
The Prospero Protocol

Version 5

Draft of 12 June 1993

Document Revision No. 0.3

B. Cli�ord Neuman Steven Seger Augart

Information Sciences Institute

University of Southern California

Digital copies of the latest revision of this document may be obtained through Prospero as

/papers/subjects/operating-systems/prospero/doc/protocol.PS.Z, in the #/INET/EDU/ISI/swa virtual system,

or through Anonymous FTP from PROSPERO.ISI.EDU as /pub/prospero/doc/prospero-protocol.PS.Z

This work was supported in part by the National Science Foundation (Grant No. CCR-8619663), the Washington

Technology Center, Digital Equipment Corporation, and the Defense Advance Research Projects Agency under NASA

Cooperative Agreement NCC-2-539. The views and conclusions contained in this document are those of the authors

and should not be interpreted as representing the o�cial policies, either expressed or implied, of any of the funding

agencies. The authors may be reached at USC/ISI, 4676 Admiralty Way, Marina del Rey, California 90292-6695,

USA. Telephone +1 (310) 822-1511, email info-prospero@isi.edu.

Contents

1 Introduction 3

1.1 Additional Documents : 3

2 Command Introduction 5

2.1 Spaces, quoting, and line-feeds : 5

2.2 Options : 5

2.3 Metasyntax : 5

2.4 Objects : 6

2.4.1 Base Type : 6

2.4.2 Host-Speci�c Object Names (hsonames) : 6

2.4.3 Versions : 7

2.4.4 Object ID �elds : 7

3 Commands Reference 9

3.1 VERSION : 9

3.2 AUTHENTICATE : 9

3.3 DIRECTORY : 11

3.4 ATOMIC : 11

3.5 LIST : 11

3.5.1 Wildcards : 12

3.5.2 Options : 12

3.5.3 Returned Information : 14

3.6 LIST-ACL : 17

3.7 GET-OBJECT-INFO : 18

3.8 EDIT-OBJECT-INFO : 19

3.9 CREATE-LINK : 19

3.10 DELETE-LINK : 20

3.11 EDIT-LINK-INFO : 20

3.12 EDIT-ACL : 20

3.13 CREATE-OBJECT : 21

3.13.1 Specifying Attributes : 21

3.13.2 ACLs : 21

3.13.3 Some Error Conditions : 22

3.13.4 No DELETE-OBJECT command : 22

3.14 UPDATE : 22

1

3.15 STATUS : 23

4 Standard Responses 25

4.1 SUCCESS : 25

4.2 FORWARDED : 25

4.3 ERROR : 25

4.4 FAILURE : 25

4.5 WARNING : 26

A Directory, Link, and Object Attributes 27

A.1 Objects : 27

A.1.1 Attributes : 27

A.1.2 Objects stored on unix : 31

A.1.3 Persistence : 31

A.1.4 Mobility : 31

A.2 Directories : 31

A.2.1 Directory Attributes : 32

A.2.2 Link Attributes : 32

A.2.3 Replication : 35

B Asynchronous Reliable Delivery Protocol 36

C Prospero Conventions 42

C.1 <hsoname>s : 42

D Prospero Protocol Changes from Version 1 to Version 5 43

2

Chapter 1

Introduction

This document describes version 5 of the Prospero protocol. Communication with directory servers

uses a reliable delivery protocol described in Appendix B. Requests and responses are human

readable commands and multiple commands may be sent in a single message.

Prospero is implemented on top of a message-based protocol to reduce the overhead that would

otherwise be incurred when establishing connections to multiple directory servers. The decision

to use a message protocol directly, instead of through a higher level mechanism such as remote

procedure call, was made for reasons of portability. We did not want Prospero to depend on

another protocol, software package, or other resource, unless that resource was almost universally

supported by every computer on the Internet.

The use of humanly readable commands in the protocol has several advantages. It eliminates

problems with byte ordering, and it makes future changes or additions to the protocol easier to

incorporate while maintaining compatibility across versions; new commands or additional options

to existing commands can be easily added.

The ability to request multiple operations in a single message improves performance, and it

provides a simple way to request that a collection of operations (on a single server) be performed

atomically.

The concept of an \attribute" appears frequently in the following command description. For a

discussion of attributes, read appendix A of this document.

1.1 Additional Documents

The Prospero documentation series will include the following:

Prospero Protocol Speci�cation You're reading it. Right now, this is the most current docu-

ment we have, but it will eventually be re-targeted towards a more specialized audience when

the other guides in the series are written and revised.

Prospero System User's Guide This will describe the general features of the Prospero system

that will be common to almost all user interfaces, such as ACL types and �lters.

Prospero Command-Line Client User's Guide Describes the command-line client package;

this is the client that's been shipped with all Prospero releases.

3

Prospero Gopher Client User's Guide This describes the Gopher menu-based client package,

which is in progress.

Prospero Programmer's Manual This describes the pfs and pcompat libraries, which Prospero

applications programmers use to interface with Prospero.

4

Chapter 2

Command Introduction

2.1 Spaces, quoting, and line-feeds

Prospero messages are divided into lines. Lines are divided into tokens. Commands and lines sent

in response are separated by an unquoted ASCII <LF> character.

Within a line, tokens are separated by unquoted horizontal whitespace (one or more ASCII

spaces and/or tabs). Client and server implementations are not required to accept lines which

begin or end with horizontal whitespace, but are encouraged to do so. Similarly, implementations

are encouraged to accept <CR> or <CR><LF> as alternative acceptable line terminators, but

are not required to do so.

Special characters within a command token, or null tokens, can be quoted using single quotes

('). While inside quotes, a quote can be included by doubling it. The only character that cannot

be quoted is the ASCII null character (character code zero; '\0' for C programmers). This is really

a limitation of the server implementation, which passes Prospero packets, commands, and tokens

around internally as null-terminated C strings.

1

Any token may be quoted (although most will not need quoting), except for literal command

tokens (VERSION, ID, etc.). Also, the <multi-component> token uses the quoting system in a

special way | see the LIST command for details.

2.2 Options

Many Prospero Protocol commands take options. If multiple options are to be speci�ed for a single

command, the options are separated by a \+". If no options are speci�ed, then the null string

should be sent to indicate this. The null string will need to be quoted, like so: ''

2.3 Metasyntax

In this document, we will use some meta-syntactic features to describe commands. Literal tokens

(such as LITERAL-TOKEN) appear in a typewriter font. Non-terminals look like this: <non-terminal>.

The line-feed, carriage-return, and space characters are represented as<LF>,<CR>, and<SPC>,

1

If you wish to send binary data around, we recommend that you encode it into a null-less form using the pfs

library's binencode() and bindecode() routines.

5

respectively. Alternation (choice among two or more possibilities) looks like: (<option1> or

<option2>)

We also use the following meta-syntactic constructs:

Metasyntax used to describe commands

Start End Meaning

[] One or zero repetitions.

[]

�

Zero or more repetitions.

[]

+

One repetition or more.

2.4 Objects

A Prospero object is anything to which a normal link (<link-type> = L) can be made, except for

EXTERNAL objects.

2.4.1 Base Type

Every Prospero object has one or more base types associated with it. All Prospero objects have a

base type of OBJECT. This means that they can have attributes attached to them. In addition,

objects with a base type of FILE can store data, and objects with a base type of DIRECTORY

can store directory information.

The base type of a Prospero object is accessible through the base-type intrinsic attribute.

The primitive value for base-type is OBJECT. If an object's base-type attribute has a value of

OBJECT+FILE+DIRECTORY, then the object can have attributes attached to it, can contain data, and

can contain links. As a shorthand, since all objects have OBJECT as one of their base types, an

object with more than one base type can have the OBJECT implied, so that the base-type value

OBJECT+FILE+DIRECTORY is equivalent to the value FILE+DIRECTORY and the value FILE is equiv-

alent to the value FILE+OBJECT. The order of values in the base-type attribute is unimportant,

so DIRECTORY+FILE is equivalent to FILE+DIRECTORY.

In the rest of this document, when we say \directory,", we mean \an object which has DIRECTORY

as part of its base-type ." When we say \�le," we mean \an object which has FILE as part of its

base-type ."

One may use EDIT-OBJECT-INFO to edit the base-type attribute to remove the FILE type

from it only if the �le is empty (zero length), and one may remove the DIRECTORY type from it only

if the directory is empty (contains no links). To add a type to the base-type , one must use the

ADD option to CREATE-OBJECT.

2.4.2 Host-Speci�c Object Names (hsonames)

Every Prospero object has an <hsoname>. hsonames are not guaranteed to be unique across

time; if an object is deleted, a new object may be created that re-uses the old object's handle.

However, at any particular moment, two Prospero objects on the same server are guaranteed to

have unique hsonames, unless they are di�erent versions of the same object (i.e., unless their

version-number �elds are di�erent.)

Two objects on di�erent servers might have identical hsonames. In the current server imple-

mentation, the <hsoname-type> is always ASCII and the <hsoname> is almost always a full

6

(i.e., starting with a slash (/)) unix �lesystem pathname. See appendix C for more discussion of

this. The <hsoname-type> token exists because some special �lesystems may have non-ASCII

<hsoname>s.

2.4.3 Versions

We intend to allow versioned objects. All objects, including directories, have a version-number

�eld. In the current server implementation, the version-number �eld is always zero, which means

\unversioned". It need not be in future server implementations.

In commands and responses, providing a zero value for the <object-version> token means to

retrieve the current version of the object. Specifying explicit values means that a particular version

of the object is required. Explicit object version numbers (when they are established) will always

be positive integers.

