
The NSFNET Backbone Network1 2

David L. Mills
Electrical Engineering Department

University of Delaware

Hans-Werner Braun
Computer Center

University of Michigan

Abstract

The NSFNET Backbone Network interconnects six supercomputer sites, several regional networks

and ARPANET. It supports the DARPA Internet protocol suite and DCN subnet protocols, which

provide delay-based routing and very accurate time-synchronization services. This paper describes

the design and implementation of this network, with special emphasis on robustness issues and

congestion-control mechanisms.

1. Introduction and Background

The NSFNET is a loosely organized community of net-

works funded by the National Science Foundation to

support the sharing of national scientific computing

resources, data and information [7]. NSFNET consists of

a large number of industry and academic campus and

experimental networks, many of which are intercon-

nected by a smaller number of regional and consortium

networks. The NSFNET Backbone Network is a primary

means of interconnection between the regional networks

and is the subject of this report.

The NSFNET Backbone Network, called simply the

Backbone in the following, includes switching nodes

located at six supercomputer sites: San Diego Supercom-

puter Center (SDSC), National Center for Supercom-

puter Applications (NCSA) at the University of Illinois,

Cornell National Supercomputer Facility (CNSF), Pit-

tsburgh Supercomputer Center (PSC), John von

Neumann Center (JVNC) and the National Center for

Atmospheric Research (NCAR). The six nodes are inter-

connected by 56-Kbps internode trunks (see Figure 1).

The Backbone is extended for regional interconnects

(not shown) to the University of Michigan and the

University of Maryland, with a further one planned at

Rice University. Additional nodes (not shown) are used

for program development and testing, bringing the total

to about thirteen.

ach Backbone node is connected to an onsite Ethernet,

which serves as the attachment point for supercomputers

and other local hosts. Most sites have an extensive sys-

tem of local networks and gateways, including high-

speed bus, ring and point-to-point links, which serve to

concentrate traffic from throughout the site. Other

gateways connect to regional and consortium networks,

which in some cases span large regions of the country.

Some sites are connected to other backbone networks

such as ARPANET and public data networks as well.

The Backbone uses the DARPA Internet architecture,

which is based on the IP and TCP protocols [8]. Most of

the regional and consortium networks, as well as the

campus networks they connect also use these protocols.

There are several thousand service hosts and gateways

connected to the Internet, as well as many more personal

computers and workstations. In late July, 1987, there

were 4625 hosts on 676 networks interconnected by 184

gateways listed at the Department of Defense Network

Information Center alone, which by itself is only a small

fraction of the overall Internet. There are presently about

63 networks either directly connected to the Backbone

NCAR

SDSC

NCSA
PSC

JVNC

CNSF

Figure 1. The NSFNET Backbone Network

1

1. Reprinted from: Mills, D.L., and H.-W. Braun. The NSFNET Backbone Network. Proc. ACM SIGCOMM 87

Symposium (Stoweflake VT, August 1987), 191-196.

2. Sponsored by: Defense Advanced Research Projects Agency contract number N00140-87-C-8901 and by

National Science Foundation grant number NCR-86-12015.

or by means of gateways and other regional and consor-

tium networks, while over 250 networks are in regular

operation on the Internet system as a whole.

In following sections the Backbone subnet architecture

and protocols are described along with its hardware and

software components. Its design features are sum-

marized, including factors related to robustness, conges-

tion control and services. Operation and maintenance

issues are described, including system control, monitor-

ing and performance measurement. Finally, plans for

further expansion are summarized.

2. Network Architecture

The Backbone, as well as the onsite local-net complexes,

regional networks and the campus networks they con-

nect, are part of the Internet System developed by the

Defense Advanced Research Agency (DARPA) over the

last several years and conform to its architecture and

protocols. The Internet operates in connectionless mode

using the Internet Protocol (IP) [20] as the basic internet-

working mechanism. End-to-end reliability is main-

tained using the Transmission Control Protocol (TCP)

[22], which assembles and reorders datagrams (protocol

data units) received over possibly diverse and unreliable

paths using retransmissions as necessary. The User

Datagram Protocol (UDP) [19] provides direct IP

datagram access for transaction services, including rout-

ing and network control in some cases.

