
The Fuzzball1 2

David L. Mills
Electrical Engineering Department

University of Delaware

Abstract

The Fuzzball is an operating system and applications library designed for the PDP11 family of

computers. It was intended as a development platform and research pipewrench for the DARPA/NSF

Internet, but has occasionally escaped to earn revenue in commercial service. It was designed,

implemented and evolved over a seventeen-year era spanning the development of the ARPANET

and TCP/IP protocol suites and can today be found at Internet outposts from Hawaii to Italy standing

watch for adventurous applications and enduring experiments. This paper describes the Fuzzball and

its applications, including a description of its novel congestion avoidance/control and timekeeping

mechanisms.

Keywords: protocol testing, network testing, perfor-

mance evaluation, Internet architecture, TCP/IP

protocols, congestion control, internetwork time

synchronization.

1. Introduction

The Fuzzball is a software package consisting of a fast,

compact operating system, support for the DARPA/NSF

Internet architecture [8] and an array of application

programs for network protocol development, testing and

evaluation. It usually runs on a LSI-11 personal worksta-

tion, to which it also lends its name, and functions as a

multi-purpose packet switch, gateway and service host.

It supports the complete TCP/IP protocol suite, including

network, transport and applications-level protocols for

virtual-terminal, file-transfer and mail systems with text,

voice and image capabilities. It includes a comprehen-

sive user interface based on a multiple-user, virtual-

machine emulator for the DEC RT-11 operating system,

so that RT-11 program-development utilities and user

programs can be run along with network-application

programs in an internetworking environment.

It is not clear how or exactly when the Fuzzball came to

be called that. Its ancestor was born at the University of

Edinburgh in 1971 and evolved as the DCN operating

system for a distributed network of PDP11 virtual

machines at the University of Maryland in 1975

[MIL75]. Among the lessons learned is the fact that

context switching in a virtualized PDP11 architecture is

painfully slow, so the DCN system remained a

demonstration curio.

By 1977 the DCN system was dismantled and rebuilt in

a leaner, zippier design and software was developed for

the TCP/IP protocol suite. The DCN routing protocol,

now called Hellospeak [12], was completely redesigned

to link DCN hosts and gateways together and to other

networks, including ARPANET, SATNET and various

LANs. At the time there were no full-featured Internet

hosts other than DCN based on a microprocessor; so,

presumably because nobody knew what DCN stood for,

they became affectionally and widely known as Fuz-

zballs. The Fuzzball has since been in a state of con-

tinuous, reckless evolution to support more processor

features and peripherals and to support progressively

more complex protocol suites and more sophisticated

resource-management techniques.

Over the years many network experiments, demonstra-

tions and more durable applications have been mounted

on the Fuzzball, a selection of which is described in

subsequent sections. Several experiments with ad-

vanced-technology networks such as packet radio, pack-

et satellite and various gateway systems have used

Fuzzballs as debugging, measurement and evaluation

platforms. Various organizations have used Fuzzballs as

terminal concentrators, mail and word-processing hosts,

network monitoring and control devices and general-

purpose packet switches and gateways. Fuzzballs have

seen regular service on the INTELPOST and NSFNET

Backbone networks and several campus networks at

university, government and industrial research

laboratories.

Perhaps the most useful and interesting Fuzzball applica-

tion is as an experimental tool for the development and

1

1. Reprinted from: Mills, D.L. The Fuzzball. Proc. ACM SIGCOMM 88 Symposium (Palo Alto CA, August

1988, 115-122).

2. Sponsored by: Defense Advanced Research Projects Agency contract number N00140-87-C-8901 and by

National Science Foundation grant number NCR-86-12015.

evaluation of novel network algorithms and protocols.

Many Fuzzballs have been deployed for that purpose at

various locations in the US and Europe. In the typical

case several Fuzzballs are lashed together with Ethernets

and makeshift wires, then connected to the Internet via

an existing LAN or gateway. Fuzzballs have even been

connected via dial-up telephone circuits, amateur pack-

et-radio channels, international undersea cables, satellite

terminals and strange statistical multiplexors.