2.4.4 Object ID �elds

The ID �eld is a unique (or nearly unique) identi�er for an object. If the underlying object changes

(such as by editing), then some types of IDs will change and others will not. If two objects have the

same ID, then they are considered by Prospero to be the same object. This is useful for distinguish-

ing between two cases: (a) two links which happen to have the same <name-component> but

di�erent storage locations (a di�erent host and handle pair), and which do not actually represent

the same object, and (b) two links which have the same <name-component> and same ID, but

possibly di�erent storage locations | in case (b), the objects are replicas and the client should ac-

cess whichever one it chooses to. (Code is currently under development to enable servers to return a

list of replicas in order of nearness to the client.) Two links with the same <name-component>

and no ID speci�cation are considered by Prospero to be di�erent objects, not replicas of one

another.

A problem with the ID �eld is that there is not an accepted standard for universal document

identi�ers. An IETF working group has been formed to consider such identi�ers, and the ID �eld

exists in anticipation of their eventual agreement upon a standard. We expect that there will

be more than one type of universal document identi�er; therefore, there will be more than one

<id-type>. Prospero supports objects with several possible IDs.

2

For now, there are only two <id-type>s de�ned. The REMOTE <id-type> is used by the server

when it has magic knowledge (perhaps through a local database) that two objects are the same.

The REMOTE id type is a single element which is the printed decimal representation of a positive

integer. This positive integer should be able to be stored in a 32 bit integer. A REMOTE id value

of 0 means \unspeci�ed". The REMOTE <id-type> cannot be sent across the network by clients

2

This will go into the user's manual when we revise it. The user-level names for two links distinguished only by

their ID �elds are:

(<name-component>##<id-type>

1

#<id-value-token>

1;1

#<id-value-token>

1;2

. . .##<id-type>

2

#<id-value-token>

2;1

#<id-value-token>

2;2

. . .

or <name-component>#<id-value-token>

1

#<id-value-token

2

>. . .)

The second form matches any <id-type>. The �rst form is used to explicitly specify one or more <id-type>s.

7

in queries.

3

It is not guaranteed to be consistent across di�erent queries to the server, but server

implementors are encouraged to make the <id-value> token consistent across queries.

Many clients will locally generate ID �elds to help the human user di�erentiate between con-

icting links. These ID �elds will have an <id-type> of LOCAL and an arbitrarily generated string

as their <id-value>. They may not be sent over the network, and are not guaranteed to be unique

from directory read to directory read, although implementors are encouraged to make them so. All

available ID �elds will be returned with every LIST operation.

3

The <id-value> of the REMOTE type is the same as the <magic-no> token speci�ed in version 1 of the Prospero

protocol.

8

Chapter 3

Commands Reference

All Prospero commands are listed below.

3.1 VERSION

VERSION <version-number> [<software-identi�er>]

This command requests or speci�es the protocol version number. If the speci�ed protocol

version number is not supported, the response will be:

VERSION-NOT-SUPPORTED TRY <min-version-number>-<max-version-number>

or

VERSION-NOT-SUPPORTED TRY <version-number>

Where<version-number> or<min-version-number>-<max-version-number> are those

versions that are supported. If no arguments are supplied (or if the argument is not a number),

then the VERSION command will return the current protocol version number being used by the

server in the form:

VERSION <version-number> [<software-identi�er>]

If the <software-identi�er> is speci�ed, it identi�es the software and version of the software

that is generating the message.

1

3.2 AUTHENTICATE

AUTHENTICATE <options> <authenticator-type> <authentication-data>

[<principal-name>]

�

1

Software developers wishing to obtain software identi�ers should send electronic mail to

pfs-administrator@isi.edu.

9

This command authenticates the principal making the request. The <authenticator-type> is

the type of the authenticator. It might be a password, a Kerberos authenticator, or data used by an

alternative authentication mechanism. The currently supported values for<authenticator-type>

are UNAUTHENTICATED, KERBEROS, and HANDLE.

If the <authenticator-type> is UNAUTHENTICATED, this is honored by the ASRTHOST ACL

type. It is also honored by the TRSTHOST ACL type if the client is using a privileged port. If the

<authenticator-type> is UNAUTHENTICATED, then the <authentication-data> should be the

username of the user running the client. This username is be the principal referred to by the ACL.

If the <authenticator-type> is KERBEROS, then the <authentication-data> is a Kerberos

authentication message authenticating the principal to the Prospero server. The ACL principal

will be the same as the Kerberos principal. The ACL type will be AUTHENT KERBEROS.

If the <authenticator-type> is HANDLE, then the <authentication-data> is a handle re-

turned in response to a previous AUTHENTICATE command.

The optional <principal-name>s are informational only for some authentication types, and

exist only for human convenience. The server will extract the principal names from the<authentication-data> ,

but the names might be encrypted in the <authentication-data> or otherwise represented in a

way that humans cannot easily decipher them. (For instance, this is the case with Kerberos version

5.) In the case of the P PASSWORD authentication type, the <principal-name>s are not optional.

More than one AUTHENTICATE command may be sent in a single message. This can be used

both to authenticate oneself as multiple simultaneous principals and to authenticate oneself using

several methods.

The response may take one of several forms. If the authentication fails, then the response is:

FAILURE AUTHENTICATION-DATA [explanatory text]

One might get this response if an authentication handle has expired.

If it is computationally expensive for the server to validate the authentication data, it may want

to cache the fact that the data has been validated, and return a handle that the client may use in

future requests to the server:

AUTHENTICATED [<authentication-handle> [<handle-expiration-time>]]

The <handle-expiration-time>, if provided, is in ASN-TIME format.

The response may be another AUTHENTICATE command if the server needs to authenticate itself

to the client.

2

The response may simply be:

AUTHENTICATED

to indicate that the authentication succeeded. If other commands are included in the same packet

as the AUTHENTICATE request (this will almost always be the case), then successful execution of

theose other commands implies that the authentication succeeded; in this case, the server is not

required to include the AUTHENTICATED response.

Currently, no options are de�ned, so the <options> token is always the null string.

2

XXX: Not currently implemented.

10

3.3 DIRECTORY

DIRECTORY <hsoname-type> <hsoname> [<object-version>][<LF>

SELECT

<applies-to> (FIELD or INTRINSIC or APPLICATION) <attribute-name>

<attribute-value-type>) [<value-tuple-element>]

�

]

�

This command speci�es the directory to be read or modi�ed by the commands that follow as

part of the same request. This command does not generate a response unless the selected directory

is not a directory. In that case, the response:

FAILURE NOT-A-DIRECTORY

is returned, and the remainder of the request ignored.

3.4 ATOMIC

ATOMIC

This command speci�es that all commands that follow are to be completed atomically. If one

of the commands fails, then none of the commands are to have an e�ect. This may require undoing

the e�ects of commands which have already completed. Note that this command works only for

requests issued in the same message, and all commands must be executable on the single server to

which the message was sent.

This command is not currently implemented.

3.5 LIST

LIST <options> COMPONENTS [<name-component>]

�

[<LF>

SELECT

<applies-to> (FIELD or INTRINSIC or APPLICATION) <attribute-name>

<attribute-value-type>) [<value-tuple-element>]

�

]

�

<LF>

FILTER ...

LIST is used to look up information stored in a directory. It must be preceded by a DIRECTORY

command in the same request. Each optional <name-component> is a component of a multiple-

component name relative to the directory speci�ed in the DIRECTORY command. The last component

may include wildcards. If no <name-component> is speci�ed, the wildcard *" is implied (i.e.,

all listable components in the directory will be listed).

3

If the result of the lookup of one component

is another directory at the same storage site, then the directory server will repeat the process and

look up the next component. When a lookup results in a dead-end, or a directory at another site,

3

The protocol is currently in transition. The old format was as follows: Multiple component names are allowed,

and are speci�ed as a single token following the <name-component>. The multiple components within a single

name are separated by the unquoted slash (/). Servers and clients for now are accepting both versions of the protocol

message, which means that the 1st component of a multiple-component name must be quoted if it contains a slash.

11

the server will return an UNRESOLVED message, indicating which components remain to be resolved

by the client.

If a space, tab, slash, or <LF> is to be included in a component of a single-component or

multi-component name, the component must be quoted. Quoting a slash in a single-component or

multi-component name means that the slash is not considered to separate components of a multi-

component name, but rather to be a part of a single component. This somewhat awkward syntax

allows us to have single components which contain slashes or horizontal whitespace or <LF>s.

3.5.1 Wildcards

The <name> tokens in the LIST command are the only places in the Prospero protocol where

components may be speci�ed with wildcards. There are two wildcard characters supported:

* Match zero or more characters.

? Match exactly one character.

Wildcards may only be used to expand at a single-component level; by this, we mean that the

wildcarded <name> foo?bar would match the single-component name whose name in the current

directory was foo-bar, but would not match the object whose multiple-component name in the

current directory was foo/bar.

One may also wildcard a name by giving a full regular expression. To do this, the regular

expression should be enclosed within parentheses. For instance, specifying (Anne.*) is equivalent

to specifying the wildcarded name 'Anne*'.

In addition to any wildcards speci�ed, a literal match for the wildcard will also happen.

3.5.2 Options

<options> contains a (possibly empty) list of options to the LIST command. If no options are

speci�ed, an empty list of options should be sent as a null token (''.)

Miscellaneous Options

Among the options supported are EXPAND which tells the remote directory server to expand any

union entries in the directory. By default, the response will contain the names of union links to be

included, and the client must submit a new query. A directory server can ignore the EXPAND option

to the list command if it so desires. The LEXPAND option is the same as EXPAND, but indicates that

the server should only expand union entries for local directories. The LEXPAND option is implied if

a multiple component name is being resolved.

The VERIFY option tells the remote server that the purpose of the query is to verify whether the

remote directory exists and is a directory. No components are to be returned; instead, the message

returned on success is NONE-FOUND.

ATTRIBUTES option

The ATTRIBUTES option indicates that the attributes associated with the link are to be returned.