Since the basic service expected of the Backbone is

connectionless, no provision for end-to-end reassembly,

reordering or retransmission is necessary. The network

does not support end-to-end virtual circuits and has no

implicit connection-setup or other resource-binding

mechanisms as does, for example the ARPANET. How-

ever, in order to improve overall service, reliable

(retransmission) services are provided on selected inter-

node trunks, in particular the 56-Kbps trunks intercon-

necting the Backbone sites, which use the DEC Digital

Data Communications Message Protocol (DDCMP) for

the pragmatic reason that the hardware interfaces happen

to support this protocol.

2.1. Subnet Architecture

The Backbone subnet protocols are based on the Dis-

tributed Computer Network (DCN), which uses Internet

technology and an implementation of PDP11-based

software called the Fuzzball. DCN networks of hosts and

gateways are now in regular service in the INTELPOST

facsimile-mail system, which was built by COMSAT

Laboratories and operated by the U.S. Post Office and

international affiliates, as well as the Backbone and

about a dozen campus networks in the U.S. and Europe,

including the Universities of Maryland, Michigan and

Delaware, Ford Scientific Research Laboratories and

M/A-COM Linkabit.

The DCN architecture is intended to provide connec-

tivity, routing and timekeeping functions for a set of

gateways, service hosts and personal workstations using

a specialized protocol called HELLO [10], which is

based on IP. HELLO services include delay-based rout-

ing and clock-synchronization functions in an arbitrary

topology including point-to-point links and multipoint

bus systems. However, the DCN architecture is not in-

tended for use in very large networks such as ARPANET,

since it does not include load-adaptive routing algo-

rithms and comprehensive congestion controls.

A brief description of the process and addressing struc-

ture used in the DCN may be useful in the following. A

physical host is a PDP11-compatible processor which

supports a number of cooperating sequential processes,

each of which is given a unique identifier called its port

ID. Every physical host contains one or more designated

internet processes, each of which supports a virtual host

assigned a unique identifier called its host ID. Virtual

hosts can migrate among the physical hosts at will, as

long as their host IDs remain unchanged, since the rout-

ing tables are automatically updated by the HELLO

protocol.

The physical host also supports other processes for

input/output devices (disks, terminals and network-inter-

face devices), as well as spooling systems, various net-

work daemons and users, which are provided with

separate virtual address spaces. The physical host is

identified by a host ID for the purpose of detecting loops

in routing updates, which establish the minimum-delay

paths between the virtual hosts. Additional host IDs are

assigned dynamically by the operations of other routing

and address-binding protocols such as the Internet Con-

trol Message Protocol (ICMP) [21], Address Resolution

Protocol (ARP) [18], Exterior Gateway Protocol (EGP)

[11] and related protocols.

Each virtual host can support multiple transport

protocols, connections and, in addition, a virtual clock.

Selected virtual hosts can act as gateways to other net-

works as well. Each physical host contains a physical

clock which can operate at an arbitrary rate and, in

addition, a 32-bit logical clock which operates at 1000

Hz and is assumed to be reset each day at 0000 hours UT.

Not all physical hosts implement the full 32-bit

precision; however, in such cases the resolution of the

logical clock may be somewhat less.

DCN networks are self-configuring for all hosts and

networks; that is, the routing algorithm will automat-

ically construct entries in the various tables, find mini-

mum-delay paths and synchronize logical clocks among

all virtual hosts and gateways supporting the DCN

2

protocols. For routing beyond the span of the DCN

routing algorithm, the tables can be pre-configured or

dynamically updated using the ICMP, ARP and EGP

protocols. In addition, a special entry can be configured

in the tables which specifies the gateway for all address

ranges not explicitly designated in the tables.

2.2. Subnet Addressing and Routing

The correspondence between IP addresses and host IDs

is determined by two tables, the Local Mapping Table

and the Global Mapping Table, which are structured in

the same way. Each entry in these tables defines a range

of IP addresses which map onto a specified host ID and

thus a virtual host. There is no restriction on the particular

range or ranges assigned a virtual host, so that these hosts

can be multi-homed at will and in possibly exotic ways.

The mapping function also supports the subnetting and

filtering functions outlined in [2]. By convention, one of

the addresses assigned to a virtual host in each physical

host is declared the base address of the physical host

itself. Entries in these tables can be pre-configured or

dynamically updated using the HELLO, ICMP, ARP and

EGP protocols.

