
Windows Sockets 2

TCP/IP Extensions

Jan 31, 1995

Draft

Introduction

This document describes the requirement of the TCP/IP Extension Group and lists proposed

updates to the WinSock2 API and SPI.

Summary of proposed features

 Interfaces list support ability to get list of supported interfaces and some characteristics for each

interface.

 Support for IP_TTL option

 RFC 793/1122 OOB - allow to choose the type of OOB support.

 multicast support - ability to send and receive multicast packets.

 IP6 addresses support - ability to choose the type of IP address to use.

 Disable UDP checksum - ability to turn of UDP checksum.

 IP options - abilty to specify IP options.

 RAW_ICMP/RAW_IP - support for two types of raw data: with and without IP header.

New features description and justification

Interfaces list support ability to get list of supported interfaces and some characteristics for each

interface.

The list of supported interfaces should include at least the following parameters for each

interface:

 Interface ID (opaque value);

 Flags (Up/Down, Multicast, Broadcast, etc.);

 IP address;

 subnet mask;

 broadcast address;

Inspite of the fact that this requirement contradicts the 'General Referential Parameter'

("Windows Sockets is not SNMP'), it was decided to include interface list support into this draft.

The R easons for this are:

 there were multiple requests for support of 'gethostid','get my IP address', etc.

 multicast support for a host with multiple interfaces requires to know the list of

these interfaces.

RFC 793/1122 OOB allow to choose the type of OOB support.

Support a socket option which allows to set the desired type of OOB data handling.

Multicast support ability to send and receive multicast packets.

Multicast support should allow:

 send/receive multicast packets;

 join/leave multicast groups;

 set TTL for multicast packets;

 choose interface which will be used by a socket when

sending multicast packets.

'IP Multicast extensions for 4.3 BSD' by Steve Deering should be used as a guideline for

implementation.

IP6 addresses support ability to choose the type of IP address to use.

It should be possible to specify both the IPv4 and IPv6 type of IP addresses.

IPv6 addresses is treated as addresses of different family, i.e. IPv4 addresses belong to AF_INET

adress family, while IPv6 addresses belong to AF_INET6 family. The new structure should be

defined to describe IPv6 addresses:

struct sockaddr_in6{

u_short sin6_family; // AF_INET6

u_short sin6_port; // port number

u_long sin6_flowlabel; // IPv6 flowlabel

u_long sin6_addr[4]; // IPv6 address

};

Disable UDP checksum ability to turn of UDP checksum.

Setting “UDP checksum off” causes UDP datagrams to be sent with a checksum of

zero, and received UDP datagrams with a checksum of zero to be passed to the

application. The default is “UDP checksum on”. In this case the real checksum is

calculated for the UDP datagrams to be sent, and UDP datagrams with checksum of zero

are silently discarded.(See RFC 1122,section 4.1.3.4)

IP options abilty to specify IP options

IP security requires the access to the IP option part of the IP header. The format of the

passed options should follow the BSD imlementation.

Support IP_TTL option Ability to overwrite the default value of TTL in IP header.

RAW_ICMP/RAW_IP support for two types of raw data: with and without IP header.

 A user should be able to specify two types of 'raw' sockets. One type assumes that an IP

header is created by the WinSock2 (or by the stack) for packets sent over the socket.

Another type assumes that user must provide an IP header for each packet sent.

Proposed updates to WinSock2 API/SPI

These updates introduce several new options. Some of them are optional. If Service Provider

doesn’t support them, it should return WSAEINVAL on an attempt to get/set one of these options. If an

application wants to know if any of these options is supported, it may open a socket and call ‘getsockopt()’

for the choosen option.

 Interfaces list support

New command SIOGIFCONF should be added to the ‘ioctl’ function. This command returns the

list of configured intefaces and their parameters. The support of this command is required for WinSock2

compliant service providers. Both API and SPI description of the ‘ioctl’ function should be updated.

The parameter argp points to the buffer which contains the information about interfaces. The

description of the structure of this buffer follows:

Definition INTERFACE_LIST Structure:

DWORD ilLengthOfList - on input, the count of bytes in the buffer pointed by argp; on output,

the count of bytes written into this buffer.

INTERFACE_INFO ilInterface[1] - array of structures each of which describes a single

interface.

