
Wiretap: An Experimental Multiple-Path Routing Algorithm1 2

David L. Mills
Electrical Engineering Department

University of Delaware

Abstract

This paper introduces Wiretap, an experimental routing algorithm which computes maximum-

likelihood diversity routes for packet-radio stations sharing a common broadcast channel, but with

some stations hidden from others. The wiretapper observes the paths (source routes) used by other

stations sending traffic on the channel and, using a heuristic set of factors and weights, constructs

speculative paths for its own traffic. The algorithm is presented as an example of maximum-likelihood

routing and database management techniques useful for richly connected networks of mobile stations.

Of particular interest are the mechanisms to compute, select, rank and cache a potentially large

number of speculative routes when only limited computational resources are available.

A prototype implementation has been constructed and tested for the AX.25 packet-radio channel now

in widespread use in the amateur-radio community. Its design is similar in many respects to the SPF

algorithm used in the ARPANET and NSFNET backbone networks, and is in fact a variation of the

Viterbi algorithm, which constructs maximum-likelihood paths on a graph according to a weighted

sum of factors assigned to the nodes and edges.

Keywords: adaptive routing, diversity routing, packet

radio, Viterbi algorithm

1. Introduction

This paper describes the design, implementation and

initial testing of the Wiretap algorithm, which computes

maximum-likelihood diversity routes for the amateur

AX.25 packet-radio channel [3]. Wiretap operates in real

time using passive monitoring of AX.25 frames trans-

mitted on the channel and builds a dynamic database

which can be used to construct a set of paths ordered by

decreasing likelihood, as determined by a technique

based on the Viterbi algorithm [2]. The Wiretap algo-

rithm is similar in function to the shortest-path-first

(SPF) routing algorithms used in the ARPANET and

NSFNET backbone networks [4] and to the routing al-

gorithms used in other packet-radio systems [1], but is

specifically intended to produce multiple paths based on

real-time measured characteristics of the channel itself.

The principal advantage in the use of Wiretap is that

packet-repeater (digipeater) paths can be avoided when

direct paths are available, with digipeaters used only

when necessary and also to discover hidden stations. In

the present exploratory stage of evolution, the scope of

Wiretap has been intentionally restricted to passive

monitoring. In a later stage the scope may be extended

to include active probes to discover quiescent stations

and clustering techniques to manage the size of the

database.

The AX.25 channel operates in CSMA contention mode

at HF and VHF radio frequencies using AFSK/FM

modulation at 300 or 1200 bps. The AX.25 protocol itself

is similar to the X.25 link-layer protocol LAPB, but with

an extended frame header including a string of radio

callsigns, selected by the originator, designating the

complete source route between two end stations, possib-

ly via one or more intermediate digipeaters. Most AX.25

implementations can operate simultaneously as end sta-

tions and as digipeaters in datagram or multiple virtual-

circuit mode, but have no provisions to specify the source

route other than manually.

Since the 145.01-MHz AX.25 packet-radio channel in

the Washington, D.C., area is very active and carries a

good deal of traffic under punishing conditions, it was

considered a sufficiently heroic environment for a con-

vincing demonstration of a prototype Wiretap algorithm.

The implementation provides primary and alternate

diversity routes for both virtual circuits and datagrams,

can route around congested areas and can change routes

during a connection. This paper, which is an updated and

condensed version of [5], presents a status report and

overview of the prototype implementation.

1

1. Reprinted from: Mills, D.L. Wiretap: an experimental multiple-path routing algorithm. ACM Computer

Communication Review 19, 1 (January 1989), 85-98.

2. Sponsored by: Defense Advanced Research Projects Agency contract number N00140-87-C-8901 and by

National Science Foundation grant number NCR-86-12015.

The prototype implementation is part of a TCP/IP driver

for the LSI-11 processor running the Fuzzball operating

system [7] and is connected via 4800-bps serial line to a

terminal node controller (TNC) which controls the radio

equipment in both AX.25 virtual-circuit and datagram

modes. The TNC firmware produces as an option a

monitor report for each received frame of a selected type,

including AX.25 U, I and S frames. Wiretap processes

each of these to extract routing information and (option-

ally) saves them in the system log file. Following is a

typical report:

fm KS3Q to W4CQI via WB4JFI-5* WB4APR-6 ctl
I11 pid F0

The originating station is KS3Q and the destination

station is W4CQI. The frame has been repeated first by

WB4JFI-5 and then WB4APR-6, is an I frame (sequence

numbers follow the I indicator) and has protocol iden-

tifier F0 (hex). The asterisk "*" indicates the report was

received from that station. If no asterisk appears, the

report was received from the originator.