Datagram routing is determined entirely by IP address -

there is no subnet address as in the ARPANET. Each

physical host contains a table called the Host Table,

which is used to determine the port ID of the network-

output process on the minimum-delay path to each vir-

tual host. This table also contains estimates of roundtrip

delay and logical-clock offset for all virtual hosts in-

dexed by host ID. For the purpose of computing these

estimates the delay and offset of each virtual host relative

to the physical host in which it resides is assumed zero.

The single exception to this is a special virtual host

associated with an NBS radio time-code receiver, where

the offset is computed relative to the broadcast time.

Host Table entries are updated by HELLO messages

exchanged frequently over the links connecting physi-

cal-host neighbors. At present, the overhead of these

messages is controlled at about 3.4 percent of the ag-

gregate network traffic. They include data providing an

accurate measurement of delay and offset between the

neighbors on the link itself, as well as a list of the delay

and offset entries in the Host Table for all virtual hosts.

There are two list formats, a short format with indexed

entries used when the neighbors share the same subnet

and a long format including the IP address used in other

cases.

The routing algorithm is a member of the Bellman-Ford

class [1], which includes those formerly used in the

ARPANET and presently used in several Internet

gateway systems. The measured roundtrip delay to the

neighbor is added to each of the delay estimates in its

HELLO message and compared with the corresponding

delay estimates in the Host Table. If the sum is less than

the value already in the Host Table or if the HELLO

message is received on the next-hop interface, as pre-

viously computed by the routing algorithm, the sum

replaces the value and the routing to the corresponding

virtual host is changed accordingly. In other cases the

value in the Host Table remains unchanged.

Each entry in the Host Table is associated with a time-

to-live counter, which is reset upon arrival of an update

for the entry and decrements to zero otherwise. If this

counter reaches zero, or if an update specifying infinite

distance is received on the next-hop interface, the entry

is placed in a hold-down condition where updates are

ignored for a designated interval, in the Backbone case

two minutes. The hold-down interval is necessary for old

routing data, which might cause loops to form, to be

purged from all Host Tables in the system. In order to

further reduce the incidence of loops, the delay estimate

is set at infinity for all hosts for which the next-hop

interface is the one on which the HELLO message is sent,

regardless of the value in the Host Table.

3. Switching Nodes

A Backbone node consists of a Digital Equipment Cor-

poration LSI-11/73 system with 512K bytes of memory,

dual-diskette drive, Ethernet interface and serial inter-

faces. One or two low-speed asynchronous interfaces are

provided, as well as one to three high-speed synchronous

interfaces. All Backbone nodes include crystal-stabi-

lized time bases. One node (NCAR) is equipped with a

WWVB radio time-code receiver providing a network

time reference accurate to the order of a millisecond.

Other nodes connected to the Backbone and running

DCN protocols use LSI-11 and other PDP11-compatible

systems with from 256K to 2048K bytes of memory, plus

various hard disks and serial interfaces, including AR-

PANET interfaces, X.25 interfaces and terminal multi-

plexors. Most of these nodes a lso include

crystal-stabilized time bases, while two are equipped

with WWVB time-code receivers and one with a GOES

time-code receiver. Some of these systems are used for

general-purpose network access for mail, word-process-

ing and file staging, as well as packet-switching and

gateway functions.

The software system used in the Backbone nodes, called

the Fuzzball, includes a fast, compact operating system,

comprehensive network-support system and a large suite

of application programs for network protocol develop-

ment, testing and evaluation. The Fuzzball software has

been rebuilt, modified, tinkered and evolved over several

generations spanning a twenty-year period [9]. It has

characteristics similar to many other operating systems,

in some cases shamelessly borrowing their features and

3

in others incorporating innovative features well before

other systems made these features popular.

Originally, the Fuzzball was designed primarily as an

investigative tool and prototyping workbench. Many

Fuzzballs have been deployed for that purpose at various

locations in the U.S. and Europe, including Norway,

United Kingdom, Germany, Holland and Italy. Various

organizations use Fuzzballs as terminal concentrators,

electronic-mail and word-processing hosts, network

monitoring and control devices and general-purpose

packet-switches and gateways. For the Backbone the

Fuzzball is used primarily as a packet switch/gateway,

while the application programs are used for network

monitoring and control.

The Fuzzball implementation incorporates complete

functionality in every host, which can serve as a packet

switch, gateway and service host all at the same time.

