
Trace: A Tool for Logging Operating System Call Transactions

�

Diomidis Spinellis

SENA S.A.

Kyprou 27

152 37 Filothei, Greece

e-mail: dspin@leon.nrcps.ariadne-t.gr

April 25, 1994

Abstract

A log of operating system calls made by a process can be used for debugging, pro�ling, veri�cation

and reverse engineering. Such a log can be created by acting as an intermediary between the traced

process and the operating system. We describe the design and implementation of such a tool under the

ms-dos operating system environment, and provide some examples of its uses.

1 Introduction

In operating system based computing environments a signi�cant amount of a process's behaviour is de�ned

by its interface with the operating system. This interface typically de�nes the process's environment such

as the current directory, the input/output operations including operations of �les, the execution of sub-

processes and inter-process communication. Logging and interpreting the transactions between a process

and the operating system it runs on, can provide data that can be used for a variety of purposes. Some of

them are:

Debugging A listing of a program's operating system calls allows the programmer to analyse its behaviour

at a low but well de�ned level. Program errors can be explained in terms of the operating system calls

that were (or were not) issued, and these can in turn point to the source of the error.

Pro�ling System calls can consume a signi�cant amount of program run time, since the state of the machine

must be saved and restored between calls. A listing of the system calls can provide hints on areas of a

program that can be optimised (e.g. through bu�ering techniques) to enhance a program's speed.

Program veri�cation A log of a program's transactions with the operating system can be used to verify

a program against its speci�cations or a run of a previous version. In addition, the log can be used to

detect the use of non-portable functions, or programs that have been infected by viruses.

Environment modelling and re-creation Revision control systems such as [Tic82] can use the log of a

system's compilation process to determine the exact environment that was used to create the program,

including the compilers and tools used and all included �les and libraries.

Understanding and Documenting Interfaces The log of a program's operating system transactions can

also be used to determine how an unknown program works, discover and understand undocumented

system calls, and reverse engineer programs and environments

1

. The list of the operating system

functions actually used by a program can be used as a guide for porting the program to an embedded

environment lacking an operating system.

�

Operating Systems Review, 28(4):56-63, October 1994.

1

For a treatise on the legal implications of reverse engineering in the software domain see [Ign92].

56



1.1 Related Work

A tool called trace with similar functionality to the one described in this article, but hosted on the Unix

environment is part of the SunOS [SUN90] operating system tools. In contrast to our approach that tool

can not trace child processes. A similar tool is also described in [Rod86].

More mainstream approaches to debugging are tools like gdb [Sta89] and VAX Debug [Bea83]. Execution

pro�ling under the Unix environment is described in [GKM83], while an ms-dos pro�ling tool can be found

in [Spi89]. All these tools require access to a program's source code or symbol information to provide

meaningful information, while the tool described in this article does not. Methods for tracing operating

system call transactions are described in [Bac85, LMKQ88] (ptrace) and [Kil84] (the /proc �lesystem).

2 Design

In the following sections we will describe the functionality of trace, its user interface (the important command-

line options), and the structure of the implemented system.

2.1 Functional Description

The trace tool is a single program that intercepts system calls to the ms-dos operating system and logs

them in a readable way in �le. These can then be browsed by the user, or processed by more specialised

tools. Trace can monitor either a command passed as an argument, all the resident processes in the system,

or a process with a given program segment pre�x (psp) address

2

. In all cases it creates a �le (trace.log

by default) where each system call and its arguments made by the process(es) monitored are printed. A

number of options control the detail of information printed.

Figure 1 contains a sample listing of trace output when run on the ms-dos xcopy command. Each line

consists of the following �elds:

� the system time,

� the psp address of the calling process,

� the function call number,

� the address of the instruction that generated the function call,

� the function, its arguments and the return value and,

� additional information such as the error information or expanded strings for functions such as read,

write and getcwd.

Trace can be used in four di�erent ways:

1. trace a speci�c command, speci�ed together with its arguments on the command line,

2. trace the system activity in general (this usually means tsrs

3

),

3. trace a given resident program and,

4. trace a sequence of commands.

2

The psp address is the ms-dos equivalent of a process identi�cation number.

3

Terminate and Stay Resident programs; the ms-dos equivalent of background running processes.

