
Windows Disassembler 1.5

User's Manual

Index

Introduction and Specifications.................................... page 2
Operation... page 2

Opening Files... page 2
The Display.. page 2
Creating Assembly Language Source Code Files... page 3
Assembly Tips.. page 4

Differences Between Versions 1.4 and 1.5.................... page 5
The HiLevel Utility... page 5
Bugs... page 7
Warranty Disclaimer, and Copyright............................ page 7

WDASM Windows Disassembler 1.5 Program Documentation 2

Introduction

Windows Disassembler disassembes Windows executables and dynamic link libraries. It allows the user to
browse at the source code of a program without having to write it to a file. Windows Disassembler generates procedure
directives, as well as all of the literal Windows API function call names.

Specifications

Files
Works on Windows 3.x executables and dynamic link libraries only.
Instruction Set
Translates all instructions within the 286 instruction set with the exception of the following multi-tasking instructions: LAR,
LGDT, LIDT, LLDT, LMSW, LSL, LTR, SGDT, SIDT, SLDT, SMSW, STR, VERR, and VERW.
Operating System and Hardware
Requires at least DOS 4.0, Windows 3.1, and a 286 or above IBM compatible computer. Installation of SMARTDRV
(which comes with Windows) is recommended.

Operation

Opening Files
The default file name extension is ".exe" for opening files if no extension is specified. Windows Disassembler

processes one file at a time. If a file is opened while another one is already open, the old file will be automatically closed.
When opened, the file's assembly language code appears on the screen, provided that the file has a DOS executable file
header, a new executable file header, and at least one segment. Otherwise, a dialog box will inform the user that the file
does not meet a particular specification.

The Display
Displaying code in the display window is presented as an alternative to generating a gigantic assembly language

source code file, since some programs are large, and the user may merely want to glance at a program's source code.
The code that initially appears in the window when a file is opened is the first segment within the file. Numbers

are assigned to segments according to their chronological order within the new executable file header. Windows
Disassembler displays one segment at a time within the window. The View | Segment command must be used to go to
another segment. To scroll the text in the window, use the Up Arrow, Down Arrow, Page Up, and Page Down keys, or the
scroll bar. To see the address offsets of each instruction, select View | Address Offsets from the main menu. To jump to a
specific address, select View | Go To from the main menu and enter the address in hexadecimal format.

The View | Far Call Names command toggles between displaying far function call names and the actual
relocation values in far CALL instructions (for example, 0000H:0FFFFH).

All labels have the form of either LxxxxH or DxxxxH, where xxxx is a 4-digit hexadecimal number equal to the
offset of the location being referenced. Labels with an 'L' prefix denote locations within the immediate code segment, and
labels with a 'D' prefix denote locations within a data segment. Labels within a code segment can either be procedure
labels, jump/loop labels, or data labels within the code segment. Assembler directives, while generated for source code
text files, are not shown in the display window.

Strings are detected and translated by Windows Disassembler whenever five or more visible characters occur
within a data segment.

The Set Byte command allows the user to convert a desired range of bytes from byte declarations into
instructions, or vice versa, or to give labels to a specified range of bytes. This command is necessary for programs which
have data declarations in their code segments. Note that all modifications which the user has made to a segment will be
lost when exiting that segment. The user can save that segment using the Save Current Segment Only option as a text
file first before quitting to save the changes. However, when the user leaves the segment, there is no way to restore the
byte settings except by specifying them over again. Selecting the Create Separate Files For Each Segment option will
result in the the modifications/settings being erased (lost) before the file is created, hence the user must use the Save
Current Segment Only option.

