
1

Menu-Based Browser API to Prospero

Draft of 5 July 1993

Document Revision No. 0.3

Steven Seger Augart    B. Clifford Neuman    Kwynn
Buess    Information Sciences Institute

University of Southern California

1This work was supported in part by the National Science Foundation (Grant No.
CCR-8619663), the Washington Technology Center, Digital Equipment
Corporation, and the Defense Advance Research Projects Agency under NASA
Cooperative Agreement NCC-2-539. The views and conclusions contained in
this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of any of the
funding agencies. The authors may be reached at USC/ISI, 4676 Admiralty Way,
Marina del Rey, California 90292-6695, USA. Telephone +1 (310) 822-1511,
email info-prospero@isi.edu.

1

 Contents

1    INTRODUCTION

The menu-based browser API is a description of interfaces to the PROSPERO
library. The functions and variables described here will eventually be
prototyped in the standard Prospero include file p_menu.h; since the menu
browser client and this API are still under development, that include file is
currently located in user/menu in the Prospero sources, along with the
Prospero menu browser client.

2    Data Structures

The data structure VLINK is described in the include file pfs.h. The user
of this API needs to know only the following facts about it:
• A VLINK structure has members next and previous. These members

are only meaningful when working with a linked list of VLINK structures;
they point to the next and previous member of the linked list. The
previous of the head of the list points to the tail of the list. The next of
the tail of the list is a null pointer.

• The APPEND_ITEM(VLINK new, VLINK head) macro, defined in
list_macros.h, appends new to a doubly-linked list headed by the
vlink head. head is an initialized variable which points to an already
existing list of VLINKs. It can be initialized to the empty list by setting its
value to the null pointer.

• The EXTRACT_ITEM(VLINK item, VLINK head) macros, also defined in
list_macros.h, removes the item item from the doubly-linked list
headed by head. If ITEM is not a member of the list, the results are not
defined. The extracted item will NOT be freed. EXTRACT_ITEM will
reset head if necessary. This is useful for extracting a single item for future
use from a linked list of VLINKs and then running vllfree() on the
list.

The data structure TOKEN is also used by this API interface. It obeys the
same doubly linked list convention that VLINK does.

3    Error Reporting

extern char *m_error;

All of the functions described in this file set the global variable m_error
to signal success or failure. Upon failure, they will return with m_error set

3

to a pointer to a string which is an error message. Upon success, they will
return with m_error set to a NULL pointer.

4    Library Calls

4.1    VLINK m_top_menu(void)

m_top_menu() takes no arguments. It returns a single
VLINK, which is a link to the first menu to be
displayed to the user. You then call m_get_menu() to
get the contents of that menu.

4.1.1 Implementation

Return a vlink whose host and hsoname are set from
the VSWORK_HOST and VSWORK_FILE environment
variables. The NAME of this vlink (the menu title
that will be displayed) should for now be the last
component of the VSNAME environment variable. Later
we will talk about how to start up the browser when
somebody is not yet VFSETUP to any virtual system.

4.1.2 Additional ways to get top menu —
EXCEPTION TO API

Some menu browsers allow the top menu to be
specified on the command line, using either native
information or a directory name in the currently
active virtual system. At the moment, no API
functions are specified to handle this situation,
and the PFS library must be called directly. If the
top menu is specified as a directory name in the
currently active virtual system, just use rd_vlink()
for now. If it was specified with native
information, vlalloc() a new link, set its HSONAME
to the native hsoname, its HOST to the native host,
and use rd_vlink(). Eventually, we will design an
API function or two to handle getting the top menu
by Prospero file name or by host and hsoname.

4.2 VLINK m_get_menu(VLINK menu)

m_get_menu() is given a VLINK to a menu as its
argument. It will return an ordered list of VLINKs,
each corresponding to an item in the menu.

4.2.1 Implementation

This orders the VLINKs according to the COLLATION-
ORDER attribute.

When asking for attributes to be returned in the
underlying Prospero call, please specify that you
want MENU-ITEM-DESCRIPTION+COLLATION-ORDER+ACCESS-
METHOD to be returned. (Of course, do this only if
you are using a PFS library interface that allows
you to specify which attributes you are requested;
at the moment, none of the interfaces allow this.)
This will help us be compatible with possible future
changes to the way the server works.

