
AUGUST 1991

Detecting the Presence of
IPX, the NetWare Shell,
and NetBIOS from a DOS
Application

Morgan Adair
Technical Consultant
Systems Engineering Division

Matt Hagen
Technical Consultant
Systems Engineering Division

Before an application tries to use network resources, it should check
to see if those resources exist. This AppNote shows how a DOS
application can verify that IPX, the NetWare shell, and NetBIOS are
present.

Copyright © 1991 by Novell, Inc., Provo, Utah. All rights reserved.

As a means of promoting NetWare AppNotes, Novell grants you without charge the
right to reproduce, distribute, and use copies of the AppNotes, provided you do not
receive any payment, commercial benefit, or other consideration for the reproduction
or distribution, or change any copyright notices appearing on or in the document.

Disclaimer

Novell, Inc. makes no representations or warranties with respect to the contents or
use of these Application Notes (AppNotes) or of any of the third-party products
discussed in the AppNotes. Novell reserves the right to revise these AppNotes and to
make changes in their content at any time, without obligation to notify any person or
entity of such revisions or changes. These AppNotes do not constitute an
endorsement of the third-party product or products that were tested. Configuration(s)
tested or described may or may not be the only available solution. Any test is not a
determination of product quality or correctness, nor does it ensure compliance with
any federal, state, or local requirements. Novell does not warranty products except as
stated in applicable Novell product warranties or license agreements.

NetWare Application Notes—August 1991

A DOS Application's Operating Environment 37

Detecting IPX/SPX 37

Detecting the DOS Shell 38

Detecting NetBIOS 38

File Server Connections 39
Connection ID Table 39
File Server Name Table 39
Special File Server Connections 39

Preferred File Server 39
Default File Server 39
Primary File Server 40

Example Program: EXIST.C 40

Detecting IPX, the NetWare Shell, and NetBIOS

A DOS Application's
Operating Environment

Taken together, DOS, the NetWare client software, and the hardware
they run on comprise an operating environment that contains a
number of variables. Applications frequently need to be aware of
features of the underlying hardware: the amount of memory, the
display adapter, the number and type of disk drives. The various
versions of DOS add another set of variables to the operating
environment. And when a network is added to the equation, the
possible combinations of hardware, operating system, and network
resources a program may have to operate under can become
innumerable.

Naturally, programmers want to take advantage of all the facilities of
the operating environment that will add functionality to their products,
especially when a program is being developed for commercial
release. At the same time, programmers want their software to be
compatible with as many combinations of hardware, operating
system versions, and network operating system versions as
possible.

You probably have encountered programs that make assumptions
about the operating environment. For example, many programs
assume that the computers they run on have one floppy drive (A:)
and one hard drive (C:). Other programs assume that if they send
ANSI escape sequences to the console device, they will be handled
correctly by the console device driver. Before a program attempts to
access network resources, it should be sure that those resources
exist. A program that simply assumes that IPX and the NetWare
shell are present can hang the workstation it is running on.

The program given in the listing at the end of this AppNote (EXIST.C)
illustrates how a program can verify the existence of basic network
facilities. As always, source code for this program and the text of this
AppNote can be downloaded from CompuServe, Novell Forum A,
Forum Library 16, Novell Uploads (GO NOVA). EXIST.C was
compiled and tested using Borland C++ v2.0 and Watcom C v8.0.
Version 1.2 of the NetWare C Interface for DOS runtime library was
used.

Detecting IPX/SPX
The NetWare C Interface provides two routines, IPXInitialize and
SPXInitialize, that can be used to verify that IPX and SPX are
loaded. IPXInitialize just returns an integer indicating whether IPX is
present. SPXInitialize takes four parameters that receive information
about the version of SPX that is installed—the major and minor
version numbers, the maximum number of connections supported,
and the number of available SPX connections. EXIST.C passes
NULLs in these parameters, because it is only interested in the value
returned by SPXInitialize—if it returns zero, SPX is not installed; if it
returns 255, SPX is installed.