(If the object is on the same host as the directory, then the server may ignore CACHED attributes

and return OBJECT attributes instead.

12

ATTRIBUTES is optionally immediately followed by an argument list, which is a parenthesized

+-separated list of attributes to be returned. If the ATTRIBUTES option is speci�ed without any

attributes requested, then it is just the same as if one had speci�ed ATTRIBUTES(#INTERESTING).

Note that union links do not normally have any interesting attributes attached to them, except for

FILTER.

ATTRIBUTES(ID+FILTER) is always implied. For EXTERNAL links, ATTRIBUTES(ACCESS-METHOD)

is always implied.

4

There are some special arguments to the ATTRIBUTES option. It is not a good idea for application-

de�ned attributes to have names that con
ict with these special arguments; if there are such

application-de�ned attributes, you may have to use the #ALL special argument to look at their

values. More than one special argument may be speci�ed, and one may mix special and non-special

arguments. Also, note that it is never erroneous for a server to return more attributes than were

asked for, nor is it erroneous for a server to return attribute information even if no ATTRIBUTES op-

tion was speci�ed to the LIST command. A server that always behaved as if the ATTRIBUTES(#ALL)

option were speci�ed would be behaving legally, although it would not be terribly e�cient.

#INTERESTING Return only interesting attributes. What constitutes an \interesting" attribute is

server-dependent. This allows one to use Prospero for special applications.

#ALL If this argument is speci�ed, and the object resides on the same host as the link, then the

attributes stored with the object referenced by the link will be returned in addition to those

stored with the link, and no cached attributes will be returned (they would be irrelevant). If

the object resides on a host di�erent from the link, then all attributes stored with the link

are returned, but not those stored with the object referenced by the link.

#CACHED Return all attributes of type CACHED. If you specify #CACHED with #ALL, the server will

return cached attributes in addition to those that would be returned if you'd just speci�ed

#ALL. It is not clear how useful this behavior is.

#OBJECT Return all attributes of type OBJECT. Note that this will not work if the object does not

reside on the same host as the link.

#ADDITIONAL Return all ADDITIONAL attributes

#REPLACEMENT Return all REPLACEMENT attributes.

#LINK Return all LINK attributes.

#FIELD Return all �elds (all system-de�ned standard attributes), except for ones that have already

been returned as part of the LINK response, such as host, handle , and dest-exp .

##FIELD Return all �elds. (This option will be rarely used.)

#APPLICATION Return all application-de�ned attributes.

4

This restriction seems odd, but it makes certain details of programming the client libraries much easier.

13

FILTER option

If the FILTER option is speci�ed, the LIST command will be followed by one or more lines repre-

senting one or more PREDEFINED �lters to be applied at the server.

The �lters are applied in the order in which they follow the LIST command. Their format

is just like that of FILTER information returned from the LIST command (see subsection 3.5.3),

except that the <execution-location> �eld must always be SERVER, and the �rst four tokens

(\ATTRIBUTE LINK FIELD FILTER") are omitted. The format is:

FILTER <�lter-type> SERVER <pre-or-post> PREDEFINED <�lter-name>

[ARGS [<�lter-arg>]

�

]

The server will know that there are no more �lter-specifying lines either when the end of the message

is reached or it encounters a line that does not begin with the token FILTER.

3.5.3 Returned Information

On failure, a standard error response will be returned. On success, the response will be a sequence

of entries containing information about the requested �les.

Links

LINK <link-type> <target> <name-component> <host-type>

<host-name> <hsoname-type> <hsoname> <object-version> [DEST-EXP

<dest-expiration>]

In the case of links to objects, <dest-expiration> is the value of the object's dest-exp �eld.

The <link-type> token is de�ned as follows:

L Normal link (Symbolic link, link to a Prospero object, or link to an external object)

U Union link to a directory

The <target> token is de�ned as follows: (Also see the discussion of this in section A.2.2.

A link may be a link to an object. In this case, the value of the <target> token will be the

same as the value of the object's base-type attribute

5

(that is, OBJECT, FILE, DIRECTORY, or

DIRECTORY+FILE.) Other values for <target> are:

SYMBOLIC Symbolic link. The <host-type> token will be VIRTUAL-SYSTEM, the <host-name>

token will be the name of the virtual system being linked to (speci�ed as a path within the

current virtual system | we usually use the conventional ugly-name of the virtual system),

the <hsoname-type> will be ASCII, and the <hsoname> will be the full pathname of the

object being linked to within the virtual system.

EXTERNAL This is a link to an object which is not stored on a host running Prospero. Unlike

other types of links, EXTERNAL links have an access-method

6

attribute which is returned

as a cached attribute. This is because EXTERNAL links cannot have any object attributes.

Therefore, if one wishes to add attributes to an EXTERNAL link that would normally be object

attributes, one must specify them as CACHED, ADDITIONAL, or REPLACEMENT attributes.

5

For an explanation, see section 2.4.1.

6

See section A.1.1 for a description of the access-method �eld.

14

If the principal requesting the listing has no read access to a link, all �elds in the link except

for <name-component> will be returned with the token NULL, which is not otherwise valid in a

returned link.

Link Attributes

If attributes were requested, the link will be followed by lines that specify the values of the requested

attributes. The form of the response will depend on whether the attribute is associated with the

link, or with the actual object. If the attribute is associated with the link, the <applies-to> token

indicates whether it applies to the LINK or the object, and if the object whether it is a CACHED

attribute, a REPLACEMENT attribute, or an ADDITIONAL attribute. In case of con
icts between

attributes associated with the link and those associated with the object, a cached attribute is

superseded, a replacement attribute takes precedence, and an additional attributes leaves both

intact.

Attributes may sometimes be returned even if they were not explicitly requested. As a case of

this, the ACCESS-METHOD attribute is always returned for EXTERNAL links.

(ATTRIBUTE <applies-to> FIELD <attribute-name> [<value-tuple-element>]

+

or

ATTRIBUTE <applies-to> (APPLICATION or INTRINSIC) <attribute-name>

<attribute-value-type> [<value-tuple-element>]

+

)

7

Attributes may have multiple values, in which case one ATTRIBUTE line is returned for each

value. In the case of multiple values, the order in which attributes is returned may be signi�cant

to the application. The Prospero server will maintain the order of attributes.

<attribute-value-type>s are SEQUENCE, LINK, and FILTER. SEQUENCE is the most general

<attribute-value-type>. It is a sequence of zero or more ASCII strings, and all other attribute

value types are subtypes of it. Since application attributes are, by de�nition, application-speci�c, we

are not constraining the form of a sequence. However, if an application wishes to use application-

speci�c subtypes of SEQUENCE, we encourage application authors to use the �rst element of the

attribute's value as a keyword describing the particular subtype of SEQUENCE.

One possible <attribute-value-type> is LINK. The <value-tuple-element> tokens re-

turned in this case are the same as the LINK response to the LIST command. In that case, the

<name-component> token will be ignored, and will usually be a zero-length string ('').) The

return format would be:

ATTRIBUTE <applies-to> APPLICATION <attribute-name> LINK (L or U)

<target> <name-component> <host-type>

<host-name> <hsoname-type> <hsoname> <object-version> [DEST-EXP

<dest-expiration>]

7

CHANGE IN FORMAT: It used to be the case that the line returned for FIELD attributes did not include

an <attribute-type> token. This has been changed. The older format will continue to work until all Prospero

applications before Alpha.5.1 are gone.

15

If the value of an attribute is a link, the link might itself have attributes. When such sub-

attributes are returned, the word ATTRIBUTE is immediately followed by > signs to the appropriate

nexting level. If a link attribute has sub-attributes, they will all be sent with the link.

All available ID �elds will always be returned with every LIST operation, using the ID return

format.

8

Filters

User-de�ned attributes and the �eld filter may have the <attribute-value-type> of FILTER.

9

If a link has one or more �lters attached to it, they are speci�ed as one or more instances of the

link's filter �eld. One ATTRIBUTE line will always be returned for each �lter. The lines are

returned in the same order in which the �lters will be applied to the link. The return format is:

ATTRIBUTE[>]

�

LINK FIELD FILTER <�lter-type> <execution-location>

<pre-or-post>

(PREDEFINED <�lter-name>

or LINK L <target> <name-component> <host-type>

<host-name> <hsoname-type> <hsoname> <object-version> [DEST-EXP

<dest-expiration>]) [ID <id> <info>]

�

[ARGS [<�lter-arg>]

�

]

The values for<�lter-type> are: DIRECTORY, �lter is applied to the current directory; HIERARCHY,

�lter is applied to all directories reachable through the �ltered link; OBJECT �lter is applied to an

object other than a directory; UPDATE, �lter is applied when updating the directory.

<execution-location> refers to where the �lter will be executed. Filters are usually executed

on the CLIENT, but may be executed on the SERVER.

<pre-or-post> is PRE if the �lter is to be applied before union links are expanded and POST if

the �lter is to be applied after union links are expanded. POST is the common case for client �lters.

Server �lters must be PRE at this time, since the server does not yet perform remote expansion of

union links.

Filters may be PREDEFINED, which means that it is expected that the appropriate client or server

will understand the prede�ned name, or they may be LOADABLE, which means that they are object

code that will be dynamically linked with the client or server.

10

There may also be server-speci�c

PREDEFINED �lters for special applications (such as Archie). Their <execution-location> will

always be SERVER.

One may specify zero or more arguments to the �lter, following the ARGS keyword.

Unresolved Components

An UNRESOLVED response lists the components of the name that must be further resolved relative

to the immediately preceding LINK response or responses, and is used when not all components of

8

Please note again that ID �elds have not been fully implemented, in the absence of an appropriate standard;

comments about them in this document are subject to change.