The system includes host and gateway software for the

complete DARPA Internet protocol suite with network,

transport and applications-level support for virtual-ter-

minal and file-transfer services, along with several mail

systems with text, voice and image capabilities. In order

to provide a comprehensive user interface and platform

for program development and testing, a multiple-user,

virtual-machine emulator supports the Digital Equip-

ment Corporation RT-11 operating system for the PDP11

family, so that RT-11 program-development utilities and

user programs can be run along with network-application

programs in the Fuzzball environment.

4. Robustness Issues

When the Internet was small and growing rapidly there

was great concern about its potential vulnerability to

destructive routing loops or black holes that could form

when more than one routing algorithm was used or when

an protocol misbehaved because of algorithmic in-

stability or defective implementation. The solution to

this problem was to partition the Internet into multiple,

independent systems of gateways, called autonomous

systems, where each system could adopt any routing

algorithm it chose, but exchange routing information

with other systems using the Exterior Gateway Protocol

(EGP).

The expectation was that the Internet would evolve into

a relatively small, centrally managed set of backbone

gateways called the core system, together with a larger

set of unmanaged gateways grouped into stub systems

with single-point attachments to the core system. In this

model the stub systems would normally not be intercon-

nected to each other, except via the core system, with

exceptions handled on an ad-hoc, engineered basis.

As the Internet evolved into a richly interconnected,

multiple-backbone topology with large numbers of

regional and campus networks, the stub-system model

became less and less relevant. Requirements now exist

in NSFNET where gateways within and between

autonomous systems need to interoperate with different

routing algorithms and metrics and with different trust

models. Backbones now connect to backbones, while

regional systems now connect wily-nily to each other and

to multiple backbones at multiple points, so that the very

concept of a core system as effective management tool

has become obsolete.

As specified, EGP by is designed primarily to provide

routing information between the core system and stub

systems. In fact, only the core system can provide routing

information for systems not directly connected to each

other. The enhancements to EGP described in [14] sug-

gest restructuring the Internet as a number of

autonomous-system confederations, as well as an outline

for a universal metric. Neither the baseline or enhanced

EGP model is adequate to cope with the evolving re-

quirements of NSFNET.

A great deal of study was given these issues during the

design phase of the Backbone. One issue is the vul-

nerability of NSFNET as a whole to routing loops, either

due to adventurous, unstable configurations or defective

implementations. Another is the robustness of the

various metrics (e.g. hop-count based and delay based)

with respect to the various transformations required be-

tween them. Still another is protection from false or

misleading addressing information received from or

transmitted to neighboring systems. Each of these issues

will be discussed in following sections.

4.1. Metric Transformations

Since it is not possible for the Backbone routing algo-

rithm to have unlimited scope, there exist demarcations

where the algorithm must interoperate with other routing

algorithms, protocols and metrics. In order to support

multiple routing algorithms in a single autonomous sys-

tem or confederation, it is necessary to explore how they

can safely interoperate without forming destructive rout-

ing loops.

Consider two Bellman-Ford algorithms one with metric

R, which might for example represent hop count, and the

other with metric H, which might represent measured

delay. Nodes using each metric send periodic updates to

their neighbors, some of which may use a different

metric. Each node receiving an update in a different

metric must be able to transform that metric into its own.

Suppose there are two functions: Fh, which maps R to H,

and Fr, which maps H to R. In order to preserve the

non-negative character of the metrics, both Fh and Fr

must be positive and monotone-increasing functions of

their arguments.

4

It is not difficult to show [16] that loops will not occur if

both of the following conditions are satisfied:

x ≤ Fr(Fh(x)) and x ≤ Fh(Fr(x))

As long as these conditions are satisfied and both the

domains and ranges are restricted to non-negative values,

mutually inverse functions for Fh and Fr can readily be

found, such as linear transformations Ax + B, powers x
n

and exponentials e
x
, together with their inverses. Note

that these conditions require careful analysis of the finite-

precision arithmetic involved and the errors inevitably

introduced.

Several of the Backbone nodes are connected to exten-

sive regional networks, some of which use a routing

protocol called the Routing Information Protocol (RIP)

[6]. In some cases a regional network is connected to

more than one Backbone node. A typical case involves

the translation between RIP and HELLO at both sites, in

which case the above conditions come into play. Note

that these conditions do not guarantee the shortest path

relative to either metric, just that whatever path is chosen,

no loops will form.

4.2. Fallback Routing

Ordinary routing algorithms compute shortest paths on a

directed, labeled graph. If there are multiple paths be-

tween given endpoints, the algorithm will select the one

with minimum total distance, but will make an arbitrary

choice when more than one path exists with that distance.