2. Design Principles

A path is a concatenation of directed links originating at

an end station, extending through one or more

digipeaters and terminating at another end station. Each

link is characterized by a set of factors such as delay,

throughput or reliability that can be computed or es-

timated. Wiretap computes several intrinsic factors for

each link and updates the routing database, consisting of

node and link tables. The weighted sum of these factors

for each link is the distance of that link, while the sum of

the distances for each link in the path is the distance of

that path.

It is the intent of the Wiretap design that the distance of

a link reflect the a-priori probability that a frame will

successfully negotiate that link relative to the other

choices possible at the sending node. Thus, the prob-

ability of a non-looping path is the product of the prob-

abilities of its links. Following the technique of Viterbi

[2], it is convenient to represent distance as a logarithmic

transformation of probability; however, in Wiretap the

underlying probabilities are not determined directly, but

estimated on a heuristic basis.

Wiretap incorporates a routing procedure which con-

structs a distance-ordered set of paths between given

stations according to the factors and weights contained

in the routing database. Such paths can be considered

maximum-likelihood routes between these stations with

respect to the given assignment of factors and weights.

In the prototype implementation one of the stations must

be the Wiretap station itself; however, in principle, the

Wiretap station can generate routes for other stations

subject to the applicability of its database information.

Note that Wiretap in effect constructs maximum-

likelihood paths in the direction from the destination

station to the Wiretap station, then computes the recipro-

cal routes from the Wiretap station to the destination

station. The expectation is that the destination station

also runs a routing algorithm which computes its own

reciprocal routes (i.e. the direct routes from the Wiretap

station). However, the routing databases at the two sta-

tions may diverge due to congestion or hidden stations,

so that the computed routes may not coincide.

In principle, Wiretap-computed routes can be fine-tuned

using information provided not only by its directly com-

municating stations but others that may hear them as

well. The most interesting scenario would be for all

stations to exchange Wiretap information using a

suitable distributed protocol, but this is at the moment

beyond the scope of the prototype implementation.

Nevertheless, suboptimal but useful paths can be ob-

tained in the traditional and simple way with one station

using a Wiretap-computed route and the other its recipro-

cal, as determined from the received frame header. Thus,

Wiretap is compatible with existing channel procedures

and protocols.

3. Implementation Overview

The prototype Wiretap implementation includes two

procedures: the wiretap procedure, which extracts infor-

mation from received monitor headers and builds the

routing database, and the routing procedure, which cal-

culates paths using the contents of the database. The

database includes two tables: the node table and link

table. The node table includes an entry for each distinct

callsign (which may be a collective or beacon identifier)

heard on the channel, together with node-related routing

information, the latest computed routes and other miscel-

laneous information. Each entry is indexed by node ID

(NID), which is used elsewhere in the database instead

of the awkward callsign string. The link table contains

an entry for each distinct (unordered) node pair observed

in a monitor header. Each entry includes the from-NID

and to-NID of the first instance found, together with

link-related routing information. Both tables are dynami-

cally managed using a cache algorithm based on a

weighted least-recently-used replacement mechanism

described later.

The example discussed in the Appendix includes can-

didate node and link tables for illustration. These tables

were constructed in real time by the prototype implemen-

tation from off-the-air monitor headers collected over a

typical 24-hour period. Each node table entry requires 26

bytes and each link table entry four bytes. The maximum

size of the node table is presently 75 entries, while that

of the link table is 150 entries. Once the cache algorithm

has stabilized for a day or two, it is normal to have about

2

60 entries in the node table and 100 entries in the link

table.

The node table and link table together contain all the

information necessary to construct a network graph, as

well as calculate paths on that graph between any two

stations, not just those involving the Wiretap station.

Note, however, that the Wiretap station does not in

general hear all other stations on the channel, so may

choose suboptimal routes. However, in the Washington,

DC, area most stations use one of several digipeaters,

which are in general heard reliably by other stations in

the area. Thus, a Wiretap station can eventually capture

routes to almost all other stations using the above tables

and the routing algorithm described later.

4. The Wiretap Procedure

The wiretap procedure is called to process each monitor

header. It extracts each callsign from the header in turn

and searches the node table for the corresponding

callsign, making a new entry if not already there. The

result is a string of NIDs, starting at the originating

station, extending through a maximum of eight

digipeaters and ending at the destination station. For each

pair of NIDs along this string the link table is searched

for either the direct link indicated in the string or its

reciprocal, making a new entry if not already there.

The operations that occur at this point can be illustrated

by the following diagram, which represents a monitor

header with apparent path from station 4 to station 6 via

stations 7, 2 and 9 in sequence. It happens the header was

heard by the Wiretap station (0) from station 2.