If your application needs to know which version of IPX and SPX is
installed, it can use functions provided by the NetWare C Interface's
Diagnostic Services. Have your application use the Diagnostic
Services to send a diagnostic packet to the calling workstation that

NetWare Application Notes—August 1991

returns the IPX and SPX version numbers. The algorithm is as
follows:

1. Get the internetwork address of the workstation's network
interface card by calling IPXGetInternetworkAddress.

2. Pass the internetwork address to BeginDiagnostics to establish a
connection. BeginDiagnostics returns a connection number and a
list of network components (IPX/SPX, shell driver, nondedicated file
server, and so on) on the target workstation, which in this case is
also the calling workstation.

3. Pass the component list to FindComponentOffset to get the
offset of the IPX/SPX data in the component list.

4. Pass the offset to GetIPXSPXVersion to get the major and minor
version numbers for IPX and SPX from the component list.

5. Call EndDiagnostics to close the connection established by
BeginDiagnostics.

Detecting the DOS Shell
To detect the presence of the DOS shell, simply call GetDefault-
ConnectionID. If the value returned is zero, the shell has not been
loaded. If the shell has been loaded, the function will return the
connection ID for the default file server, a value that ranges from 1 to
8. More information on file server connection IDs is given in the
section "File Server Connections" below.

GetDefaultConnectionID simply calls DOS function F0h, subfunction
2h. Since this function is not used by DOS, it normally returns zero
in the AL register. If the NetWare shell has intercepted the DOS
interrupt vector, it returns the connection ID for the default server
instead.

Detecting NetBIOS
To detect the presence of NetBIOS or Novell's NetBIOS emulator, an
application simply needs to check the value of the interrupt service
vector used by NetBIOS. DOS function 35h returns a pointer to the
interrupt service routine (ISR) for a specified interrupt. To see if
NetBIOS is installed, call DOS function 35h by doing the following:

1. Move 35h to register AH to specify which DOS function to call.

2. Move 5Ch to register AL to specify which interrupt vector to get.

3. Generate a DOS interrupt 21h.

4. Check the value returned in ES.

If the segment value returned in ES is zero or F000h, NetBIOS is not
loaded. If any other value is returned, it is a pointer to the segment
where NetBIOS's ISR is loaded in memory.

Detecting IPX, the NetWare Shell, and NetBIOS

File Server Connections
When loaded into memory, the NetWare shell attempts to establish a
connection with a file server. If unsuccessful, the shell unloads itself.
If successful, the shell sets up two tables for maintaining its file
server connections—the connection ID table and the file server
name table. EXIST.C examines each entry (1-8) in the connection ID
table to see if it contains an active connection. If so, it displays the
file server name from the corresponding entry in the file server name
table and the name of the user logged in on the connection.

Connection ID Table
The connection ID table is an array of eight 32-byte entries. For
each connection to a file server, the shell puts the internetwork
address of the file server and other connection information into one
of the slots in the connection ID table. NetWare interface functions
can then refer to a file server connection by the index number of the
connection ID table entry corresponding to that file server.

File Server Name Table
The file server name table is an array of eight 48-byte strings. For
each file server connection, the shell places the name of the
connected server into the slot with the same index number as the
corresponding entry in the connection ID table.

Special File Server
Connections

The shell can have up to three file server connections that it uses to
prioritize where network request packets are sent—the preferred file
server, the default file server, and the primary file server.

Preferred File Server. An application can specify that a particular
server in the connection ID table is the preferred file server. Until an
application or utility tells the shell otherwise, accounting, bindery, and
other service requests are directed to the preferred file server.

Default File Server. The default file server is the server
corresponding to the default disk drive. If no application has set a
preferred file server, the shell directs service requests to the default
file server. For example, if the default drive is F:, and the F: drive is
mapped to SRD/SYS:APPNOTES, SRD is the default file server.

