::= <Var Definition> |

<Var Definition> ; <Var Definitions>

<Var Definition> ::= <Identifier List> : <Type Specification>

Global variables, i.e. variables declared at the outer-most level,

are allocated as static memory. All variables declared within a

procedure or function are allocated on the stack, so if you are

writing re-entrant routines, be sure to avoid writing to global

variables.

Variables larger than one byte are always allocated on word

boundaries (not longword boundaries - you’ll have to use AllocMem

to guarantee that). That’s an option in Turbo Pascal, but the

68000 makes it mandatory for Amiga programs. Note that this

applies within records and arrays as well, so be careful if you

make assumptions about variable size and location.

Keep in mind that local variables (not typed constants) disappear

when you leave the function, so you shouldn’t try to access them

afterward (with a pointer variable, for example). It just won’t

work.

Standard Variables

There are several variables built-in to PCQ Pascal. They are

always available, and are treated like global variables. They

are:

CommandLine This is a String variable that points to the

command line the user entered (with the name of

the program and any indirection parameters

stripped off). If the program was executed from

the Workbench, this value is not defined. Note

that, to be on the safe side, this variable should

be treated as read-only. Make a copy of it if you

want to modify it.

ExitAddr ExitAddr is the location within your program that

PCQ_Pascal 22 / 73

a runtime error occurred. If no error occurred,

its value is undefined. See the section called

"Exit Procedures" for more information.

ExitCode This is the Integer value that will be returned to

AmigaDOS when your program terminates. It is only

defined within an exit procedure.

ExitProc This is an Address variable that holds the address

of the first procedure that will be executed when

your program terminates. See the section called

"Exit Procedures" for more information.

HeapError HeapError is an Address variable that holds the

address of a function to call when New() or

AllocString() is unable to allocate a block of

memory. See the section called Memory Management

for more information.

Input Input is a Text file type. It corresponds to the

standard input channel of the program, such as the

CLI from which it was run. PCQ Pascal programs

always establish some sort of standard Input file

unless you specifically tell it not to. See the

section called Input/Output for more information.

Output Output is a Text file type. It corresponds to the

standard output channel of the program, which in

most cases is the CLI from which it was run. PCQ

Pascal programs always establish an output file

unless instructed not to.

1.12 Procedure and Function declarations

===

Procedure and Function Declarations

===

Procedures and functions allow you to define common routines

within a larger block. Procedures are executed by procedure

statements, and function are executed when they are used in

expressions. The format for procedure and function definitions is

as follows:

<Proc Declaration> ::= Procedure <Identifier> ; <Body> |

Procedure <Identifier>

PCQ_Pascal 23 / 73

(<Formal Params>); <Body>

<Body> ::= <Block> | External | Forward

<Formal Params> ::= <Identifier List> : <Type Specification> |

var <Identifier List> : <Type Specification>

<Func Declaration> ::= Function <Identifier> :

<Type Specification> ; <Body> |

Function <Identifier> (<Formal Params>) :

<Type Specification> ; <Body>

At the risk of being repetitive, keep in mind that you can only

use procedures where the BNF calls for a <Statement>, and you can

only use functions where the BNF calls for an <Expression>.

Parameter Passing

Pascal provides two different kinds of parameter passing. The

first type are called value parameters. These are the normal

case. When you pass a parameter by value, the compiler makes a

copy of the value, and sends that along. It’s as if someone tells

you to study the Mona Lisa, providing some photographs for you to

look at. You can draw a moustache on the photograph, but it won’t

affect the Mona Lisa, and whatever the procedure or function does

to the parameter will not affect your original values. When you

are calling the procedure, you can use any expression (of the

correct type, of course) as the actual parameter.

The other type of parameters are called reference parameters.

They are specified by preceding the parameter name with the

reserved word "var" in the procedure or function header. If you

use reference parameters, it’s as if someone tells you to study

the Mona Lisa, sends you to the Louvre, and tells you where to

find the painting. Thus you are working on the original, and had

better be careful about it. Reference parameters must be given as

variable references - they cannot be full expressions. Also,

reference parameters have to pass a stricter type compatibility

test than value parameters do, since we can’t have the procedure

trying to write a 4-byte Integer into a 1-byte space.

Normally you should prefer value parameters over reference

parameters (it tends to cut down on bugs), except in three cases.

The first is when you actually do want to affect the value of a

variable. The second is when the parameter is large. If you use

a value parameter, the compiler must make a complete copy of it on

PCQ_Pascal 24 / 73

the stack before it calls the routine, which uses both time and

stack space. If you use a reference parameter, the compiler just

puts the address on the stack. The third case is when the

parameter is a file type, in which case it must be passed by

reference.

PCQ Pascal pushes arguments on the stack from left-to-right. C

compilers, because they have to support variable numbers of

parameters, push arguments from right-to-left. Therefore if you

plan to call C routines, you will have to re-order either the

order in the call or the order in the routine.

Forward Procedures and Functions

In Pascal, every identifier must be declared before it can be

used. This creates problems when procedures or functions are

mutually dependent, so Pascal allows you to pre-define procedures

and functions that will be fully defined farther down in the

source code.

A forward reference looks just like a normal procedure or function

declaration, but has the reserved word "Forward" right after the

header. The header contains all the information the compiler

needs to correctly call a routine, so after the forward

declaration the routine can be used. When the routine is

eventually defined, the compiler ensures that it matches up with

the definition given earlier. This means that there must be the

same number of parameters, the parameter types must be the same,

and if it’s a function, the result type must be the same. Note

that the actual names of the parameters can be different - only

their number, order and type are compared.

A forward reference must be resolved within the same block as it

was declared, and the same routine cannot be forward-referenced

more than once.

External References

External references are very much like forward references - they

are declarations of routines that aren’t actually fully defined.

The difference is that forward references must be defined later on

in the same program file, whereas external references are not

defined in the source file at all.

The declaration of external references is the same as that of

PCQ_Pascal 25 / 73

forward references, but the reserved word "External" is used in

place of "Forward".

External references are used for two main purposes. First of all,

they allow you to use procedures and functions defined in External

files. All the system routines declared in the include files, for

example, are actually defined in External files. They also allow

you to call routines compiled in a different language, as long as

you follow some guidelines in parameter passing. See the section

called External Files for more information on using external

routines.

Standard Procedures

There are several procedures built-in to PCQ Pascal. They

include:

Close(FileVariable : Any file type)

The "Close" procedure disassociates the FileVariable from the

physical disk file, and frees up all the system resources used to

keep the file open. See the Input/Output section for more

information.

Dec(V : Any ordinal or pointer) or Dec(V, Amount : Integer)

Dec (which is short for decrement) subtracts one (or more) from a

variable. "Dec(x,n)" is the same as "x := x-n", but slightly more

efficient. The variable must be either an ordinal type, like

Char, Byte, Integer, etc., or a pointer type. The amount

parameter, which is optional, must be an integer type - if it is

not included, the value one is assumed.

If the variable is an ordinal type, the value is subtracted

normally. If the variable is a pointer type, however, Dec()

multiplies the amount by the size of the type to which the pointer

refers. In other words, if you have a pointer p of type ˆInteger,

the statement Dec(p) actually subtracts 4 from the pointer.

Dispose(Variable : ˆAnything)

The "Dispose" procedure frees memory previously allocated with

"New" (see below). See the section called Memory Management for

information on PCQ’s memory routines.

Exit or Exit(ReturnCode : Integer)

Exit, like the AmigaDOS and the C function of the same name,

terminates the program. If a return code is specified, it is

returned to AmigaDOS. By convention, return codes are normally 5

PCQ_Pascal 26 / 73

for small problems (warnings), 10 for significant problems

(errors), and 20 when everything goes wrong (failure). Using Exit

without a return code is the same as Exit(0), which indicates that

everything is O.K.

Exit is the system-safe way to quit a program - you should not

call AmigaDOS’s DOSExit() routine. When you call Exit, all the

exit procedures are called in turn. This includes the standard

routine that closes all open files and deallocates memory, as well

as any that you define.

Get(var FileVariable : A file type)

The "Get" procedure moves the file pointer to the next element in

the file, without actually reading any element in. The element in

the file buffer can be accessed through the FileVariableˆ syntax.

See the Input/Output section for details.

Inc(VarReference: Ordinal or Pointer type) or

Inc(VarReference : Ordinal or Pointer, Amount : Integer)

The "Inc" command adds an integer Amount to the variable

VarReference. If no amount is specified, it is assumed to be 1.

If the variable is an ordinal type the addition is carried out

normally, but if it is a pointer type the amount is first

multiplied by the size of the object to which the pointer refers.

In other words, Inc(p), where p is a pointer to Integer, actually

adds 4 (the size of an Integer in bytes) to p.

New(PointerVar : ˆAnything)

The "New" procedure allocates a block of memory equal in size to

the type to which the variable (which must be a pointer type)

points. The address of the newly allocated block will be assigned

to the variable. See the section called Memory Management for

more information.

Put(var FileVariable : A file type)

The "Put" routine advances the file pointer past the current

element, writing the current element to disk if necessary. The

current element can be set through the FileVariableˆ syntax. See

the section called Input/Output for details.

Read(var FileVariable : Text or File, Variable References....)

The "Read" procedure inputs information from an AmigaDOS file.

The FileVariable is optional, and the procedure is one of the very

few in Pascal that can take a variable number of arguments. See

the Input/Output section for more information.

PCQ_Pascal 27 / 73

Readln(var FileVariable : Text, Variable References....)

The "Readln" procedure is very similar to "Read", but it can only

be used on Text files, and after it has read all the arguments it

requires, it continues to eat characters until it is at the

beginning of the next line. See the Input/Output section for more

information.

Reset(var FileVar : File or Text;

FileName : String;

BufferSize : Integer);

The "Reset" procedure opens a file for reading. The BufferSize

parameter is optional. If you have used the {$I-} directive to

indicate manual IO checking, you should be sure to check IOResult

to see if the file opened correctly. If you are using automatic

IO checking, the program will terminate with a runtime error if

the file does not open correctly. See the Input/Output section

for more information.

Rewrite(var FileVar : File or Text;

FileName : String;

BufferSize : Integer);

The "Rewrite" procedure opens a file for output, erasing any

existing file of the same name. The BufferSize argument is

optional. If the file cannot be opened, IOResult will be set to a

non-zero value. If you are using automatic IO checking, that will

cause your program to terminate with a runtime error. If you are

using manual IO checking, be sure to look at IOResult to be sure

the file is open. See the Input/Output section for more

information.