WDASM Windows Disassembler 1.5 Program Documentation 3

Creating Assembly Language Source Code Files

After opening an executable, the user can create an assembly language source code file for it using the Save
Text As command. If the source code file name that the user specifies is the name of an already existing file, then that file
will be automatically overwritten with the new source code file. Three options are available for generating (a) file(s). The
first is to put all of the source code into one file. The name of this file will be the name the user specifies. The second
option is to put each segment of the source code into separate files. Each segment's file name will be of the form
yournameN.ext, where yourname.ext is the name the user specifies in the dialog box, and N is an integer corresponding
to the segment's number and which is appended to the base-name of the file (if necessary, this base name will be
truncated to perform the appending). For example, if the user specifies \work\myprog.asm as the file name, Windows
Disassembler will generate files named \work\myprog1.asm, \work\myprog2.asm, \work\myprog3.asm, etc.. The third
option is to generate a file for the current segment only (which is currently being displayed in the window). In this case
Windows Disassembler uses the file name exactly as specified.

All editing done will be lost if the user exits a segment which the user has just modified, or if the user tries writing
all of the segments to a file(s) at one time. However, if the user uses the Save Current Segment Only option, all
modifications will remain.

The new file will contain tabs. To display the file in the way in which it was intended to be displayed, the user
should set their editor's tab stop option to 8 spaces.

Windows Disassembler will create TITLE, .CODE segmentname, .DATA segmentname, .MODEL LARGE, .286,
and EXTRN winAPIfunc:FAR directives. PROC and ENDP directives are also created for all exported and far
procedures. In the case of non-exported functions, these procedure directives will all have the following form:

Functionn PROC FAR PUBLIC
(code)
RETF

Functionn ENDP

where n is the ordinal number (a decimal integer value) of the procedure in the entry table of the program's executable file
header. For exported functions, the name of the function is explicitly written as it is listed in the resident and non-resident
names tables in the program's header. For calls to fixed functions, a comment is written beside the call indicating which
segment the function belongs to. For example,

CALL FAR PTR Procedure0AD0H ; (Located in Segment 5)

For far calls to procedures within the program in a different segment, EXTERNDEF's are generated. Near procedures are
written in the following form:

ProcedureXXXX PROC FAR PUBLIC
(code)
RET

ProcedureXXXX ENDP

where XXXX is a four-digit hexidecimal value equal to the offset of the procedure within the segment.
Windows Disassembler generates segment names for segment directives of the form .CODE SEGn, where n is

the segment number. This name is produced in order to distinguish between segments, and can be deleted or changed.
(If the segments are in separate files then the name isn't needed.) If there are exactly 2 segments in a program, Windows
Disassembler treats the program as having a small model, otherwise it assumes the program has a medium memory
model. If the program has a compact or large model, then the MODEL directive must be changed to reflect the actual
memory model. Windows Dissassembler 1.5 translates functions belonging to commdlg.dll and shell.dll. It also
generates information for unknown function calls in the form Module modulename Ordinal n. The user can look up the
names of these function names using an executable-file header utility on the given dynamic link library. (In other words,
one can use the relocation table names and offsets provided by an .exe file header utility to determine the
function/variable names in the source code.)

WDASM Windows Disassembler 1.5 Program Documentation 4

Finally, EXTRN's (or EXTERNDEF's) must be supplied for any far variables used by the program not already
supplied by Windows Disassembler (typically the far variable __winflags is used by Windows programs, for example).

As an example, the files hello.exe, hello.c, hello.def, hello.exh, hello1.asm, and hello2.asm are included to
demonstrate disassembly using Windows Disassembler. hello.exe (a "hello world" program) is a compilation of hello.c.
hello.exh is an .exe file-header listing for hello.exe generated by EXEHDR. hello1.asm and hello2.asm were generated
using Windows Disassembler (using the Create Separate Files option) and were edited as follows. The labels L0627H,
L01ACH, and L0360H were made global labels via the :: (double colon) since these are accessed outside of the
procedure in which they exist. (In MASM 5.1 the ::'s wouldn't be necessary.) An EXTRN __winflags directive was added,
and the segment names SEG1 and SEG2 were deleted. The include file was created by copying the file hello2.asm to
hello.inc. Then, using an editor with a regular expression search function, each occurance of "^D" was replaced with
EXTERNDEF D, each occurance of DB 00[A-F,0-9][A-F,0-9]H was replaced with :BYTE, and each occurance of DB
"[A-Z,a-z,0-9,\\,\.,\,,\ ,*,\%,\~,\<,\>,+,=,-,?,@,_]*" was replaced with :BYTE. The EXTERNDEFs serve as either PUBLIC
or EXTRN specifiers, depending on whether the corresponding argument of an EXTERNDEF is located in the same file or
else in a different module (like function prototypes in C). One can rebuild hello.exe from hello2.asm with MASM 6.0 by
typing:

ml /c hello1.asm
ml /c hello2.asm
link /ALIGN:4 hello1 hello2,hello2,, libw slibcew, hello.def;

which will generate hello2.exe.
Make the data segment accessible to all modules by copying the contents of the data segment file to a new file

and converting it into an include file. This is done (string declarations might need to be replaced manually) and then
saving the file with an .inc extension. Then include this file (i.e., INCLUDE filebasename.inc) in each module that
accesses the data segment. (If there are two data segments, then there could be conflicting labels.) Finally, assuming one
has the resource files, assemble each module and link. Otherwise, Borland's Resource Workshop can be used for
obtaining the resources.

Assembly Tips

A problem that normally occurs is undefined label errors because of references to labels that are located in a
different procedure. The :: operator must be used to make such labels global. Another problem is a linking error in which
a given module references a global variable that doesn't exist. The problem is usually that the variable is a string which
follows another non-null terminating string in the data segment and the two strings are thus combined as one string. In
this case you must separate the strings. The error, "A2006 : undefined symbol" will occur when there are fixed
relocations in the program, which require EXTRNs and PUBLICs. However it is possible that procedure names could
conflict, requiring the procedure(s) to be renamed, especially in the case of procedures with the name, Procedure0000. I

To make the code modifiable and more readable, it is necessary that the user changes all literal addresses in the
code (hexidecimal numbers) into their symbolic equivalents. For example, in the hello program,

MOV AX, 00B0H
MOV DX, DS
PUSH DX
PUSH AX

should be changed to

MOV AX, OFFSET D00B0H
MOV DX, DS
PUSH DX
PUSH AX

WDASM Windows Disassembler 1.5 Program Documentation 5

since this portion of code is passing the address of a string to a Windows function.
It is advisable that the user also makes a hardcopy of the windows.h file and that the user converts the

windows.h file into its MASM equivalent using the H2INC which comes with MASM 6.0. H2INC cannot translate certain
macros, such as RGB and MAKEINTRESOURCE, and hence these must be manually rewritten in MASM or else deleted.
This way, certain constants such as message values can be replaced by their symbolic equivalents. It is also suggested
that the user incorporate the prologue.inc file which comes with MASM 6.0 into the program in place of the existing
prologue and epilogue code to make things more legible. Finally, the user should replace all other variable names and
constants with more meaningful expressions. With the windows.inc file generated by H2INC, procedure calls usually can
be written in a more legible form using INVOKEs. If the NOCASEMAP option is used (for employing case sensitivity), the
prologue.inc file will need to modified slightly. In particular, the case of three or four of the words in the prologue.inc file
will have to be changed in order to agree. .IF, .WHILE, and .REPEAT constructs can also be used to make the code
more clear.

Differences Between Versions 1.4 and 1.5

Undetected bugs were fixed in version 1.4 and 1.5 from version 1.3. First, for segments having RET number as
the last instruction in the segment, the number was incorrect. Also, HiLevel previously contained a bug in its grammar. It
rejected .CODE directives having more than two blank lines directly following them. This was undectected because
HiLevel was only tested on files having .CODE directives without blank lines immediately following them. Finally, an
adjustment was made to make relocatable offset and base address references somewhat more reliable, although they are
in some cases incomplete, as described in the section on bugs.

In version 1.4, Windows Disassembler failed to handle programs in which there were empty relocation table(s),
whereas in version 1.5 this has been fixed.