9

XXX: This should go into the attribute documentation

10

The security issues with loadable �lters have not yet been fully addressed. Partly because of this, right now,

all implementations except for the VAX implementation will only support PREDEFINED �lters, and even the VAX

implementation is not con�gured to support loadable �lters unless you specially compile it to do so.

16

a multiple-component name were resolved.

UNRESOLVED <components>

The text of the <components> must be a proper su�x of multiple-component name sent

across as an argument to the LIST command. For instance, to the command

LIST '' COMPONENTS ulink-test2/murali/ROOT

the only two legal UNRESOLVED responses are

UNRESOLVED murali/ROOT UNRESOLVED ROOT

No �les found

If no �les are found, the reply will be:

NONE-FOUND

3.6 LIST-ACL

LIST-ACL <options> [<name-component>][<LF>

SELECT

<applies-to> (FIELD or INTRINSIC or APPLICATION) <attribute-name>

<attribute-value-type>) [<value-tuple-element>]

�

]

�

This request is used to list the access control list for the directory speci�ed in the previous

DIRECTORY command, or for a link within the directory. The optional component is required only

if requesting the ACL for a link within the directory (option = LINK). It is to be left out when

requesting the ACL for the directory itself (option = DIRECTORY).

The response will be zero or more lines of the form:

ACL <entry-type> [<authentication-type> [<rights> [<principal-name>]

�

]]

If no ACL entries are listed, then the response is SUCCESS. Fields inappropriate to a par-

ticular <entry-type> need not be sent, but if they are sent, they should be sent as a zero-

length string. For instance, the DEFAULT, SYSTEM, and DIRECTORY ACL types do not use the

<authentication-type>, <rights>, and <principal-name> �elds.

If the ACL's permissions state that it cannot be viewed (v or V permission), then the response

is

FAILURE NOT-AUTHORIZED [optional multi-token explanatory text.]

Possible values for <entry-type> include NONE (allows access to no principals; in other words,

it's a no-op), ANY (grants access to all principals), OWNER (grants access to the principal speci�ed by

the link or object's owner �eld; i.e., the one who owns the link or object), NAMED, GROUP (In this

case, the <authentication-type> token represents the group certi�cation method), DIRECTORY,

DEFAULT, SYSTEM, AUTHENT (means that an authentication method is used; the<authentication-type>

token speci�es the authentication method. The only currently supported value for<authentication-type>

is KERBEROS.), ASRTHOST, and TRSTHOST. An example:

17

ACL ANY '' rlvY

ACL ASRTHOST '' ALRMDI prospero

ACL AUTHENT KERBEROS ALRMDI swa@ISI.EDU bcn@ISI.EDU

ACL DEFAULT '' ''

ACL SYSTEM '' ''

We interpret a null link ACL as the DIRECTORY ACL. We interpret a null directory ACL as the

DEFAULT ACL.

See the Prospero User's Manual for a discussion of the order of evaluation of ACLs.

If we want to �nd out the value of a NAMED ACL (named ACLs are shorthand for longer lists,

and are local to the server) (XXX this should go into the user's manual), then we use the NAMED

option, and the <name-component> is replaced with the (possibly quoted) name of the named

ACL. Note that named ACLs are not currently supported.

If we want to �nd out the value of an included ACL (Currently, the only included ACLs

are SYSTEM, DEFAULT, and OVERRIDE. DIRECTORY is also an included ACL for the purposes of

the protocol, but the value of the DIRECTORY ACL will change from directory to directory, and

therefore it is not a server-wide stable name.)

11

, then we use the INCLUDED option, and the

<name-component> is replaced with the name of the included ACL. Note that retrieval of

included ACLs is not currently supported.

If we want the ACL for a �lesystem object (instead of for a link or directory), then we use the

OBJECT option, and the <name-component> is replaced with <hsoname-type> <hsoname>

[<object-version>]. Object ACLs are not currently implemented, because they wouldn't do

anything useful | we currently do not have an access method which understands Prospero ACLs.

Within the Prospero protocol, the quoting mechanism works on principal names, and works

recursively for distinguishing components of principal names. (This is currently only used by

Kerberos, but may also be needed by other authentication mechanisms.)

See the Prospero User's manual for a further discussion of ACLs.

3.7 GET-OBJECT-INFO

GET-OBJECT-INFO <requested-attributes> <hsoname-type> <hsoname>

<object-version>[<LF>

SELECT

<applies-to> (FIELD or INTRINSIC or APPLICATION) <attribute-name>

<attribute-value-type>) [<value-tuple-element>]

�

]

�

This command requests information about an object. <requested-attributes> is a list of

those attributes that are desired. Multiple attributes may be separated by \+" signs (with no

intervening white space), just as options lists are separated.

Special attribute names may be speci�ed, just as they may be for the LIST command. The spe-

cial names are: #OBJECT (synonymous with #ALL), #FIELD, #INTERESTING, #ALL, and #APPLICATION.

The response can be multiple lines, each containing a value for an attribute. The response will

be the same as for the ATTRIBUTE option to the LIST command. However, the <applies-to> �eld

will always be OBJECT

11

XXX: this information will go into the user's manual when we revise it

18

An object that has migrated to another host may have its forwarding-pointer attribute

queried with GET-OBJECT-INFO, but attempts to retrieve any other attributes will return a FORWARDED

message.

If no matching attributes for the object were found, the response is NONE-FOUND.

3.8 EDIT-OBJECT-INFO

EDIT-OBJECT-INFO<modi�cation-request><hsoname-type><hsoname>

This command is used to change the attributes of a Prospero object. It is followed by an

arbitrary (zero or more) number of ATTRIBUTE speci�cation lines. See the LIST command for a

de�nition of these lines. The <applies-to> will always be OBJECT.

In the command, one may request to add a new instance of an attribute, delete an instance,

delete all instances, or replace all instances. The <modi�cation-request> will be ADD, DELETE,

DELETE-ALL, or REPLACE. If you want to do more than one thing to an object in the same request

(e.g., if you want to add one attribute instance and replace another), and you want to avoid

letting the object exist in an intermediate and possibly inconsistent state, then you can send two

EDIT-OBJECT-INFO commands in the same message, along with the ATOMIC command.

If you are deleting all instances of an attribute, then the <attribute-value> you specify in your

ATTRIBUTE speci�cation lines will be ignored, and will usually just be the null string. DELETE-ALL

just checks for matches on the attribute name and the attribute namespace (APPLICATION, FIELD,

or INTRINSIC).

DELETE, on the other hand, checks for an exact match on the attribute name, namespace, type,

and value. (The current implementation does not check for sub-attributes of a value of type link.

REPLACE may be speci�ed even if the attribute does not yet have any instances speci�ed for it.

One may use EDIT-OBJECT-INFO to edit the base-type attribute to remove the FILE type

from it only if the �le is empty (zero length), and one may remove the DIRECTORY type from it only

if the directory is empty (contains no links).

3.9 CREATE-LINK

CREATE-LINK <options> (L or U) <name-component>

<target> <host-type> <host-name> <hsoname-type> <hsoname>

<object-version> [ID <id-type> <id-value>]

This command creates a new link in the current directory. The <name-component> may

not be null, even if the link is a union link. If �lters or other information must be added, the

EDIT-LINK-INFO command should be used once the link has been created.

The <options> may include REPLICA to add a link to a directory that already contains a link

with the same <name-component>. REPLICA indicates that the new link and the existing link or

links with which it con
icts are replicas. Normally, if one attempts to add a link with a con
icting

<name-component>, the response is:

FAILURE ALREADY-EXISTS

19

if the new link duplicates an existing link (if all of the arguments to it are the same as those of an

existing link), and

FAILURE NAME-CONFLICT

if the new link has information which con
icts with an existing link.

If CONFLICT is among the options, then con
icting links will be inserted into the directory

anyway.

For directories whose directory-ordering is UNSORTED, one of these three additional options

may be speci�ed:

BEFORE The CREATE-LINK command is immediately followed by a LINK line, describing the link

before which the new link is to be inserted in the directory listing.

AFTER Same as above, but the new link is inserted after the speci�ed link rather than before it.

LAST This is the default. The new link will be the last item in the directory.

3.10 DELETE-LINK

DELETE-LINK <options> <name-component> [<LF>

SELECT

<applies-to> (FIELD or INTRINSIC or APPLICATION) <attribute-name>

<attribute-value-type>) [<value-tuple-element>]

�

]

�

This command is used to remove an entry from a directory. The options are currently blank.

If the SELECT lines are not speci�ed and there are multiple links with the same<name-component>,

the �rst one matching will be deleted.

3.11 EDIT-LINK-INFO

EDIT-LINK-INFO <modi�cation-request> <name-component> [ID

<id-type> <id-value>]

This command modi�es information associated with a link. The interpretation of the

<modi�cation-request> and of subsequent lines is exactly the same as in the EDIT-OBJECT-INFO

command.

3.12 EDIT-ACL

EDIT-ACL (LINK+<options> <name-component>

or OBJECT+<options> <hsoname-type> <hsoname>

or DIRECTORY+<options>)

[ID <id-type> <id-value>]<LF>

ACL <entry-type> <authentication-type> <rights> <principal>

20

This command is used to modify an access control list for a directory, for a link within a

directory, or for an object. If modifying the ACL for a directory or for a link within a directory, the

directory is speci�ed in the previous DIRECTORY command. Another option indicates the operations

to be performed (one of ADD, SUBTRACT, INSERT, DELETE, SET or DEFAULT), and whether to override

the automatic inclusion of the system ACL (NOSYSTEM), or limited administer access for the client

(NOSELF).

The server will return SUCCESS, FAILURE, or FORWARDED, as appropriate.