57



13:10:22 2c40 30 2D3B:178F get_version() = 3.31

13:10:22 2c40 25 2D3B:17B1 set_vector(0x23, 2D3B:0045)

13:10:22 2c40 35 2D3B:17BA get_vector(0x24) = 11C0:0556

13:10:22 2c40 25 2D3B:17D1 set_vector(0x24, 2D3B:0DE5)

13:10:22 2c40 62 2D3B:16A7 get_psp() = 2C40

13:10:22 2c40 19 2D3B:1698 get_current_disk() = C:

13:10:22 2c40 47 2D3B:16A2 getcwd(3, 2C97:01B2) = ok "SRC\TRACE"

13:10:22 2c40 47 2D3B:16A2 getcwd(3, 2C97:01F5) = ok "SRC\TRACE"

13:10:22 2c40 3b 2D3B:130E chdir("trace.c") = Error (Path not found)

13:10:22 2c40 3b 2D3B:1330 chdir(".") = ok

13:10:22 2c40 47 2D3B:16A2 getcwd(3, 2C97:0384) = ok "SRC\TRACE"

13:10:22 2c40 3d 2D3B:152C open("C:trace.c", 0) = 6

13:10:22 2c40 44 2D3B:1535 ioctl(GET_DEV_INFO, 6) =

FILE: device=2 NOT_WRITTEN REMOVABLE UPDATE_DATE LOCAL

Figure 1: Output of trace -v xcopy trace.c foo

In order to trace a single command, that command and its arguments are speci�ed on the trace command

line following any trace options. As an example trace -v xcopy trace.c foo will trace the xcopy trace.c

foo command and store the results in the default output �le trace.log.

When no command is given in the command line, trace will run waiting for a keystroke. Until that

keystroke is received all system activity is monitored. This allows one to start a tsr by activating its

hot-key and monitor its activity.

Sometimes one may wish to monitor a speci�c program that is already in memory. This usually means

that it has been invoked as a tsr. By using a memory inspection utility such as the ms-dos mem command,

or trace -i one can �nd the program's psp address. The psp address of a program is used as a unique

program identi�er that can then be passed to trace using the -p 
ag in order to specify the program to

monitor.

Another use of trace can be the monitoring of a sequence of commands, or the functioning of commands

internal to a command interpreter. To do that one needs to run the command interpreter under trace.

2.2 Command-line Options

The operation of trace can be modi�ed by specifying various command line options. Command line options

are passed and parsed by trace following the standard Unix conventions.

Some of the more interesting command line options that modify the behaviour of trace are the following:

-a Monitor all system calls. By default only the documented ms-dos functions are traced and interpreted.

Using the -a 
ag, other functions are logged uninterpreted by listing their function number and the

register contents.

-b Print the interrupt branch address. Each line is preceded by the address on which the ms-dos interrupt

was generated. The address can be used to pinpoint the routine that issued the function call from a

linker listing.

-c Only a summary count of all calls is produced at the end of the program run. No detailed information

is given. One line is produced for each function used (�gure 2). The line contains the function number

in hexadecimal, the symbolic function name and the number of times the function was called. This

option can be useful for pro�ling purposes.

58



Function number Function name Number of calls

...

3F read 497

40 write 5

41 delete 2

42 lseek 320

43 chmod 10

44 ioctl 75

45 dup 2

...

Figure 2: Sample output from the execution of trace -c

-e Trace between exec calls. Unless this option is given, when a programperforms an exec call, monitoring

is disabled until the child process terminates.

-f Calls are pre�xed with the ms-dos function call number.

-h A short help list on the program options is displayed on the standard output.

-i Calls are pre�xed with the process-id of the process that performed them. This under ms-dos is the

psp address of the program.

-o �lename The output �le for tracing information is �lename instead of the default trace.log. The

�lename can also be a device name such as con or prn.

-p psp Trace a process with process-id (psp address) psp. This can be used for tracing a resident program.

-r Produce a register dump on functions that do not have their arguments printed.

-s Functions that take or return string parameters have their parameters printed as strings.

-t Pre�x all system calls with the current time in the form of hh:mm:ss.

-v Verbose option. This option will produce the greatest amount of data. It is equivalent to specifying

the -abefinrstwx options. An example of trace output produced with this option is given in �gure 1.

The meaning of each �eld is explained in section 2.1.

-w Errors from ms-dos functions are printed in word form (i.e. symbolically) rather than as error codes.

-x Data printed under the -s option will be printed even if it is not ascii in hexadecimal form.