The 1st two attributes are ones we need to
display the menu. Asking for the ACCESS-METHOD right
away is also a good idea, since if you don’t support
an access-method for a file, you can choose show on
the menu either that it is unreachable or not
display it at all.

4.3 char *
m_item_description(VLINK vl)

This returns a string to be displayed as a
description for the menu item associated with VLINK.
This is a pointer to data that may be overwritten on
the next call to m_item_description(), but not
before.

If vl is a link to a sub-menu, then, when that
sub-menu is displayed, most clients will also use
the string returned by m_item_description() as a
title for that sub-menu.

4.3.1 Implementation

Look at the MENU-ITEM-DESCRIPTION attribute
associated with vl. If that fails,look at vl’s name
member.

4.4 int m_class(VLINK vl)

Return a CLASS for the object pointed to by the
link. The class says what you can do with an object
(view it, read it, run a search through it, open it
up as a submenu, use it to connect to another
service, etc.) These classes are constants defined
in the API.H file. They are: M_CLASS_UNKNOWN (must

5

have a value of 0), M_CLASS_MENU, M_CLASS_DOCUMENT,
M_CLASS_SEARCH, M_CLASS_PORTAL, M_CLASS_SOUND, M_CLASS_IMAGE,
M_CLASS_DATA, AND M_CLASS_VOID.

4.4.1 Implementation

This is derived from the value of the OBJECT-
INTERPRETATION attribute. We are working on a new
portable interface to this function which lets the
browser specify whether it knows how to
display/retrieve/access particular types and
particular subtypes. The current implementation of
the api returns M_CLASS_DATA for any types that it
recognized but cannot perform an appropriate complex
operation on (e.g., if the OBJECT-INTERPRETATION is
a SOUND but you have no sound player), then return
M_CLASS_DATA, and any unknown types are returned as
M_CLASS_UNKNOWN.

4.5 TOKEN m_interpretation(vLINK
vl)

This will return the sequence that is the value of
the OBJECT-INTERPRETATION attribute. You will call
m_interpretation() for information that will let you
actually display the file. This is used internally
by m_class(), too.

4.5.1 Implementation

Warning: The current api implementation does not
fully meet this specification for
m_interpretation().

If no OBJECT-INTERPRETATION attribute is present, we
look at the vl’s target member and see if it is
DIRECTORY, EXTERNAL, or FILE, and we also perform
some simple tests on the suffix of a file to check
whether it is likely to be a binary or text file. If
it ends in .gif, it’s IMAGE GIF. If it ends in .ps
or .PS, it’s DOCUMENT POSTSCRIPT. If it ends in .Z,
it’s EMBEDDED COMPRESS, then strip off the .Z and
try again for the rest of the object interpretation.
If it ends in .z or .gz, it’s EMBEDDED GZIP.
Otherwise, assume it’s DOCUMENT TEXT ASCII.

The OBJECT-INTERPRETATION attribute is further
defined in the working-notes subdirectory of the
menu sources.

4.6 FILE * m_fopen_file(VLINK vl)

This opens the file referenced by vl in read-only
mode and returns a standard IO library FILE pointer
to it, which is then read from and manipulated in
accordance with the stdio library routines.

4.6.1 Implementation

This is just an interface to pfs_fopen().

4.7 int m_open_file(VLINK vl)

This opens the file referenced by vl in read-only
mode and returns a standard UNIX integer file
descriptor referring to it. This descriptor can then
be manipulated in accordance with the standard
conventions.

4.7.1 Implementation

This is just an interface to pfs_open().

4.8 void vlfree(vl), void
vllfree(vl), VLINK vlcopy(VLINK vl,
int r)

vlfree() frees the vlink vl. It should be called on
the link returned by m_top_menu() when the
application no longer has a use for it. vllfree
frees a linked list of vlinks headed by vl. It
should be called on the list returned by
m_get_menu() when the application no longer has a
need for it.

vlcopy() returns a copy of vl, with the next and
previous members set to the null pointer. r should
always be zero.

4.8.1 Implementation

These three functions are already in libpfs; you
don’t need to implement them.

7

