
$1 #2 +3 K4 Macro Language

The MicroEMACS macro language allows you to add extensions to the editor. Statements (one per line)
are composed of the following elements:

Commands manipulate text, buffers, windows, etc... within the editor
Directives control the flow of execution within a macro
Arguments:

Constants
Variables
Functions

Comments

Macros are registered with MicroEMACS by the store-macro or store-procedure commands. They get
executed through menus or keystrokes they have been bound to, or through the execute-macro- n or run
commands.

Macros can also be executed directly from a buffer or a file by the execute-buffer or execute-file
commands.

1$ Macro Language
2# MacroLanguage
3+ Index:2040
4K macro;language

$5 #6 +7 K8 Commands

By topic:

Binding
Block of Text
Buffer, Window and Screen
Clipboard and Kill Buffer
Execution, Macro and Variable
File
Mouse
Positioning
Search and Replace

Miscellaneous

Alphabetical lists:

Standard commands
Additional commands

5$ Commands
6# Commands
7+ MacroLanguage:010
8K commands

$9 #10 +11 K12 Binding commands
apropos
bind-to-key
bind-to-menu
ctlx-prefix
describe-bindings
describe-key
macro-to-key
macro-to-menu
meta-prefix
unbind-key
unbind-menu

9$ Binding commands
10# BindingCommands
11+ CommandsByTopic:bindingcommands
12K binding;commands

$13 #14 +15 K16 Block of Text commands
Commands that affect regions, lines, words and paragraphs.

case-region-lower
case-region-upper
case-word-capitalize
case-word-lower
case-word-upper
copy-region
count-words
delete-blank-lines
delete-next-word
delete-previous-word
detab-region
entab-region
fill-paragraph
indent-region
kill-paragraph
kill-region
kill-to-end-of-line
narrow-to-region
remove-mark
set-fill-column
set-mark
trim-region
undent-region
widen-from-region
wrap-word

13$ Block of Text commands
14# BlockOfTextCommands
15+ CommandsByTopic:blockoftextcommands
16K region;line;word;paragraph;commands

$17 #18 +19 K20 Buffer, Window and Screen commands
add-global-mode
add-mode
cascade-screens
change-screen-column
change-screen-row
change-screen-size
change-screen-width
clear-and-redraw
cycle-screens
delete-buffer
delete-global-mode
delete-other-windows
delete-mode
delete-screen
delete-window
execute-buffer
filter-buffer
find-screen
grow-window
list-buffers
list-screens
maximize-screen
minimize-screen
move-window-down
move-window-up
name-buffer
narrow-to-region
next-buffer
next-window
pipe-command
pop-buffer
previous-window
rename-screen
resize-window
restore-screen
restore-window
save-window
scroll-next-up
scroll-next-down
select-buffer
shrink-window
split-current-window
tile-screens
unmark-buffer
update-screen
widen-from-region

17$ Buffer, Window and Screen commands
18# BufferWindowScreenCommands
19+ CommandsByTopic:bufferwindowscreencommands
20K buffer;window;screen;commands

$21 #22 +23 K24 Clipboard and Kill Buffer commands
clip-region
copy-region
cut-region
cycle-ring
delete-kill-ring
delete-next-character (with argument)
delete-next-word
delete-previous-character (with argument)
delete-previous-word
insert-clip
kill-paragraph
kill-region
kill-to-end-of-line
yank
yank-pop

21$ Clipboard and Kill Buffer commands
22# ClipboardKillBufferCommands
23+ CommandsByTopic:clipboardandkillbuffercommands
24K clipboard;kill;commands

$25 #26 +27 K28 Execution, Macro and Variable commands
abort-command
begin-macro
describe-functions
describe-variables
display
end-macro
execute-buffer
execute-command-line
execute-file
execute-macro
execute-macro- n
execute-named-command
execute-procedure
execute-program
filter-buffer
i-shell
nop
pipe-command
run
set
shell-command
source
store-macro
store-procedure
help-engine

25$ Execution, Macro and Variable commands
26# ExecutionMacroVariableCommands
27+ CommandsByTopic:executionmacrovariablecommands
28K execute;spawn;filter;pipe;shell;DOS;macro;variable;commands

$29 #30 +31 K32 File Commands
append-file
change-file-name
execute-file
find-file
insert-file
read-file
save-file
show-files
source
view-file
write-file

29$ File Commands
30# FileCommands
31+ CommandsByTopic:filecommands
32K file;commands

$33 #34 +35 K36 Mouse commands
mouse-move-down
mouse-move-up
mouse-region-down
mouse-region-up
mouse-resize-screen

33$ Mouse commands

34# MouseCommands

35+ CommandsByTopic:mousecommands

36K mouse;commands

$37 #38 +39 K40 Positioning commands
backward-character
beginning-of-file
beginning-of-line
buffer-position
end-of-file
end-of-line
end-of-word
exchange-point-and-mark
forward-character
goto-line
goto-mark
goto-matching-fence
next-line
next-page
next-paragraph
next-word
previous-line
previous-page
previous-paragraph
previous-word
redraw-display

37$ Positioning commands
38# PositioningCommands
39+ CommandsByTopic:positioningcommands
40K position;point;commands

$41 #42 +43 K44 Search and Replace commands
hunt-backward
hunt-forward
incremental-search
query-replace-string
replace-string
reverse-incremental-search
search-forward
search-reverse

41$ Search and Replace commands
42# SearchReplaceCommands
43+ CommandsByTopic:searchreplacecommands
44K search;replace;commands

$45 #46 +47 K48 Miscellaneous Commands
clear-message-line
exit-emacs
handle-tab
help
insert-space
insert-string
newline
newline-and-indent
nop
open-line
overwrite-string
print
quick-exit
quote-character
redraw-display
set-encryption-key
set-fill-column
transpose-characters
universal-argument
write-message

45$ Miscellaneous commands
46# MiscellaneousCommands
47+ CommandsByTopic:zzz010
48K misc;commands

$49 #50 +51 K52 Standard commands
The following commands are available in all implementations of MicroEMACS:

abort-command Allows the user to abort out of any command that is waiting for input

add-global-mode Add a global mode for all new buffers

add-mode Add a mode to the current buffer

append-file Append a buffer to the end of a file

apropos Lists commands and macros whose name contains the string specified

backward-character Move one character to the left

begin-macro Begin recording a keyboard macro

beginning-of-file Move to the beginning of the file in the current buffer

beginning-of-line Move to the beginning of the current line

bind-to-key Bind a key to a command

buffer-position List the position of the point on the message line

case-region-lower Make a region all lower case

case-region-upper Make a region all upper case

case-word-capitalize Capitalize the following word

case-word-lower Lower case the following word

case-word-upper Upper case the following word

change-file-name Change the name of the file in the current buffer

change-screen-column change the column offset of the current screen

change-screen-row change the row offset of the current screen

change-screen-size Change the number of lines of the current screen

change-screen-width Change the number of columns of the current screen

clear-and-redraw Repaint all screens or center the point in the current window

clear-message-line Clear the message line

copy-region Copy the current region into the kill buffer

count-words Count how many words, lines and characters are in the current region

ctlx-prefix Bound to the key used as the ^X prefix

cycle-ring moves the current position of the kill buffer within the kill ring

cycle-screens Bring the rearmost screen to front

delete-blank-lines Delete all blank lines around the point

delete-buffer Delete a buffer which is not being currently displayed in a window

delete-kill-ring Reclaim the memory used by the kill ring

49$ Standard commands
50# StandardCommands
51+ CommandsByTopic:zzz900
52K standard;commands