Presumably, the fact that the header was heard from

station 2 indicates the path from station 4 to station 2 and

then to station 0 is viable, so that each link along this path

can be marked "heard" in that direction. However, the

viability of the path from station 2 to station 6 can only

be presumed, unless additional evidence is available. If

in fact the header is from an AX.25 I or S frame (but not

a U frame), an AX.25 virtual circuit has apparently been

previously established between the stations and the

presumption is strengthened. In this case each link from

4 to 6 is marked "synchronized" (but not the link from 2

to 0). Not all stations can both originate frames and repeat

them. Station 4 is observed to originate frames and

station 7 to repeat them, but station 9 is only a presump-

tive repeater and no evidence is available that the remain-

ing stations can originate frames. Thus, the link from

station 4 to station 7 is marked "source" and from station

7 to station 2 is marked "repeated."

Depending on the presence of congestion and hidden

stations, it may happen that the reciprocal path in the

direction from station 6 to station 4 has quite different

link characteristics; therefore, a link can be recognized

as heard in each direction independently. In the above

diagram the link between 2 and 7 has been heard in both

directions and is marked "reciprocal". However, there is

only one synchronized mark, which can be set in either

direction. If a particular link is not marked either heard

or synchronized, any presumption on its viability to carry

traffic is highly speculative (the traffic is probably a

beacon or "CQ"). If later marked synchronized the

presumption is strengthened and if later marked heard in

the reciprocal direction the presumption is confirmed.

Experience shows that a successful routing algorithm for

any packet-radio channel must have provisions for con-

gestion avoidance. There are two straightforward ways

to cope with this. The first is a static measure of node

congestion based on the number of links in the network

graph incident at each node. This number is computed

by the wiretap procedure and stored in the node table as

it adds entries to the link table. The second, not yet

completely implemented, is a dynamic measure of node

congestion which tallies the number of NID references

during the most recent time interval of specified length.

5. Factor Computations and Weights

The data items produced by the wiretap procedure are

processed to produce a set of factors that can be used by

the routing procedure to develop maximum-likelihood

routes. In order to insure a stable and reliable conver-

gence as the routing algorithm constructs and discards

candidate paths leading to these routes, the factor com-

putations must have the following properties:

1. All link and node factors must be positive, monotone

functions which increase in value as system perfor-

mance degrades from optimum.

2. The criteria used to determine link factors must be

symmetric; that is, their values should not depend

on the particular direction the link is used.

3. The criteria used to determine node factors must not

depend on the particular links that traffic enters or

leaves the node.

Each factor is associated with a weight assignment which

reflects the contribution of the factor in the distance

calculation, with larger weights indicating greater impor-

tance. For comparison with other common routing algo-

rithms, as well as for effective control of the

computational resources required, it may be necessary to

impose additional restrictions on these computations,

24 7 9 6

0

origination

station

destination

station

wiretap

 station

3

which may be a topic for further study. Obviously, the

success of this routing algorithm depends on cleverly

(i.e. experimentally) determined factor computations

and weight assignments.

The particular choices used in the prototype implemen-

tation should be considered educated first guesses that

might be changed, perhaps in dramatic ways, in later

implementations. Nevertheless, the operation of the al-

gorithm in finding maximum-likelihood routes over all

choices in factor computations and weights is un-

changed. Recall that the wiretap procedure generates

data items for each node and link heard and saves them

in the node and link tables. These items are processed by

the routing procedure to generate the factors shown

below in Table 1 and Table 2

In the case of link factors the "hop" factor is assigned as

one for each link and represents the bias found in other

routing algorithms of this type. The intent is that the

routing mechanism degenerate to minimum-hop in the

absence of any other information. The "unverified" fac-

tor is assigned as one if the link is not marked "heard"

(heard in either direction), while the "non-reciprocal"

factor is assigned as one if the link is not marked

"reciprocal" (heard in both directions). The "un-

synchronized" factor is assigned as one if the link is not

marked "synchronized" is (no I or S frames observed in

either direction).

In the case of intermediate-node factors, the "com-

plexity" factor is computed as the number of links inci-

dent at the node plus one, while the "congestion" factor

will be computed as the number of frames heard in the

last minute. The "repeated" factor is assigned as one if

the node is only a source (i.e. no repeated frames have

been heard from it). For the purposes of path-distance

calculations, the end-node factors are taken as zero, since

their contribution to any path would be the same.

6. The Routing Procedure

The dynamic database built by the wiretap procedure is

used by the routing procedure to compute routes as

required. Ordinarily, this needs to be done only when the

first frame to a new destination is sent and at regular

intervals thereafter (in future the intervals may be modu-

lated by congestion thresholds, etc.). The technique used

is a variation of the Viterbi algorithm [2], which operates

by constructing a set of candidate paths (survivors) on

the network graph from the destination to the source in

increasing number of hops. Construction continues until

all the complete paths satisfying a specified condition are

found, following which as in [1] the primary route is

selected from among the minimum-distance paths and

the alternate routes selected in order of increasing dis-

tance of the remaining paths.