In version 1.5, LROFFSETs are now used instead of OFFSETs. LROFFSET forces the offset to be resolved by
the loader at run time. If the offset is that of an exported procedure specified in the definition file, then using OFFSET will
have the same effect. However, LROFFSET ensures relocateability regardless of whether the procedure is defined as
exported.

The HiLevel Utility

The HiLevel utility included with Windows Disassembler is a Windows 3.1 utility which attempts to build high-level
constructs out of the bare instructions generated by Windows Disassembler. The result is a smaller, more
understandable, and more readily modifiable source code file. It will accept as input basic MASM programs, provided
they do not have macros or certain other directives and high-level syntax keywords. It should accept all source code
generated by Windows Disassembler. HiLevel can construct nested .IF statements for each corresponding block of
instructions found in the given MASM source code file. Locals are given symbols of the form localn and parameters are
given the symbol parn, where n is the offset of the variable relative to the BP register. HiLevel also constructs "pseudo-
function calls" via a macro procedure named cCall. The cCall macro is defined in the hilevel.inc which is included with
Windows Disassembler. This macro does not perform any high-level operation, but rather is just a more legible way of
performing a series of pushes followed by a procedure call, regardless of whether the arguments being pushed are
actually being passed to the given function or not. HiLevel generates an OFFSET DxxxxH instead of xxxxH when a
number xxxxH follows DS in the parameter list of a cCall invokation, since this combination is practically always a far
address being passed as an argument.

The PROC directives produced by HiLevel are designed to work with the prologue.inc file that comes with
MASM 6.0. As mentioned before, when enabling case-sensitivity (via OPTION CASEMAP:NONE), some of the names in
prologue.inc need to be modified in order to be made to have the same case, plus there is a defective echo statement in
it which should be fixed. If HiLevel detects prologue code in a procedure, it then checks for matching epilogue code. If
the prologue and epilogue fail to match, HiLevel generates a comment above the procedure that explains what is missing
in the epilogue code. If the epilogue and prologue match, then the prologue/epilogue code is forced via the
FORCEFRAME argument and/or LOCAL directive, plus by specifying any parameters. Otherwise, epilogue/prologue
code expansion is prevented by not specifiying any parameters, locals, or prologue macro arguments.

If there is a syntax error in the source file, HiLevel will halt and give the line number on which the syntax error was

WDASM Windows Disassembler 1.5 Program Documentation 6

found. Otherwise it displays the message, "Compilation was successful! Hurrah! Hurrah!" It may take as much as a
minute to process a source code file, and as long as the user sees the disk drive light come on at regular intervals (say
every 5 seconds) there is no cause for alarm. Otherwise, the system is probably hung. It is possible that HiLevel could
hang up the system because of its limited local heap of 50736 bytes (which is not a major problem in 386 enhanced
mode, since pressing Enter will terminate the application. Otherwise, in standard mode, hitting Ctrl-C instead of Ctrl-Alt-
Delete will sometimes terminate the application). What this means is that for programs containing large procedures
HiLevel will use up the local heap and "fly south" (hang). But for typical files, it should work. (Caution: HiLevel
undoubtedly contains contains bugs, therefore use it at your own risk.)

As an example, the file hellohil.asm has been included. Hellohil.asm was assembled and linked with the old
hello2.obj and hello.def files as follows:

ml /c hellohil.asm
link /ALIGN:2 hellohil hello2,hellohil,, libw slibcew, hello.def;

 The only changes made were the renaming of Procedure042A to _aNchkstk (because the prologue/epilogue code
requires this), the addition of double colons (::) for the global labels, and carriage returns (lines) inserted after the labels
following the PROC directive in procedures Procedure03EB and Procedure03FA. The last change is because of a bug
(or undocumented behavior) in MASM that requires this. The bug is that whenever a macro call or loop-generating
directive (for example, cCalls, .IFs, .WHILEs, etc.) occurs on the line following a PROC directive in which prologue code
is expanded, and there is no LOCAL directive, MASM mistakedly will suppose that the macro will expands into the
LOCAL directive. When it discovers, the LOCAL isn't there, it just continues assembling, but consequently distorts the
expansion of the macro, to where either an error is generated or else garbage instructions are generated. The following
listing demonstrates what happens when we change the PUSH WORD PTR par4 and CALL FAR PTR LocalFree
instructions in procedure Procedure08A2 (in hellohil.asm) to a cCall macro call:

089D Procedure08A2 PROC NEAR C <NOLOADDS, NOINCBP, FORCEFRAME,
NOCHECKSTACK>, par4:WORD

cCall <FAR PTR LocalFree, WORD PTR par4>
= 0001 1 ??012D = 1
= FAR PTR LocalFree 2 ??012E TEXTEQU <FAR PTR
LocalFree>
= 0000 2 ??012D = 0
= 0000 3
= 0000 3 ??0130 = 0
= 0000 3 ??0131 = 0
= 0000 3 ??0132 = 0
= 0000 4 ifidn <NOLOADDS>, <NOLOADDS>
= 0000 4 ifidn <NOINCBP>, <NOINCBP>
= 0001 4 ifidn <FORCEFRAME>, <FORCEFRAME>
= 0000 4 ifidn <NOCHECKSTACK>, <NOCHECKSTACK>
= FFFFFFFF 3
089D 55 3
089E 8B EC 3 push bp
08A0 FF 76 04 2 exitm <00H>
08A3 9A ---- 0000 E 1 CALL ??012E

RET
= 0000 1 ??0134 = 0
= 0000 1 ??0135 = 0
= 0000 1 ??0136 = 0
= 0000 1 ??0137 = 0
= 0000 2 ??0135 = 0
= 0000 2 ??0137 = 0
= 0001 2 ??0134 = 1

WDASM Windows Disassembler 1.5 Program Documentation 7
= 0000 2 ??0136 = 0
= FFFFFFFF 1 ??0134 = ??0134 OR ??0137 OR ??0135 OR ??0136 OR (00H NE 0)
OR
08A8 8B E5 1 mov sp,bp
08AA 5D 1 pop bp
08AB C3 1 ret
08AC Procedure08A2 ENDP

Instead of PUSH BP and MOV BP, SP, it generates just PUSH BP, and the push specified in the cCall call
doesn't get expanded either. Consequently, in MASM 6.0, never call a macro or use a loop-generating directive as the
first instruction in a procedure when

a.) the automatic prologue code is forced (via FORCEFRAME) and
b.) there is no LOCAL directive.

Bugs

Known Bugs In Version 1.5

The screen will need refreshing after scrolling upwards, primarily within data segments, but sometimes in code
segments if the user edits the bytes. This bug will not affect file generation.

The scroll bar does not work properly when displaying segments of size 7FFFH or greater. In this case the user
must use the Page Up/Page Down and the up arrow/down arrow keys. This is because of Windows' scroll bar range limit
of 32,726 (7FFFH).

There is a bug associated with references to procedures in fixed segments (as opposed to moveable segments).
One such case is where the segment and offset of a function are being referenced. The user might, for example, see
something like the following:

PUSH SEG ABOUTDLG
PUSH 00A4H ; (Located in segment 0)
PUSH WORD PTR D0AC0H
CALL FAR PTR MakeProcInstance

This would be an error. The second PUSH should actually read, "PUSH OFFSET Procedure00A4H" The cause for this
error hasn't been specifically determined.

License / Warranty Disclaimer
You are free to use, copy and distribute Windows Disassembler provided that no fee is charged for use, copying

or distribution, it is not modified in any way, and this documentation file (unmodified) accompanies all copies. This
program is provided as is without any warranty, expressed or implied, including but not limited to fitness for a particular
purpose.

Windows Disassembler may not be used in any unlawful or illegal manner.

Copyright
Windows Disassembler and this documentation are copyrighted (c) 1992-1993 by Eric Grass.

Comments, critiques and suggestions regarding Windows Disassembler 1.5 are welcomed and can be forwarded to the
following address.

Eric Grass
1612 Gettysburg Landing
St. Charles, MO 63303