delete-global-mode Turn off a global mode

delete-mode Turn off a mode in the current buffer

delete-next-character Delete the character following the point

delete-next-word Delete the word following the point

delete-other-windows Make the current window cover the entire screen

delete-previous-character Delete the character to the left of the point

delete-previous-word Delete the word to the left of the point

delete-screen Delete a screen (not the top one)

delete-window Remove the current window from the screen

describe-bindings List all commands and macros

describe-functions List all functions

describe-variables List all variables

describe-key Describe what command or macro is bound to a keystroke sequence

detab-region Change all tabs in a region to the equivalent spaces

display Displays a variable's current value

end-macro Stop recording a keyboard macro

end-of-file Move to the end of the current buffer

end-of-line Move to the end of the current line

end-of-word Move just past the end of the current word

entab-region Change multiple spaces to tabs where possible

exchange-point-and-mark Move the point to the last marked spot, make the original position be
marked

execute-buffer Execute a buffer as a macro

execute-command-line Execute a line typed on the command line as a macro

execute-file Execute a file as a macro

execute-macro Execute the keyboard macro (play back the recorded keystrokes)

execute-macro- n Execute numbered macro n where n is an integer from 1 to 40

execute-named-command Execute a command by name

execute-procedure Execute a procedure by name

execute-program Execute a program directly (not through an intervening shell)

exit-emacs Exit MicroEMACS. If there are unwritten, changed buffers MicroEMACS
will ask to confirm

fill-paragraph Fill the current paragraph

filter-buffer Filter the current buffer through an external filter

find-file Find a file to edit in the current window

find-screen Bring the named screen on top, creating it if needed

forward-character Move one character to the right

goto-line Goto a numbered line

goto-mark Goto a numbered mark

goto-matching-fence Goto the matching fence

grow-window Make the current window larger

handle-tab Insert a tab or set tab stops

hunt-backward Hunt for the last match of the last search string

hunt-forward Hunt for the next match of the last search string

help Read EMACS.HLP into a buffer and display it

i-shell Shell up to a new command processor

incremental-search Search for a string, incrementally

indent-region Indent the current region one tab

insert-file Insert a file at the point in the current file

insert-space Insert a space to the right of the point

insert-string Insert a string at the point

kill-paragraph Delete the current paragraph

kill-region Delete the current region, moving it to the kill buffer

kill-to-end-of-line Delete the rest of the current line

list-buffers List all existing buffers

list-screens List all existing screens

macro-to-key Bind a key to a macro

meta-prefix Key used to precede all META commands

mouse-move-down Usually bound to a press on the left mouse button

mouse-move-up Usually bound to the release of the left mouse button

mouse-region-down Usually bound to a press on the right mouse button

mouse-region-up Usually bound to the release of the right mouse button

mouse-resize-screen Resize the screen to bring the bottom-left corner where the mouse was
clicked

move-window-down Scroll the current window down

move-window-up Scroll the current window up

name-buffer Change the name of the current buffer

narrow-to-region Hides all text not in the current region (see widen-from-region)

newline Insert a newline

newline-and-indent Insert a newline and indent the new line the same as the preceding line

next-buffer Bring the next buffer in the list into the current window

next-line Move down one line

next-page Move down one page

next-paragraph Move to the next paragraph

next-window Move to the next window

next-word Move to the beginning of the next word

nop Does nothing

open-line Open a line at the point

overwrite-string Overwrite a string at the point

pipe-command Execute an external command and place its output in a buffer

pop-buffer Display a buffer temporarily, paging through it

previous-line Move up one line

previous-page Move up one page

previous-paragraph Move back one paragraph

previous-window Move to the last window

previous-word Move to the beginning of the word to the left of the point

print Display a string on the message line (synonym of write-message)

query-replace-string Replace occurrences of a string with another string, interactively
querying the user

quick-exit Exit MicroEMACS, writing out all the changed buffers

quote-character Insert the next character literally

read-file Read a file into the current buffer

redraw-display Reposition the current line in the window

remove-mark Remove a numbered mark

replace-string Replace all occurrences of a string with another string

resize-window Change the number of lines in the current window

restore-window Move to the last saved window (see save-window)

reverse-incremental-search Search backwards, incrementally

run Execute a named procedure

save-file Save the current buffer if it is changed

save-window Remember the current window (see restore-window)

scroll-next-up Scroll the next window up

scroll-next-down Scroll the next window down

search-forward Search for a string

search-reverse Search backwards for a string

select-buffer Select a buffer to display in the current window

set Set a variable to a value

set-encryption-key Set the encryption key of the current buffer

set-fill-column Set the current fill column

set-mark Set a numbered mark

shell-command Causes an external shell to execute a command

show-files list files matching a pattern within a directory

shrink-window Make the current window smaller

source Execute a file as a macro

split-current-window Split the current window in two

store-macro Store the following macro lines as a numbered macro

store-procedure Store the following macro lines in a named procedure

transpose-characters Transpose the character at the point with the character immediately to
the left

trim-region Trim any trailing white space from a region

unbind-key Unbind a key from a command or macro

undent-region Remove a leading indent from a region

universal-argument Execute the following command or macro 4 times

unmark-buffer Unmark the current buffer (so it is no longer seen as changed)

update-screen Force a display update during macro execution

view-file Read a file in a buffer, in view mode

widen-from-region Restores hidden text (see narrow-to-region)

wrap-word Wrap the current word (internal command)

write-file Write the current buffer under a new file name

write-message Display a string on the message line

yank Yank the kill buffer into the current buffer at the point

yank-pop yank the kill buffer, subsequent invocations replacing the yanked text by
the next one from the kill ring.

$53 #54 +55 K56 Additional commands
The following commands are available only from the Microsoft Windows version of MicroEMACS:

bind-to-menu creates a menu item and binds it to a command

cascade-screens arranges all non-iconic screens using a cascading scheme

clip-region copies the region to the Windows clipboard

cut-region moves the region to the Windows clipboard

help-engine invokes the Microsoft Windows help engine

insert-clip inserts the contents of the Windows clipboard at the point

macro-to-menu creates a menu item and binds it to a macro

maximize-screen makes the current screen occupy the whole MicroEMACS window

minimize-screen iconizes the current screen

rename-screen change the current screen's name

restore-screen restores the current screen back from maximized    or iconized state

tile-screens arranges all non-iconic screens using a tiling scheme

unbind-menu deletes a menu item

53$ Additional commands
54# AdditionalCommands
55+ CommandsByTopic:zzz910
56K Additionnal commands;Microsoft Windows;MS Windows

$57 #58 +59 K60 Directives

Directives are used within macros to control what lines are executed and in what order.

Directives always start with the exclamation mark "!" character and must be the first non-white text placed
on a line. They are:

!BREAK
!ENDM
!FORCE
!GOTO
!IF, !ELSE and !ENDIF
!RETURN
!WHILE and !ENDWHILE

Directives do not make sense as a single commands. As such, they cannot be called up singly or bound
to keystrokes.Directives executed interactively (via the execute-command-line command) are ignored.