The routing procedure operates using a linked list of

entries derived from the link table. Each list entry in-

cludes the NID of the current node, a pointer to the

preceding node on the path to the root plus the total hop

count and distance from the node to the root:

[NID, pointer, hop, distance].

The procedure starts with the list containing only the root

entry [root-NID, 0, 0, 0], where root-NID represents the

final destination station, and then scans the list starting

at this entry. For each such entry it scans the link table

for all links with either to-NID or from-NID matching

NID and for each one found inserts a new entry:

[new-NID, new-pointer, hop+1, distance+link-dis-
tance],

where the new-NID is the to-NID of the link if its

from-NID matches the old NID and the from-NID of the

link otherwise. The new-pointer points to the old entry,

while the link-distance is computed from the factors and

weights as described previously. The procedure con-

tinues to generate new entries until no further entries

remain to be processed or the maximum hop count or

distance are exceeded, as explained below.

In the Viterbi algorithm when survivors merge at a node,

all but one of the survivors are abandoned. If only one of

the minimum-distance paths is required, the wiretap

procedure does the same; however, in the more general

case where alternate paths are required, all non-looping

paths are potential survivors and must be retained. In

order to prevent a size explosion in the list, as well as to

suppress loops, new list entries with new-NID matching

the NID of an existing entry on the path to the root are

suppressed and paths with hop counts exceeding (cur-

rently) eight or distances exceeding 255 are abandoned

(pruned).

Factor Weight Name How determined

f0 3 hop 1 for each link

f1 50 unverified 1 if not heard

either direction

f2 5 non-reciprocal 1 if not heard

both directions

Table 1. Link Factors

Factor Weight Name How determined

f4 5 complexity 1 for each inci-

dent link

f5 20 repeated 1 if station does

not repeat

f6 - congestion (see text)

Table 2. Node Factors

4

If the Wiretap station NID is found in the from-NID of

an entry inserted in the list, a complete path has been

found. The routing procedure remembers the minimum

distance and minimum hop count of the complete paths

found as it proceeds. When only the primary route is

required, a survivor is pruned if the distance exceeds the

minimum distance or the hop count exceeds the mini-

mum hop count plus one. When alternate routes are

required the hop-count test is used, but the minimum-dis-

tance test is not. The assignment of factor computations

and weights is intended to favor minimum-hop paths

under most conditions, but to allow a survivor to grow

by no more than one additional hop under conditions of

extreme congestion. Thus, the minimum-distance path

may not be a minimum-hop path. Obviously, the resour-

ces required can escalate dramatically, unless an effec-

tive pruning technique such as this are used.

Some idea of the time and space required by the

prototype implementation can be gathered from the

primary and secondary routes for the example in the

Appendix with 58 nodes and 98 links. The linked list uses

about 30 entries on average, but occasionally exceeds

100 entries. The prototype procedure requires 316 mil-

liseconds on an LSI-11/73 to calculate the 58 primary

routes to all nodes and 1416 milliseconds to calculate the

201 combined primary and alternate routes to all nodes.

The Wiretap routing algorithm can be compared to the

Tier algorithm developed for the DARPA Survivable

Radio Network (SURAN) program [1], which is a

variant of the Bellman-Ford algorithm described in [6].

The Tier algorithm is designed to operate in a distributed

manner where each station broadcasts a routing vector to

its neighbors on a periodic or event-triggered basis. The

routing metric is based on hop count and station number

(to avoid loops), and with primary and alternate routes

ranked as in Wiretap. As described in [1] the Tier metric

includes neither the link factor computations and weights

nor the pruning techniques to control computational

overheads as mentioned above. On the other hand, the

Tier algorithm is designed to avoid loops caused by

database inconsistencies due to hidden stations and un-

reliable links, while Wiretap has no overt provisions to

avoid this.

The most important difference between the Tier and

Wiretap approach is that the Tier algorithm assumes all

stations will cooperate to broadcast routing vectors,

which can consume considerable channel overhead and

be heard by potential jammers. On the other hand,

Wiretap stations operate independently in receive-only

mode and do not reveal the database except indirectly by

the routes they use.

