
PowerTCP™ Read Me

Notes on PowerTCP

This file provides important information not included in the PowerTCP Developer's Guide.

This file is divided into the following sections:

1. Changes and Additions to the Manual
2. Directory Structure
3. Running the Visual Basic Examples
4. Maintenance Reports
5. Common Questions and Answers
6. How to Contact Dart Communications
7. Compiler options

1. Changes and Additions to the Manual

The RecvEvent() functions (Recv Event for VB) will be called with NULL arguments whenever
the underlying communications socket is closed.

The VT220 Custom Control Text Property now has a CR/LF at the end of each line. In 80-col
mode there will actually be 82 characters per line. This applies to the Styles property also.

ConnectUdp() function. Callback types on page 28 of volume 2 should be
CONNECTUDPEVENT and EXCEPTIONUDPEVENT. This function will fail, returning a
NULL, if ExceptionEvent is not specified.

ConnectEvent() function on page 30 of volume 2 is of type CONNECTUDPEVENT.

ExceptionEvent() functions on page 30 of volume 2 is of type EXCEPTIONUDPEVENT.

All TELNET and TCP DLLs and VBXs have been updated to version level 3. (ie.
P16TCPB3.VBX). This was done to accommodate the addtion of a new function parameter. The
Recv(size_t MaxRecvCnt) function now has this new parameter that can be set to 0 (to disable the
receipt of data, thereby producing backpressure to the host) or any other number to limit the size
of any data "chunk" that arrives on the port. This function can be used to pause a terminal
emulator, for example. The PT_RECV flag is consequently no longer needed, and has been
deleted.

The PT_TCPNODELAY flag has been added. This can be used to set the TCP_NODELAY
option for the socket in use.

The VT220 Custom Control PrintPassthrough property has been added. When set, printer output
goes directly to the printer, bypassing the usual device driver processing. This is useful for
PostScript printer in PrinterController mode. The new name for the control is P16VT2B2.VBX.

2. Directory Structure

The list of directories is shown below, with a description of each directory:

\POWERTCP
 readme files and documentation is put it the base directory
 rfcs.zip includes many TELNET and FTP RFC documents
 \BIN
 Contains the required fonts, DLLs and VBXs if the user chose
 to install them here. The user may have chosen
 to install the files in the Windows' system directory.
 Also contains all help files.
 \INCLUDE
 Contains all header files for C/C++ and the constants
 file for Visual Basic.
 \LIB
 Contains .LIB files for C/C++.
 \SAMPLES
 Contains sample programs.
 \C_DG
 The source code for a simple UDP datagram program.
 \C_ECHO
 The source code for a simple ECHO program. Utilizes the P16TCPC2.DLL interface and
 demonstrates both client and server functionality over the TCP interface.
 \C_TELNET
 The source code for 4 simple TELNET clients. Visual C++ "make" files are included for 16
 and 32-bit applications that link to PxxTNTC2.DLL (C interface) and PxxTNTS.LIB (C++
 interface). The same source code is used for both 16 and 32 bit versions.
 \C_TLNT32
 The 32-bit versions of the files in C_TELNET.
 \C_FTP
 The 16-bit version of an FTP application.
 \C_FTP32
 The 32-bit versions of the files in C_FTP.
 \DLL

Source code used for the construction of the FTP, TCP and TELNET DLL libraries.
Provides insights into how both the C++ and C interfaces operate.

 \VB_TALK
 An example conversation program which uses TCP
 to send messages back and forth between two
 different computers. Users type on one computer
 and their message will be received on another.
 This is for Visual Basic.
 \VB_TCPEX
 The tutorial TCP program described in the manual
 for Visual Basic
 \VB_VT220
 A typical TELNET client program in Visual Basic. Utilizes the new VT-220 control
 \VB_TNTEX
 The tutorial TELNET program described in the manual
 for Visual Basic

 \VB_FTP
Sample VB test program demonstrating FTP VBX

3. Running the Visual Basic Examples

To run the Visual Basic examples, you must have VBRUN300.DLL installed on your system (in
your windows directory or windows\system directory). If you do not have this, it is available
from countless places, including the Internet and online services such as America Online and
Compuserve.