57$ Directives
58# Directives
59+ MacroLanguage:020
60K directives;macro

$61 #62 +63 K64 !BREAK

This directive lets you abort out of the most inner currently executing while loop, in a macro. It is often
used to abort processing for error conditions. For example:

; Read in files and substitute "beginning" with "beginning"
set %filename #list
!while ¬ &seq %filename "<end>"
!force        find-file %filename
        !if &seq $status FALSE
                write-message "[File read error]"
                !break
        !endif
        beginning-of-file
        replace-string "beginning" "beginning"
        save-file
        set %filename #list
!endwhile

61$!BREAK directive
62# .BREAK
63+ Directives:BREAK
64K !BREAK;!WHILE;loop

$65 #66 +67 K68 !ENDM

This directive is used to terminate a macro being stored. For example:

; Read in a file in view mode, and make the window red
store-procedure get-red-viewed-file
        view-file @"File to view: "
        add-mode "red"
!endm

Related commands:

store-procedure
store-macro.

65$!ENDM directive
66# .ENDM
67+ Directives:endm
68K !ENDM;macro

$69 #70 +71 K72 !FORCE

When MicroEMACS executes a macro, if any command fails, the macro is terminated at that point. If a
line is preceded by a !FORCE directive, execution continues whether the command succeeds or not.

This is often used together with the $status variable to test if a command succeeded. For example:

set %seekstring @"String to Find: "
!force search-forward %seekstring
!if $status
        print "Your string is Found"
!else
        print "No such string!"
!endif

69$!FORCE directive
70# .FORCE
71+ Directives:force
72K !FORCE;error

$73 #74 +75 K76 !GOTO

The flow of execution within a MicroEMACS macro can be controlled using the !GOTO directive. It takes a
label as argument. A label consists of a line starting with an asterisk "*" and then an alphanumeric label.
Only labels in the currently executing macro can be jumped to, and trying to jump to a non-existing label
terminates execution of a macro. For example:

; Create a block of DATA statements for a BASIC program
insert-string "1000 DATA "
set %linenum 1000
*nxtin
update-screen        ;make sure we see the changes
set %data @@"Next number: "
!if &equal %data 0
        !goto finish
!endif
!if &greater $curcol 60
        2 delete-previous-character
        newline
        set %linenum &add %linenum 10
        insert-string &cat %linenum " DATA "
!endif
insert-string &cat %data ", "
!goto nxtin
*finish
2 delete-previous-character
newline

Note that loops constructed with !WHILE are usually more efficient than those constructed purely by !
GOTOs.

73$!GOTO directive
74# .GOTO
75+ Directives:goto
76K !GOTO;!WHILE;loop

$77 #78 +79 K80 !IF, !ELSE and !ENDIF

The !IF directive allows for conditional execution within a macro.

Lines following the !IF directive, until the corresponding !ELSE or !ENDIF, are executed only if the
expression within the !IF line evaluates to a TRUE value. Lines following an !ELSE directive, until the
corresponding !ENDIF, are executed only if the expression within the corresponding !IF line did not
evaluate to a TRUE value.

For example, the following macro creates the portion of a text file automatically:

!if &sequal %curplace "timespace vortex"
        insert-string "First, rematerialize~n"
!endif
!if &sequal %planet "earth"        ;If we have landed on earth...
        !if &sequal %time "late 20th century"        ;and we are then
                write-message "Contact U.N.I.T."
        !else
                insert-string "Investigate the situation....~n"
                insert-string "(SAY 'stay here Sarah)~n"
        !endif
!else
        set %conditions @"Atmosphere conditions outside? "
        !if &sequal %conditions "safe"
                insert-string &cat "Go outside......" "~n"
                insert-string "lock the door~n"
        !else
                insert-string "Dematerialize..try somewhen else"
                newline
        !endif
!endif

77$!IF, !ELSE and !ENDIF directives
78# .IF
79+ Directives:if
80K !IF;!ELSE;!ENDIF

$81 #82 +83 K84 !RETURN

This directive causes the current macro to exit, either returning to the caller (if any) or to interactive mode.
For example:

; Check the display type and set %wintyp
!if &sequal $sres "MSWIN"
        set %wintyp 1
        !return
!endif
set %wintyp 0
write-message "You are not running under MS-Windows!"
!return

81$!RETURN directive
82# .RETURN
83+ Directives:return
84K !RETURN

$85 #86 +87 K88 !WHILE and !ENDWHILE

This pair of directives facilitates repetitive execution within a macro. If a group of statements needs to be
executed while a certain expression evaluates to TRUE, enclose them with a while loop. For example:

!while &less $curcol 70
        insert-string &cat &cat "[" #stuff "]"
!endwhile

While loops may be nested and can contain and be the targets of !GOTOs with no ill effects.    Using a
while loop to enclose a repeated task will run much faster than the corresponding construct using !IFs.

85$!WHILE and !ENDWHILE directives
86# .WHILE
87+ Directives:while
88K !WHILE;!ENDWHILE;loop;!BREAK

$89 #90 +91 K92 Arguments

In the MicroEMACS macro language, commands and functions often require arguments. There are three
types of arguments and they are automatically converted to the proper type when used:

Numerical An ASCII string of digits which is interpreted as a numeric value. Any
string which does not start with a digit or a minus sign "-" will be
considered zero.

String An arbitrary string of characters. Strings are limited to 128 characters in
length.

Boolean A logical value consisting of the string "TRUE" or "FALSE". Numeric
strings will also evaluate to "FALSE" if they are equal to zero, and
"TRUE" if they are non-zero. Arbitrary text strings will be considered
equivalent "FALSE".

While arguments usually follow the command or function that uses them, a single numerical argument
can also be placed in front of a command, producing an effect similar to the numeric arguments used in
interactive mode.

If a command needs more arguments than have be supplied on the line, the command fails.

89$ Arguments
90# Arguments
91+ MacroLanguage:030
92K argument;evaluate;expression;

$93 #94 +95 K96 Constants

Wherever macro language statements need to have arguments, it is legal to place constants. A constant
is a double quote character, followed by a string of characters, and terminated by another double quote
character.

The double quotes around constants are not needed if the constant contains no white space and it also
does not happen to meet the rules for any other MicroEMACS commands, directives, variables, or
functions. This is very practical for numeric constants.

To represent various special characters within a constant, the tilde "~" character is used. The character
following the tilde is interpreted according to the following table:

Sequence Meaning

~" double quote

~~ tilde

~b backspace (^H)

~f formfeed (^L)

~l linefeed (^J)

~n newline

~r carriage return (^M)

~t tab (^I)

Any character not in the above table which follows a tilde will be passed unmodified. This action is similar
to the quote-character (^Q) command available from the keyboard.

MicroEMACS may use different characters for line terminators on different computers. The "~n"
combination will always get the proper line terminating sequence for the current system.

93$ Constants
94# Constants
95+ MacroLanguage:040
96K constants;macro

$97 #98 +99 K100 Variables

Variables are part of the MicroEMACS Macro language. They can be used wherever an argument
(number, boolean or string) is needed.

Environmental variables both control and report on different aspects of the editor. User variables hold
values which may be changed and inspected. Buffer variables allow lines from buffers to be used as
values. Interactive variables allow macros to prompt the user for information.

97$ Variables
98# Variables
99+ MacroLanguage:050
100K variable;macro

$101 #102 +103 K104 Buffer Variables
Buffer variables are a way to take a line of text from a buffer and place it in a variable. They can only be
queried and cannot be set. A buffer variable consists of the buffer name, preceded by a pound sign "#". Its
value is the text between the point and the end of the line. Each use of a buffer variable advances the
point to the beginning of the following line.