7. Database Housekeeping

In normal operation Wiretap tends to pick up a good deal

of errors and random junk, since it can happen that a

station may call any other station using ad-hoc heuristics

and often counterproductive strategies. The result is that

Wiretap may add speculative and erroneous links to the

database. In practice, this happens reasonably often as

operators manually try various paths to stations that may

be shut down, busy or blocked by congestion. Neverthe-

less, since Wiretap operates entirely by passive monitor-

ing, speculative links may represent the principal means

for discovery of new paths.

The number of nodes and links, speculative or not, can

grow without limit as the Wiretap station continues to

monitor the channel. As the size of the node table or link

table approaches the maximum, a garbage-collection

procedure is automatically invoked. The procedure used

in the prototype implementation was suggested by vir-

tual-memory storage-management techniques in which

the oldest unreferenced page is replaced when a new

page frame is required. Every link table entry includes

an age field, which is incremented once each minute if

its value is less than 60, once each hour otherwise and

reset to zero when the link is found in a monitor header.

When new space is required in the link table, the link

with the largest product of age and distance, as deter-

mined by the factor computations and weights, is

removed first.

Every node table entry includes the "congestion" factor

mentioned above, which is a count of the number of links

plus one incident at that node. As links are removed from

the link table, these counts are decremented. If the count

for some node decrements to one, that node is removed.

Thus, if new space is required in the node table, links are

removed as described above until the required space is

reclaimed.

In addition to the above, and in order to avoid capture of

the tables by occasional speculative spasms on one hand

and stagnation due to excessively stale information on

the other, if the age counter exceeds a predetermined

threshold, currently fifteen minutes for a speculative link

and 24 hours for other links, the link is removed from the

database regardless of distance. It is expected that these

procedures will be improved as experience with the

implementation matures.

8. Summary and Directions for Further
Development

Wiretap represents an initial experiment and evaluation

of passive monitoring in the management of the AX.25

packet-radio channel. While the experience using the

prototype implementation is encouraging, considerable

work needs to be done in the optimization of factor

5

computations and weight assignments. For this to be

done effectively, more experience needs to be gained in

the day-to-day operation of the prototype during which

various combinations of weight assignments can be

evaluated.

As described in the Appendix, when attempting to com-

pute a route to a previously unknown destination station,

a simple but effective heuristic is to generate speculative

paths by adding synthetic links between the destination

and the Wiretap station and between the destination and

the known digipeaters. This heuristic is used in the

datagram mode to generate primary routes and in the

initial-connection phase of virtual-circuit mode to

generate both primary and alternate routes. While in

practice this heuristic works very well, it requires sig-

nificant computational resources, due to the large num-

ber of possible paths ranging from reasonable to

outrageous, so that the pruning strategy outlined pre-

viously can be a critical performance determinant in both

modes.

While there is a mechanism for the TNC provide

notification that an AX.25 virtual circuit has failed, so

that an alternate route can be tried, there is no intrinsic

mechanism to signal the failure of an upper-level TCP

connection, which uses IP datagrams wrapped in AX.25

I frames (connection mode) or UI frames (connectionless

mode). This is a generic problem with any end-system

protocol where the peers are located physically distant

from the link-level entities. Experience indicates the

value of providing a two-way conduit to share control

information between protocol layers may be seriously

underestimated.

The prototype implementation manages processor and

storage demands in relatively simple ways, which can

result in considerable inefficiencies. It is apparent that in

any widely distributed version of Wiretap these demands

will have to be carefully managed. As suggested above,

effective provisions to purge old information, especially

speculative links, are vital, as well as provisions to con-

trol the intervals between route computations, for in-

stance as a function of link state and traffic mode.

The next step in the evolution towards a fully distributed

routing algorithm is the introduction of active probing

techniques. This should considerably improve the

capability to discover new paths, as well as to fine-tune

existing ones. It should be possible to implement an

active probing mechanism while maintaining backward

compatibility, with previous algorithms or no routing

algorithms at all. It does seem that judicious use of

beacons to discover and renew paths in the absence of

traffic will be required, as well as some kind of

echo/reply mechanism.

In order to take advantage of the flexibility provided by

routing algorithms like Wiretap, it will be necessary to

revise the AX.25 specification to include "loose" source

routing in addition to the present "strict" source routing.

Strict source routing requires every forwarding node

(digipeater) to be explicitly declared, while loose source

routing would allow some or all forwarding nodes to be

selected dynamically as the frame progresses along the

route. One suggestion is to devise a special collective

indicator or callsign that would signal a designated

digipeater to insert a computed source route following its

callsign in the AX.25 frame header.

A particularly difficult issue for any routing algorithm is

the detection and response to congestion. Some hints on

how the existing Wiretap mechanism can be improved

are indicated in this paper. Additional work, especially

with respect to the hidden-station problem, is necessary.