This paper begins with an overfly of the Fuzzball system

architecture, including process and memory structure,

interprocess communication, and network support. In-

cluded are brief descriptions of application software

found useful for network testing, debugging and evalua-

tion. The paper then summarizes selected experiments

and demonstrations in which Fuzzballs have played a

pivotal part and highlights the useful features and lessons

learned. It describes how Fuzzballs have been used in

operational systems such as the INTELPOST and

NSFNET Backbone networks and concludes with a

detailed description of two interesting applications, one

involving congestion avoidance/control and the other the

synchronization of network clocks.

2. System Architecture

The Fuzzball operating system consists of the supervisor

and two kinds of processes, supervisor and user. The

supervisor consists of the process scheduler and a collec-

tion of supervisor primitives (EMT instructions) used by

all processes. Supervisor processes are used to support

direct-access and terminal devices, as well as network

interfaces and protocol multiplexors. User processes pro-

vide an emulated environment in which most system and

user programs developed for the RT-11 operating system

can run unchanged. Some user processes support dedi-

cated functions such as routing daemons, input/output

spoolers and generic network servers supporting connec-

tion-based (TCP) and connectionless (UDP) services.

A process consists of four virtual-memory segments: the

instruction segment, data segment, descriptor segment

and parameter segment. The instruction and data seg-

ments for the supervisor and supervisor processes are

allocated in separate kernel spaces to provide the maxi-

mum memory possible for buffers, control blocks and

tables. The instruction and data segments for each user

process are allocated in private user spaces, except for

the emulator code, which resides in shared segments

mapped into user space at addresses usually reserved for

the RT-11 resident monitor.

Descriptor segments contain the process stack and

memory-management descriptors, as well as data used

for process scheduling, interprocess communication and

related functions. These segments are allocated in kernel

space and not normally accessible to application

programs. Parameter segments contain data used to es-

tablish various operational parameters, such as interrupt

vector, disk volume size, device timeout and so forth, as

well as various throughput and error counters, depending

on process type. These segments are also allocated in

kernel space, but mapped into each user process adjacent

to the emulator code. This is done in order to facilitate

operator monitoring and control of the various processes

and their operational parameters.

Virtual windows are used to access device registers and

to share buffers and control blocks between processes to

avoid time-consuming copy operations. Mutually ex-

clusive access to shared data areas is provided using a set

of semaphore queues supported by supervisor primitives.

Processes encountering an occupied critical section are

blocked and eventually serviced in order of arrival. A

fixed number of semaphores is available for specific use,

such as update access to the routing data base, volume

directories and so forth.

Processes communicate with one another using small

(16-byte) interprocess messages in one of four formats.

Message passing is supported by supervisor primitives

that send a message or wait for one to arrive. Sending

never blocks the process, while receiving does, unless a

message is already waiting or until a specified timeout

expires. Processes can send special messages called

asynchronous interrupts which result from exceptional

events and are especially useful for system logging and

operator alarms.

The scheduler determines the next process to be run,

restores the processor state from the descriptor segment

and activates the process. It uses a multi-level priority

service discipline with preemptive round-robin (times-

liced) service at each priority level. Preemptions occur

when a higher priority process is scheduled due to a

message arrival, semaphore unblock, timeslice end,

asynchronous event or voluntarily. Voluntary preemp-

tions result in the process either waiting for a message,

semaphore unblock or asynchronous event such as a

timer interrupt.

The emulator intercepts synchronous interrupts (EMT

instructions, etc.) and asynchronous interrupts and

presents them within the virtual environment of the

process. The user process interface presented by the

emulator is a subset of that presented by the resident

monitor of the RT-11 system and includes all of the

programmed requests necessary to run standard RT-11

system components and user programs.