For example, if you have a buffer by the name of RIGEL2, and it contains the text (the point being on the
"B" of "Bloomington"):

Richmond
Lafayette
Bloomington
Indianapolis
Gary

and within a command you reference #rigel2, like in:

insert-string #rigel2

MicroEMACS would start at the current point in the RIGEL2 buffer and grab all the text up to the end of
that line and pass that back. Then it would advance the point to the beginning of the next line. Thus, after
the insert-string command executes, the string "Bloomington" gets inserted into the current buffer, and the
buffer RIGEL2 now looks like this (the point is on the "I" of "Indianapolis"):

Richmond
Lafayette
Bloomington
Indianapolis
Gary

101$ Buffer Variables
102# BufferVariables
103+ Variables:buffervariables
104K buffer;variable

$105 #106 +107 K108 Environmental Variables
These variables are used to change or get information about various aspects of the editor. They return a
current setting if used as part of an expression. All environmental variable names begin with a dollar sign
"$" and are in lower case:

$acount Countdown until next auto-save
$asave Auto-save frequency
$bufhook Command/macro run when entering a buffer
$cbflags Buffer attribute flags.
$cbufname Buffer name
$cfname File name
$cmdhook Command/macro run before each keystroke
$cmode Buffer modes
$curchar ASCII value of character
$curcol Current column
$curline Current line
$curwidth Number of columns
$curwind Window index
$cwline Line number in current window
$debug Macro debugging flag
$deskcolor Color for desktop
$diagflag Diagonal dragging flag
$discmd Prompt echo flag
$disinp Input echo flag
$disphigh High-bit characters display flag
$exbhook Command/macro run when leaving a buffer.
$fcol Line number at top of window
$fillcol Fill column.
$flicker Flicker flag (for CGA or animated grinder cursor)
$fmtlead Text formatter command prefixes
$gflags Global flags
$gmode Global mode flags
$hardtab Size of hard tabs
$hjump Horizontal scrolling quantum
$hscroll Horizontal scrolling flag
$hscrlbar Horizontal scroll bar flag
$kill Kill buffer contents
$language National language used by MicroEMACS
$lastkey Last keyboard character
$lastmesg Last message
$line Current line contents
$lterm Line terminator string
$lwidth Width of current line
$match Last string matched in a search
$modeflag Mode line display flag
$msflag Mouse flag
$numwind Number of windows
$oldcrypt Encryption method flag
$orgrow Row of current screen within desktop

105$ Environmental Variables
106# EnvironmentalVariables
107+ Variables:environmentalvariables
108K variable

$orgcol Column of current screen within desktop
$pagelen Number of lines in screen
$palette Color palette settings
$paralead Paragraph start characters
$pending Keystrokes pending flag
$popflag Popup buffer flag
$posflag Row&column display flag
$progname "MicroEMACS"
$readhook Command/macro run when a file is read
$region Contents of current region
$replace Default replace string.
$rval Exit value from last invoked subprocess
$scrname Screen name
$search Default search string
$searchpnt After-search-positioning flag
$seed Random number generator seed
$softtab Tab size for handle-tab command
$sres Display resolution (MSWIN under MS-Windows)
$ssave Safe-save flag
$sscroll Smooth scroll flag
$status Status from last command
$sterm Search string terminator key
$target Target for line moves
$time Date and time
$timeflag Time display flag
$tpause Duration of fence matching pause
$version MicroEMACS version
$vscrlbar Vertical scroll bar flag
$wchars List of characters that can be part of a word
$wline Window height (lines)
$wraphook Command/macro run when wrapping text
$writehook Command/macro run when writing a file
$xpos Column the mouse was in at last click
$yankflag After-yank-positioning flag
$ypos Line the mouse was in at last click

$109 #110 +111 K112 $acount

This variable is used in ASAVE mode. It contains the countdown on inserted character until the next auto-
save. When it reaches zero, it is reset to the value of $asave.

Initial value: 256

109$ $acount variable
110# _acount
111+ EVariables:acount
112K $acount;ASAVE;autosave

$113 #114 +115 K116 $asave

This variable is used in ASAVE mode. It specifies the value used to reset $acount after an automatic save
occurs.

Default value: 256

113$ $asave variable
114# _asave
115+ EVariables:asave
116K $asave;ASAVE;autosave

$117 #118 +119 K120 $bufhook

The command or macro named in this variable is run when a buffer is entered. This can be used to
implement modes which are specific to a particular file or file type.

Default value: nop

117$ $bufhook variable
118# _bufhook
119+ EVariables:bufhook
120K $bufhook;hook;buffer

$121 #122 +123 K124 $cbflags

This variable contains the current buffer's attribute flags, encoded as the sum of the following numbers:

1 Internal invisible buffer
2 Changed since last read or write
4 Buffer was truncated when read (due to lack of memory)
8 Buffer has been narrowed

Only the invisible (1) and changed (2) flags can be modified by setting $cbflags. The truncated file (4) and
narrowed (8) flags are read-only.

121$ $cbflags variable
122# _cbflags
123+ EVariables:cbflags
124K $cbflags

$125 #126 +127 K128 $cbufname

This variable contains the name of the current buffer.

125$ $cbufname variable
126# _cbufname
127+ EVariables:cbufname
128K $cbufname;buffer

$129 #130 +131 K132 $cfname

This variable contains the file name associated to the current buffer.

129$ $cfname variable
130# _cfname
131+ EVariables:cfname
132K $cfname;file;buffer

$133 #134 +135 K136 $cmdhook

This variable contains the name of a command or macro to run before accepting a keystroke. This is by
default set to the nop command.

Default value: nop

133$ $cmdhook variable
134# _cmdhook
135+ EVariables:cmdhook
136K $cmdhook;hook;keyboard

$137 #138 +139 K140 $cmode and $gmode

The two variables $cmode and $gmode contain a number that corresponds to the modes for the current
buffer ($cmode) and the new buffers ($gmode). They are encoded as the sum of the following numbers
for each of the possible modes:

WRAP 1 Word wrap
CMODE 2 C indentation and fence matching
SPELL 4 Interactive spell checking (Not implemented yet)
EXACT 8 Exact matching for searches
VIEW 16 Read-only buffer
OVER 32 Overwrite mode
MAGIC 64 Regular expressions in search
CRYPT 128 Encryption mode active
ASAVE 256 Auto-save mode

Thus, if you wished to set the current buffer to have CMODE, EXACT, and MAGIC on, and all the others
off, you would add up the values for those three, CMODE 2 + EXACT 8 + MAGIC 64 = 74, and use a
statement like:

set    $cmode    74

or, use the binary or operator to combine the different modes:

set    $cmode    &bor    &bor    2    8    64

Alternatively, you can also modify the modes one by one, using the add-mode and add-global-mode or
delete-mode and delete-global-mode commands

137$ $cmode and $gmode variables
138# _cmode
139+ EVariables:cmode
140K $cmode;$gmode;mode

$141 #142 +143 K144 $curchar

This variable contains the ASCII value of the character currently at the point.

141$ $curchar variable
142# _curchar
143+ EVariables:curchar
144K $curchar

$145 #146 +147 K148 $curcol

This variable contains the column (starting at 0) of the point in the current buffer.

145$ $curcol variable
146# _curcol
147+ EVariables:curcol
148K $curcol

$149 #150 +151 K152 $curline

This variable contains the line number (starting at 1) of the point in the current buffer.

149$ $curline variable
150# _curline
151+ EVariables:curline
152K $curline

$153 #154 +155 K156 $curwidth

This variable contains the number of columns displayed in the current screen.