Perhaps the most useful feature of all would be a link-

quality indication derived from the radio, modem or

frame-level procedures (checksum failures). Conceivab-

ly, this information could be included in beacon mes-

sages broadcast occasionally by designated digipeaters.

It is quite likely that the most effective application of

routing algorithms in general will be at the local-area

digipeater sites. One reason for this is that these stations

may have off-channel trunking facilities that connect

different areas and may exchange wide-area routing

information via these facilities. The routing information

collected by the local-area Wiretap stations could then

be exchanged directly with the wide-area sites.

9. References

1. Belghith, A., and L. Kleinrock. A distributed routing

scheme with mobility handling in stationless multi-

hop packet-radio networks. Proc. SIGCOMM Sym-

posium (March 1983), 101-108.

2. Forney, G.D., Jr. The Viterbi Algorithm. Proc. IEEE

61, 3 (March 1973), 268-278.

3. Fox, T.L., (Ed.). AX.25 amateur packet-radio link-

layer protocol, Version 2.0. American Radio Relay

League, October 1984.

4. McQuillan, J., I. Richer and E. Rosen. An overview

of the new routing algorithm for the ARPANET.

Proc. ACM/IEEE Sixth Data Communications Sym-

posium (November 1979).

5. Mills, D.L. An experimental multiple-path routing

algorithm. DARPA Network Working Group

Report RFC-981. M/A-COM Linkabit, March 1986.

6. Bertsekas, D., and R. Gallager. Data Networks.

Prentice-Hall, Englewood Cliffs, NJ, 1987.

6

7. Mills, D.L. The Fuzzball. Proc. ACM SIGCOMM 88

Symposium (Palo Alto, California, August 1988),

115-122.

10.Appendix. An Example

An example will illustrate how Wiretap constructs

primary and alternate routes given candidate node and

link tables resulting from normal traffic monitoring on

the 145.01-MHz AX.25 packet-radio channel in the

Washington, D.C., area during a typical 24-hour period.

Figure 1 illustrates a node table showing the node ID

(NID), callsign and related information for each station.

The bits in the Flags field (octal) are interpreted starting

from the rightmost: "originating station," "repeater sta-

tion," "station heard" and "station synchronized connec-

tion." The Links field shows the "complexity factor,"

which is the number of links incident at that node (plus

one), the Last Rec field shows the time (UTC) the station

was last heard, directly or indirectly and the Weight field

shows the total distance of the primary route. Finally, the

Route field shows the primary route (minimum-distance

path), as a string of NIDs from the origination station

W3HCF (NID 0) via the route shown to the destination

station NID. The absence of a route indicates the station

is directly reachable without the assistance of a

digipeater.

Among the 58 stations shown in Figure 1 are eleven

digipeaters, all but three of which also originate traffic.

All but twelve stations have either originated or repeated

a synchronized connection and only one (DPTRID, ac-

tually a beacon), has not been heard to either originate or

repeat traffic.

Figure 2 illustrates a node table of 98 links showing the

from-NID, to-NID, Flags and Age information for each

link as collected. The bits in the Flags field (octal) are

interpreted starting from the rightmost: "source,"

"repeated," "heard on at least one direction,"

"synchronized" and "heard on both directions." The Age

field increments in minutes until reaching 60, then in

hours after that.