A highly evolved logical clock is an intrinsic feature of

the Fuzzball [16]. The logical clock increments at 1000

Hz and is equipped with frequency and phase control

mechanisms useful for synchronizing time to other sys-

tems with either the Hellospeak routing protocol or Net-

2

work Time Protocol mentioned later in this paper. Be-

sides the logical clock, the system provides per-process

timers and a full complement of timer and clock primi-

tives.

2.1. Network Software

A pair of supervisor device-driver processes is dedicated

to every network interface device, one for input and one

for output. There are three levels to a device driver, a

common one responsible for Internet processing, includ-

ing routing, fragmentation and various error processing,

another below it responsible for the particular local-net

architecture, such as Ethernet, serial line and so forth,

and the third, which amounts to a set of interrupt routines

and is responsible for the operation of the particular

device. Support for the Hellospeak routing protocol is

provided as an optional module that operates at the

Internet level.

The design is such that packets are transferred from the

input device directly to a buffer and then out from the

same buffer directly to the output device and without

copying. This modular structure allows considerable

flexibility, since the modules at the various levels can be

swapped as required for the local net and device required.

The TCP and UDP transport modules are implemented

as a dedicated supervisor process, which is identified by

an assigned Internet address. All datagrams directed to

this address are delivered to this process, which is then

responsible for matching to the correct protocol and port,

assembling/disassembling the data and delivering it to a

user process. A host can have multiple processes of this

type in order to support configurations where the host is

connected to more than one network interface. Transfers

to and from the user processes use a shared virtual

window in which data are copied directly between ker-

nel-space buffers and user-space buffers.

Some protocols are supported at the user-process level,

including a UDP daemon for file-transfer, name-resolu-

tion and time protocols, as well as an EGP daemon. TCP

daemons are used for remote spooling, both send and

receive, to support standard and multi-media mail sys-

tems, as well as remote print, voice and image functions

for special devices. TCP services such as the virtual-ter-

minal (TELNET) server, file-transfer (FTP) server and

several miscellaneous servers are handled by assigning

a user process to the service upon arrival of a connection

request and then passing an appropriate command to the

application program which controls that process.

2.2. Application Software

Each user has access to one or more user processes and

can switch a single terminal from one to the other in a

few keystrokes. A conventional command language in-

terpreter (shell) running in each user process is used to

initiate application programs, manage debug sessions,

get system help and in general run the system. A very

useful feature is that one process can be used to debug

another while both are running. In addition, input and

output streams can be redirected and virtual environ-

ments can be altered. A virtual volume feature allows

volumes, complete with directory, to be encapsulated as

an ordinary file.

Among the often-used application programs supported

by connection-oriented transport service (TCP) are the

following:

TELNET virtual-terminal protocol client and server

programs, which provide user access to all Fuzzball

functions, including command, control, monitoring

and process/operator intercommunication. The

client program includes features to test the negotia-

tion mechanisms peculiar to that protocol, and to

record and playback session text and emulate

graphics display devices.

FTP file-transfer protocol client and server programs,

which provide the basic means to exchange program

and data files between Fuzzballs in both ASCII and

binary modes.

Server and utility programs for exchanging mail with

other Internet hosts. One of these is based on the

ubiquitous (text-only) SMTP mail protocol used

throughout the Internet, while the other uses the

experimental MPM multi-media mail protocol and

supports text, image, graphics and real-time speech

modes.

Utility servers for various "little" services, including

TCP echo, discard, text generator and various user

and system information utilities. In addition, a com-

prehensive Unix-compatible spooling facility can

be used with text, image and speech devices.

Among the often-used application programs supported

by connectionless transport service (UDP) are the fol-

lowing:

PING network-level testing utility, which uses ICMP

Echo and ICMP Timestamp messages to interrogate

remote machines, collect statistics and produce

reports (PING stands for Packet Inter-Net Groper).