Setting this variable is equivalent to using the change-screen-width command with a numeric argument.

153$ $curwidth variable
154# _curwidth
155+ EVariables:curwidth
156K $curwidth

$157 #158 +159 K160 $curwind

This variable contains the index of the current window within the screen. Windows are numbered from top
to bottom, starting at 1. The number of windows within the current screen is held by the $numwind
variable.

157$ $curwind variable
158# _curwind
159+ EVariables:curwind
160K $curwind

$161 #162 +163 K164 $cwline

This variable contains the number of lines displayed in the current window.

161$ $cwline variable
162# _cwline
163+ EVariables:cwline
164K $cwline

$165 #166 +167 K168 $debug

This boolean variable contains a flag used to trigger macro debugging. If it is set to TRUE, macros are
executed step by step, and each statement and variable assignment is displayed on the message line.

Default value: FALSE

165$ $debug variable
166# _debug
167+ EVariables:debug
168K $debug

$169 #170 +171 K172 $deskcolor

This variable contains the color to use for the desktop. In the MS-Windows version of MicroEMACS, the
value of this variable is irrelevant.

Default value: BLACK.

169$ $deskcolor variable
170# _deskcolor
171+ EVariables:deskcolor
172K $deskcolor

$173 #174 +175 K176 $diagflag

If this boolean variable is set to TRUE, diagonal dragging of text and mode lines is enabled. If it is FALSE,
text and modelines can either be dragged horizontally or vertically but not both at the same time.

173$ $diagflag variable
174# _diagflag
175+ EVariables:diagflag
176K $diagflag

$177 #178 +179 K180 $discmd

If this boolean variable is set to TRUE, the echoing of command prompts and output on the message line
is enabled. If it is FALSE, most messages and prompts are disabled (this is handy to avoid some cases of
message line flashing while a macro is running).

Default value: TRUE.

177$ $discmd variable
178# _discmd
179+ EVariables:discmd
180K $discmd

$181 #182 +183 K184 $disinp

If this boolean variable is set to TRUE, the echoing of input at the command prompts is enabled.

Default value: TRUE.

181$ $disinp variable
182# _disinp
183+ EVariables:disinp
184K $disinp

$185 #186 +187 K188 $disphigh

If this boolean variable is set to TRUE, high-bit characters (single byte characters that are greater than
127 in value) will be displayed in a pseudo-control format. The characters "^!" will lead off the sequence,
followed by the character stripped of its high bit.

Default value: FALSE.

185$ $disphigh variable
186# _disphigh
187+ EVariables:disphigh
188K $disphigh

$189 #190 +191 K192 $exbhook

This variable holds the name of a command or macro which is run whenever you are switching out of a
buffer.

Default value: nop

189$ $exbhook variable
190# _exbhook
191+ EVariables:exbhook
192K $exbhook;hook;buffer

$193 #194 +195 K196 $fcol

This variable contains the line position being displayed in the first column of the current window.

193$ $fcol variable
194# _fcol
195+ EVariables:fcol
196K $fcol

$197 #198 +199 K200 $fillcol

This variable contains the current fill column. It is used by the fill-paragraph command. It can be set
through the set command or by using the set-fill-column command.

Default value: 72

197$ $fillcol variable
198# _fillcol
199+ EVariables:fillcol
200K $fillcol;fill

$201 #202 +203 K204 $flicker

In the MS-DOS version of MicroEMACS, this variable contains a flicker flag that should be set to TRUE if
the display is an IBM CGA and set to FALSE for most others.

In the MS-Windows version of MicroEMACS, this variable can be set to FALSE to allow an animated
grinder to be displayed in place of the hourglass mouse cursor. Since this animation results, on many
video displays, in an annoying flicker of the cursor, it is disabled when $flicker is set to TRUE.

Default value: TRUE

201$ $flicker variable
202# _flicker
203+ EVariables:flicker
204K $flicker;grinder;hourglass

$205 #206 +207 K208 $fmtlead

A line starting with one of the characters in the $fmtlead variable is considered to be a text formatter
command. Therefore, the following line is considered to be the start of a paragraph.

If you are editing text destined for use by a text formatter, set $fmtlead to the command character for that
formatter. That will prevent MicroEMACS from formatting what should be lines of commands meant for
the formatter. If, for example, you are editing SCRIBE source, use the set (^XA) command to set $fmtlead
to "@".

Default value: empty string

205$ $fmtlead variable
206# _fmtlead
207+ EVariables:fmtlead
208K $fmtlead;paragraph

$209 #210 +211 K212 $gflags

Some of the ways MicroEMACS controls its internal functions can be modified by the value in the $gflags
variable. Each bit in this variable will be used to control a different function:

1 If this bit is set to zero, EMACS will not automatically switch to the buffer of the first file
after executing the startup macros.

2 If this bit is set to one, suppress redraw events.

209$ $gflags variable
210# _gflags
211+ EVariables:gflags
212K $gflags

$213 #214 +215 K216 $hardtab

This variable contains the number of spaces between hard tab stops. This can be used to change the way
tabs are displayed within the editor.

Default value: 8

213$ $hardtab variable
214# _hardtab
215+ EVariables:hardtab
216K $hardtab

$217 #218 +219 K220 $hjump

This variable contains the number of columns the editor should scroll the screen horizontally when a
horizontal scroll is required.

Default value: 1

217$ $hjump variable
218# _hjump
219+ EVariables:hjump
220K $hjump

$221 #222 +223 K224 $hscroll

This variable is a flag that determines if MicroEMACS will scroll the entire window horizontally, or just the
current line. The default value, TRUE, results in the entire window being shifted left or right when the
cursor goes off the edge of the screen.

221$ $hscroll variable
222# _hscroll
223+ EVariables:hscroll
224K $hscroll

$225 #226 +227 K228 $hscrlbar

This boolean variable exists only under the MS-Windows version of MicroEMACS. If it is TRUE, an
horizontal scroll bar is available at the bottom of each screen, allowing you to scroll the text in the current
window right and left.

If $hscrlbar is FALSE, the horizontal scroll bar is not present.

Default value: TRUE

225$ $hscrlbar variable
226# _hscrlbar
227+ EVariables:hscrlbar
228K $hscrlbar;scroll bar

$229 #230 +231 K232 $kill

This variable contains the first 127 characters currently in the kill buffer.

Attempts to set this variable are ignored.

229$ $kill variable
230# _kill
231+ EVariables:kill
232K $kill

$233 #234 +235 K236 $language

This variable contains the name of the national language in which MicroEMACS messages will be
displayed. (Currently MicroEMACS is available in English, French, Spanish, Latin, Portuguese, Dutch,
German, and Pig Latin).

The MS-Windows version of MicroEMACS is currently available in English only.

Attempts to set this variable are ignored. Changing the language used by MicroEMACS requires
recompiling.

233$ $language variable
234# _language
235+ EVariables:language
236K $language

$237 #238 +239 K240 $lastkey

This variable contains a number representing the ASCII value of the last key press processed by
MicroEMACS. This variable does not contain any indication that the last keystroke was prefixed by the
Meta or the Alt keys. Further more, function or special keys are perceived as the last character of their
keystroke representation.

Note that this variable does not change during playback of a keyboard macro.

Setting this variable does not have any effect on the editor beyond changing the variable's value.