Trap(TrapNum : Integer)

The "Trap" procedure can be used by some debuggers as a sort of

automatic breakpoint. If you insert the correct trap, your

debugger might stop at that location. Then again it might not.

Write(FileVariable : Text or File, Expressions....)

The "Write" procedure outputs information to an AmigaDOS file.

The FileVariable is optional, and it can take a variable number of

arguments. See the Input/Output section for details.

Writeln(FileVariable : Text, Expressions....)

The "Writeln" procedure is very similar to "Write", but it only

works on Text files, and it terminates the line after writing all

of its arguments. Again, see the Input/Output section for more

PCQ_Pascal 28 / 73

information.

Standard Functions

There are also a bunch of functions built in to the Pascal

compiler. They are:

Adr(Variable Reference) : Address

The Adr() function returns the actual address in memory of the

parameter. This is equivalent to Turbo Pascal’s Addr() function,

and as in Turbo Pascal you can also use the @ operator.

Abs(numeric expression) : same numeric type

The function call Abs(n) returns n, if n is positive, and -n if n

is negative.

ArcTan(numeric Expression) : Real radians

The ArcTan() function returns the approximate arctangent of the

parameter in radians.

Bit(BitNumber) : Mask Integer

The Bit() function returns an Integer with just the specified bit

set. It is equivalent to (1 shl BitNumber).

Chr(numeric expression) : Char

The Chr() function transforms any numeric type into its ASCII

character equivalent.

Ceil(Real expression) : Real

Ceil() returns the least integer greater than or equal to the

parameter.

Cos(numeric expression in radians) : Real

The Cos() function returns the cosine of the given angle measured

in radians.

EOF(file or Text variable) : Boolean

EOF returns True if the file is at the end-of-file position, or

False otherwise. The EOF function is only valid for files opened

for input. See the section called Input/Output for more

information.

Exp(numeric expression) : Real

The function Exp(x) returns e raised to the xth power. In case

it slipped your mind, e is about 2.71828....

Float(Integer expression) : Real

The Float() function converts any Integer type expression to its

floating point representation. If the integer is fairly large, it

might be approximated. Thus "Trunc(Float(IntVar)) = IntVar" is

PCQ_Pascal 29 / 73

not always true.

Floor(Real expression) : Real

The Floor() function returns the largest whole number less than or

equal to the parameter.

IOResult : Integer

The IOResult() function checks to see if any errors have occurred

since the last time you checked. Normally, PCQ Pascal inserts

statements to check the IOResult automatically, but if you have

set IO checking off (using the {$I-} directive), you’ll have to

check it explicitly. The act of checking it erases it, so if you

need to re-use it you’ll have to save it in a variable. See the

Input/Output section for more information.

Ln(numeric expression) : Real

The Ln() function returns the natural logarithm (i.e. the

logarithm to the base e) of the parameter.

Odd(numeric expression) : Boolean

The Odd() function returns TRUE if its argument is odd, and FALSE

otherwise.

Open(fname : String;

var fvar : file or Text;

BufferSize : Integer) : Boolean;

Open is the function form of the Rewrite procedure. It opens a

file for output, erasing any existing file with the same name. If

the file opens correctly, Open returns True. If not, it returns

False. The BufferSize parameter is optional. See the section

called Input/Output for more information.

Ord(Ordinal expression) : Integer

The Ord() function returns the ordinal value of the argument as an

Integer. In other words, it can convert Chars, Booleans, and

enumerated types into their numeric equivalents. Since it

actually changes the type of the argument into an Integer it is

referred to as a transfer function.

Pred(Ordinal expression) : same type

The Pred() function returns the next least ordinal value in the

same type. For example, Pred(2) is 1. If the argument is the

lowest value within the type (such as Pred(ByteVar) where ByteVar

is zero), its behavior is undefined.

ReOpen(fname : String;

var fvar : file or text;

PCQ_Pascal 30 / 73

buffersize : Integer) : Boolean

ReOpen is the function form of Reset. It opens a file for

reading, and returns True if everything went O.K. If for any

reason the file did not open correctly, ReOpen returns False. The

BufferSize parameter is optional, and can be any amount. See the

section called Input/Output for more information.

Round(Real expression) : Integer

The Round() function rounds a real expression to the nearest

Integer. It is actually implemented as Trunc(value + 0.5), so it

takes somewhat longer to execute than the Trunc function. Also,

it always rounds 0.5 up.

Sin(numeric expression in radians) : Real

The Sin() function computes the sine for the given angle measured

in radians.

SizeOf(Type Identifier) : Integer

The SizeOf() function returns the actual size of the given type.

Note that the type must be specified as a single identifier.

Sqr(numeric expression) : same type

The function Sqr(x) returns x*x.

Sqrt(numeric expression) : Real

The function Sqrt(x) returns the square root of x. In other

words, Sqrt(x) * Sqrt(x) = x.

Succ(Ordinal expression) : same type

The Succ() function returns the next greater ordinal value within

the same type. If that value is not defined (for example, Succ(n)

where n is the largest enumeration within a type), the function is

not defined.

Tan(numeric expression in radians) : Real

Returns the tangent of the angle measured in radians. If the

parameter is an odd multiple of Pi/2, this function will take on

meaningless values (the tangent function is undefined at odd

multiples of Pi/2).

Trunc(real expression) : Integer

The Trunc() function returns the integer portion of a floating

point number. It is the fastest way to convert a real value to an

Integer value.

PCQ_Pascal 31 / 73

1.13 Label declarations

===

Label Declarations

===

Labels must be declared in the declaration section before they can

be used in the program. The label declaration section has the

following form:

<Label Declarations> ::= Label <Identifiers> ;

<Identifiers> ::= <Identifier> | <Identifier> , <Identifiers>

Note that Standard and Turbo Pascal also allow labels to have

numeric values, but PCQ Pascal only allows normal identifiers to

be used. If you run across a program with numeric labels, you can

just put some letter on the front to make them legal identifiers.

Perhaps a better solution would be to trash the program.

1.14 Expressions

===

Expressions

===

PCQ Pascal accepts expressions very similar in form to just about

all Pascal implementations. It’s probably very familiar to you,

but just to be on the safe side, we’ll define it. Let’s start off

with the constants accepted by PCQ:

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits> ::= <digit> | <digit> <digits>

<binary digit> ::= 0 | 1

<binary digits> ::= <binary digit> |

<binary digit> <binary digits>

<hex digit> ::= <digit> | a | b | c | d | e | f

<hex digits> ::= <hex digit> | <hex digit> <hex digits>

<Float Const> ::= <digits> . <digits>

<Integer Const> ::= <digits> | $ <hex digits> | % <binary digits>

<Char Value> ::= <ASCII char> | \ <escape sequence>

<Char Values> ::= <Char Value> | <Char Value> <Char Values>

<Number Const> ::= <Integer Const> | <Float Const>

<Char Const> ::= ’ <Char Value> ’

<String Const> ::= " <Char Values> "

PCQ_Pascal 32 / 73

<Char Array Const> ::= ’ <Char Values> ’

That should confuse things a bit. What it says is that whenever

the compiler expects an integer, you can use decimal, hexadecimal

or binary representation. It also says that floating point

constants are only recognized in the normal 23.23 form, without

any trailing exponent. Finally, it says that you can use C-style

escape sequences for any text constant - these escape values are

discussed in the Strings section.

So how are these things grouped into complete expressions?

Consider the following definitions:

<expression> ::= <simple> <rel op> <simple> | <simple>

<rel op> ::= = | <> | < | > | <= | >=

<simple> ::= <term> <add op> <term> | <term>

<add op> ::= + | - | or | xor

<term> ::= <factor> <mul op> <factor> | <factor>

<mul op> ::= * | / | div | mod | and | shr | shl

<factor> ::= <Number Const> |

<Sign> <Number Const> |

<Char Const> |

<String Const> |

<Char Array Const> |

<Variable Reference> |

@ <Variable Reference> |

not <factor> |

(<Expression>) |

<Function call>

What does all this mean? It means that expressions are built up

from factors, the basic blocks of an expression. A factor can be

a constant, a variable, a parenthesized expression, and all the

other things listed. The following examples are all factors:

23

(4.0 - 2.3)

%01000001

’a’

RecordPtrˆ.Field1[45,23]

@Var1

Abs(Var2)

Factors can have a unary operator (an operator that applies to

only one value, unlike binary operators that apply to two). They

PCQ_Pascal 33 / 73

are:

@ This operator is the address-of operator. The returns

the address of the variable reference immediately

following. It is equivalent to the Adr() function.

- Sign negation. Takes the negation of the factor

following it.

+ Sign identity. It is accepted, but has no affect.

not Boolean or bitwise negation. If the factor is a

Boolean value, this returns the opposite. If it is an

integer type, it returns the bitwise compliment.

These factors are built into terms. Terms are either the same as

factors, or two factors with a multiplicative operator between

them. The multiplicative operations are the following:

* Multiplication

/ Floating point division. Both arguments to this

operator are converted to floating point before the

operation takes place.

div Integer division. Both arguments to this operator

are converted to integer forms before the operation

takes place.

mod The remainder operation. Both arguments are

converted to integers if necessary.

and Logical AND function. If both arguments are Boolean

values and the left factor evaluates to FALSE, this

operation will "short-circuit". Any Real factors are

converted to Integers.

shl Shift left. Shifts the bits in the left operand the

number of positions given by the right operand. Both

arguments are converted to Integers if necessary.

shr Shift right. Shifts the bits in the right operand

the number of positions given by the right operand.

This is a logical shift, not arithmetic, so the

left-most bit is assigned 0. Thus if you shift a

negative number in order to do division, you will get

nonsense results (use div instead - it will use shifts

when possible). Both arguments are converted to

Integers.

Terms, in turn, are built into simple expressions. Simple

expressions are either the same thing as terms, or two terms

PCQ_Pascal 34 / 73

grouped by an addition operator. The addition operators are:

+ Adds the two operands.

- Subtracts the second operand from the first.

or Logical OR. If both operands are Boolean values and

the left operand evaluates to TRUE, the right operand

is not evaluated. Both arguments are converted to

Integers if necessary.

xor Exclusive OR. Generates the left term exclusive ORed

with the right term. This never short circuits. If

either argument is a Real value, it is converted to an

Integer.

These simple expressions are built into complete expressions.