3.13 CREATE-OBJECT

(CREATE-OBJECT PHYSICAL+<options> [<hsoname-type> <hsoname>]

or CREATE-OBJECT ADD+<options> [<hsoname-type> <hsoname>]

or CREATE-OBJECT VIRTUAL+<options> <name-component>) <LF>

[ATTRIBUTE <attribute-specifying-tokens><LF>]

�

[ACL <ACL-specifying-tokens><LF>]

�

This command will create an object with the speci�ed <name-component> and will return

the identi�er that can be used to open it. The <options> may include any or all of DIRECTORY,

FILE, and OBJECT. If the FILE option is speci�ed, the new �le is created empty. If the DIRECTORY

option is speci�ed, the new directory is created empty (i.e., not containing any links.).

The object will be created with whatever attributes present that are speci�ed in the ATTRIBUTE

lines.

If <options> includes VIRTUAL, then <name-component> is a name relative to the current

directory, and a link to the new object is added to the current directory.

If the ADD option is speci�ed, then one is adding a base type to an already created object.

Exactly one of the ADD, VIRTUAL, and PHYSICAL options must be speci�ed.

If the PHYSICAL option and a <hsoname-type> <hsoname> pair are speci�ed, then

the server will attempt to create an object with that <hsoname-type> <handle-pair>. If

the PHYSICAL option without a following pair is speci�ed then the server will choose a free

<hsoname-type> <hsoname> pair.

Upon success, the server will return:

CREATED <hsoname-type> <hsoname>

It is up to the application to create a link to the new object.

3.13.1 Specifying Attributes

The new object's �elds will be set to system defaults, but specifying a following series of ATTRIBUTE

descriptions allows the creator of a �le to override those defaults, and to specify any application-

de�ned attributes. The form for each ATTRIBUTE line is the same as that returned by the LIST

command.

3.13.2 ACLs

If creating an object with the VIRTUAL option, the access control list for the new object will initially

be a copy of the access control list for its containing directory. If creating an object with the

21

PHYSICAL option, the access control list for the new object will contain the DEFAULT ACL and the

SYSTEM ACL. In addition, for both options, one or more entries will be automatically added to the

ACL granting its creator all rights. The entry authentication type or types will be appropriate for

whatever the user used to authenticate himself or herself. (Either AUTHENT KERBEROS or ASRTHOST

or TRSTHOST.)

If the LPRIV option is speci�ed for a directory, instead of this entry, only those rights needed

to allow the creator to set up the directory (list, read, insert, and administer) will be added, and

(if VIRTUAL was speci�ed), only if the creator does not already have such rights through the ACL

that was included from the parent directory.

12

If VIRTUAL was speci�ed, the ACL for the new link will by default be empty, which means that

the default rights for the directory will apply to the link.

After the ACL entries mentioned above are installed, the ACL entries speci�ed as part of the

CREATE-OBJECT command will be added to the front of the list.

3.13.3 Some Error Conditions

If the user attempted to set a �eld whose name the server does not recognize, or to set a application-

de�ned attribute to a type that the server does not recognize, or to set the value of any attribute

with a string that the server cannot convert into the data type the server expects (e.g., too few

tokens when setting an attribute of type LINK), or to set an unrecognized ACL type, the response

is:

ERROR explanatory text

If the user speci�ed an explicit <hsoname-type> and <hsoname> with the PHYSICAL option,

but they were already in use, or if the user speci�ed a component with VIRTUAL, but the component

is already in use, the error message is:

FAILURE NAME-CONFLICT [explanatory text]

3.13.4 No DELETE-OBJECT command

Although there is a DELETE-LINK command, there is no DELETE-OBJECT command. That's because

Prospero objects will have their storage reclaimed when their TTL expires (when no link to them

is refreshed before their expiration date). At the moment, this storage reclamation feature is not

implemented.)

13

3.14 UPDATE

UPDATE <options> COMPONENTS [<name-component>]

�

This command tells the server to check each of the named components in the current directory

for forwarding pointers. If the referenced object has moved, the link will be updated. The server

12

If you really want to shoot yourself in the foot, you can then call EDIT-ACL to remove these few rights. We will

let you do this, but we are not making it easy for you.

13

XXX: This feature must be speci�ed. In addition, we must specify methods for refreshing links, garbage collection,

and noti�cation of the impending demise of objects.

22

will send Prospero protocol messages across the network to the targets of links to Prospero objects

in order to check whether the target of a link has moved. (External links and symbolic links will

not be checked.) If no components were speci�ed, all components in the directory will be checked.

Each <name-component> may contain wild cards.

On success, the UPDATE command returns the number of links that were modi�ed.

UPDATED <number> LINKS

On failure, the UPDATE command returns the number of links it was unable to update.

14

FAILED TO UPDATE <number> LINKS

Wildcards

3.15 STATUS

This command requests the current status of the server. A humanly readable multiple line response

is returned. The response may be presented to the user without additional processing. The response

must conform to the following requirements so that it may be read by a program if desired.

The �rst line must include the server's software version identi�cation enclosed in parenthesis,

and the host name of the server. The name of the host should be the name that appears on local

links generated by the server; it might not be the primary name of the host. The version identi�er

must be the �rst string that appears in parenthesis, and the host name must be the string that

immediately follows the version identi�er.

If a line contains a colon (:), the string preceding the colon identi�es the meaning of the text

that follows the colon. Reserved identi�ers include Contact, Started, Memory, Data, Root, AFTP,

AFS, and DB. The identi�ers are case insensitive. If present, AFTP identi�es the part of the �le

system accessible by anonymous FTP.

More than one DB line may be present. A DB line may contain more than one item on it; if

it does, the items must be separated by spaces. Each item on a DB line is an initial pre�x which

this particular server recognizes to mean that, if this server receives a system-level name with this

pre�x followed by a slash, the remaining contents of the line are fed to a database program which

translates it into a reference to a virtual directory.

Other than for the �rst line of the response, implementations are free to add or modify lines

that do not contain a colons. A sample status response follows:

Prospero server (Beta.4.2B) JUNE.CS.WASHINGTON.EDU

Requests since startup 4096 (3609+377+2 67+29+0 9 0+0+0 0 3) OF

Started: 26-Aug-91 15:14:56 UTC

Contact: bcn@cs.washington.edu

Memory: 0(118)vl 0(4)at 0(5)acl 0(1)fi 1(1)pr 2(2)pt 0(711)str

Data: /u1/vfs/pfsdat

Root: /

DB: ARCHIE GOPHER(70) GOPHERGW WAIS

AFTP: /homes/june/ftp

14

This error message may change in response to future needs.

23

Since the responses to this command are so free in form, it is unlikely you would want to send

additional requests to the Prospero server along with the STATUS request, since it would not be

easy for a program to separate the replies to them from the free-form text.

24

Chapter 4

Standard Responses

4.1 SUCCESS

SUCCESS [identifying-info]

A command that does not generate any output returns this response if successful.

4.2 FORWARDED

FORWARDED <host-type> <host-name> <hsoname-type> <hsoname>

<version> [DEST-EXP <dest-expiration>]

[ID <id-type> <id-value>]

�

This response is returned when the object that is the target of an operation has moved. The

client can retry the response using the corrected information.

4.3 ERROR

ERROR text

This response is returned to indicate an error encountered when parsing the request. The error

might be a protocol error, or it might be the result of the server's inability to recognize a keyword

or data type. text describes the error.

4.4 FAILURE

FAILURE <identifying-info> [optional text]

This response is returned when an operation can not be performed. The de�ned values for

<identifying-info> appear below. If present, the optional text provides additional information

about the failure.

25

NOT-FOUND (FILE or ACL or OBJECT or FILTER or PARAMETER or ATTRIBUTE)

ALREADY-EXISTS

NAME-CONFLICT

AUTHENTICATION-REQUIRED

NOT-A-DIRECTORY

NOT-AUTHORIZED

AUTHENTICATION-DATA

SERVER-FAILED

1

AMBIGUOUS

BAD-VALUE

FILTER-APPLICATION

4.5 WARNING

WARNING <identifying-info> [optional text]

This response is returned to indicate a warning condition which does not a�ect the correctness

of the response. This message can be used to indicate that the client is using an old version of the

protocol that, while supported, should be phased out. It can also be used to inform the client of

future changes on the server or scheduled downtime. The de�ned values for <identifying-info>

appear below. optional text is optional text that provides additional information about the warning.

OUT-OF-DATE

MESSAGE

Any <identifying-info> that can follow a FAILURE message

Prospero clients are strongly encouraged to present warnings to the user.

1

This is used in the following situations, among others: if an internal table in the server �lls up, or if the server

cannot allocate enough memory to handle the request, or if the server detects an internal inconsistency in its database,

or if the server has not implemented a command speci�ed in the protocol.

26

Appendix A

Directory, Link, and Object

Attributes

This appendix describes the object and directory information maintained by the Prospero �le

system.

Please note that this appendix is in very rough form. Many of the attribute de�nitions

have not yet been properly written. A lot of the attribute documentation can be found in

section 3.5.3 of this document.

Attributes have three namespaces associated with them: APPLICATION attributes, INTRINSIC

attributes, and FIELDs. Attributes in the FIELD namespace have a registered meaning, and are

understood by all clients and servers that use them. APPICATION attributes are de�ned by users and

application programs and are unrestricted. Intrinsic attributes have special registered meanings,

providing prossibly transient or derived information. The server has
exibility about whether it

allows you to change these things. Modifying them may have special implications | for instance,

setting the SIZE of a �le to \0 bytes" will truncate the �le. INTRINSIC attributes gare either

not modi�able, or else the server uses special mechanisms to modify them.

In addition, there is a fourth namespace used internally by routines running on the Prospero

server. INTERNAL attributes are never sent across the network; they cannot be read with GET-

OBJECT-INFO or LIST and cannot be modi�ed with EDIT-OBJECT-INFO. However, they do

appear in the server's data �les.