237$ $lastkey variable
238# _lastkey
239+ EVariables:lastkey
240K $lastkey

$241 #242 +243 K244 $lastmesg

This variable contains the text of the last message which MicroEMACS wrote on the message line.

Setting this variable does not have any effect on the editor beyond changing the variable's value.

241$ $lastmesg variable
242# _lastmesg
243+ EVariables:lastmesg
244K $lastmesg

$245 #246 +247 K248 $line

This variable contains the first 127 characters of the current line. Setting this variable overwrites the
contents of the current line.

245$ $line variable
246# _line
247+ EVariables:line
248K $line

$249 #250 +251 K252 $lterm

This variable contains the string of characters to use as a line terminator when writing a file to disk. By
default, it is an empty string, which causes a newline to be written (under MS-DOS or MS-Windows, this
translates into a carriage return character followed by a line feed character).

Under some operating systems, the value of this variable is irrelevant.

249$ $lterm variable
250# _lterm
251+ EVariables:lterm
252K $lterm

$253 #254 +255 K256 $lwidth

This variable contains the number of characters of the current line.

Attempts to set this variable are ignored.

253$ $lwidth variable
254# _lwidth
255+ EVariables:lwidth
256K $lwidth

$257 #258 +259 K260 $match

This variable contains the last string matched by a search operation.

Attempts to set this variable are ignored.

257$ $match variable
258# _match
259+ EVariables:match
260K $match

$261 #262 +263 K264 $modeflag

If this boolean variable is TRUE, mode lines are visible. If it is FALSE, mode lines are not displayed (thus
allowing one more line per window).

Default value: TRUE

261$ $modeflag variable
262# _modeflag
263+ EVariables:modeflag
264K $modeflag

$265 #266 +267 K268 $msflag

Under some operating systems, this boolean variable can be used to control the use of the pointing
device: when it is TRUE, the mouse (if present) is active. When it is FALSE, the mouse cursor is not
displayed, and mouse actions are ignored.

Under MS-Windows, setting this variable to FALSE does not cause the cursor to be hidden, but mouse
actions within text areas are ignored. However, the mouse remains useable to activate menus or select,
move and resize screens.

Default value: TRUE

265$ $msflag variable
266# _msflag
267+ EVariables:msflag
268K $msflag

$269 #270 +271 K272 $numwind

This variable contains the number of windows displayed within the current screen.

Attempts to set this variable are ignored.

269$ $numwind variable
270# _numwind
271+ EVariables:numwind
272K $numwind

$273 #274 +275 K276 $oldcrypt

If this boolean variable is TRUE, the CRYPT mode uses the old method of encryption (which had a bug in
it). This allows you to read files that were encrypted with a previous version of MicroEMACS.

Default value: FALSE.

273$ $oldcrypt variable
274# _oldcrypt
275+ EVariables:oldcrypt
276K $oldcrypt

$277 #278 +279 K280 $orgrow

This variable contains the position of the current screen's top row on the desktop, starting at 0.

Setting this variable is equivalent to invoking the change-screen-row command.

Under MS-Windows, the value of this variable is irrelevant.

Default value: 0

277$ $orgrow variable
278# _orgrow
279+ EVariables:orgrow
280K $orgrow

$281 #282 +283 K284 $orgcol

This variable contains the position of the current screen's left column on the desktop, starting at 0.

Setting this variable is equivalent to invoking the change-screen-column command.

Under MS-Windows, the value of this variable is irrelevant.

Default value: 0

281$ $orgcol variable
282# _orgcol
283+ EVariables:orgcol
284K $orgcol

$285 #286 +287 K288 $pagelen

This variable contains the number of lines (including mode lines) displayed by the current screen.

Setting this variable is equivalent to invoking the change-screen-size command with a numeric argument.

285$ $pagelen variable
286# _pagelen
287+ EVariables:pagelen
288K $pagelen

$289 #290 +291 K292 $palette

This variable contains a string that is used to control the color palette settings on graphics versions of
MicroEMACS.

Under MS-Windows, $palette is composed of up to 48 octal digits. Each group of three digits redefines an
entry of the palette, by specifying the red, green and blue levels of that color.

Default value: empty string

289$ $palette variable
290# _palette
291+ EVariables:palette
292K $palette

$293 #294 +295 K296 $paralead

A line starting with one of the characters in the $paralead variable is considered to be the first line of a   
paragraph.

Default value: Space and TAB characters

293$ $paralead variable
294# _paralead
295+ EVariables:paralead
296K $paralead;paragraph

$297 #298 +299 K300 $pending

This boolean variable is TRUE if there are type ahead keystrokes waiting to be processed.

Attempts to set this variable are ignored.

297$ $pending variable
298# _pending
299+ EVariables:pending
300K $pending

$301 #302 +303 K304 $popflag

If this boolean variable is TRUE, popup buffers are used instead of opening a window for building
completion lists and by the following commands:

apropos
describe-bindings
describe-functions
describe-variables
list-buffers
list-screens
show-files

Default value: TRUE

301$ $popflag variable
302# _popflag
303+ EVariables:popflag
304K $popflag

$305 #306 +307 K308 $posflag

If this boolean variable is TRUE, the position of the point (row and column) is displayed in the current
window's mode line.

Default value: TRUE

305$ $posflag variable
306# _posflag
307+ EVariables:posflag
308K $posflag

$309 #310 +311 K312 $progname

This variable contains the string "MicroEMACS" for standard MicroEMACS. It can be something else if
MicroEMACS is incorporated as part of someone else's program.

Attempts to set this variable are ignored. Changing it requires recompiling.

309$ $progname variable
310# _progname
311+ EVariables:progname
312K $progname

$313 #314 +315 K316 $readhook

The command or macro named in this variable is run when a file is read into a buffer. This can be used to
implement modes which are specific to a particular file or file type.

Default value: nop

313$ $readhook variable
314# _readhook
315+ EVariables:readhook
316K $readhook;hook;read

$317 #318 +319 K320 $region

This variable contains the first 255 characters of the current region. If the region is not defined (because
the mark is not set), this variable contains the string: "ERROR".

Attempts to set this variable are ignored.

317$ $region variable
318# _region
319+ EVariables:region
320K $region

$321 #322 +323 K324 $replace

This variable contains the current default replace string. That is the replace string that was specified in the
last replace-string or query-replace-string command and will be used as default value for the next such
command.

321$ $replace variable
322# _replace
323+ EVariables:replace
324K $replace;replace

$325 #326 +327 K328 $rval

This variable contains the returned value from the last subprocess which was invoked from
MicroEMACS's commands: execute-program, filter-buffer, i-shell, pipe-command.and shell-command.

Under MS-Windows, this variable always has the value 0.

Attempts to set this variable are ignored.

325$ $rval variable
326# _rval
327+ EVariables:rval
328K $rval

$329 #330 +331 K332 $scrname

This variable contains the current screen's name.

Setting this variable causes the specified screen to be made the current one. If that screen does not exist,
nothing happens. To change the name of a screen, use the rename-screen command.

329$ $scrname variable
330# _scrname
331+ EVariables:scrname
332K $scrname

$333 #334 +335 K336 $search

This variable contains the current default search string. That is the search string that was specified in the
last search-forward, search-reverse, incremental-search, reverse-incremental-search, replace-string or
query-replace-string command and will be used as default value for the next such command or as the
target for hunt-forward and hunt-backward.

333$ $search variable
334# _search
335+ EVariables:search
336K $search;search;replace

$337 #338 +339 K340 $searchpnt

The value of this variable specifies the positioning of the of the point at the end of a successful search:

- If $searchpnt = 0, the cursor is placed at the end of the matched text on forward searches, and at the
beginning of this text on reverse searches.