Expressions are either the same thing as simple expressions, or

two simple expressions grouped by a relative operator. These

operators produce Boolean results, and are defined as:

= Returns TRUE iff the two arguments are equal.

<> Returns TRUE iff the two arguments are not equal.

> Returns TRUE iff the left argument is greater than the

right argument.

< Returns TRUE iff the left argument is less than the

right argument.

>= Returns TRUE iff the left argument is either greater than

or equal to the right argument (that’s only takes one

comparison, by the way).

<= Returns TRUE iff the left argument is either less than

or equal to the right argument.

(iff is shorthand for "if and only if")

Evaluation Order & Short Circuits

--

The normal rules of math are built-in to the grammar for

expressions. The unary operators are evaluated first, then all

the multiplicative operations, the additive operations, and

finally the relative operations. Thus the precedence looks like

this:

Operator Precedence

@,not,unary +/- First (highest)

*,/,div,mod,

and,shr,shl Second

PCQ_Pascal 35 / 73

+,-,or,xor Third

=,<>,<,>,>=,<= Fourth (lowest)

All expressions in parentheses are, of course, evaluated first.

Also, keep in mind that all of these operators are left

associative - in other words, a factor between two operators of

equal precedence is bound to the one on the left (e.g. "x+y+z" is

treated as "(x+y)+z").

You should not make any conclusions about the order in which the

two operands to a binary operator are evaluated. If you have the

expression "function1 + function2" in your program, for example,

there is no telling which function would be evaluated first.

The exception to that rule is for Boolean equations, but only if

you are using short-circuit evaluations (the default). What is a

short circuit? Imagine you have the expression "A or B" in your

program. If the program evaluates A and finds that it is True, it

already knows the final value of the entire expression. Therefore

there’s no point in evaluating B. The analogous case for "A and

B" occurs when A evaluates to False. You can be sure, in a

Boolean expression, that the operands of "and" and "or" will be

evaluated left-to-right.

Short-circuit evaluations are often faster than normal ones, but

they have the added benefit of protecting the programmer. For

example, the statement:

if OpenMyWindow(w) and (wˆ.Width = whatever) then

... would be a problem without short-circuit evaluations because,

for example, the variable w might not be defined if the function

call fails. The value of the function would not change, but if

w pointed to an odd address it could cause a guru. With

short-circuit evaluations, the second factor would not be

evaluated unless the first returned True.

Constant Expressions

Constant expressions are the same as normal expressions, but must

be completely evaluated at compile time. Thus they can’t use any

external functions or variable references, but can use all the

same operators and the standard functions (i.e. the ones built-in

to the compiler).

Variable References

PCQ_Pascal 36 / 73

Variable references can get awfully complex, what with pointers

and records and arrays and so forth. The basic syntax is as

follows:

<Variable Reference> ::= <Variable Mark> |

<Variable Mark> <Selectors>

<Variable Mark> ::= <Variable ID> |

<Type ID> (<Variable Reference>)

<Selectors> ::= <Selector> | <Selector> <Selectors>

<Selector> ::= ˆ | .<Field Id> | [<Index Expressions>]

Generally speaking, a variable reference will consist of the

identifier of a global or local variable, followed by any number

of selectors in any combination. The other possibility, which is

somewhat different as of version 1.2 of the compiler, is that you

can place a type cast somewhere in the middle of all this. The

following are all examples of variable references:

Var1

Var1ˆ

Var1ˆ.Field1[34,56]

Type2(Var1)ˆ.Field2ˆˆ[23]

If you start writing code that looks like the last example, you

should get some rest.

1.15 Statements

===

Statements

===

Statements are the meat and potatoes of programs - they are what

goes between begin and end. They have the following form:

<Statement> ::= <If Statement> |

<While Statement> |

<Repeat Statement> |

<For Statement> |

<Case Statement> |

<With Statement> |

<Compound Statement> |

<Assignment Statement> |

<Procedure Call> |

<Return Statement> |

PCQ_Pascal 37 / 73

<Goto Statement>

If Statements

The if statement allows you to test alternatives. It has the

following form:

<If Statement> ::= if <Boolean Expr> then <Statement> |

if <Boolean Expr> then <Statement>

else <Statement>

If the Boolean expression evaluates to True, the statement

following the word "then" is executed. If the Boolean expression

evaluates to False, the statement in the else clause, if one

exists, is evaluated. If no else clause exists, execution

continues with the statement following the "if" statement.

There is an ambiguity here - consider the following fragment:

if Expr then if Expr then Statement1 else Statement2

To which "if" test does the else clause apply? PCQ, like most

implementations, always attaches the else part to the most recent

"if".

While Statements

The "while" statement is one of several that allow you to loop.

It has the following form:

<While Statement> ::= while <Boolean Expr> do <Statement>

At the beginning of the loop, the Boolean expression is evaluated.

If it evaluates to True, the statement part is executed. When

that finishes, the expression is re-evaluated, and the process

continues until the expression evaluates to False. Once that

happens, execution continues with the statement following the

while statement.

Repeat Statements

The "repeat" statement provides a slightly different form of

looping. It has the following form:

<Repeat Statement> ::= repeat <Statements> until <Boolean Expr>

<Statements> ::= <Statement> | <Statement> ; <Statements>

When the repeat statement is encountered, the statement part is

executed, then the Boolean expression is evaluated. If the

expression evaluates to False, the statement part is executed

again. If the expression evaluates to True, execution continues

PCQ_Pascal 38 / 73

at the following statement. Note that "repeat" loops always

execute at least once, whereas "while" loops might not execute at

all. Also note that the <Statements> part can actually be empty.

For Statements

The "for" statement provides a third type of looping, for

occasions when you know exactly how many iterations of the loop

you want to execute. It has the following form:

<For Statement> ::= for <Variable Reference> :=

<Expression> <Direction>

<Expression> do <Statement>

<Direction> ::= to | downto

Note that this is different from the PCQ version 1.1. When a

"for" loop is encountered, the first expression (the initial

value) is evaluated, and its value is stored in the variable

reference (called the index). Then the index is compared to the

second expression (the final value). If the direction is "to",

and the index is less than or equal to the final value, the

statement part is executed. At the end of that, the index is

incremented by one and again tested against the final value. This

goes on until the index is greater than the final value, at which

time execution moves on to the next statement.

If the direction is "downto", the same thing happens, except the

index is decremented at each pass, and looping continues until the

index is less than the final value.

Note that the "for" loop might not execute at all, if the initial

value is larger than the final value (for "to" loops, or vice

versa for "downto" loops). Also note that the final value is

fully evaluated each time through the loop, so if it’s a complex

expression you might want to store it in a variable before the

"for" statement.

You can always use a "while" or "repeat" loop in place of a "for"

loop, and in fact the "for" loop is least often used. Niklaus

Wirth, the guy who designed Pascal and Modula-2, actually left the

statement out of his latest language (Oberon).

It is considered an error to modify the index variable within the

loop, but PCQ Pascal doesn’t enforce it. That doesn’t make it a

good idea, of course.

Case Statements

PCQ_Pascal 39 / 73

The Case statement is used to test a value against a series of

alternatives, and process instructions accordingly. It has the

following form:

<Case Statement> ::= case <Expression> of <Alternatives> end |

case <Expression> of <Alternatives>

else <Statement> end

<Alternatives> ::= <Alternative> | <Alternative> ; <Alternatives>

<Alternative> ::= <Case Vals> : <Statement>

<Case Vals> ::= <Case Val> | <Case Val> , <Case Vals>

<Case Val> ::= <Const Expr> | <Const Expr> .. <Const Expr>

When the case statement is executed, the expression is evaluated.

It is then compared against all of the cases and ranges until it

matches one, at which point the associated statement is executed.

If none of the alternatives match, the else statement is executed,

if there is one. If not, execution just continues with the

statement following the case statement.

Note that the expression is only evaluated once, so a case

statement can be more efficient than an equivalent series of "if"

statements. Also note that one statement (at most) from the case

statement is executed - it’s not like C, where execution falls

through until you tell it to knock it off.

With Statements

The With statement allows to specify a record variable to which a

statement will apply. Within the statement you can abbreviate

references to the record’s fields by specifying just the field

name. That saves you some typing, and the compiler generates

somewhat more efficient code. It serves no functional purpose.

The format of a With statement is as follows:

<With Statement> ::= with <Expressions> do <Statement>

<Expressions> ::= <Expression> | <Expression> , <Expressions>

If you specify more than one record (separated by commas), the

compiler treats it like nested with statements, with the first

record listed at the outermost scope and the last one at the

innermost.

In the statement, any references to fields will be considered to

apply to the innermost record to which it applies. Ambiguities

can be cleared up by using the full record specification.

PCQ_Pascal 40 / 73

With statements are especially handy when the record reference is

long and convoluted - it will only be executed once, which

increases efficiency. The other time it comes in especially handy

is filling in values in a record. It doesn’t always improve the

program’s efficiency, but it saves a lot of typing.

If you are executing under a with statement of the form "with pˆ

do ...", it is considered an error to alter the value of p. For

example, it is an error to free the memory of a record in a "with"

statement referencing the record. This error is not detected by

PCQ Pascal, but it’s a good idea to avoid it.

Compound Statements

The compound statement allow you to use a series of statements in

any situation that calls for at least one statement. It has the

following form:

<Compound Statement> ::= begin <Statements> end

A compound statement can in fact be used wherever a statement is

allowed, and the compound statement by itself generates no extra

code. In other words, surrounding a group of expressions with

"begin" and "end" will not change the code the compiler produces -

it just clarifies your purpose.

Assignment Statements

Assignment statements are used to set the value of variables.

They have the following form:

<Assignment Statement> ::= <Variable Reference> := <Expression>

Remember that the type of the variable must match the type of the

expression identically (see the section called Type Declarations

for the specific rules).

Procedure Calls

Procedure calls transfer execution to a pre-defined routine,

passing parameters as required. They have the following form:

<Procedure Call> ::= <Identifier> |

<Identifier> (<Actual Params>)

<Actual Params> ::= <Actual Param> |

<Actual Param> ; <Actual Params>

<Actual Param> ::= <Expression>

Procedures are different from functions in that functions return a

PCQ_Pascal 41 / 73

value, and are callable only from expressions. Procedures do not

return a value, and are callable only from statements.

When a procedure statement is executed, each actual parameter is

evaluated and pushed on the stack, in left to right order.