A reachability algorithm is defined as a routing algorithm

in which all paths between given endpoints have the

same distance; therefore, the algorithm will select one of

them arbitrarily. In practice such algorithms are useful

mainly in tree-structured topologies where autonomous

systems with only a few reachable networks are intercon-

nected by one or at most a few gateways, such as the

stub-system model commonly associated with EGP.

Cases exist in NSFNET where several autonomous sys-

tems with many reachable networks are haphazardly

interconnected by multiple gateways. In order to insure

stability, it is desirable to hide the internal routing details

of each system; however, for reasons of load balancing

it is desirable to control which gateway is to be used for

normal traffic in to and out of the system and which is to

be used as backup should the normal gateway fail. A

fallback algorithm is defined as a routing algorithm in

which two sets of paths exist between given endpoints,

one intended as primary paths and the other as fallback

paths should all primary paths fail. However, in both the

primary or fallback set, the algorithm will select one of

them arbitrarily.

In reachability algorithms it is not necessary to know the

distance along the path selected, only that it exists (i.e.

the distance is less than infinity); therefore the metric has

only two values: zero and infinity. In fallback algorithms

a finer distinction is necessary in order to determine

whether a primary or fallback path is in use; therefore,

the metric has three values: zero, one and infinity. It is

not difficult to invent metric transformations which

preserve this distinction without introducing loops [16].

Fallback routing is now used by the EGP-speaking

gateways between the various Backbone site networks

and the core system. For each Backbone network one of

these gateways is designated primary and uses an EGP

metric of zero, while the remaining gateways are desig-

nated fallback and use a nonzero metric. The primary

gateway is assigned on the basis of pre-engineered con-

figurations and traffic forecasts. As a special experimen-

tal feature, the core-system EGP implementation

incorporates an ad-hoc form of fallback routing. The

effect is that, if the primary gateway for a particular

network fails, the load is nondeterministically shared

among the fallback gateways.

5. Routing Agents

Since the Backbone nodes are connected directly to

Ethernets serving a general population of potentially

defective hosts and gateways, the Backbone design in-

cludes a special routing agent which filters information

sent between the switching nodes and other gateways in

the local autonomous system. In order to conserve

resources in the node itself, the agent is implemented as

a daemon in a trusted Unix-based host attached to the

same Ethernet. The agent, now installed at all Backbone

sites, mitigates routes computed by other routing sys-

tems, such as RIP and/or EGP, and communicates with

the Backbone node using the HELLO protocol. It con-

sists of a portable C-language program for the Berkeley

4.3 Unix system distribution [5].

Among the features implemented in the routing agent are

exclusion lists, which delete selected networks known to

the local routing algorithm from HELLO messages sent

to the Backbone node. Others include calculation of the

metric transformations, when required, and management

of the various data bases involved. At present, the resour-

ces necessary to operate the routing agent are provided

by the sites themselves, while configuration control of

the data bases is maintained by the network operations

center.

6. Congestion Control

Like many networks designed for connectionless-mode

service, the Backbone does not bind resources to end-to-

end flows or virtual circuits. In order to deal with traffic

surges, the Internet architecture specifies the ICMP

Source Quench message, which is in effect a choke

packet sent to the originating host when a downstream

gateway experiences congestion. While the choke packet

5

can be an effective mechanism to control long-term

flows; that is, when the flow intensities are relatively

stable over periods longer then the nominal transit time

of the network, it is usually not an effective mechanism

in other cases.

Therefore, when a short-term traffic surge occurs, the

only defense possible is to either drop arriving packets

or selectively preempt ones already queued for transmis-

sion. Previous designs drop arriving packets when the

buffer pool becomes congested, which has unfortunate

consequences for fairness and end-to-end performance.

Simply increasing the size of the buffer pool does not

help [17]. In addition, it has long been suspected that a

major cause of Internet traffic surges is defective

transport-level implementations or antisocial queueing

policies, resulting in large, uncontrolled bursts of pack-

ets. Thus, an effective preemption strategy must take

fairness into account in order to avoid capture of exces-

sive network resources by reckless customers.

Extensive experience in the design, implementation and

experimental evaluation of connectionless-mode net-

works suggests an interesting preemption strategy which

has been implemented in the Fuzzball system. It is based

on two fairness principles:

1. Every customer (IP source host) has equal claim on

buffer resources, so that new arrivals can preempt

other customers until the space claimed by all cus-

tomers is equalized.