A.1 Objects

A.1.1 Attributes

Valid attributes include access-method, closure, description, forwarding-pointer,

keywords, last-referenced, last-writer, locks, owner, replicas, size, storage-

location, ttl, ttl-expires. version-number, virt-sys, well-known-names, and

write-date.

Prospero maintains the following system de�ned attributes for each Prospero object:

base-type See section 2.4.1 for a description of this attribute.

0

RATIONALE: Under the version 1 protocol, the means of obtaining the access method information for EXTERNAL

27

access-method

1

This is a tuple of at least 5 elements. The �rst element is the name of the

access method. Currently supported values are AFTP, GOPHER, AFS, NFS, FTP, WAIS, and

LOCAL. The next 2 elements are the <host-type> and <host-name> of the host to which

the access method should connect in order to retrieve the object. A port number may be

included as part of the hostname, if relevant. If they are zero-length tokens (''), then they

default to the <host-type> and <host-name> speci�ed in the link. The next 2 elements

are the <hsoname-type> and <hsoname> which the access method will use to retrieve

the object. If they are zero-length tokens, then they default to the <hsoname-type> and

<hsoname> speci�ed in the link. This constraint on format applies to all access methods.

If a particular type of access method doesn't need one of these �elds, then it still must be

speci�ed, but the access method is free to ignore it. The whole point of the '' shorthand is

merely to save bytes in the protocol messages. It is always appropriate to send them fully

expanded, and not use the '' shorthand.

The sixth and subsequent elements are dependent upon the particular access method. For

AFTP and FTP, the sixth element will be BINARY or TEXT. For NFS, the sixth element will be

the name of the �lesystem on the remote host. LOCAL, and AFS have only �ve-element names.

The GOPHER access method may have �ve or six elements in the name. The actual protocol

used to retrieve a document or object through Gopher varies depending on its Gopher item-

type. (See Internet RFC 1436 for details on the interpretation of the Gopher item-type

characters.). This item type is usually the 1st character of a Gopher document or object's

selector string (the <hsoname> element of the access method). However, the protocol does

not require that this be the case. If a sixth token is present in a GOPHER access method, it will

be treated as the Gopher item-type character; otherwise, the item-type will be taken from

the 1st character of the <hsoname> element.

Some examples:

ATTRIBUTE FIELD ACCESS-METHOD GOPHER

INTERNET-D MERMAID.MICRO.UMN.EDU(150)

ASCII '1/Fun Stuff/Pyrotechnics/PyroGuide 1'

2

This access method could also be displayed in the six-token format as:

ATTRIBUTE FIELD ACCESS-METHOD GOPHER

INTERNET-D MERMAID.MICRO.UMN.EDU(150)

and FILE links was di�erent; this made the code more complicated than it needed to be.

The reader may well ask why the host should be speci�ed in the value of the access-method �eld. Isn't the

host name already speci�ed in the host �eld? Including the host name as part of the attribute's value has some

advantages:

� The value of the access-method �eld is all one needs in order to retrieve the �le.

� One might have a Prospero server running on only one host in a cluster, where the objects themselves are

actually stored on another �leserver. Then, one would want to be able to have the access-method host be

di�erent from the host which is listed as the one having the �nal word on the status of the object.

� This system also allows us to have a gateway server, which is able to translate directory formats from other

distributed �le systems (e.g., gopher), but directs the client to retrieve the �les themselves from a host that is

not the gateway server.

2

This �le recently disappeared from the server. If you have a copy, please send it to swa@isi.edu.

28

ASCII '1/Fun Stuff/Pyrotechnics/PyroGuide 1' 1

3

Andrew File System names are the same irrespective of what host one is using them

from. Therefore, the <host-name> token in the access method is irrelevant

and is ignored by the client.

ATTRIBUTE FIELD ACCESS-METHOD AFS DUMMY DUMMY

ASCII /grand.central.org/doc/afs/dce/usenix90/README

This �le can be retrieved by NFS mounting the /auto/gum/gum �lesystem on the

host PROSPERO.ISI.EDU. Note that the server is responsible for knowing

which client machines it will allow to NFS mount that �lesystem.

ATTRIBUTE FIELD ACCESS-METHOD NFS INTERNET-D PROSPERO.ISI.EDU

ASCII ftp/pub/prospero/README-prospero-documents /auto/gum/gum

<hsoname> tokens in the FTP access method are full local hostname paths that

one would give when using full FTP to the host.

ATTRIBUTE FIELD ACCESS-METHOD FTP INTERNET-D PROSPERO.ISI.EDU

ASCII /ftp/pub/prospero/README-prospero-documents TEXT

<hsoname> tokens in the AFTP access method are pathnames relative to the root

of the anonymous FTP area.

ATTRIBUTE FIELD ACCESS-METHOD AFTP INTERNET-D PROSPERO.ISI.EDU

ASCII /pub/prospero/README-prospero-documents TEXT

If one is querying from a host which has a �le accessible via the local �lesystem,

and if the server has knowledge of this fact, a LOCAL access method will also be

returned for a �le. For the LOCAL access method, the <host-name> token in

the access method is ignored.

ATTRIBUTE FIELD ACCESS-METHOD LOCAL '' ''

ASCII /auto/gum/gum/ftp/pub/prospero/README-prospero-documents

closure The <attribute-type> of thie attribute is LINK. It is a link to the virtual system to be

used when resolving names embedded in the object. The link's <name-component> will

be ignored, but by convention it is the ugly-name of the virtual system.

owning-virtual-system The <attribute-type> of this attribute is LINK. It is a link to the

description of the virtual system which is considered to own the object. (Every virtual system,

by convention, has a link to its description named /VS-DESCRIPTION. For directories, if you

are logged into the directory's owning-virtual-system , then if you try to change the

directory, your client will assume that you really want to try to change the directory. If you

are logged into a di�erent virtual system from the directory's owning-virtual-system ,

then if you try to change the directory, your client will assume that you really want to

customize your own virtual system, but not a�ect the master directory. Your intentions are

completely distinct from whether you actually have write permission on the directory. If you

try to change a directory that you can't write to (if its owning-virtual-system is the

same as the virtual system you're logged into, but you don't have permission to write to it),

then the current clients will all give you a \permission denied" error message, and the nice

ones will suggest that you might want to change virtual systems and customize instead. The

3

This �le recently disappeared from the server. If you have a copy, please send it to swa@isi.edu.

29

link's <name-component> will be ignored, but by convention it is the ugly-name of the

virtual system.

version-number The <attribute-type> of this attribute is SEQUENCE. It is represented in the

protocol as a decimal number. It is currently always zero; see section 2.4.3 for further details.

owner The principal responsible for the object. The <attribute-type> of this attribute is

SEQUENCE. It is a tuple of three or more elements. The �rst element is an ACL <entry-type>

and the second element is an ACL <authentication-type>. The third and subsequent el-

ements are <principal-name>s. The �rst two elements are needed because they indicate

the namespace in which the <principal-name>s are to be resolved. There may be multiple

instances of the owner �eld, if the owner wants to be registered according to several authen-

tication systems. For instance, one of the authors of this document uses an owner �eld that

looks like this:

ATTRIBUTE FIELD OWNER ASRTHOST '' swa@128.9.*.*

ATTRIBUTE FIELD OWNER AUTHENT KERBEROS swa@ISI.EDU swa/padmin@ISI.EDU

Although the owner �eld may be referred to with the OWNER ACL type, we don't really

encourage people to use it as a shorthand for granting access rights. Its primary purpose is

informational.

forwarding-pointer This attribute has type LINK. The link's <target> is FP. It is set for

objects that have migrated to another host. The target of its value is the new location of the

object. If an object has moved to a new host, its forwarding-pointer will be returned in

a FORWARD protocol message in response to any attempts to access it.

Last writer, write date, etc.

Version info (optional). Number of versions to keep, version number, etc.

Attributes or keywords (optional). User speci�ed.

Short description (optional).

Locks (optional).

List of replicas (optional).

Replication type (optional).

Other replication information (optional).

Time to live . The lifetime for newly created or refreshed links to the object.

ttl-expires This is the ttl plus the time that a link to the object was last created or refreshed.

Back links . A possibly incomplete list of directories with links to the object.

30

Note that the object's name is not one of its attributes. The object's name is the concatenation

of the name components starting from the active virtual system. An object may have di�erent

names in di�erent virtual systems, or even multiple names within a single virtual system

4

.

A.1.2 Objects stored on unix

Objects stored on unix servers have the following attributes de�ned for them. These are all

INTRINSIC:

size A single-element SEQUENCE specifying the number of bytes used to store the object. Its format

is \<number> bytes". Note the embedded space.

native-owner A single-element SEQUENCE. The unix username on the server of the user who

owns this �le.

native-owner A single-element SEQUENCE. The unix group name on the server of the group

associated with this �le.

last-modified A single-element SEQUENCE. The ASN-TIME representation of the last modi�ed

time of this object.

unix-modes A single element SEQUENCE consisting of a ten character string. The �rst character

is \l" for symbolic links, and \-" otherwise. The remaining 9 characters are the user, group,

and other protection bits in the standard format returned by \ls -l".

A.1.3 Persistence

An object continues to exist until the last non-expired link referencing the object is removed. If a

user wishes to recover the storage space for an object, it is
agged for removal. When links to the

object are refreshed, noti�cation is sent that the object is about to disappear, and anyone wanting

to maintain their reference must copy the object elsewhere. Subsequent users have the option of

making their own copy, or updating their link to refer to one of the new copies.

A.1.4 Mobility

Objects may move from one site to another. If they do, a forwarding pointer must remain at the old

location until the time-to-live expires. This enables anyone with a non-expired link to the object

to refresh the link and record the object's new location.

5

A.2 Directories

A directory is an object and as such, everything that applies to objects also applies to directories.