Because C uses variable numbers of parameters, it pushes actual

parameters on the stack in right to left order. Therefore if you

plan to call a C routine you will need to reverse the order of the

parameters.

Return Statements

Normally, execution of a procedure continues until the end of the

procedure, when execution returns to the caller. The "return"

statement allows you to escape the current procedure immediately.

It has the following very simple form:

<Return Statement> ::= return

The "return" statement is only valid within procedures. It is not

valid within functions because they must return a value - the

analogous statement in a function is an assignment to the function

identifier, which causes the function to return immediately. The

"return" statement is also not valid in the main body of the

program, because it would cause the program to terminate. Instead

you must explicitly terminate the program with the Exit statement.

Goto Statements

The "goto" statement immediately transfers execution to a defined

label. It should be used with extreme care, and if possible

avoided. Its form is:

<Goto Statement> ::= goto <Identifier>

Standard Pascal requires that a goto label should be a series of

digits, and Turbo Pascal extends that definition to allow

identifiers to be used as labels. PCQ Pascal takes the next

logical step by requiring that labels be identifiers, not numbers.

Most programmers will tell you that the "goto" statement is simply

bad programming practice, because it makes programs difficult to

understand and debug. There are, however, other problems. For

instance, if you "goto" from inside a "for" loop to outside of the

loop, you will confuse your program’s stack (until you leave the

routine). Similar things happen for the "with" statement. I

won’t even bother to tell you the havoc that would ensue if you

jumped into a "for" loop from outside.

The moral of the story is: try to avoid them.

PCQ_Pascal 42 / 73

1.16 Input / Output

===

Input/Output

===

Pascal IO

You can think of the Pascal IO routines as an interface to the

AmigaDOS routines. The Pascal IO routines all use AmigaDOS for

the actual reading and writing, so if you felt like it you could

just use an AmigaDOS file instead.

Pascal IO does have several advantages, however. First of all,

all PCQ Pascal files are buffered, which means that reads and

writes do not necessarily have to access AmigaDOS each time. That

speeds things up a bit.

The other advantage you get is the use of the Pascal Read, ReadLn,

Write and Writeln routines, which can be awfully handy.

When you declare a file in your program, as either a "File of Some

Type" or as "Text", you are in effect allocating a record. That

record, if its fields were accessible, would look like:

PCQFile = record

Handle : An AmigaDOS file handle

Next : A pointer to the next open Pascal file

Buffer : The address of the file’s buffer

Current : The position in the buffer at which the

next read or write will take place.

Last : The Last position of a read

Max : The address of the end of the buffer+1

RecSize : The size of the file elements

Interactive : A Boolean value - True means the file

is attached to a CLI window.

EOF : A Boolean value

Access : A Short value, either MODE_NEWFILE or

MODE_OLDFILE

end;

Text and Typed Files

Pascal has two very different types of files. The normal kind of

file is called a typed file, and is declared with a type

PCQ_Pascal 43 / 73

specification of the form:

FileVar : File of ElementType

Typed files are essentially unlimited sequences of elements of

that one element type. The Write command can be used to write

individual elements to the end of the file, and the Read command

can be used to input the current element and move the file pointer

to the next one. You can only write one type of element to each

typed file.

Typed files store their elements in exactly the same format that

they appear in memory, so they are often unreadable. A file of

character elements is readable, but a file of integer elements

would be incomprehensible. Since typed files always store

complete elements, each element is necessarily a fixed size.

You don’t actually need anything but typed files - anything you

can do with Pascal files can be done with them. For the sake of

convenience, however, Pascal also uses the Text file type. The

Text file is a special kind of "File of Char", but is not

compatible with it. Text files are made up of ASCII characters

broken up into variable length lines. Each line is terminated by

a special newline character, which on the Amiga is the line feed

character (ASCII 10. On MS-DOS machines, the newline character is

the carriage return/line feed sequence).

Since Text files (like this documentation, and all the source

files) are so common, Pascal has a variety of routines built-in to

read and write values to and from them. Most of the standard

types, for example, have a special routine for converting them

into ASCII characters and writing them to a file. These routines

are called automatically by the compiler to write each expression

in a Write procedure to a Text file. Similar routines exist for

reading the same types. The descriptions of the Read and Write

procedures below described exactly how this conversion takes

place.

There is even a special form of the Read and Write procedures

designed to work only with Text files - the ReadLn and WriteLn

commands. They are explained below, but note that since typed

files have no lines, these two routines are used only for Text

files.

Opening Files

PCQ_Pascal 44 / 73

There are several closely related routines for opening Pascal

files. For opening input files, which are existing files that

will be opened for reading, you can use either the ReOpen()

function or the Reset() procedure. They are defined as follows:

Reset(var FileVar : File or Text;

FileName : String;

BufferSize : Integer);

The "Reset" procedure opens a file for reading. The FileVar

parameter specifies the Pascal file variable that should be

associated with this AmigaDOS file. The FileName is the file

name, with a complete path if necessary. Since this can be any

valid AmigaDOS filename, it can actually refer to the printer, a

console window, or all sorts of other things.

The BufferSize parameter specifies the size of the buffer you

want, in bytes. When PCQ tries to open your file, it will try to

allocate this much memory as a buffer. If it can’t, it sets

IOResult and fails. Actually, PCQ tries to allocate a buffer that

is an even multiple of the file element size, not larger than

BufferSize, but at least one element long (the element size for

Text files is one character). The BufferSize parameter is

entirely optional - if it’s not included, a default value of 128

is used.

If you are using automatic IO checking, your program will abort

with a runtime error if the file cannot be opened. If you are

checking manually, it will just set IOResult.

The variable FileVar should not refer to an file that’s already

open. Either the file should be closed first, or you should use a

different file variable.

ReOpen(fname : String;

var fvar : file or text;

buffersize : Integer) : Boolean

ReOpen is the function form of Reset. It attempts to open a file

in the same way as Reset, and if everything goes O.K. it returns

True. If there was a problem, it returns False.

ReOpen never sets IOResult, so if you are using automatic IO

checking a call to ReOpen will not abort the program. As in the

Reset procedure, the BufferSize parameter is optional.

If you need to open a file for writing (which deletes any existing

file of the same name!), you can use the Rewrite procedure or the

PCQ_Pascal 45 / 73

Open() function. They are defined as:

Rewrite(var FileVar : File or Text;

FileName : String;

BufferSize : Integer);

Rewrite opens an AmigaDOS file for writing, erasing any existing

file with the same name. The parameters are just like the Reset

command, and the BufferSize is still optional.

Rewrite sets IOResult, so if your program is using automatic IO

checking it will abort if the file cannot be opened. Programs

handling their own IO checks should be sure to look at IOResult.

As with all the file opening routines, you should not use a file

variable that already refers to an open file.

Open(fname : String;

var fvar : file or text;

buffersize : Integer) : Boolean

Open is equivalent to Rewrite, but in function form. It attempts

to open the file for writing, and if everything goes O.K. it

returns True. If there is any problem, it returns false.

Remember that opening a file for output means that any existing

file with the same name gets erased.

Open does not set IOResult, so programs using automatic IO

checking can use it without aborting. The BufferSize parameter,

just as in the rest of the file opening routines, is optional.

Writing to Files

Output in Pascal is handled by the Write and Writeln procedures.

Unlike most Pascal procedures, these routines will accept an

unlimited number of parameters. If you are writing to a Text

file, the parameters can be a variety of types. The Write

procedure has the following basic form:

Write(var FileVar : Text or Typed File, Expressions...)

The FileVar is optional. If it is not included, the standard Text

file Output is used in its place. If the FileVar is a typed file,

each expression must be of the element type. They will be written

to the file with no space in between them, formatted just as they

are in memory.

If you are writing to a text file, it’s a different story

entirely. First of all, each expression can take the form "e:m:n"

where e is the expression itself and m and n are constant

PCQ_Pascal 46 / 73

integers. m specifies the minimum field width - if the item to be

written would take up fewer than m characters, spaces are written

to fill out the field. n is only allowed if e is an expression of

type Real, and it specifies how many digits to the right of the

decimal point will be written out. The default values for m and n

are 1 and 2, respectively. Specifically what gets written out

depends on the type, according to the following:

Integer

Short

Byte These three types are all written as sequences of ASCII

digits, as expected. They are not preceded by any spaces,

but Short and Integer types might lead off with a minus

sign if appropriate. There will be no trailing spaces.

Real The entire integer part (the part to the left of the

decimal point) is written out. If n is not zero, a

decimal point followed by n fractional digits are written

out. Note that for Real numbers, m indicates the number

of digits to the left of the decimal point that should be

written, not the full field width (this will probably

change in the next version).

Char A character is written out as just the single character,

unchanged.

Array of Char

The entire array, for its whole declared length, is

written out character by character.

String The entire string up to, but not including, the

terminating null character is written.

Boolean Either the word TRUE or the word FALSE is written, with

no leading or trailing spaces.

WriteLn(var FileVar : Text; Expressions...)

Writeln is exactly the same as Write, but after is has written out

each of the expressions according to the rules above, it also

writes out a newline character. WriteLn can only be used on Text

files.

Reading from Files

Input in Pascal is handled by the Read procedure. Like the Write

procedures, Read accepts any number of parameters, and many types

of parameters if you are reading from a Text file. The format is

PCQ_Pascal 47 / 73

as follows:

Read(var FVar : Text or Typed File; Variable References....)

The FVar parameter is optional. If it is omitted, the standard

Text file "Input" is used in its place.

If FVar refers to a typed file, each variable reference is filled

with the subsequent file elements, unless EOF is reached or some

other error occurs first. Reading from a Text file is a somewhat

more flexible job. Just as with the Write statements, what

happens depends on the type being read, according to the

following:

Integer

Short

Byte All white space, which is defined as any character whose

ASCII value is less than or equal to 32 (the space

character) is skipped. If the first non-white space

character is not a digit or the EOF is reached, an IO

error is raised (see Exit Procedures for more

information). If not, digits are read until the first

non-digit. The resulting number is returned, and the

file pointer rests on that non-digit.

Real First, an integer is read exactly as above. If the next

character is a period, digits are again read in as

fractional digits until the first non-digit. The pointer

rests on that first non-digit. A Real value does not

need a fractional part, nor does it require a decimal

point.

Char Reads the next single character. Standard Pascal

translates end-of-line characters into spaces, but PCQ

Pascal, like Turbo Pascal, allows them to come through as

ASCII linefeeds.