XNET cross-net debugger, which is used for remote

interactive loading, dumping and debugging,

primarily for diskless machines.

Generic UDP server, including two name-address trans-

lation protocols, two time-service protocols a file-

transfer protocol and a remote host monitoring

protocol.

3

Utility programs for testing and debugging standard

UDP services, including the above, as well as

various surveying programs.

3. Fuzzball Applications

In following sections selected fuzzball applications are

described, ranging from Internet gateway development

through transport-level performance improvement to the

development of efficient name-address translation

mechanisms.

3.1. Internet Gateway Development

One of the earliest applications of Fuzzballs was as an

Internet gateway, usually used between an experimental

local net and the ARPANET. The first Internet gateways

were implemented by Bolt, Beranek Newman (BBN)

using PDP11 equipment, the BCPL language and the

ELF operating system. Like the DCN system before it,

ELF suffered from debilitating context-switching over-

head and was limited to about 30 packets per second. The

BBN implementation was eventually rehosted to the

MOS operating system, which like the Fuzzball was built

as a subset of its full-featured ancestor, and recoded in

assembly code. This resulted in improved switching rates

in the order of 200 packets/second.

Meanwhile, the Fuzzballs were being used as experimen-

tal development platforms for the Gateway-Gateway

Protocol (GGP) used in the BBN system, and later for

the Exterior Gateway Protocol (EGP) [13]. The goal of

the experimental effort was to explore data-management

techniques, protocol interoperability, routing algorithms

and congestion control mechanisms. As the result of this

exploration, the maximum switching rate of the Fuzzball

(with LSI-11/73 processor) was improved to over 400

packets per second.

The participation of the Fuzzballs in the development of

EGP was particularly important. EGP was developed in

an atmosphere of controversy and delicate compromise

between functionality and robustness. It is intended as

both a primitive reachability protocol for use between

administrative domains and a firewall to prevent in-

stabilities within one domain from affecting another. In

order to get the compromises just right, extensive

analysis, prototyping and refinement cycles were neces-

sary. Most of these involved Fuzzball development net-

works built on ARPANET paths, which required careful

control of the routing environment and interoperation

with existing GGP gateways. What made this practical

was the easily butchered routing and forwarding

mechanisms in the Fuzzball, in which firewall principles

could be invented, explored and evaluated quickly and

with low effort.

3.2. Internet Performance Issues

Of considerable interest in the early development and

prototyping of TCP/IP were the issues of interoperability

and performance. As various implementations of the

protocol suite matured, in particular those for Multics,

TOPS-20, Unix and Fuzzball, distributed testing sessions

called bakeoffs were held. With the exception of the

Fuzzball, these implementations were intended for long-

term operational use, with operational parameters op-

timized for the traffic flows and rates typical for a

multi-user timesharing system.

On the other hand, the Fuzzball implementation was

specifically designed to explore the parameter space,

sometimes in regimes ordinarily considered bizarre. For

instance, Fuzzball utility hosts were configured with

1200-bps dial-up lines and used with TCP/IP and TOPS-

20 hosts via Fuzzball gateways and ARPANET for ordi-

nary virtual-terminal, file-transfer and electronic-mail

applications. The purpose was not to establish an opera-

tional user environment, but to explore the practicality

of the TCP/IP protocol suite and the various implemen-

tations at the extremes of the operational envelope.

The bakeoffs and other experimental programs

demonstrated that TCP/IP could indeed work well with

grossly mismatched systems and transmission media;

however, the experiments also revealed that catastrophic

performance degradation could occur unless careful at-

tention were paid to certain aspects of the protocol im-

plementation. Not surprisingly, the most serious problem

was overrunning the gateway between the 56-Kbps AR-

PANET and the 1200-bps dial-up lines. The most sensi-

tive areas in the implementation included the

mechanisms for packetization, retransmission and ac-

knowledgement generation.