Primary File Server. The primary file server is usually either the file
server the shell first attached to when it was loaded, or the file server
that executed the login script. We say usually because a program
can call SetPrimaryConnectionID to specify a different primary
server. When a preferred file server has not been specified, and the
default disk drive is a local drive, the shell directs its requests to the
primary file server.

Example Program:
EXIST.C

NetWare Application Notes—August 1991

/***
* File: EXIST.C
* Authors: Morgan Adair & Matt Hagen, Novell, Inc.
* Date: 91-06-25
***/

#include <stdio.h>
#include <nit.h>
#include <niterror.h>
#include <nxt.h>
#include <diag.h>
#include <dos.h>

/***
* main
***/

void main(void)
{

BYTE componentList[54];
BeginDiagnosticStruct networkAddress;
int connection;
int component;
AllResponseData response;
IPXSPXVersion responseData;
int ccode;
WORD connectionNum;
WORD connectionID;
union REGS regs;
struct SREGS sregs;
char serverName[48];
BYTE majorVer,

minorVer,
revLevel;

char name[48];

/* Communication Protocols */
/* IPX/SPX present */

if (IPXInitialize() == IPX_NOT_INSTALLED)
printf("IPX is NOT loaded.\n");

else {
printf("IPX IS loaded.\n");

if (SPXInitialize(NULL, NULL, NULL, NULL) == SPX_NOT_INSTALLED)
printf("SPX is NOT loaded.\n");

else
printf("SPX IS loaded.\n");

/* IPX/SPX Version */

IPXGetInternetworkAddress((BYTE *)&networkAddress);
if (BeginDiagnostics(&networkAddress, &connectionID, componentList) != SUCCESSFUL)

printf("Unable to get IPX/SPX versions\n");
else {

component = FindComponentOffset(componentList, IPX_SPX_COMPONENT);
if (component == -1)

printf("Unable to get IPX/SPX versions\n");
if (GetIPXSPXVersion(connectionID, component, &response, &responseData)

!= SUCCESSFUL)
printf("Unable to get IPX/SPX versions\n");

else {
printf("IPX Version: %d.%02d\n", responseData.IPXMajorVersion,

responseData.IPXMinorVersion);
printf("SPX Version: %d.%02d\n", responseData.SPXMajorVersion,

responseData.SPXMinorVersion);
}

}
EndDiagnostics(connectionID);

}

Detecting IPX, the NetWare Shell, and NetBIOS

/* NetWare DOS Shell */

connectionID = GetDefaultConnectionID();

if (connectionID == NULL) {
printf("The shell is NOT loaded.\n");
/* if shell is not loaded,
 there is nothing left to live for */
return;

} else {
printf("The shell IS loaded.\n");
ccode = GetNetWareShellVersion(&majorVer, &minorVer, &revLevel);
printf("Shell Version: %d.%d, Rev %c\n", majorVer, minorVer, revLevel+'A');

}

/* NetBIOS */

regs.h.ah = 0x35; /* AH = Interrupt 21h Function 35h--
Get Interrupt Vector */

regs.h.al = 0x5C; /* AL = Interrupt vector to get */
intdosx(®s, ®s, &sregs);
switch (sregs.es) {

/* ES returns segment of pointer to ISR */
case 0x0000 :
case 0xF000 : printf("NetBIOS is NOT loaded.\n");

break;
default : printf("NetBIOS IS loaded.\n");

}

/* Connection Information */

for (connection=1; connection<=8; connection++) {
if (IsConnectionIDInUse(connection) == 1) {

SetPreferredConnectionID(connection);
connectionNum = GetConnectionNumber();
ccode = GetConnectionInformation(connectionNum, name, NULL, NULL, NULL);
if (ccode == 0) {

GetFileServerName(connection, serverName);
printf("Connection ID %d is logged in to %s as %s.\n",

connection, serverName, name);
} else

printf("Connection ID %d is attached only.\n", connection);
} else

printf("Connection ID %d is unused.\n", connection);
}

}

NetWare Application Notes—August 1991

Detecting IPX, the NetWare Shell, and NetBIOS