Array of Char

Reads characters into the array until either the array is

full, or the end-of-line is reached. If the end-of-line

is reached, the rest of the array is padded with spaces

and the file pointer is left pointing at the end-of-line

character - you’ll need to call Readln to get rid of it.

String Reads characters into the String buffer until the

end-of-line is reached. At that point the string is

terminated by a zero byte, and the file pointer is left

PCQ_Pascal 48 / 73

pointing to the end-of-line character. Note that this

routine does not check for length, so you need to be sure

to provide a large enough string for the file you are

reading.

Boolean Can’t be done.

A series of variable references in a Read procedure acts exactly

like each of the references in individual Read procedures. Thus:

Read(Input, Var1, Var2);

is equivalent to:

Read(Input, Var1); Read(Input, Var2);

which is also equivalent to:

Read(Var1); Read(Var2);

ReadLn(var FVar : Text; Variable References...)

Readln is exactly like Read, but after all the specified variables

have been read, this command eats characters until it finds the

next end-of-line, and it eats that too. This command can only be

used on Text files.

File Buffers

Like Standard Pascal, but unlike Turbo Pascal, PCQ allows you to

access the file buffer directly. The syntax of the reference

looks like:

<File Variable Reference> ˆ

e.g. FileVarˆ

That expression has the same type as the elements of the file

itself (Text files have Char elements). With input files, this

syntax looks at the next element that will be input by the Read()

procedure, like a look-ahead. If EOF(FileVar) is True, then

FileVarˆ is invalid.

For output files, the file buffer reference shows you the output

buffer. This is not the value that will be written out with the

Write() procedure - see the description of Put() below for more

information.

Logically, the file buffer you access through this syntax is only

as long as one element, but the actual buffer in memory can be of

virtually any size. See the file opening commands for information

on setting the buffer size.

Using this syntax in PCQ is actually considered an IO operation,

in the sense that it can set IOResult. This only occurs when the

PCQ_Pascal 49 / 73

file is interactive, because the buffers of interactive files are

not kept full.

If you are making use of the file buffer, you will probably use on

or both of the following routines:

Get(var FileVar : Text or Typed File)

Get just moves the file pointer from the current element to the

next one. That may involve calling DOS to refill the buffer, but

normally it’s just a matter of adjusting a field in the file

variable itself. It is an error to call this routine on a file

for which EOF(FileVar) is True.

Every read from a typed file of the form "Read(FVar,Element)" can

be thought of as:

Element := FVarˆ; { To assign the current value }

Get(FVar); { To advance the file pointer }

Put(var FileVar : Text or Typed File)

Put moves the file pointer past the current element in an output

file, writing the buffer to disk if necessary. Every statement of

the form "Write(FVar,Expr)", where FVar is a typed file, could be

implemented as:

FVarˆ := Expr; { Set the buffer value }

Put(FVar); { Commit the buffer }

Note that until the Put procedure is called, any assignments to

the file buffer will write over each other.

IO Checking

Input & Output can cause more unforeseen errors than virtually any

other area of programming. PCQ Pascal catches IO errors in one of

two ways. The first is called automatic IO checking - PCQ checks

for errors after each and every IO operation. If there is an

error, the program aborts with a runtime error. Believe it or

not, that’s the default behavior.

If you turn off automatic checking using the {$I-} compiler

directive, you become responsible for checking for errors. You do

this by calling the IOResult function, which returns 0 if

everything is O.K., or some other number if there was a problem.

When you call IOResult, you automatically clear its value, so if

you are going to use the error code later on you need to save it

in a variable.

IOResult is set by every IO routine. No IO routines will function

PCQ_Pascal 50 / 73

if IOResult is not zero, so you should check for errors whenever

possible to avoid skipping reads and writes.

The values returned by IOResult are the same as the runtime

errors - possible values are listed in the section called Exit

Procedures.

Standard IO

One of the tricky parts of programming on the Amiga is that a

program can be launched from two very different environments. The

CLI invokes a program in much the same way as MS-DOS does - the

program has obvious input and output channels. The Workbench, on

the other hand, offers nothing of the sort. A program that needs

input and output channels must establish them explicitly.

All PCQ Programs establish some sort of standard input and output

channels, which are accessed through the Text files Input and

Output. What those files represent depends, naturally, on the

environment from which the program was executed.

Let’s take the simple case first. If you run a program from the

CLI, Input and Output will refer to the CLI window itself. Unless

you use indirection, that is, in which case Input and Output will

refer to the channels specified on the command line (see an

AmigaDOS manual for more information). Maybe that wasn’t so

simple after all.

If the program was launched from the Workbench, the startup code

goes through several steps to establish Input and Output. First

of all, it looks at the value of the standard String typed

constant StdInName. If StdInName is Nil, no file is opened and

referring to Input will cause grave problems. If not, the startup

code attempts to open the file. If it can’t do it, it terminates

with run-time error 53. If all went well, Input is established.

Next the startup code looks at StdOutName. If it’s Nil, Output is

not established, so any Write procedures had better use an

explicit file. If StdOutName refers to the same string as

StdInName (not two strings with the same contents - it actually

has to point to the same memory), and if the file associated with

Input is interactive (i.e. attached to a console window), then

Output is associated with the same file handle as Input. The

default values of StdInName and StdOutName have this property. If

either of those tests fail, the startup code tries to open a file

PCQ_Pascal 51 / 73

according to StdOutName, and if it works, then Output is set up

accordingly. Otherwise, the program will terminate with runtime

error 57.

The default values for the two channels are defined in PCQ.lib as

follows:

CONST

StdInName : String = "CON:0/0/640/200/";

StdOutName : String = StdInName;

According to the rules specified above, this would normally result

in one full-screen console window being opened, with input coming

from it and output going to it.

Note that StdInName and StdOutName are defined as typed constants.

They can’t be variables, because they are opened before any of

your code executes. If that’s a major problem, you can define

them both as Nil, and from inside your program you can open Input

and Output as anything you like. You should probably re-use Input

and Output only when your program was run from the Workbench (you

can check if you were run from the Workbench by calling

GetStartupMsg from "Utils/Parameters.i").

If you compiled your program using the "-s" small initialization

code switch, all bets are off: Input and Output are not

established, and in fact none of the other IO routines are

initialized either. See the section called Small Initialization

Code for more information.

1.17 Strings

===

Strings

===

PCQ Pascal strings are similar to C strings, and nothing at all

like Turbo Pascal strings. That’s too bad, because Turbo Pascal

strings are a lot easier to work with. Eventually, PCQ Pascal

strings will be the same as Turbo Pascal strings, but that day has

yet to come.

The string type can be thought of as simply "ˆChar". Thus all

string variables take up exactly 4 bytes, and they store the

address of the actual text. The text can be of any length, and

is terminated by the character Chr(0). A statement like:

PCQ_Pascal 52 / 73

StringVar := "A String"

... actually stores the address of the constant string in the

string variable, rather than copying the string itself into some

existing space.

String constants in the Pascal text are delimited by double quote

characters, as opposed to the single quote characters of character

array constants. Thus "A String" is considered a constant of type

String, whereas ’not a string’ is considered a constant of type

"Array [0..11] of Char".

Strings are defined as simple pointers, so the reference

"StringVarˆ" is valid, and is of type Char. It actually points to

the first byte within the string buffer. But unlike normal

pointers, the individual characters in a string can also be

accessed through subscript notation. For example, to get the

fourth character in a string, you could use "StringVar[3]".

Remember that "StringVar[0]" is the first element.

Allocating String Space

Since the actual String variables only store an address, you need

to allocate some space for the actual text. C allows you define

that space when you declare the string type, but PCQ Pascal

doesn’t even offer that much. In PCQ Pascal, you have to

explicitly allocate the memory from the system, or assign the

address of a buffer variable to the string. There are several

functions, all defined in the include file StringLib.i, that

allocate space for strings. They are:

AllocString(Size : Integer) : String

AllocString simply returns an uninitialized memory area that is at

least Size bytes long. This memory is considered PCQ memory, so

it is returned to the system after its use (see the section called

Memory Management for more information).

strdup(InString : String) : String

The strdup (string duplicate) function is equivalent to the

following:

temp := AllocString(strlen(InString));

strcpy(temp,InString);

strdup := temp;

In other words, it allocates just enough memory to hold the input

string, then makes a copy of the input string in the new buffer.

PCQ_Pascal 53 / 73

This memory is also considered PCQ memory, so it will be returned

to the system when the program terminates.

The other way to set up a string buffer is to assign the string

variable the address of an array declared elsewhere. Thus the

following:

Var

String1 : String;

Buffer1 : Array [0..127] of Char;

begin

String1 := Adr(Buffer1);

... sets up a 128-character buffer for String1. If you try to

store a 129-character string in that buffer, all sorts of problems

will result, so take care.

Using Escape Characters

There are, of course, lots of useful characters that can’t easily

be written into a program source file. The end-of-line character,

for example, is always considered the end of a line, rather than

taken as a constant. If you need to include this sort of

character in any text constant (a Char, Array of Char, or String),

you use the C escape convention, in which a backslash "\" is

followed by a special character. The escape sequences supported

by PCQ are:

\n Line Feed, chr(10)

\t Tab, chr(9)

\0 Null, chr(0)

\b Backspace, chr(8)

\e ESC, chr(27)

\c CSI (Control Sequence Introducer), chr($9B)

\a Attention, chr(7)

\f Form Feed, chr(12)

\r Carriage Return, chr(13)

\v Vertical Tab, chr(11)

Every other character passes through unchanged, so the following

definitions also hold:

\ Just a single backslash

\’ A single quote, even in a single-quote-delimited

constant

\" A double quote, even in a String constant

PCQ_Pascal 54 / 73

Thus a string like "A\tboy\nand\his \"dog." becomes:

|A boy

|and\his "dog

... where the vertical bar | represents the left margin.

StringLib

StringLib.i is an include file in the Utils directory that defines

a bunch of C-style functions for use on strings. Those functions

are explained in the include file itself. The source for these

routines is in the runtime library source, which is available in

the registered version.

1.18 Memory management

===

Memory Management

===

One of the problems with Amiga programming is that there is no

resource tracking. In an MS-DOS program, you can open files and

allocate memory like crazy, then just quit the program and

everything’s O.K. On the Amiga, all those files would stay open

and the memory would stay allocated. You are expected to clean up

after yourself.