- If $searchpnt = 1, the cursor is placed at the beginning of the matched text regardless of the search
direction.

- If $searchpnt = 2, the cursor is placed at the end of the matched text regardless of the search
direction.

Setting this variable to a value other than one of the above causes the value 0 to be used.

Default value: 0

337$ $searchpnt variable
338# _searchpnt
339+ EVariables:searchpnt
340K $searchpnt

$341 #342 +343 K344 $seed

This variable contains the integer seed of the random number generator. This is used by the &rnd function
and also to compute temporary file names (if $ssave is TRUE).

Initial value: 0

341$ $seed variable
342# _seed
343+ EVariables:seed
344K $seed

$345 #346 +347 K348 $softtab

The value of this variable relates to the number of spaces inserted by MicroEMACS when the handle-tab
command (which is normally bound to the TAB key) is invoked:

If $softtab is n, strictly positive, tabs stops are located at every nth column and the handle-tab
command inserts space characters in sufficient number to move the point to the next tab stop.

If $softtab is zero, the handle-tab command inserts true tab characters.

If $softtab is strictly negative, the handle-tab command fails.

This variable can be set by passing a numeric argument to handle-tab or by directly using the set
command.

Default value: 0

345$ $softtab variable
346# _softtab
347+ EVariables:softtab
348K $softtab

$349 #350 +351 K352 $sres

This variable contains a string that identifies the current screen resolution (CGA, MONO, EGA or VGA on
the IBM-PC, LOW, MEDIUM, HIGH or DENSE on the Atari ST1040, MSWIN under Microsoft Windows
and NORMAL on most others).

Depending on the hardware and operating system MicroEMACS is running on, setting this variable may
allow you to change the screen resolution. Not that under MS-Windows, attempts to set this variable are
ignored.

349$ $sres variable
350# _sres
351+ EVariables:sres
352K $sres

$353 #354 +355 K356 $ssave

If this boolean variable is TRUE, MicroEMACS perform "safe saves": when it is asked to save the current
buffer to disk, it writes it out to a temporary file, deletes the original file, and then renames the temporary
to the old file name.

If $ssave is FALSE, MicroEMACS performs saves by directly overwriting the original file, thus risking loss
of data if a system crash occurs before the end of the save operation. On the other hand, this mode
insures that the original file attributes (ownership and access rights) are preserved on systems that
support these (like UNIX).

Default value: TRUE.

353$ $ssave variable
354# _ssave
355+ EVariables:ssave
356K $ssave

$357 #358 +359 K360 $sscroll

If this boolean variable is TRUE, MicroEMACS is configured for smooth vertical scrolling: when the cursor
moves off the top or bottom of the current window, the window's contents scroll up or down one line at a
time.

If $sscroll is FALSE, scrolling occurs by half pages.

Default value: FALSE

357$ $sscroll variable
358# _sscroll
359+ EVariables:sscroll
360K $sscroll

$361 #362 +363 K364 $status

This boolean variable contains the status returned by the last command. This is usually used with the !
FORCE directive to check on the success of a search, or a file operation.

Setting this variable can be used to return a FALSE status from a macro.

361$ $status variable
362# _status
363+ EVariables:status
364K $status

$365 #366 +367 K368 $sterm

This variable contains the character used to terminate search string inputs.

Default value: the last key bound to meta-prefix (initially: Escape character)

365$ $sterm variable
366# _sterm
367+ EVariables:sterm
368K $sterm;replace;search

$369 #370 +371 K372 $target

This variable contains the column position where the point will attempt to move after a next-line or
previous-line command. Unless the previous command was next-line or previous-line, the default value
for this variable is the current column.

369$ $target variable
370# _target
371+ EVariables:target
372K $target

$373 #374 +375 K376 $time

This variable contains a string corresponding to the current date and time. Usually this is given in a form
like to "Mon May 09 10:10:58 1988". Not all operating systems support this.

373$ $time variable
374# _time
375+ EVariables:time
376K $time

$377 #378 +379 K380 $timeflag

If this boolean variable is TRUE, the current time is displayed on the bottom mode line of each screen.

Default value: FALSE.

Note: Under MS-Windows, this feature currently does not operate properly because MicroEMACS makes
incorrect assumptions about the format of the time string (see $time).

377$ $timeflag variable
378# _timeflag
379+ EVariables:timeflag
380K $timeflag

$381 #382 +383 K384 $tpause

This variable contains the length of the pause used to show a matched fence when the current buffer is in
CMODE and a closing fence (a character among ")}]") has been typed.

On most systems, this pause is performed by a CPU loop and therefore, the value of $tpause may need
to be adjusted to compensate for the processor's speed.

Under MS-Windows, the pause is performed by a bona-fide timer and $tpause is expressed in
milliseconds. The default value is 1000.

381$ $tpause variable
382# _tpause
383+ EVariables:tpause
384K $tpause

$385 #386 +387 K388 $version

This variable contains the current MicroEMACS version number (i.e. "3.11c").

Attempts to set this variable are ignored.

385$ $version variable
386# _version
387+ EVariables:version
388K $version

$389 #390 +391 K392 $vscrlbar

This boolean variable exists only under the MS-Windows version of MicroEMACS. If it is TRUE, a vertical
scroll bar is available at the right end of each screen, allowing you to scroll the text in the current window
up and down.

If $vscrlbar is FALSE, the vertical scroll bar is not present.

Default value: TRUE

389$ $vscrlbar variable
390# _vscrlbar
391+ EVariables:vscrlbar
392K $vscrlbar;scroll bar

$393 #394 +395 K396 $wchars

This variable is used to define what a word is for MicroEMACS. It contains the list of all the characters
that can be considered part of a word.

If $wchar is empty, a word is defined as composed of upper and lower case letters, numerals (0 to 9) and
the underscore character.

Default value: empty

393$ $wchars variable
394# _wchars
395+ EVariables:wchars
396K $wchars;word

$397 #398 +399 K400 $wline

This variable contains the number of lines displayed in the current window, excluding the mode line.

Setting this variable is equivalent to using the resize-window command with a numeric argument.

397$ $wline variable
398# _wline
399+ EVariables:wline
400K $wline

$401 #402 +403 K404 $wraphook

This variable contains the name of a command or macro which is executed when a buffer is in WRAP
mode and it is time to wrap the current line.

Default value: wrap-word

401$ $wraphook variable
402# _wraphook
403+ EVariables:wraphook
404K $wraphook;hook;wrap

$405 #406 +407 K408 $writehook

This variable contains the name of a command or macro which is invoked whenever MicroEMACS
attempts to write a file out to disk. This is executed before the file is written, allowing you to process a file
on the way out.

Default value: nop

405$ $writehook variable
406# _writehook
407+ EVariables:writehook
408K $writehook;hook;write

$409 #410 +411 K412 $xpos

This variable contains the horizontal screen coordinate where the mouse was located the last time a
mouse button was pressed or released.

The leftmost column is considered to be 0 in screen coordinates.

409$ $xpos variable
410# _xpos
411+ EVariables:xpos
412K $xpos;mouse

$413 #414 +415 K416 $yankflag

This boolean variable controls the placement of the point after a yank, yank-pop, insert-file or insert-clip
command.

If $yankflag is FALSE, the point is moved to the end of the yanked or inserted text.