-y Commit all transaction logs to the �le after every call. This is done by closing the �le at every call

intercept. Although this option decreases performance it can be useful for obtaining a log for programs

that never terminate or crash.

2.3 System Structure

Trace works by acting as an intermediary between a process and the operating system as illustrated in

�gure 3. All system calls are intercepted by trace. The input parameters are interpreted and written to the

log �le. Then, the operating system call is executed by trace on behalf of the process that performed the

original call. Any results returned by the operating system are also logged into the �le, and then passed

back to the originating process as if returned by the operating system.

59



kernel

trace

process

being traced

MS-DOS

Log file

system calls

Log information

Figure 3: Structure of the system running trace.

Functionally trace consists of the initialisation part that interprets the command line arguments and

arranges the system call intercept, the actual system call interceptor, and a set of functions for interpreting

the system call arguments and results.

3 Implementation

Trace is implemented in C with embedded in-line assembly language, using the Microsoft C/C++ compiler

version 7.00. The total length of the code is 2422 lines of which 56 lines are in-line Intel iapx86 assembly

language.

Trace works by trapping the ms-dos function request software interrupt. Whenever the program being

traced generates such an interrupt trace intercepts it and performs the appropriate logging. In order to

intercept the ms-dos interrupt a custom user-de�ned interrupt handler is installed. The interrupt handler

is written in C. The special (and nonstandard) interrupt keyword is used in the C function de�nition of

the interrupt handler to make the compiler generate special code for it. The special handling involves saving

and restoring all register values, setting up the data segment register to point to the program's data, and

returning from the function using a return from interrupt instruction.

The functioning of the interrupt handler routine is relatively simple. First a series of tests are performed

to check if the default handler should be invoked directly instead of the user de�ned function. This should

happen in the following cases:

� before the program traced has started executing,

� if ms-dos is executing a critical section or a critical error handler routine,

� if the process that generated the interrupt is not the process traced and

� if the interrupt handler is being recursively invoked.

Once these tests are passed the handler interprets and logs the input parameters, calls the real interrupt

handler, interprets and logs the results, and returns to the calling process. ms-dos does not support auto-

matic process context switching. At various points the interrupt handler calls the ms-dos function setpsp

60



open("CON", 0) = 10

close(6) = ok

close(7) = ok

close(8) = ok

close(9) = ok

close(10) = ok

close(65535) = Error (Invalid handle)

close(65535) = Error (Invalid handle)

close(65535) = Error (Invalid handle)

close(65535) = Error (Invalid handle)

close(65535) = Error (Invalid handle)

open("R:\WINDOWS\WINSTART.BAT", 0) = Error (File not found)

open("R:\WINDOWS\system\WINSTART.BAT", 0) = Error (File not found)

get_current_disk() = C:

getcwd(3, 3200:0000) = ok "TMP"

Figure 4: Sample output from tracing a widely used windowing package.

to change ms-dos's idea of the executing process between trace and the process being traced. All output to

the log �le is done under trace's psp while the invocation of the real ms-dos function interrupt is performed

under the traced program's psp.

Upon entry in the interrupt handler all the hardware register values can be accessed as part of the C

stack frame (i.e. as parameter variables), because the function prologue has saved all registers on the stack.

The part written in assembly language is used to transfer all C stack-based variables into registers, issue the

real ms-dos interrupt and transfer back the registers to the C variables. In this way all interpretation of the

arguments and the results can be done using the C language constructs.

The code of trace that is executing in the interrupt context does not have the same stack frame as the

normal C code, since it uses the stack of the traced process. For this reason many of the C library routines

that rely on the standard C pointer conventions can not be used (pointers to variables on the stack can not

be dereferenced.) The single most important function that could not be used was the stdio printf formatted

printing function. The problem was solved by compiling a modi�ed version of the printf function taken

from the C library of the 4.3 Net/2 BSD Unix release distributed by the University of California, Berkeley.

4 Experience

During the last three years trace has been used as a standard tool for a number of purposes. We have

found trace to be a useful debugging tool. Trace can be applied on an arbitrary executable �le making it

suitable for debugging programs that have been compiled without symbolic information. Furthermore by

redirecting the output of trace to the console or printer, the workings of the program until its crash can be

easily monitored. The output �le that trace generates can be used by tools such as awk [AKW79] to �nd

calls that return an error, match a particular constraint, or to collect statistics. Trace can also be used to

debug third party programs pinpointing to an absolute path name that the program is attempting to use, or

the missing con�guration �le that is not reported. Sometimes undocumented features can be found in this

way. Figure 4 contains part of a trace log from the initialisation part of widely used windowing package.