To help you do that, PCQ Pascal uses a special memory allocation

scheme that uses the Intuition AllocRemember routine to keep track

of all your memory allocations. When your program terminates, any

memory you haven’t deallocated is automatically freed by an exit

procedure.

This only works for memory allocated through one of the special

PCQ routines New, AllocString (from Utils/StringLib.i) or GetMem

(from Utils/PCQMemory.i). Memory allocated through one of these

routines is called PCQ memory, but of course it’s no different

from normal system memory except that it will be returned.

Even though it will be automatically freed, you should deallocate

memory as soon as you are through with it. There might be other

programs running that can use it. If you do free PCQ memory, you

need to use Dispose, FreeString or FreePCQMem to do it. If you

don’t, the memory will be returned to the system, but the PCQ

memory routines won’t know about it. They will, therefore, try to

PCQ_Pascal 55 / 73

free it again when the program terminates. Guru.

PCQ memory is always allocated with the flags MEMF_PUBLIC and

MEMF_CLEAR. If you need chip memory, therefore, you should use

the normal Exec function AllocMem (from Exec/Memory.i).

HeapError

So what happens when the PCQ memory routines are unable to

allocate some memory a user has called for? That depends on the

value of HeapError, a standard Address variable. HeapError

contains the address of a function that has a header with the

following form:

Function HeapFunc(Size : Integer) : Integer;

The Size parameter is the amount of memory the allocator was

trying to get, and the integer returned determines how the

allocator will respond to the problem. If it returns 0, the

allocator will abort the program with runtime error 54. If it

returns 1, the allocator will return the value Nil, so you’ll have

to check after each call to New, AllocString or GetMem for a Nil

value. If the HeapError function returns 2, the allocator tries

the allocation again. This gives you a chance to free up some

memory, if possible. If that allocation fails, the HeapError

function will get called again.

To install a function as the HeapError function, you would use

something like the following:

HeapError := @HeapFunc;

... where HeapFunc is defined as above.

1.19 Exit procedures

===

Exit Procedures

===

Exit procedures are routines that you set up to run after the main

routine is finished, or if there is a run-time error. They are

used to return resources to the system, or to exit gracefully or

even recover from run-time errors.

How it works is: when a program terminates, for whatever reason,

PCQ examines the value of ExitProc, a standard Address variable.

If it is non-nil, PCQ sets ExitProc to Nil and calls the procedure

PCQ_Pascal 56 / 73

it pointed to. When the procedure returns, PCQ checks ExitProc

again, and continues calling exit procedures until ExitProc is

Nil. The normal PCQ initialization code sets up an exit procedure

that frees all memory allocated through New or AllocString, and

closes any Pascal files that remain open. Normal programs,

therefore, have at least one exit procedure.

To make a procedure an exit procedure, first define a routine with

no parameters. Then you set the ExitProc standard variable to the

address of your routine. In most cases you’ll want to save the

previous value of ExitProc so all the other exit procedures can

run as well. Within the exit procedure itself, you should reset

ExitProc to point to the previous routine.

There are two additional variables associated with exit procedures

that are only valid while the procedure is actually running as an

exit procedure. They always exist, but their value is only set

when the program terminates. They are:

ExitCode ExitCode contains the value of any runtime error that

caused the program termination. This is either a

value you supplied through the Exit() routine, or a

runtime error code.

ExitAddr ExitAddr is the address where a runtime error

occurred. It is only valid when ExitCode is non-zero.

It can (in theory) be used to recover from a runtime

error, but you’d have to be awfully familiar with the

actual runtime code to get it to work. The runtime

source code comes with the registered version of PCQ

Pascal.

Runtime Errors

There are several errors that will cause a PCQ program to

immediately terminate. When that happens, ExitCode will be set to

a specific value, which will eventually be returned to AmigaDOS.

AmigaDOS, in turn, will normally ignore it, so you’ll never see

it. The two ways I know of the see the return value (if it is

non-zero) are to run the program in a script, or to run the

program using AmigaDOS’s Run command. In either case, if the

program has a non-zero return code AmigaDOS will write out

"ProgramName failed returncode #".

The runtime errors generated by PCQ programs are as follows:

PCQ_Pascal 57 / 73

Code Description

--

50 No memory for IO buffer (1)

51 Read past EOF (1)

52 Input file not open (2)

53 Could not open StdInName (3)

54 New() failed (4)

55 Integer divide by zero

56 Output file not open (2)

57 Could not open StdOutName (3)

58 Found EOF before first digit while

reading an integer (1)

59 No digits found in reading an integer (1)

60 Range error (5)

The following AmigaDOS error codes can result from a call

to Open, ReOpen, Write, Read, etc: (1)

103 Insufficient free store

202 Object in use

203 Object already exists

204 Directory not found

205 Object not found

206 Invalid window specification

210 Invalid component name

212 Object wrong type

213 Disk not validated

214 Disk write protected

218 Device not mounted

221 Disk full

223 File is write protected

224 File is read protected

225 Not a DOS disk

226 No disk in drive

(1) These errors only cause runtime errors when automatic

IO error checking is enabled (it’s the default). If

you have used the {$I-} directive to indicate that

you’ll check IOResult explicitly, the program will

not automatically terminate.

(2) PCQ cannot always determine when the file is not

open. If it can, it issues this error. If it can’t,

PCQ_Pascal 58 / 73

the machine will crash.

(3) These errors occur in the initialization code, before

any exit procedures are established.

(4) See the section called Memory Management to see how

keep a runtime error from being issued.

(5) This only occurs if you have turned range checking on

with the {$R+} directive.

1.20 Compiler directives

===

Compiler Directives

===

There are several options that PCQ Pascal provides that are not

useful for all programs. For example, a large application should

not terminate with a runtime error if it can’t open a file.

Therefore PCQ Pascal allows you to determine several aspects of

the program generated from your code.

You control these options by issuing compiler directives.

Compiler directives are contained in comments, and must begin with

a dollar sign "$" as the first character in the comment.

Immediately following the dollar sign is a letter indicating the

directive, which is then followed by zero or more characters

giving additional information.

You can include more than one directive in a single comment by

separating the directives by commas. Thus the following

directives turn IO checking off, and range checking on:

{$I-,R+}

The following directives are supported:

{$A Any number of assembly instructions}

The $A directive allows you to insert assembly language

instructions into the source code at the given point. The text of

the instructions is passed through to the assembler unchanged, so

you should include comments and make variable references according

to assembly language style.

Since comments are allowed anywhere that white space is allowed,

you could technically insert some assembly language instructions

in the middle of an expression. That could produce unpredictable

results, however, so you should use assembly language only between

PCQ_Pascal 59 / 73

statements.

{$B+} or {$B-}

The $B directive turns short-circuit evaluations on and off. If

you use the $B+ directive to turn short-circuit evaluations on,

which is actually the default, PCQ will evaluate Boolean

expressions normally, but as soon as the final value of the

expression is known, it will skip any remaining parts of the

expression. Thus in a series of "and" clauses, as soon as one of

them evaluates to False, the rest are not evaluated at all. In a

series of "or" clauses, as soon as one of them evaluates to True,

the rest are skipped. If you are using short-circuit evaluations

the expression will always be evaluated from left to right.

Short-circuits make Boolean evaluation somewhat faster, especially

in long equations.

If you turn short-circuit evaluations off using the $B- directive,

all parts of a Boolean expression will be evaluated even if the

outcome is not in doubt, and the expression will not necessarily

be evaluated in left-to-right order.

{$I "fname"}

This directive inserts the file "fname" into the input stream at

the current position in the file. When the included file has been

fully read, the input is again taken from the original file. You

can’t use any other directives after this one, but you can include

any comments you like after the file name.

In order to keep from including a file more than once, the

compiler keeps a list of all file name already included. If the

file name matches one already on the list, it is not included.

Note that only the actual file name, not the entire path, is

compared. Thus you should be sure that all your include files

have unique names.

Almost all the example programs demonstrate the use of include

files.

{$I+} or {$I-}

The other form of the $I directive determines your programs

reaction to Input/Output errors. The default behavior, which

corresponds to the {$I+} directive, is to issue a runtime error

whenever an error is detected in an IO routine. The other option,

specified by the {$I-} directive, indicates that the program

itself will check the IOResult function after IO operations, and

PCQ_Pascal 60 / 73

handle any errors accordingly. See the Input/Output section for

more information.

{$SN} or {$SX} or {$SP} or {$SD}

The $S option controls the storage of global variables and typed

constants. The N option (for Normal storage) tells the compiler

that for all subsequent global variables, the compiler should

allocate memory in the data segment, and also issue an external

definition (XDEF in assembly language) for the identifier, so it

can be used by external routines. This is the normal storage

scheme for PCQ programs.

The X option (for eXternal storage) tells the compiler that all

subsequent global variables are defined outside of the program.

Therefore the compiler should not allocate any space for the

variables, but simply create an external reference (XREF in

assembly language). This is the normal storage scheme for

external files.

The P option (for Private storage) tells the compiler that it

should allocate space for global variables, but it should not

export the identifier itself. This allows external files to have

global variables that do not affect the main program.

The D option (for Default storage) resets the storage to its

standard value. In an external program, it acts like {$SX}, and

in a normal program it acts like {$SN}.

{$O+} or {$O-}

These options are identical to the {$I+} and {$I-} options.

{$R+} or {$R-}

The $R directive determines whether the compiler will verify that

index values are within the specified range of the array. The

default behavior is {$R-}, which means that the compiler will not

generate the extra code. Specifying {$R+} makes the compiler

issue a runtime error with error code 60. Turning this option on

results in larger and slower programs, so I would recommend only

using the option while testing.

1.21 Type casts

===

Type Casts

===

PCQ_Pascal 61 / 73

If you are using a strongly typed language like Pascal, you need a

way to get around the type rules. PCQ Pascal uses the same method

as Turbo Pascal and Modula-2 to get around the type checks. The

format for a type cast is as follows:

<Type ID> (<Expression or Variable Reference>)

This looks just like a function, but it is definitely not one. A

type cast never generates any code - it just lets the code get by

the compiler. Naturally, this can lead to some serious problems.

For example, a type cast like "Short(EnumeratedVar)" will cause

problems because enumerated types are normally one byte long. You

have told the compiler to consider it a two byte value, but the

other byte is undefined. The correct way to handle that call

would be to use the Ord() function, or at least cast it to a Byte

instead.