NID Callsign Flags Links Last Rec Weight Route

0 W3HCF 05 26 15:00:19 255

1 WB4APR-517 18 16:10:38 30

2 DPTRID 00 3 00:00:00 210 1

3 W9BVD 05 3 23:24:33 40

4 W3IWI 15 5 16:15:30 35

5 WB4JFI-5 17 34 16:15:30 35

6 W3TMZ 15 2 01:00:49 150 1

7 WB4APR-617 14 14:56:06 35

8 WB4FQR-417 4 06:35:15 40

9 WD9ARW 15 3 14:56:04 115 11

10 WA4TSC 15 3 15:08:53 115 11

11 WA4TSC-1 17 9 15:49:15 35

12 KJ3E 15 4 15:57:26 155 1

13 WB2RVX 17 3 09:19:46 135 7

14 AK3P 15 2 12:57:53 185 7 15

15 AK3P-5 16 4 12:57:53 135 7

16 KC2TN 17 3 04:01:17 135 7

17 WA4ZAJ 15 2 21:41:24 240 5

18 KB3DE 15 3 23:38:16 35

19 K4CG 15 3 13:29:14 35

20 WB2MNF 15 2 04:01:17 180 7 16

21 K4NGC 15 3 14:57:44 90 8

22 K3SLV 05 2 03:40:01 160 1

23 KA4USE-1 17 6 14:57:44 35

24 K4AF 05 3 12:46:38 40

25 WB4UNB 15 2 06:45:09 240 5

26 PK64 05 3 02:50:54 40

27 N4JOG-2 15 3 13:24:53 35

28 KX3C 15 4 02:57:29 35

29 W3CSG 15 4 06:10:17 115 11

NID Callsign Flags Links Last Rec Weight Route

30 WD4SKQ 15 3 16:00:33 35

31 WA7DPK 15 3 01:28:11 35

32 N4JGQ 15 3 22:57:50 35

33 K3AEE 05 3 03:52:43 40

34 WB3ANQ 15 3 04:01:27 140 7

35 K2VPR 15 2 12:07:51 240 5

36 G4MZF 15 3 01:38:30 35

37 KA3ERW 15 2 03:11:17 155 1

38 WB3ILO 15 2 02:10:34 140 7

39 KB3FN-5 16 4 06:10:17 110 11

40 KS3Q 15 5 15:54:57 35

41 WA3WUL 15 2 03:36:18 135 7

42 N3EGE 15 3 15:58:01 160 1

43 N4JMQ 15 2 08:02:58 185 7 13

44 K3JYD-5 16 5 15:58:01 155 1

45 KA4TMB 15 3 16:15:23 115 11

46 KC3Y 15 2 04:14:36 155 1

47 W4CTT 05 2 12:21:33 245 5

52 K3JYD 15 2 02:16:52 155 1

54 WA5WTF 15 2 02:01:20 240 5

55 KA4USE 05 3 23:56:02 105 23

56 N3BRQ 05 2 02:00:36 40

57 KC4B 15 2 22:10:37 240 5

58 WA5ZAI 05 2 12:44:03 40

59 K4UW 05 2 02:36:05 40

60 K3RH 15 2 01:20:47 135 7

61 N4KRR 15 3 10:56:50 35

62 K4XY 15 2 04:53:16 240 5

64 WA6YBT 15 2 05:13:07 190 7 15

Figure 1. Node Table

7

The following tables illustrate the operation of the rout-

ing algorithm in several typical scenarios. Each line in

the table represents the step where an entry is extracted

from the path list and new entries are determined. The

Step column indexes each step, while the Pointer column

indexes the preceding step along the path to the root. The

NID column identifies the station at each step, while the

Hop and Distance columns show the total hop count and

computed distance along the path to the root.

Following is a typical example where the destination

station is not directly reachable, but several multiple-hop

paths exist via various digipeaters. The algorithm finds

four digipeaters: 1, 5, 11 and 39, all but the last of which

are directly reachable from the originating station, and

generates two routes of two hops and two of three hops,

as shown below. Note that only the steps leading to

complete paths are shown.

Step NID Ptr Hop Dist Comments

0 29 0 0 0 Destination: W3CSG

1 5 0 1 30

2 11 0 1 35

3 39 0 1 35

4 0 1 2 235 Complete path: 0

35 0 2 2 115 Complete path: 0

37 9 2 2 115

38 10 2 2 115

39 1 2 2 120

40 45 2 2 115

41 39 2 2 110

42 11 3 2 85

43 10 3 2 85

46 0 39 3 240 Complete path: 0

63 0 42 3 165 Complete path: 0

The algorithm ranks these routes first by distance and

then by order in the list, so that the two-hop route at step

35 would be chosen first, followed by the three-hop route

at step 63, the two-hop route at step 4 and, finally the

three-hop route at step 46. The reason why the second

choice is a three-hop route and the third a two-hop route

is because of the extreme congestion at the digipeater

station 5, which has 34 incident links in Figure 1.