2. When a preemption is necessary for a customer with

buffers on multiple queues, the preemption rates for

each of these queues are equalized.

The intent of the first rule is to identify the customer

capturing the most buffer space, since this customer is

most likely a major contributor to the congestion. The

intent of the second rule is to spread the preemptions

evenly over the output queues in case of ties.

It is not possible without a heavy performance penalty to

implement the above rules in their purest form. In the

Fuzzball implementation an input buffer is almost al-

ways available for an arriving packet. Upon arrival and

inspection for correct format and IP checksum, the

(sometimes considerable) unused space at the end of the

buffer is returned to the buffer pool and the packet

inserted on the correct output queue, as determined by

the routing algorithm. A preemption is necessary when

an input buffer must be allocated for the next following

packet.

When preemption is necessary, each output queue is

scanned separately to find the customer with the largest

number of 512-octet blocks. Then the queue with the

largest number of such blocks is determined and the last

buffer for the associated customer is preempted, even if

the buffer preempted was the one just filled. In case of

ties, the queue with the most packets transmitted since

the last preemption is chosen. The entire process is

repeated until sufficient buffer space is available for the

input buffer request.

The experience with the Fuzzball implementation has

been very satisfying, as shown below and in Section 7.

Table 1 illustrates the performance of the policy over a

typical period of several days. There are sixteen inter-

node trunks in the Backbone (including the SURA

regional network). The Rate column shows the mean

packets per second sent on the trunk, while the Timeout

and Preempted columns show the percentage of packets

deleted from the trunk queue due these causes.

These data should be compared with the weekly statistics

collected for the seven ARPANET/MILNET gateways

operated by Bolt Beranek Newman for the Defense

Communication Agency [3]. These gateways, which

operate in an environment similar to the Backbone, drop

an arriving packet when the output queue for an AR-

PANET/MILNET destination subnet address exceeds

eight packets. On a typical week in late July 1987 these

gateways carried an aggregate of 56.74 packets per

second for an equivalent of 14 lines, with a mean drop

rate of 7.035 percent, almost two orders of magnitude

greater than the Backbone. The busiest gateway carried

an estimated 6.44 packets per second per line and

dropped 12.5 percent of these packets.

7. Network Services

The Backbone nodes are intended primarily to serve as

IP packet switches and gateways for NSFNET client

networks. However, There are several other services

available, some for the general user population and

Line Rate Timeout Preempt Total

1 0.32 .767 .0 .767

2 0.62 .504 .0 .504

3 1.56 .058 .0 .058

4 1.91 .020 .0 .020

5 0.30 .059 .0 .059

6 0.58 .141 .0 .141

7 2.23 .018 .025 .044

8 3.02 .045 .018 .063

9 1.82 .110 .026 .137

10 1.61 .056 .0 .056

11 2.20 .021 .162 .184

12 3.41 .059 .071 .130

13 3.79 .034 .027 .061

14 3.98 .027 .0 .027

15 2.79 .033 .0 .033

16 1.39 .052 .004 .056

Table 1. Dropped Packet Rates

6

others for monitoring and control purposes. These in-

clude some applications based on TCP and some on UDP

(see [4] for service descriptions and protocols, unless

indicated otherwise):

1. TCP-based virtual-terminal (TELNET), file-trans-

fer (FTP) and mail (SMTP) services intended for

system monitoring and control purposes.

2. UDP-based name-lookup (NAME and DOMAIN-

NAME), file-transfer (TFTP) and time (TIME,

NTP) services, as well as a special statistics

(NETSPY) service [15] intended for network

monitoring.

3. IP-based utilities (ECHO, TIMESTAMP), primari-

ly intended for system monitoring and fault isola-

tion.

The UDP-based time services TIME and NTP are unique

features of the Fuzzball. The physical-clock hardware

and Fuzzball software, as well as the DCN protocols,

have been specially designed to maintain network time

synchronization to an unusual precision, usually less

than a few milliseconds relative to NBS broadcast stand-

ards. The Network Time Protocol (NTP) [13] imple-

mented by every Fuzzball provides accurate timestamps

in response to external requests, as well as providing

internal synchronization and backup for a network of

NTP servers spanning the entire Internet.

There are presently five Fuzzball systems with WWVB

or GOES time-code receivers on the Internet, with at

least one attached via high-speed lines to the Backbone,

ARPANET and MILNET. A conforming NTP daemon

program has been written for the Berkeley 4.3 Unix

system distribution. A discussion of the synchronization

algorithms used can be found in [12].