The difference between Short() and Ord() in this example is that

Ord() is a type transfer function, whereas Short() is not a

function at all. As another example, consider the fragment below:

Writeln(Integer(2.0));

Writeln(Trunc(2.0));

Those two lines will not write the same values. Trunc(), another

type transfer function, converts the real value 2.0 into the

integer value 2 before writing it. The Integer "function" does

nothing at all, so the program just writes the real value as if it

were an integer, which is sure to produce some preposterous

number.

In general, casting an expression to a larger sized expression is

a bad idea, and casting a simple expression (an ordinal, real, or

pointer value) to a complex type (an array or record reference) or

vice versa will almost always produce nonsense results.

1.22 Small initialisation code

===

Small Initialization Code

===

You might, sometime, want to create a program that doesn’t have

the overhead of normal PCQ Pascal programs. For example, if you

never use Pascal files, there’s no point having all the code for

Writeln() in your program. If you want to cut the start-up and

PCQ_Pascal 62 / 73

shut-down code that PCQ adds to your program to a minimum, you can

use the "-s" option (for Small) on the command line. For example,

to compile Tiny.p with the small startup code, you would use the

following line:

Pascal Tiny.p Tiny.asm -s

The overhead you get rid of is not useless fat, however, and one

of the problems with not having it is that you can’t use it. Put

another way, if you use the "-s" option on the command line, you

will not be able to use any Pascal IO routines. Specifically, the

procedures and functions that become off limits are:

Write, WriteLn, Read, ReadLn, Get,

Put, Open, ReOpen, Close, IOResult

The compiler will flag references to all these identifiers with

the exception of IOResult, but keep in mind that the compiler will

never see references in separately compiled files (external file)

or object code libraries. The moral of this story is that you

should exercise extreme care when using this option, or you will

end up linking both startup routines and crashing the machine

anyway.

So what, exactly, is missing? The normal startup code does the

following:

1. Handles the CommandLine or Workbench message.

2. Opens Intuition, DOS, and the MathFFP library.

3. Sets up Input and Output, opening a window if

necessary.

4. Initializes the memory allocation list and the

open file list so they can be freed at exit.

5. Sets up an exit procedure that will free up the

memory and files.

As you can see, there are several pretty big routines: Open(),

Close(), setting up Input and Output based on the way the program

was run and the contents of StdInName and StdOutName, the exit

procedure that frees everything, etc. The small initialization

code does this:

1. Handles the CommandLine or Workbench message.

2. Opens Intuition, DOS and the MathFFP library.

3. Intializes the memory list, and sets up a simple

routine to free all the New() memory.

And that’s it. According to my preliminary results, this program:

"Program Test; begin end." compiles to about 2.5k normally, and

less than 700 bytes using the small initialization code.

PCQ_Pascal 63 / 73

1.23 External files

===

External Files

===

In developing the compiler I found that writing the entire thing

in one source file was just too much - the intermediate assembly

files were huge, and the compile times were ridiculous. In order

to split things up a bit I added a method for separate

compilation, similar in purpose to Turbo Pascal’s units, but less

powerful.

External files have the following format:

<External File> ::= External; <Definitions>

In other words, an external file starts with the reserved word

External, a semicolon, then any number of definition blocks.

These definition blocks, as defined above, can be functions,

procedures, variables, etc.

Whenever you define a procedure or function, PCQ Pascal "exports"

the identifier so it can be used by other files. These other

files refer to the routine by including an external reference in

their code (see External References in the Procedures and

Functions section). Thus if you define the procedure DoIt in your

external file, you would include the following declaration in any

other file in which you used the routine:

Procedure DoIt;

External;

That declaration tells the compiler that it should "import" the

identifier from some other file.

Defining variables and typed constants at the global level in an

external file is a bit more complicated. Suppose, for example,

that you have a global variable in your main program, but you also

want to refer to it in your external file. If you declare it

normally in the external file, you might expect that PCQ would

reserve two memory areas for the one variable, one in the main

program and one in the external file.

Because of that problem, variables and typed constants at the

global level (only) are by default assumed to be defined only in

normal program files. Thus if you define a global variable in an

external file, PCQ will assume that the variable should be

PCQ_Pascal 64 / 73

imported from some other file, and will not allocate space. This

assumption can be overridden by the $S directive, however.

If you have used an external file, you need to be sure its

routines are included in the final executable program. To do

that, you have to include the file name in the linker command, as

follows:

Blink Main.o Extern1.o ... to MainProgram Library PCQ.lib

In other words you include any external object files (the output

of the assembler) in the linker command after the main file, but

before the "to" keyword. They can be in any order.

Although Pascal is a case-insensitive language, assembly is not.

Thus when you make external references you must be sure that the

very first reference in your code - either the variable

declaration or the actual header for the procedure or function -

has the same case as the definition in the external file.

Subsequent uses can have any case - the first one is used to

generate the reference.

1.24 Notes to assembly programmers

===

Notes to Assembly Programmers

===

In previous versions of the compiler, the registers from d2 to d7,

a2 and a3 were all available at any time, and the scratch

registers were available between statements. That is no longer

true, so some assembly routines might have to be rewritten.

Version 1.2 of PCQ now uses registers much more efficiently, which

means that all of the data registers can be put to use. PCQ

allocates registers from d7 down to hold subexpression results, so

the availability of registers within expressions depends on the

Pascal code. Between statements, all data registers are once

again available.

Address registers are used as before: a7 is the stack pointer, a6

is used to point to the library base, a5 points to the stack

frame, and a4 is used to point to previous frames. The compiler

can use a3 and a2 during expressions to hold intermediate address

values.

The system routines consider d0,d1,a0 and a1 as scratch, but

preserve all other registers.

PCQ_Pascal 65 / 73

1.25 Errors

===

Errors

===

When the compiler runs across some sort of error in your program,

it prints out the current and previous lines, with the general

area of the error highlighted. On the next line, it tells you the

line number and current procedure or function being defined, plus

some (hopefully) descriptive text.

The first error is normally fairly accurate. After that, however,

the compiler might start coming up with a lot of spurious

complaints that are best ignored. For this reason, PCQ Pascal

automatically aborts after four errors (I used to use five, but

apparently the first error was scrolling off of normal screens).

If you specified the "-q" Quiet command line option, the error

reports will have a much more regular form, which is:

"source file name" At ##,## : Error Text

The quotes, colon, and the word "At" are all literal. The first

is the line, and the second is the column. This format is

designed to make automated compilation routines easier to develop.

1.26 Source material

===

Sources

===

I wrote PCQ Pascal as a learning experience, and it case you’re

wondering I sure learned a lot. Where did I go for information?

First, let’s look at information specifically about the Amiga.

Amiga 1.3 Native Developer’s Update. This is a package of four

disks distributed by Commodore (CATS, specifically). It has the

complete C and assembly language include libraries, Amiga.lib,

ALink, and all sorts of other things. Perhaps more importantly,

it also has the Amiga Autodocs, a set of documentation files that

explain each and every function available in the standard Amiga

libraries and devices. It explains each one individually,

however, so you still need a more general source. For $20 U.S.,

however, these disks are a bargain. The 2.0 update should be out

PCQ_Pascal 66 / 73

eventually, but as I write this it’s still unavailable, so you

should send $20 and ask for the 1.3 update from:

C.A.T.S

1200 Wilson Drive

West Chester, PA 19380

Amiga ROM Kernel Manuals. This is the official set of books for

Amiga programming, and if you don’t have them you are handicapped.

The last version I have is from AmigaOS version 1.1 so I’m not

sure how they are organized these days, but you should definitely

get the one that explains Intuition, and if you can still afford

it, the one that explains Libraries and Devices. They are big and

very expensive, but it’s hard to get by without them. Some folks,

by the way, will also tell you that they are mistake-ridden and

difficult to understand, but I found them to be very accurate and

clear. I think some programmers like to blame their lack of

understanding on others....

Anders Bjerin’s C manual. I’ve never looked at this, so I have no

idea of what it covers. It covers lots of Intuition and Graphics

topics, and the C slant shouldn’t be too much of a problem. It’s

available on Fred Fish disks 456 & 457, and unpacks to four full

disks of documentation.

As far as information about compilers in particular, I referred to

the following sources:

PDC, a freely distributable C compiler supported by Jeff Lydiatt.

This is a very good program, although it has been eclipsed

recently by DICE, GCC, and other really good C compilers. I

learned, and used, a lot about activation frames from PDC’s

output, although PDC’s source code remains a mystery.

Pascal-S source code. This is a small demonstration of a Pascal

p-code compiler produced years ago at Wirth’s place, ETH Zurich.

It can answer some questions, but isn’t a really good example of

programming style.

Small-C source code. Small-C is another freely distributable C

compiler, originally described in Dr. Dobb’s Journal years ago.

It is not very powerful, but the simplicity of the source code

makes it a very practical reference. It is one of the compilers

used to bootstrap PCQ.

Brinch Hansen on Pascal Compilers, by Per Brinch Hansen. This

book was of some use, which is more than I can say about the other

PCQ_Pascal 67 / 73

half dozen I read while writing this. From this book I mainly

learned about all the things I was doing wrong. Great.

The Toy Compiler series in Amiga Transactor, written by Chris

Gray. This series is very informative, and is written by the

author of Draco. Gray also writes compilers for a living, so he

actually knows what he’s talking about. Unfortunately this series

is hard to find, because the Transactor is out of business. Ask

around, though - it’s worth it.

Compilers: Principles, Techniques and Tools, by Aho, Sethi and

Ullman. This is the big book, the so-called Dragon book, the last

word on compiler writing. If you want to know about it, it’s in

there, but you had better have a pretty decent math background.

Although it was a textbook for a class I took, I have never read

more than a few pages of it.

1.27 Burner improvements & Update history

===

Improvements On The Burner

===

I’ve been using 1.2 for several months before I issued it, so I’m

relatively confident of its quality. Nonetheless, it’s such a

major change that I expect there will be problems. Therefore my

first priority, as always, will be bug fixes.

Next comes optional C calling conventions, integrated peephole

optimizing, and possibly IEEE single precision reals. That’s all

easy enough.

Version 1.3 will be a compatibility release. It will include

Turbo-style strings, function return values, double precision

reals, and Turbo types: Word, LongInt, ShortInt, etc. Address

will become Pointer, Integer will become LongInt, Short will

become Integer, Exit will become Halt, etc. I may even implement

Unit syntax.

The other area I’d like to explore is debuggers, preferably source

level. I’ve been looking for the source code to one of those

monitor programs, but have yet to find it.