Definition INTERFACE_INFO Structure:

DWORD iiFlags - a bitmask describing the status of the interface. The following flags are

possible:

IFF_UP - interface is up

IFF_BROADCAST - broadcast is supported

IFF_LOOPBACK - this is loopback interface

IFF_POINTTOPOINT - this is point-to-point link

IFF_MULTICAST - multicat is supported

sockaddr FAR *iiAddress - address of the interface

sockaddr FAR *iiBroadcastAddress - broadcast address of the interface or the address of the

other side for point-to-point links

sockaddr FAR *iiNetmask - netmask used by the interface

 New IP options

The set of additional IP option requires the updates in the description of ‘get/setsockopt’ both in

WinSock2 API and SPI documents. These update includes the new supported level IPPROTO_IP and the

following new options:

IP_OPTIONS - optional

IP_TOS - optional

IP_TTL - optional

IP_HDRINCL - required for SOCK_RAW socket types.

The following options are required if protocol supports multicast , i.e. flag

XP1_SUPPORTS_MULTICAST is set on output in WSAEnumProtocols():

IP_MULTICAST_IF

IP_MULTICAST_TTL

IP_MULTICAST_LOOP

IP_ADD_MEMBERSHIP

IP_DROP_MEMBERSHIP

Value Type Meaning

IP_OPTIONS char FAR * List of IP options to be inserted into outcoming

packets. Setting the new options overwrites all the

previously specified options. Setting optval to zero

means removing of all the previously specified

options.

IP_TOS int Specifies type of service to be used

IP_TTL int Specify TTL to be used

IP_HDRINCL BOOL If true, user should include IP header in the

packets sent over SOCK_RAW interface,

otherwise the header is provided by the protocol

stack (service provider).

IP_MULTICAST_IF struct in_addr FAR * Select interface for outgoing multicast packets.

The optval should point to the address of the

interface to be used. If NULL, the default interface

is used.

IP_MULTICAST_TTL int TTL used for the multicast packets

IP_MULTICAST_LOOP BOOL If true, multicast loopback is enabled, otherwise -

disabled.

IP_ADD_MEMBERSHIP struct ip_mreq FAR * Specify the multicast group to join

IP_DROP_MEMBERSHIP struct ip_mreq FAR * Specify the multicast group to leave

struct ip_mreq {

struct in_addr imr_multiaddr; /* multicust group to join/drop */

struct in_addr imr_interface; /* interface to join/drop on */

 RFC 793/1122 OOB

New socket option requires the updates in the description of ‘get/setsockopt’ both in WinSock2

API and SPI documents. This option allows to choose between BSD and RFC-1122 style of expedited

data. This option is not required.

Level Value Type Meaning

SOL_SOCKET SO_EXPEDITED_1122 BOOL If set, the Service Provider implements the

expedited data as specified in RFC-1222,

otherwise the BSD stily is used. This

option can be set on the connection only

once, i.e. once on, this option can not be

turned off.

 Disable UDP checksum

The new UDP option requires the updates in the description of ‘get/setsockopt’ both in

WinSock2 API and SPI documents.

Level Value Type Meaning

IPPROTO_UDP UDP_NOCHECKSUM BOOL If the option is set, UDP datagrams are

sent with the checksum of zero and

received UDP datagrams with checksum of

zero are passed to application. This option

is required. If a service provider does not

have a mechanism to disable UDP

checksum calculation, it may just store

this option without doing any actions.

 RAW_ICMP/RAW_IP

Service providers may support SOCK_RAW type of the socket. There are two types of such sockets: the

first one assumes known protocol type as written in IP header, the second one allows to use any protocol

number. The example of the first type of socket is ICMP, the example of the second type is an

experimental protocol. The second type of protocols also allows an application to implement a protocol

which is not supported by service provider.

The following updates are required to support SOCK_RAW type of sockets:

- WSAEnumProtocol() - ipProtocol field may be set to 0. This indicates that a caller may specify

any value for the protocol parameter to the socket() API. If ipProtocol is set to 0, the bMultiple

should be set to true.

- It should be stated that when the SOCK_RAW type of sockets for AF_INET family is used, it

is assumed that

- when send() is called, the caller may or may not include IP header into the buffer

passed to the send() depending on the IP_HDRINCL option.

- when receive() is called, the caller receives datagram which includes IP header

regardless of the IP_HDRINCL option.

- received packets are copied into all raw socket that which satisfy the following

conditions:

- if the protocol number is specified for the socket, it should match the protocol

number in the IP header of the received packet;

- if a local address is defined for the socket, it should correspond to the

destination address as specified in IP header of the received packet;

- if a foreign address is defined for the socket, it should correspond to the

source address as specified in IP header of the received packet;

Questions to discuss

1. Should we specify the required set of supported IP options ?