From To Flags Age

5 0 17 0

1 0 37 5

4 0 15 0

5 4 35 0

4 1 15 28

7 0 17 60

9 5 15 60

1 5 06 56

4 7 15 60

11 0 17 24

7 15 36 62

7 13 37 60

12 1 15 71

15 14 35 62

7 16 37 70

12 5 15 71

19 0 15 61

16 20 35 70

5 11 36 60

23 0 17 60

5 24 35 73

30 0 15 71

29 11 15 69

5 29 35 73

8 21 35 67

From To Flags Age

8 5 17 67

31 0 15 72

31 5 15 72

32 0 15 74

32 5 15 69

40 5 15 17

40 0 15 19

34 7 15 70

35 5 15 62

1 40 35 74

38 7 15 71

5 36 35 72

45 5 15 0

36 0 15 72

5 30 35 14

37 1 15 70

44 5 16 14

12 44 15 17

46 1 15 69

34 1 15 72

44 1 16 70

5 23 36 60

9 11 15 79

10 11 15 60

1 6 35 72

From To Flags Age

27 5 15 61

11 1 06 83

45 11 15 76

52 1 15 71

5 2 00 14

8 0 05 76

57 5 15 75

17 5 15 75

3 0 05 74

3 5 05 74

26 5 05 71

26 0 05 74

18 5 15 74

18 0 15 74

55 5 05 73

24 0 05 62

61 0 15 63

55 23 05 73

54 5 15 71

61 5 15 63

59 0 05 71

56 0 05 71

5 7 06 71

7 60 35 72

28 0 15 71

From To Flags Age

62 5 15 69

1 7 36 70

28 5 15 71

7 41 35 70

28 1 15 71

58 0 05 62

1 22 05 70

33 7 05 70

33 0 05 70

64 15 15 69

25 5 15 67

39 10 35 68

11 39 36 68

43 13 15 65

29 39 15 68

40 7 15 62

47 5 05 62

19 23 15 61

27 0 15 61

42 1 05 23

23 21 35 60

1 2 00 5

42 44 15 14

Figure 2. Link Table

8

Following is an example showing how the path-pruning

mechanisms operate to limit the scope of exploration to

those paths most likely to lead to useful routes. The

algorithm finds one two-hop route and four three-hop

routes. In this example the complete list is shown, includ-

ing all the steps which are abandoned for the reasons

given in the Comments column.

Step NID Ptr Hop Dist Comments

0 13 0 0 0 Destination: WB2RVX

1 7 0 1 30

2 43 0 1 35 No path

3 0 1 2 135 Complete path: 0

4 4 1 2 135

5 15 1 2 130

6 16 1 2 130

7 34 1 2 135

8 38 1 2 135 No path

9 60 1 2 130 No path

10 5 1 2 140 Max distance 310

11 1 1 2 130

12 41 1 2 130 No path

13 33 1 2 140

14 40 1 2 135

15 5 4 3 210 Max distance 380

16 0 4 3 215 Complete path: 0

17 1 4 3 215 Max distance

18 14 5 3 180 Max hops 4

19 64 5 3 185 Max hops 4

20 20 6 3 175 Max hops 4

21 1 7 3 205 Max distance 295

22 0 11 3 250 Complete

23 4 11 3 255 Max distance 300

24 12 11 3 255 Max distance 295

25 40 11 3 250 Max distance 295

26 37 11 3 255 Max distance 285

27 46 11 3 255 Max distance 285

28 44 11 3 255 Max distance 280

29 34 11 3 255 Max distance 290

30 6 11 3 250 Max distance 280

31 52 11 3 255 Max distance 285

32 28 11 3 255 Max distance 295

33 0 13 3 215 Complete path: 0

34 0 14 3 215 Complete

35 5 14 3 215 Max distance 385

36 1 14 3 210 Max distance 300

The steps labelled "No path" are abandoned because no

links could be found in Figure 2 with one end matching

NID and the other end matching a NID not already on

the path to the root. The steps labelled "Max distance"

are abandoned because the total distance shown, com-

puted as the sum of the Distance value plus the weighted

node factors, exceeds 256. The steps labelled "Max

hops" are abandoned because the total hop count shown

exceeds the minimum hop count plus one.

Although this example shows the computations for all

alternate routes, if only the primary route is required all

steps with total distance greater than the minimum dis-

tance (135) can be abandoned. In this particular case path

exploration would then terminate after only 14 steps.

The following example shows a typical scenario involv-

ing a previously unknown station; that is, one not already

in the database. Although not strictly part of the algo-

rithm itself, the strategy in the present implementation is

to generate speculative paths consisting of a synthetic

link between the originating station and the destination

station, together with synthetic links between each

digipeater in the database and the destination station. The

new links created will time out according to the cache-

management mechanism in about fifteen minutes.

For instance, in the case of Figure 1, the following links

to a new station (NID 74) would be added to Figure 2: 0,

1, 5, 7, 8, 11, 13, 15, 16, 23, 39 and 44. The resulting

primary route and five alternate routes are shown below

(only the steps leading to complete paths are shown).

Note that only five of the eleven digipeaters are used,

since the remainder were either too distant or too heavily

congested.

Step NID Ptr Hop Dist Comments

0 74 0 0 0 Destination: CQ

1 0 0 1 90 Complete path: 0 74

2 1 0 1 90

4 7 0 1 90

5 8 0 1 90

6 11 0 1 90

7 13 0 1 90

8 15 0 1 90

9 16 0 1 90

10 23 0 1 90

11 39 0 1 90

12 44 0 1 90

13 0 2 2 210 Complete path: 0, 1, 74

29 0 4 2 195 Complete path: 0, 7, 74

44 0 5 2 150 Complete path: 0, 8, 74

45 0 6 2 170 Complete path: 0, 11, 74

60 0 10 2 155 Complete path: 0, 23, 74

9