If $yankflag is TRUE, the cursor remains at the start of the yanked or inserted text.

Default value: FALSE

413$ $yankflag variable
414# _yankflag
415+ EVariables:yankflag
416K $yankflag

$417 #418 +419 K420 $ypos

This variable contains the vertical screen coordinate where the mouse was located the last time a mouse
button was pressed or released.

The top row is considered to be 0 in screen coordinates.

417$ $ypos variable
418# _ypos
419+ EVariables:ypos
420K $ypos;mouse

$421 #422 +423 K424 Interactive Variables
Interactive variables are actually a method to prompt the user for a string. This is done by using an at sign
"@" followed with a string argument. The string is displayed on the message line, and the editor waits for
the user to type in a string which is then returned as the value of the interactive variable. For example:

find-file @"What file? "

will ask the user for a file name, and then attempt to find it. Note also that complex expressions can be
built up with these operators, such as:

set %default "file1"
@&cat &cat "File to decode[" %default "]: "

which prompts the user with the string:

File to decode[file1]:

421$ Interactive Variables
422# InteractiveVariables
423+ Variables:interactivevariables
424K interactive;variable

$425 #426 +427 K428 User Variables
User variables allow you to store strings and manipulate them. These strings can be pieces of text,
numbers (in text form), or the logical values TRUE and FALSE. These variables can be combined, tested,
inserted into buffers, and otherwise used to control the way your macros execute. Up to 512 user
variables may be in use in one editing session. All user variable names must begin with a percent sign
"%" and may contain any printing character. Only the first 10 characters are significant (i.e. differences
beyond the tenth character are ignored).

When a user variable has not been set, it has the value: "ERROR".

425$ User Variables
426# UserVariables
427+ Variables:uservariables
428K variable

$429 #430 +431 K432 Functions

Functions are part of the MicroEMACS Macro language. They can be used wherever an argument
(number, string or boolean) is needed.

Function names always begin with the ampersand "&" character, and only the first three characters after
the ampersand are significant. Functions are always used in lower case.

Functions can be used to act on variables in various ways. Functions can have one, two, or three
arguments. These are always placed after the function, and they can include functions (with their own
arguments).

By topic:

Boolean functions
Numeric functions
String functions
Miscellaneous functions

By returned value:

Boolean: &and, &equal, &exist, &greater, &isnum, &less, ¬, &or, &sequal,
&sgreater and &sless

Numeric: &abs, &add, &ascii, &band, &bnot, &bor, &bxor, ÷, &length, &mod,
&negate, &rnd, &sindex, &sub and ×

String: &bind, &cat, &chr, &env, &find, &group, >c, >k, &indirect, &left,
&lower, &mid, &right, &slower, &supper, &trim, &upper and &xlate

429$ Functions
430# Functions
431+ MacroLanguage:060
432K function

$433 #434 +435 K436 Boolean Functions
These functions perform operations on boolean arguments:

&and log1      log2 Returns TRUE if both boolean arguments are TRUE

¬ log Returns the opposite boolean value

&or log1      log2 Returns TRUE if either argument is TRUE

433$ Boolean Functions
434# BooleanFunctions
435+ Functions:booleanfunctions
436K function;∧¬&or

$437 #438 +439 K440 Numeric Functions
These functions perform operations on numerical arguments:

&abs num Returns the absolute value of num

&add num1      num2 Adds two numbers

&band num1      num2 Bitwise AND function

&bnot num Bitwise NOT function

&bor num1      num2 Bitwise OR function

&bxor num1      num2 Bitwise XOR function

&chr num Returns a string with the character represented by ASCII code num. This
function is the opposite of &ascii

÷ num1      num2 Divides num1 by num2,giving an integer result

&equal num1      num2 Returns TRUE if num1 and num2 are numerically equal

&greater num1      num2 Returns TRUE if num1 is greater than, or equal to num2

&isnum num Returns TRUE if the given argument is a legitimate number

&less num1      num2 Returns TRUE if num1 is less than num2

&mod num1      num2 Returns the reminder of dividing num1 by num2

&negate num Multiplies num by -1

&rnd num Returns a random integer between 1 and num

&sub num1      num2 Subtracts num2 from num1

× num1      num2 Multiplies num1 by num2

437$ Numeric Functions
438# NumericFunctions
439+ Functions:numericfunctions
440K
function;&abs;&add;&band;⌐&bor;&bxor;&chr;÷&equal;&greater;&isnum;&less;&mod;&negate
;⊂×

$441 #442 +443 K444 String Functions
These functions perform operations related to strings. All of them have at least one string argument:

&ascii str Returns the ASCII code of the first character in str. This function is the
opposite of &chr

&cat str1      str2 Concatenates the two strings to form one

&indirect str Evaluate str as a variable.

&left str        num Returns the num leftmost characters from str

&length str Returns length of string

&lower str Transforms str to lowercase

&mid str      num1      num2 Starting from num1 position in str, returns num2 characters

&right str      num Returns the num rightmost characters from str

&sequal str1      str2 Returns TRUE if the two strings are the same

&sgreater str1      str2 Returns TRUE if str1 is alphabetically greater than or
equal to str2

&sindex str1      str2 Returns the position of str2 within str1. Returns zero if not found

&sless str1      str2 Returns TRUE if str1 is less alphabetically than str2

&slower str1      str2 Translate the first char in str1 to the first char in str2 when lowercasing.

&supper str1      str2 Translate the first char in str1 to the first char in str2 when uppercasing.

&trim str Trims the trailing white space from a string

&upper str Transforms str to uppercase

&xlate source      lookup      transTranslate each character of source that appears in lookup to the
corresponding character from trans

441$ String Functions
442# StringFunctions
443+ Functions:stringfunctions
444K
function;&ascii;&cat;&left;&length;&lower;∣&right;&sequal;&sgreater;&sindex;&sless;&slower;&suppe
r;&trim;&upper;&xlate

$445 #446 +447 K448 Miscellaneous Functions
&bind str Returns the name of the command bound to the keystroke str

&env str If the operating system has this capability, this returns the environment
string associated with str

&exist str Returns TRUE if the named file str exists

&find str Finds the named file str along the path and return its full file specification
or an empty string if no such file exists

&group num Return group num as set by a MAGIC mode search.

>c Returns a string of characters containing a MicroEMACS command input
from the user

>k Returns a string containing a single keystroke from the user

445$ Miscellaneous Functions
446# MiscellaneousFunctions
447+ Functions:zzzmiscellaneousfunctions
448K function;&bind;&env;∃&find;&group;>c;>k

$449 #450 +451 K452 &indirect

The &indirect function evaluates its argument, takes the resulting string, and then uses it as a variable
name. For example, given the following piece of macro language:

; set up reference table
set %one "elephant"
set %two "giraffe"
set %three "donkey"
set %index "%two"
insert-string &ind %index

The string "giraffe" would have been inserted at the point in the current buffer. This indirection can be
safely nested up to about 10 levels.

449$ &indirect function
450# .indirect
451+ StringFunctions:indirect
452K &indirect;function

$453 #454 +455 K456 Comments

Within the macro language, a semicolon ";" signals the beginning of a comment. The text from the
semicolon to the end of the line is ignored by MicroEMACS.

A comment can be the only content of a line, in which case the semicolon must be the first non-blank
character on the line. A comment can also appear at the end of any statement.

Note that empty lines are legal (treated as comments).

453$ Comments
454# Comments
455+ MacroLanguage:070
456K comment