The physical representation of a directory is interpreted by the Prospero server on the system

storing the directory. The Prospero protocol de�nes the interface through which a directory is

accessed.

4

Despite this, well known names from agreed upon starting points might be entered as application-de�ned at-

tributes for objects.

5

To place a forwarding pointer, set the old object's FORWARDING-POINTER atribute. It must be manually

moved to the new server at this time.

31

A.2.1 Directory Attributes

The following attributes are de�ned for directories:

directory-ordering (not yet implemented) This attribute is a 3-tuple. The default value

is

SORTED NAME-COMPONENT INCREASING

which means that, by default, directory entries are sorted in increasing order according to

the value of their name-component attribute.

The �rst element of the tuple is SORTED or UNSORTED. If UNSORTED, the next two elements

must be null. If SORTED, the second �eld speci�es an attribute which is the sort key. The

third element is either INCREASING or DECREASING, meaning the order of sorting.

6

If the include-native attribute is set to any value other than NONATIVE, then the directory-ordering

cannot be UNSORTED.

include-native (not yet implemented) Whether to include information from the native �lesys-

tem in the directory. If �les are included, they will be included from the real directory on

the server with the same <hsoname> as the Prospero directory. Its <attribute-type> is

a single-element SEQUENCE. Values are:

NONATIVE Do not include �les from native directory.

INCLNATIVE Include all �les from native directory.

INCLREAL Smae as above, but (for the unix server) do not include \." and \..".

NATIVEONLY All entries in directory are from native dir; no links have been added. For the

unix server, \." and \.." are NOT included.

PSEUDO Directory is not real. This is set for all directories returned from �lters and by Archie

and Gopher.

A.2.2 Link Attributes

Prospero directories contain links to the objects that are included in the directory. The following

information is maintained for each link.

name-component This is the single component of the object's path relative to the current di-

rectory. Its <attribute-type> is SEQUENCE.

Short description of link (Optional).

link-type . The type of a link can be either normal [L] or union [U]. In the case of a normal link,

an entry for the link is visible when the directory is listed. In the case of a union link, which

can only be made to another directory, the links from the target directory appear as part of

the directory from which the union link originates when the originating directory is listed. If

6

In the current implmentation, the only sort keys that may be speci�ed must have an <attribute-type> of

ASCII.

32

multiple objects have the same name, the order in which the union links appear determines

which object is visible.

Two types of links which may appear locally (either in the server, or on the client) are [-]

deleted, and [N] native. It is not legal for these codes to be sent across the network. Type

[N] links are converted to [L] and type [-] are skipped entirely.

target Target of link: For links in a directory that don't point to objects, could be SYMBOLIC or

EXTERNAL. For a forwarding pointer it is FP. Links to objects will have a target �eld indicating

the cached value of the object's BASE-TYPE attribute. When stored on a vlink structure,

it may have exactly one of the following forms: OBJECT, FILE, DIRECTORY, DIRECTORY+FILE.

There is no guarantee that the type of the target has not changed. Thus, this �eld is the

cached value of the object's base type. For union links, this �eld is always DIRECTORY or

DIRECTORY+FILE. See section 3.5.3 for a further discussion of this.

Hidden/Not-Hidden/Externally-Hidden

7

By default, a hidden link is not displayed when a

directory is listed. It is, however, returned by the directory server, and is traversed if the

actual name is speci�ed in a pathname. An Externally-Hidden link is a hidden link that

will be displayed if the current virtual system is the same as the owning virtual system for

the directory containing the link. The user may override the hidden option, causing hidden

links to be listed. Note that it is also possible to hide a link by specifying its protection as

non-listable. Such links will only be returned by the directory server when the actual name

of the link has been speci�ed.

filter Multiple �lters allowed. The �lter attribute is a pointer to a program that can be used to

�lter the contents of directories to which links are made. data is the set of optional arguments

passed to the �lter program. In addition to the linked directory and arguments, the �lter has

access to all other information available from the current directory.

Filters come in several types. By default, a �lter is a directory �lter, and is applied when

searching directories. A hierarchy �lter is similar to a directory �lter. The di�erence is that a

directory �lter is applied to a single directory, while a hierarchy �lter is applied to the entire

hierarchy (including subdirectories) reached through a link. Directory and hierarchy �lters

come in two types. The default is post-expansion. The �lter is applied after all union links

have been expanded. A pre-expansion �lter is applied before union links are expanded. An

object �lter is applied when accessing an object other than a directory, and might be used,

for example, to cause some operation to be performed on the object before it is accessed.

Note, however, that all types of �lters are associated with links.

Filters are applied to a directory in the order of pre-or post expansion, decreasing depth of

the links to which they are attached (for hierarchy �lters), and �nally in the order that the

�lters are speci�ed on the traversed links.

Attributes (optional). Application attributes to be associated with the link. This allows a user

or application to add (or override) attributes to the linked object (which might be owned by

someone else, and thus not modi�able).

host The name of the host on which the object can be found.

33

host-type The type of the hostname. In particular, whether the hostname is an Internet address,

a domain style name, or a name in some other naming system.

Note that a symbolic link is a link where the destination host is a virtual system, and the

destination object name is a name relative to that virtual system.

hsoname Host-speci�c object name. The name of the object relative to the destination system.

hsoname-type The type of hsoname . Di�erent types of names include numerical �le IDs, names

relative to the root of the local �le system, etc. Right now, only pathnames are implemented,

and their type is ASCII.

object-version By specifying a version number in a directory link, the link is made to a speci�c

version of the object, and changes to the object will not be visible through the link.

Access control info (optional). Allows restrictions on who can read or modify individual direc-

tory entries. These are really attributes, though they are in fact retrieved and modi�ed with

LIST-ACL and EDIT-ACL, and do not appear on the normal attribute listings.

dest-exp Destination expiration date and time. Its implied type is a single-element SEQUENCE,

in ASN-TIME format.

8

This entry indicates how long the information in the link should be

considered valid. When an object is accessed through a link, the destination expiration date

should be set to the current time plus the destination time-to-live.

Note that expired directory entries do not disappear. Typically they remain valid. The

expiration means that there is no longer a guarantee that the object originally referenced can

still be found.

ID. When a new object is created, a unique object identi�er may be assigned. This identi�er

can be included in links, and used to further verify that the named object is the one that

is actually desired. It allows one to reference objects after their expiration dates with the

guarantee that if these identi�ers match, it is the same object. In the prototype, the object

identi�er is a random number of type REMOTE. Other types of object identi�ers will be

de�ned after more work is done by an IETF working group.

Valid-till (optional). If a link is a cached value, then this �eld indicates how long the entry

should be considered valid. For example, a symbolic link may have a corresponding cached

hard link. Until its expiration a cache entry may be used instead of searching based on the

symbolic link. If this �eld is 0, then the link is not a cached entry.

Last-update (optional). This is the time the link was last updated. Its expected use is for

resolving con
icting updates in replicated directories.

8

Implementers should use the asntotime() function in the pfs library in order to convert an ASN-TIME string

into a unix timestamp, and the timetoasn() function to perform the reverse conversion. Applications writers are

encouraged to use ASN-TIME format to represent all timestamps sent across the network.

34

A.2.3 Replication

When support for replication is added to Prospero, a directory might include multiple links with

the same name for the same object. Not all replicas need be listed, however, because each replica

will maintain its own list of siblings. Multiple entries are important to increase reliability and

availability.

35

Appendix B

Asynchronous Reliable Delivery

Protocol

This appendix describes the asynchronous reliable delivery protocol (ARDP) used by Prospero. As

used by Prospero, this protocol is layered on top of the Internet User Datagram Protocol.

Prospero implements its own ARDP because at the time of initial development we were unable

to �nd any that were suitable for general use. Most systems that use any sort of reliably delivered

message protocol implement their own around the speci�c needs of their application. Like these

other systems, early versions of the Prospero protocol de�ned the mechanisms needed for retries and

packet sequencing. As these mechanisms were re�ned, the functionality was moved to a separate

protocol layer (and is implemented as a separate library) to improve modularity, and in hope that

this general and simple ARDP can be used for other purposes.

The ARDP protocol is designed for a request/response style of interaction, where a client sends

a request message to a server in one fell swoop and receives a reply message from the server. The

server can send the packets composing the reply message slowly, as data becomes available, while

it is still processing the rest of a reply. In the current implementation, each request message sent

by a machine from a particular port has its own connection id.

ARDP was designed so that in the common case, the additional overhead of guaranteeing

reliability is as small as possible. Unless special processing is required, the header is kept small,

and unless a packet is lost, no additional packets are sent. If a �eld is not speci�ed, the default

value is used in its place. All �elds up to and including the last �eld speci�ed must be �lled in, but

the header may be truncated at any point, after which all remaining �elds take on their default

values. The ARDP header contains the following �elds:

Octet 0 Version and header length: High order two bits are ARDP version number mod 4 (this

is version 0). Low order six bits are the header length including octet 0.

1

Octets 1{2 Connection ID: Defaults to zero. It must be speci�ed in the response to any request

that speci�ed a non-zero connection ID.

Octets 3{4 Packet number: Defaults to 1 if not speci�ed. A speci�ed value of 0 indicates an unse-

quenced control packet which should not be passed to the application. Note that unsequenced

1

The length of the total packet, including data, is available via the UDP layer, as are the port and IP address of

the sending host.

36

control packets cannot request acknowledgements, nor is there any way for the sender of such

a packet to be sure that they have arrived.

Octets 5{6 Total number of packets in this message: Defaults to 0 if not known, or retains current

value if it was provided in any earlier messages. If the packet number was also not speci�ed,

then it defaults to 1. A speci�ed value of 0 means use the default.