===

Update History

===

PCQ_Pascal 68 / 73

Version 1.2b (March 15, 1992)

o Fixed Write() and Read() of real values, which had

somehow broken yet again.

Version 1.2b (February 15, 1992)

o Fixed the DateTools.i routines

o Fixed a problem with range types with a lower bound in

1..255.

o Comparisons of structured types didn’t used to work.

They do now.

o Fixed a problem with the iff.library GetColorTable glue code.

Version 1.2b (September 8, 1991)

o Fixed another problem with array indexing, this time with

multi-dimensional arrays.

o Fixed a mistake in the Exec/ExecBase.i file.

Version 1.2b (August 13, 1991)

o Fixed a problem with array indexing.

o Compiler now accepts empty REPEAT/UNTIL loops again.

o Removed unmatched { in Intuition/IntuitionBase.i

o Modified Ord() to automatically promote single byte

values to the Short type.

Version 1.2b (June 22, 1991)

o The compiler would ignore function or procedure parameters

following negative constants.

o The compiler now ensures that each element of an array is

word-aligned, if the element is larger than one byte.

o Fixed the looping problem with REPEAT/UNTIL.

o The $A didn’t work between the routine header and the code

area.

Version 1.2a (June 8, 1991)

Fixed several bugs:

o The XOR operator would produce illegal assembly commands.

o Some floating point comparisons would produce incorrect

results.

o The $A assembly directive now works anywhere in the code,

not just in procedures and functions.

o The compiler used to accept unknown identifiers in typed

constants (as operands of the @ operator).

o The INC and DEC statements were not handling Inc(var1,var2)

forms correctly.

PCQ_Pascal 69 / 73

Version 1.2 (April 18, 1991)

Fixed strlen and CreateTask() to work with 32-bit memory.

Re-wrote the expression parsing and code generating routines

completely. The routines now use registers much more effectively,

and provide a good base for the separate peephole optimizer.

Added a few Turbo Pascal features: you can now use typecasts

anywhere, even in address calculations. Thus you can now write

something like RecordType(Pointerˆ).Field, which in version 1.1

was illegal.

Changed the FOR statement significantly in order to make it

more efficient, and more like Turbo. It boils down to two

differences: FOR loops no longer run a minimum of once (e.g for i

:= 1 to 0 do ... will execute zero times), and the BY clause is

gone.

Added short circuit evaluations, automatic floating point

conversions, Heap functions, Reset and Rewrite.

You can now use any standard functions or operators in

constant expressions.

Changed the Read routines to comply with Standard Pascal and

Turbo, in that any white space is skipped before reading integers

and reals. It used to stop at EOLNs.

Version 1.1d, May 6, 1990:

I’ve begun accumulating small changes under a new version

number purely for aesthetics. The first difference is that the

compiler now creates a SECTION for data only if it has to. That

sounds like an efficiency issue, but actually it wasn’t creating a

SECTION at all if it was compiling an External unit.

When StdOut is a file, the compiler no longer writes the line

numbers and all that stuff. I have also made what I hope is the

last fix to the real number reading routines.

The routines that compares include file names to the list of

previously included files is now case-insensitive. I can’t

imagine why it wasn’t before.

Version 1.1c, April 6, 1990:

I should have guessed that the problem recognizing the sign of

small real numbers on output would have a symmetric problem for

input. It did, and now it doesn’t. I also fixed the problem with

signs on real constants. I also added the exp() and ln()

functions recently sent to me by Martin Combs. To avoid inflation

PCQ_Pascal 70 / 73

of version numbers, I’ve changed the date but kept the same

version.

I’ve been thinking about adding peephole optimization to the

process, and rather than doing it the right way I’ve been playing

with a separate program. To make that easier, I’ve removed short

branches from the code generated. A68k adds them where necessary

anyway.

Version 1.1c, March 3, 1990:

The only changes to the compiler are the new standard

functions. The more significant changes were in the runtime

library. First, I replaced the sin() and cos() functions based on

suggestions by Martin Combs - the result is that the results are

accurate to about 3 digits, and only slightly slower. Martin was

kind enough to send along a very useful set of routines, which

also included the tan() and arctan() functions. I also fixed the

routine that writes real numbers, so values between -1.0 and 0.0

now include the minus sign.

Version 1.1b, February 6, 1990:

This program is over a year old.

Added the Sqr() function. Sqr(n) is the same as n * n, but

marginally faster and smaller. Also, the compiler used to

generate lots of errors when an include file was missing. Now it

skips the rest of the comment, like it should.

Apparently floating point constants didn’t used to work. Why

am I always the last to know? I also added the Sin() and Cos()

functions, based on an aside during a lecture on an entirely

different topic.

Later I added the sqrt() function, using Newton’s method.

Version 1.1a, January 20, 1990:

Fixed a bug in the WriteArb routine that manifested itself

whenever you wrote to a ’File of Something’.

Fixed a bug left in the floating point math library. It seems

that it had not been updated for the all the 1.1 changes, so

during linking it required objects that aren’t around anymore.

Since floating point math is now handled by the compiler, I hadn’t

noticed it before.

Version 1.1, December 1, 1989:

This version is completely re-written, and has far too many

changes to list them individually here. The main changes are the

PCQ_Pascal 71 / 73

with statement, the new IO system, a completely redesigned symbol

table, nested procedures, and several new arithmetic operators.

In order to help port programs from Turbo Pascal and C, I added

typed constants, the Goto statement, and the normal syntax for

multi- dimensional arrays.

Version 1.0c, May 21, 1989:

I changed the input routines around a bit, using DOS files

rather than PCQ files. I buffered the input, and made the

structure more flexible so I could nest includes. Rather than

make up some IfNDef directive, I decided to keep track of the file

names included and skip the ones already done. Buffering the

input cut compile times in half. I would not have guessed

buffering would be that significant, and I suppose I should

rethink PCQ input/output in light of this.

I added code to check for the CTRL-C, so you can break out

early but cleanly. The Ports.i include file had a couple of

errors, which I fixed, and I also fixed the routine that opens a

console for programs that need one. It used to have problems when

there were several arguments in the first write().

I added the SizeOf() function, floating point math, and the

standard functions related to floating point math.

There were several minor problems in the include files which I

found when I got the 1.3 includes, the first official set I’ve had

since 1.0.

I relaxed the AND, OR and NOT syntax to allow any ordinal

type. This allows you to get bitwise operations on integers and

whatever. I also added a standard function called Bit(),

described above. These are all temporary until I can get sets

into the language.

I finally added string indexing. In doing so I found a bug in

the addressing routine selector(), so I rewrote it to be more

sensible. I think it also produces larger code, but I’m not too

worried because I’m going to add expression trees soon anyway.

Version 1.0b, April 17, 1989:

I fixed a bug in the way complex structures were compared. It

seems that one too many bytes were considered, so quite often the

comparison would fail.

Version 1.0a, April 8, 1989:

This version added 32 bit math, and fixed the case statement.

PCQ_Pascal 72 / 73

The math part was just a matter of getting the proper assembly

source, but I changed the case statement completely. Version 1.0

of the compiler produced a table that was searched sequentially

for the appropriate value, which if found was matched up with an

address. I thought all compilers did this, but when debugging a

Turbo Pascal program at work I found that it just did a bunch of

comparisons before each statement, as if it were doing a series of

optimized if statements. I had thought of this and rejected it as

being too simplistic, but if it’s good enough for Turbo it’s good

enough for me.

The next thing I changed in this release was the startup code.

You can now run PCQ Pascal programs from the Workbench. This was

just a matter of taking care of the Workbench message, but I also

fooled around with standard input and output. If you try to read

or write to standard in or out from a program launched from the

Workbench, the run time code will open a window for you.

I also fixed one bug that I found: an array index that was

not a numeric type had its type confused. Nevermore.

Version 1.0, February 1, 1989

Original release.

1.28 Other notes & Copyright notice

===

Other Notes & Copyright

===

This documentation, the source code for the compiler, the compiler

itself, the source code for the run time library, and the run time

library itself, are all (ahem):

Copyright (c) 1989 Patrick Quaid.

I will allow this version of the package to be freely distributed,

as long as all the files in the archive, with the possible

exception of the assembler and linker (please include them if at

all possible), are included and unchanged. Of course no one can

make any real money for distributing this program. It may only be

distributed on disk collections where a reasonable fee is charged

for the disk itself. A reasonable fee is defined here as the

greater of $10 per disk, or whatever Fred Fish is currently

charging (about six dollars as I write this).

PCQ_Pascal 73 / 73

Version 1.2b of PCQ Pascal is "freeware", which means that it can

be freely distributed, and no fee is required. Future versions,

including the current 1.2c, are now sent only to registered users,

and may not be distributed. The registration fee for PCQ Pascal

is $25 US, for which you get the following:

o The latest version of the compiler, which now supports

variant records, (* and *) delimited comments, CHIP and

FAST keywords for global variables and typed constants,

standard Pascal pointer declarations, an execution

profiler, support for mathtrans.library, and much more.

o PCQ, an extrememly flexible and customizable make utility

that lets you compile, assemble and link single programs

and complex projects with a single command.

o PCQ.lib.DOC, which describes every routine internal to

PCQ Pascal or defined in Include:Utils. Well over 100

routines are covered in a format similar to the AutoDocs,

and compatible with DME’s REF feature.

o Include files and a runtime library compatible with

AmigaDOS 2.0, when they become available.

For an additional $15 (which just covers printing costs,

incidentally), I’ll send you a printed, bound User’s Guide, based

on Pascal.DOC, and Reference Guide, based on PCQ.lib.DOC. They

are completely reformatted, and even have full indexes.

You can still get the latest version of the freeware compiler from

me by sending a disk, mailer and postage. It will only be updated

to fix bugs, however, so new versions will not come out very

frequently.

	PCQ_Pascal
	Introduction
	Distribution Disclaimer
	About the distribution
	About the author
	How to install the files
	How to use the package
	Incompatibilities
	PCQ Programs, reserved identifiers & structures
	Type declarations
	Constant declarations
	Variable declarations
	Procedure and Function declarations
	Label declarations
	Expressions
	Statements
	Input / Output
	Strings
	Memory management
	Exit procedures
	Compiler directives
	Type casts
	Small initialisation code
	External files
	Notes to assembly programmers
	Errors
	Source material
	Burner improvements & Update history
	Other notes & Copyright notice