8. Network Operations

The NSFNET Backbone Network Project is presently

managed by the University of Illinois. Network opera-

tions, including configuration control and monitoring

functions, are managed by Cornell University. Addition-

al technical support is provided by the Information

Sciences Institute of the University of Southern Califor-

nia, and the Universities of Michigan, Delaware and

Maryland. The NSFNET Network Services Center

(NNSC), operated by Bolt Beranek Newman, provides

end-user information and support.

The NSF Information and Services Center (NISC) at

Cornell University is presently responsible for the day-

to-day operations and maintenance functions of the

Backbone. They are assisted by staff at the various sites

and regional operating centers for hardware main-

tenance, as well as the resolution of node and trunk

problems. Most of the software maintenance, including

bugfixes, version updates and general control and

monitoring functions, are performed remotely from Cor-

nell.

The Fuzzball includes event-logging features which

record exception events in a log file suitable for periodic

retrieval using the standard Internet file-transfer

protocols FTP and TFTP. In addition, a special UDP-

based server has been implemented [15] so that cumula-

tive statistics can be gathered from all nodes with

minimum impact on ongoing service. At present, statis-

tics are gathered on an hourly basis from every node and

incorporated in a data base suitable for later analysis.

About nine months of history data are now available in

the data base, which is used to produce periodic manage-

ment reports with performance statistics similar to those

shown in this report.

A great deal of additional information is available from

the Backbone nodes, the Unix-resident routing agent

(gated) and various other sources. This information,

which is available via remote login (TCP/TELNET),

includes the contents of various routing tables, the state

of system resources such as the buffer pool, state vari-

ables for the various protocols in operation and so forth.

An interesting sidelight is that the time-synchronization

function, which requires precise measurement of net-

work delays and logical-clock offsets, serves as a deli-

cate indicator of network stability. If the network

becomes congested or routing loops form, the delays and

offsets usually become unstable and are readily noticed

by an experienced operator. In fact, the precision of the

system is so exquisite that the temperature of the machine

room can be estimated from the drift-compensation term

of the logical-clock corrections computed by each node.

The growth in traffic carried by the Backbone over the

nine-month period since October 1986 is clearly ap-

parent in Figure 2, which shows the number of packets

delivered to the destination Ethernets per week. Figure 3

shows the preemption rate (percentage of packets

*
*

*

*
* * * *

*
*

*
*

*

*
* *

*

* *

*

* *
*

*

*
* *

*
*

* *

*
*

*

*

*
*

*

Weeks

A
v

g
 P

a
c

k
e

ts
 p

e
r

S
e

c
o

n
d

0 10 20 30 40

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Figure 2. Packets Delivered, Averaged by Week

7

preempted per packet delivered) per week. The dramatic

reduction in preemption rate at about week 27 was due

to an expansion in buffer space together with adjustments

to system parameters such as retransmission limits. A

second dramatic drop in preemption rate at about week

33 was due to the introduction of the new preemption

policy described previously. The effectiveness of this

policy is evident by the fact that, during a period in which

the packets delivered rose by 50 percent, there was a

six-fold decrease in the number of packets preempted.

9. Future Plans

Today the Backbone is an integral part of the Internet

system; in fact, over one-fourth of all Internet networks

are reachable via this network. As evident from the

previous section, the aggregate traffic carried by the

Backbone is currently approaching that of the AR-

PANET/MILNET gateways, which are overloaded and

soon to be replaced. Moreover, although the preemption

policy is working well and suggests that additional node

and trunk capacity remains, the alarming rate of growth

indicates the current Backbone configuration will be

inevitably overwhelmed within a short time.

Current plans are to augment Backbone service by the

addition of high-speed nodes and additional trunking

capacity. While no decision has been made on the node

configuration or trunk speeds, it is likely that T1 speeds

(1.544 Mbps) and new high-speed packet switches will

become available in 1988. The migration path from the

existing Backbone to a new one using this technology is

now under review.