4. Maintenance Reports

If you encounter a problem while testing PowerTCP, please
describe the difficulty and notify about the following items:

 - What were you doing when the bug occured?
 - Can you consistently duplicate the bug?
 - Can you run the test programs?
 - Can you compile the test programs?
 - What TCP/IP transport are you running on, and can the behavior be duplicated on other
transport?

Send all reports to the address listed below ("How to reach Dart Communications") or to the
following
e-mail address:

 support@dart.com

5. Common Questions and Answers

This section provides answers to some common questions for Visual Basic users, although most
answers apply to C and C++, also.

Q: When I use the MsgBox function in Visual Basic, the PowerTCP control does not receive
any events while the message box is up. For example, if the other end of a connection closes
when I have a message box up, I never receive the Exception event. Why is this happening, and
how can I make sure I receive the events?
A: There is a limitation in Visual Basic which prevents events from being generated while a
message box or an input box (InputBox$()) is on the screen. This limitation only exists with the
Visual Basic functions MsgBox and InputBox$, however, and does not exist with the Windows
API function MessageBox. The solution is to use the Windows API MessageBox function instead
of the standard MsgBox function. See Section 8 for more information.

Q: What are all the PTxx.DBG files in my default directory?
A: If the PT_DEBUG flag has been set to enable debugging for PowerTCP, all sent and
received data is captured into a single file. You may want to delete these files after each time you
use debugging with PowerTCP, as some of them may be quite large, depending on the data sent
and received.

Q: When I receive a carriage return in the Recv event and place it in a text box, it shows up

as a black square. How can I make it appear as a carriage return?
A: Carriage returns are sent as Chr$(13). In Windows, ending a line requires two
characters--a Chr$(13) followed by a linefeed character (Chr$(10)). To solve your problem, you
must search through the data you receive for carriage returns and add a linefeed character after
each one before you place them in a text box.

Q: The same thing happens when a backspace character is received—instead of deleting the
previous character, it places a black box in the text box I add it to. How can I make it delete the
previous character?
A: Backspace characters are send as Chr$(8). You must search for these characters when
you receive them, and perform the delete yourself when you find one. For example, if you receive
the backspace character, instead of placing it in a text box, you should say Text1 = Left$(Text1,
Len(Text1) - 1). This will delete the last character from the text box.

6. How to Contact Dart Communications

You can reach Dart Communications in the following ways:

Address
61 Albany Street
Cazenovia, NY 13035

Phone
315.655.1024

Fax
315.655.1025

E-mail
support@dart.com

7. Compiler Options

You will note that Dart has included static libraries for the small, medium, and large models. We
have also included P16TCPxD.LIB versions (for DLLs) of the same. If you are constructing an
EXE, use the former. If you are constucting a DLL, use the latter. The former are compiled with
the /GA flag, and the latter are compiled with the /GE flag. It all has to do with what value
Windows loads into the DS register when our PowerTCP window is called.

If you are building an EXE, use the following options:
1. Assume DS==SS (do not use /ASu or /ASw)
2. If using the C interface, ensure all callbacks are marked as __export or use /GEf
3. Use Protected Mode Application Functions (/GA)
4. MakeProcInstance is not required for callbacks using VC++ 1.5 as the compiler takes

care of the details.

If you are building a DLL, use the following options:
1. Do not assume DS==SS, DS NOT loaded on function entry (/ASw)
2. If using the C interface, ensure all callbacks are marked as __export or use /GEf
3. Use Protected Mode DLL functions (/GD)

Note on use of STRICT. PowerTCP was compiled with STRICT defined, meaning that it will

only link correctly with other modules compiled with STRICT defined. If this is not possible,
then replace the HINSTANCE type with STRICT version wherever it is used: void NEAR *, and
cast your hInstance variable to this type. This should allow you to link successfully without
unresolved external errors.