The reader can see a series of calls to the close system function with a wrong argument (65535) and the

attempt to open a parameterisation �le (winstart.bat.)

Using trace, one can also discover the way some programs perform interesting functions. Multitasking

environments, terminate and stay resident utilities, command processors and DOS extenders were the �rst

programs we tried trace on. We found trace to be very valuable when developing programs for new environ-

61



get_country()

write(1, 9672:89EA, 8) = 8 "13/10/92"

write(1, 9672:629D, 2) = 2 " "

get_country()

write(1, 9672:89EA, 6) = 6 " 9:10"

search_next()

write(1, 9672:6270, 2) = 2 "\r\n"

write(1, 9672:89EA, 12) = 12 "TRACE EXE"

write(1, 9672:89EA, 10) = 10 " 26989"

write(1, 9672:629A, 1) = 1 " "

get_country()

write(1, 9672:89EA, 8) = 8 "03/02/93"

write(1, 9672:629D, 2) = 2 " "

get_country()

Figure 5: Sample output from tracing the ms-dos directory listing command.

ments and compilers whose debugging capabilities were not as advanced as the the ones we were used to.

Often a single program-run under trace and an examination of the log �le were enough to pinpoint the error

source.

Programs can also be made more e�cient by studying the output of trace. Calls to the operating system

are relatively expensive; trace provides a way to �nd the places where they can be grouped together by

using techniques such as bu�ering or caching. Figure 5 contains trace log from the ms-dos directory listing

command. Is is obvious that the command's speed could be improved by storing the country information

(which is presumably used to determine the data and time output formats) at the start of the program

instead of querying it for every date and time value printed, and by using a bu�er for output instead of

calling the write function for small character sequences. A special 
ag makes trace produce a count report

of the system calls made by the program. This provides a program pro�le of overall resource usage.

5 Conclusions

We have described the design and implementation of an ms-dos system call transaction logging tool. System

call transactions can be logged by acting as an intermediary between the traced process and the operating

system. Under the ms-dos system this can be implemented by trapping the ms-dos function interrupt

vector. This approach can be used for debugging, pro�ling, program veri�cation, environment modelling,

and interface documentation.

References

[AKW79] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. Awk | a pattern scanning and

processing language. Software | Practice and Experience, 9(4):267{280, 1979.

[Bac85] Maurice J. Bach. The Design of the UNIX Operating System, page 376. Prentice Hall, 1985.

[Bea83] Bert Beander. VAX DEBUG: An interactive, symbolic, multilingual debugger. In M.S. Johnson,

editor, Proceedings of the Software Engineering Symposium on High-Level Debugging, pages 173{

179. ACM SIGSOFT/SIGPLAN, March 1983.

62



[GKM83] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An execution pro�ler for modular

programs. Software | Practice and Experience, 13:671{685, 1983.

[Ign92] Gary R. Ignatin. Let the hackers hack: Allowing the reverse engineering of copyrighted computer

programs to achieve compatibility. University of Pennsylvania Law Review, 140:1999{2050, 1992.

[Kil84] T. S. Killian. Processes as �les. In Proceedings of the USENIX Summer 84 Conference, pages

203{207. USENIX Association, 1984.

[LMKQ88] Samuel J. Le�er, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The

Design and Implementation of the 4.3BSD Unix Operating System, page 104. Addison-Wesley,

1988.

[Rod86] R. Rodriguez. A system call tracer for UNIX. In USENIX Conference Proceedings, pages 72{80,

Atlanta, GA, USA, Summer 1986. USENIX.

[Spi89] Diomidis Spinellis. v08i002: A C execution pro�ler for MS-DOS. Posted in the Usenet newsgroup

comp.sources.misc, August 1989. Message-ID: <64297@uunet.UU.NET>.

[Sta89] Richard M. Stallman. The GNU source-level debugger. Distributed by the Free Software Foun-

dation, 675 Mass Ave, Cambridge, MA 02139, January 1989.

[SUN90] Sun Microsystems Inc., Mountain View, California. SunOS Reference Manual, 1990. Release 4.1.

[Tic82] Walter F. Tichy. Design, implementation, and evaluation of a revision control system,. In

Proceedings of the 6th International Conference on Software Engineering. IEEE, September 1982.

63