Octets 7{8 Received through: Sequence number through which all packets have been received by

the sender of this packet. Defaults to current value if speci�ed in previous message. Defaults

to 0 otherwise. The recipient's count of packets received through is normally monotonically

increasing; this keeps the count from being set backwards in case an out-of-order packet is

received. However, if the \reset received through" option (option 2) is speci�ed in octet 12,

then it means reset to 0 (i.e. it forgot or lost the earlier messages). More generally, specifying

any explicit value for this �eld along with the \reset received through" option resets the

peer's count, possibly backwards. The recipient should not set its internal value of this �eld

backwards unless the \reset received through" option is set.

Octets 9{10 Wait (expected time till response): Defaults to current value. Speci�ed value of 0

means revert to client-speci�ed backo� algorithm. Specifying a non-zero value lets the client

know that a request might not be processed for some time and that the client should not

retry the request until the speci�ed time. The client may retry sooner if it believes messages

are available which have been missed (e.g., gaps in the list of received packets). This is an

unsigned quantity, measured in seconds, in network octet order (i.e., octet 9 is more signi�cant

than octet 10). A speci�ed value of 65,535 (FFFF

16

; all bits turned on) means greater than

or equal to 65,535 seconds until the next packet. (We do not expect that this value will ever

be used, but it is de�ned for the sake of completeness.)

Octet 11 Flags: Octet 11 is a bit vector specifying option
ags. The
ags may themselves require

additional �elds speci�c to the
ag. These �elds appear at the end of the header in the order

they are needed when reading
ags from the low order bit to the high order bit, followed by

any extra �elds needed by the
ag speci�ed by the 12th octet.

Value of
ags for octet 11

Bit No. Meaning Additional Fields

0 (low order) Additional Address Information Follows Variable length (see below)

1 Priority Follows 2 octets (see below)

2 A Protocol ID for a higher-level protocol follows 2 octets (see below)

3{5 Unused

6 This packet is a sequenced control packet only; it

should not be returned to the application by the

ARDP library.

None

7 (high order) Please Acknowledge this Packet None

Octet 12 More Options: Octet 12 speci�es exactly one (1) of up to 256 other options. The options

may themselves require additional �elds speci�c to the options. (See discussion at Octet 11).

37

38

Value of options for octet 12

Value Meaning Additional Fields

0 No Option Speci�ed None

1 Client to server: Cancel Request. Server to

client: Connection refused.

None

2 Reset peer's received-through count. Speci�ed in octets 7{8

3 Packets received beyond received-through The rest of the header after additional data for

octet 11
ags is an arbitrary number of octets.

These are bit-vectors specifying which packets

beyond the received-through speci�ed in this

packet have been received by the sender of this

packet. For example, if the received-through

is set to 43, then we know that packet 44 has

not been received. The low order bit of the

�rst octet of the additional �eld will be turned

on if packet 45 has been received, and o� if it

has not. The high-order bit will be turned on

if packet 52 has been received, and o� if it has

not. Similarly, the low-order bit of the second

octet of additional information will be turned

on if packet 53 h as been received, and so on.

The recipient of this information may choose

to ignore it and use a simpler resend strategy.

Similarly, this information is never required to

be sent.

4 Redirect (used by servers): The client should

send any unacknowledged packets already

sent and all subsequent packets in this mes-

sage to a new addresss. This is designed to be

used as a load-shedding device. In one com-

mon case, this will be the entire response a

server gives to a request, and the client will

resend the entire request to a new server; in

the other common case, this will be used in

conjunction with option 6 or 7.

6 octets. The �rst 4 octets are the IP address

of the new server, in network byte order. The

next 2 octets are the UDP port to which the

request should be sent, also in network byte

order.

5 Redirect and notify (used by servers). Like

option 4, but the client's network layer should

also notify its caller that all subsequent re-

quests intended for the old server should be

sent to the new server instead.

Same as option 4.

6 Forwarded: This request was received from a

client, and the sender is a server forwarding it

to the recipient for processing. The recipient

should pretend that it received this message

from the sender indicated by the additional

�elds, not from the real sender of this mes-

sage. (If implemented, this request should be

accepted only from one of a group of trusted

hosts.) This option is intended to be used by

a central server which distributes requests to

several subsidiary servers which do the actual

work of processing the request, but which use

the central server as a contact point. Pre-

sumably, it is cheaper for the central server to

forward the request to the subsidiary servers

over a local area network rather than for the

client (who may be quite far away) to retrans-

mit it. The central server has done the job of

notifying the original client (through option

4 or 5) that further requests and retransmis-

sions should go to the new server.

6 octets: The IP address and port of the orig-

inal sender of this message, as in number 4.

39

Value of options for octet 12

7 Forwarded; Please notify: Like option 6, but

the receiving server should notify the client of

the switch (through option 4 or 5).

2

6 octets: The IP address and port of the orig-

inal sender of this message, as in number 4.

8-252 Unde�ned Unde�ned

253 Request Queue Status 1 octet. If bit 0 (low order) is set, the position

in the queue is requested. If bit 1 is set, the

estimated time until this request will be com-

pleted is requested. The recipient may ignore

this option.

254 Response to 253. 1 octet of
ags, followed by 1 or 2 additional

�elds. If bit 0 (low order) of the
ags is set,

the position in the queue is returned as a 2

octet network byte order representation of an

unsigned quantity. A value of FFFF

16

(all bits

turned on) means a queue position of FFFF

16

or further. (We do not expect this value to

ever be used, but it is included for the sake of

completeness.) If bit 1 of the
ags is set, the

estimated time until this request will be com-

pleted is returned as a 4-octet network byte

order unsigned value, representing a time in

seconds. A value of FFFFFFFF

16

(all bits

turned on) means a time of FFFFFFFF

16

sec-

onds or more. (We do not expect this to ever

be used).

255 Reserved for future expansion Unde�ned

Octets 13 and above Fields speci�c to particular
ags and options.

First, additional data �elds speci�c to the
ags in octet 11 should be speci�ed.

Next Octets Additional Address Information (if Additional Address Information
ag speci�ed):

The �rst octet speci�es the type of additional address information. The next octet speci�es

the length of the address information, from 0 to 255 octets.

3

Its length does not include the

two octets that specify type and length. The following octets contain the address information

itself, and its format is dependent upon the type of address information.

Next 2 octets Priority (if Priority
ag speci�ed): These octets are a signed integer representing

the priority of the request. Not all implementations understand this message, and many

2

You might think that the recipient needs to worry about the IP address of the FORWARD message it sends to

the original client being di�erent from that of the original server (the sender of this message). However, this is not

the case. The existence of multi-homed hosts means that the sender of a message cannot assume that the IP address

of a reply (as recorded in the UDP packet encapsulating the response it receives) is the same as the address the

packet was sent to. The sender must use the connection ID to match up sent messages and received replies.

3

The entire 255 octets are not available for address information, since they are part of the header, and the

maximum header length header is limited to 64 octets.

40

that do will not honor requests for expedited handling. Negative numbers indicate expedited

handling while higher numbers indicate greater delays. A priority of 0 is normal.

Next 2 octets Protocol ID (if Protocol ID
ag speci�ed): These octets identify the interpretation

of the data carried in the packet. The default, or an explicitly speci�ed value of 0, mean that

it is not speci�ed, but has been agreed upon externally (i.e. the applications will know).

Next octets Any data speci�c to the option set by octet 12 should be speci�ed. This is the data

speci�ed in the \additional �elds" column of the table \Value of
ags for octet 12."

41

Appendix C

Prospero Conventions

C.1 <hsoname>s

There are some special <hsoname>s that the current Prospero server may recognize, if it has

been con�gured appropriately. If an <hsoname> begins with the string AFTP/, it is interpreted

as a path relative to the anonymous FTP directory on that server. If an <hsoname> begins with

the string GOPHER[(<gopher-port-number>)], it is interpreted to refer to GOPHER data �les

on that host . If an <hsoname> begins with the string GOPHER-GW, it refers to GOPHER data

�les on another host. If an <hsoname> begins with the string ARCHIE/, it represents an Archie

database query.

42

Appendix D

Prospero Protocol Changes from

Version 1 to Version 5

Versions 2, 3, and 4 of the Prospero protocol were not used. The protocol number jumped from

version 1 to version 5 to keep the software number and version number consistent; the �rst version

of the server to implement version 5 protocol had a software version number of 5.

For now, all Prospero servers continue to accept Version 1 of the protocol.

Not all of the protocol changes are listed here.

In version 1, the EDIT-LINK-INFO command was called MODIFY-LINK. The syntax of the argu-

ments has also been changed.

The method of specifying attributes to LIST has changed. The lines returned from LIST are

also in a new format.

The quoting mechanism has been formalized, and extended to apply to multiple-component

directory names. Therefore, the ONECOMP option to LIST is now o�cially dead (it was never imple-

mented in any server anyway). Note that no Version 1 server ever implemented quoting properly

anyway. Therefore, if a client speaks Version 1 Protocol, it will not be able to access �lenames with

spaces in them.

The <magic-no> �eld has been replaced with zero or more occurrences of the sequence ID

<id-type> <id-value>. GET-OBJECT-INFO used to have the reserved keyword ID, but this has

been
ushed.

The syntax of the arguments of EDIT-OBJECT-INFO has been changed, in order to avoid a

syntactic amgiguity.

Many changes have occurred to the arguments of commands.

Filter syntax has changed drastically.

Separate principals are now sent as separate protocol tokens in ACL and attribute de�nitions.

The target �eld used to have a possible value of SYM-LINK. This has been changed to

SYMBOLIC. The base-type �eld has been introduced.

The syntax of a <target> of EXTERNAL has changed radically. EXTERNAL links now look

a lot more like conventional links. The meaning of the access-method attribute has changed

radically; it's now a lot more
exible.

Support for Kerberos has been speci�ed.

43