It is anticipated that the current interim network-manage-

ment structure will be replaced by a permanent one. The

National Science Foundation has solicited a Cooperative

Agreement for "Project Solicitation for Management and

Operation of the NSFNET Backbone Network," with

award expected by November of 1987. The awardee will

have primary responsibility for designing, installing and

operating upgrades to the Backbone. The emerging OSI

protocols will become a very important factor for the

future evolution of the NSFNET. The migration of

NSFNET to an OSI connectionless-mode environment

will become imperative as the OSI protocols mature and

implementations become widely available. A most likely

migration strategy will be to support both Internet IP and

OSI connectionless-mode (CNLS) protocols in all

NSFNET gateways, including the Backbone. This will

allow hosts supporting either or both protocol suites to

coexist in the same internetwork. Changes in subnet

protocols and addressing mechanisms necessary to im-

plement this strategy are already in progress. In addition,

it is likely that application-level gateways may be in-

stalled at strategic points in order to support essential

services such as mail during the migration period.

10. Acknowledgments

Doug Elias of Cornell University and Mike Minnich of

the University of Delaware provided invaluable assis-

tance in the generation, analysis and presentation of the

performance data in this report.

11. References

1. Bertsekas, D., and R. Gallager. Data Networks.

Prentice-Hall, Englewood Cliffs, NJ, 1987.

2. Braden, R. Requirements for Internet gateways.

DARPA Network Working Group Report RFC-

1009, USC Information Sciences Institute, June

1987.

3. Chao, J. Weekly Throughput Summary for the BBN

LSI-11 Gateways. Report distributed via electronic

mail by Bolt Beranek Newman.

4. Defense Communications Agency. DDN Protocol

Handbook. NIC-50004, NIC-50005, NIC-50006,

(three volumes), SRI International, December 1985.

5. Fedor, M. Gated - network routing daemon. Unix

manual description pages, Cornell University, 1987.

6. Hedrick, C. Routing Information Protocol. DARPA

Network Working Group Report (number to be as-

signed), Rutgers University, July 1987.

7. Jennings, D.M., L.H. Landweber, I.H. Fuchs, D.J.

Farber and W.R. Adrion. Computer networks for

scientists. Science 231 (28 February 1986), 943-

950.

8. Leiner, B., J. Postel, R. Cole and D. Mills. The

DARPA Internet protocol suite. Proc. INFOCOM

85 (Washington DC, March 1985). Also in: IEEE

Communications Magazine (March 1985).

9. Mills, D.L. An overview of the Distributed Com-

puter Network. Proc. AFIPS 1976 NCC (New York,

NY, June 1976).

*

*

*

*

* * * *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *

*

*
*

*
* *

*

*

*

* * * *

Weeks

P
e
rc

e
n

t

0 10 20 30 400
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Figure 3. Percentage of Packets Dropped, by Week

8

10. Mills, D.L. DCN local-network protocols. DARPA

Network Working Group Report RFC-891, M/A-

COM Linkabit, December 1983.

11. Mills, D.L. Exterior Gateway Protocol formal

specification. DARPA Network Working Group

Report RFC-904, M/A-COM Linkabit, April 1984.

12. Mills, D.L. Algorithms for synchronizing network

clocks. DARPA Network Working Group Report

RFC-957, M/A-COM Linkabit, September 1985.

13. Mills, D.L. Network Time Protocol (NTP). DARPA

Network Working Group Report RFC-958, M/A-

COM Linkabit, September 1985.

14. Mills, D.L. Autonomous confederations. DARPA

Network Working Group Report RFC-975, M/A-

COM Linkabit, February 1986.

15. Mills, D.L. Statistics server. DARPA Network

Working Group Report RFC-996. University of

Delaware, February 1987.

16. Mills, D.L. Metric Transformations. Memorandum

distributed to the Internet Activities Board, Internet

Architecture Task Force and Internet Engineering

Task Force, June 1987.

17. Nagle, J. On packet switches with infinite storage.

DARPA Network Working Group Report RFC-970,

Ford Aerospace, December 1985.

18. Plummer, D. An Ethernet address resolution

protocol. DARPA Network Working Group Report

RFC-826, Symbolics, September 1982.

19. Postel, J. User datagram protocol. DARPA Network

Working Group Report RFC-768, USC Information

Sciences Institute, August 1980.

20. Postel, J. Internet Protocol. DARPA Network

Working Group Report RFC-791, USC Information

Sciences Institute, September 1981.

21. Postel, J. Internet control message protocol.

DARPA Network Working Group Report RFC-792,

USC Information Sciences Institute, September

1981.

22. Postel, J. Transmission control protocol. DARPA

Network Working Group Report RFC-793, USC

Information Sciences Institute, September 1981.

9