In 1981 several experiments were carried out with the

goal of exploring techniques to avoid unnecessary packet

congestion in the gateways. These fell into three areas:

reducing the incidence of small segments, especially in

interactive virtual-terminal service, improving the ef-

ficiency of remote-echo and acknowledgement

strategies and avoiding large pulses of data when large

windows are first opened.

Techniques used by the Fuzzballs to reduce the incidence

of small segments include send delays, in which data are

held and aggregated until a sufficiently large segment has

accumulated, aggregated retransmissions, in which data

arriving since the first transmission are included in sub-

sequent retransmissions, and adaptive thresholds which

prevent transmission until the TCP window has opened

to a respectable size. Techniques used to improve the

piggybacking efficiency of acknowledgements include

acknowledgement delays, which delay the acknow-

ledgement until the received data have been copied to

4

user buffers and the application response (typically

remote-echo data) are available.

Many of these techniques were employed in some (but

not all) the implementations at the time, including the

Fuzzball, and have been further refined since then. How-

ever, since the Fuzzball was operating at the extremes of

the credible envelope, precise tuning of the dynamics

was exceptionally critical, to the point where the

parameters had to be adjusted on an adaptive basis,

including the retransmission timeouts, packetization

delays and acknowledgement delays. A particularly

troublesome issue was the determination of retransmis-

sion timeout under conditions of moderate segment loss

and path delays varying over several orders of mag-

nitude. An extensive survey [12], conducted with the aid

of Fuzzballs used as network sounders, revealed the

Internet had path delays and delay dispersions much

larger than imagined.

As the result of these experiments, several modifications

to the suggested TCP retransmission-timeout estimation

algorithm were made, including a nonlinear adjustment

intended to improve performance under conditions of

very high delay dispersion and provision for multiple

per-segment range measurements to increase the sample

density. In addition, an adaptive backoff algorithm was

designed, along with explicit counting of outstanding

segments with a rate-sensitive limit. These experiments

used digital-analog converters and panel meters to watch

critical time-varying variables, which resulted in some

memorable demonstrations.

3.3. Applications Development

Several experimental Internet mail systems have come

and gone during the lifetime of the Fuzzballs. As each

was designed, implemented and evaluated, Fuzzball

prototypes were used for test and debug of the protocol

and various implementations. Perhaps the most am-

bitious of these projects involved the DARPA Multi-

media Mail Project, in which research groups at SRI,

BBN, ISI and Linkabit developed an experimental multi-

media mail architecture and presentation protocol with

real-time voice, image and text capabilities. The Fuz-

zball implementation includes special-purpose spooler

daemons for digitized speech, facsimile and bitmap

graphics, as well as rule-based mail sending, receiving

and reading programs. It was used mostly to explore the

features of the architecture, develop fast encoding and

storage algorithms and verify interoperability of all im-

plementations.

One of the most interesting experiments using the Fuz-

zballs involved the Domain Name System [17], which is

now in widespread use as a host name/address directory

service. The system is based on a distributed, hierarchical

data base and a set of structured lookup procedures that

can be used in connection-oriented or connectionless

modes. The Fuzzball implementation includes both a

domain-name server, which holds the data base, and a

resolver subroutine, which is linked with every applica-

tion program needing this service. A distinguishing fea-

ture of resolver subroutine relative to others

implemented for Unix, is an amazingly persistent, adap-

tive search algorithm that painstakingly combs the data

base of possibly many other servers in case of incomplete

or inconsistent data.

4. Enduring Systems

Over the years Fuzzballs have been involved in enduring

demonstrations and networks requiring commercial-

grade operation, monitoring and control. Several of these

applications, including two out of the three described in

following sections, have provided service to large num-

bers of users under punishing conditions and have served

to evaluate the performance of the Fuzzball implemen-

tation itself.

4.1. SATNET Demonstrations

The DARPA Packet Satellite Project was started in 1975

to adapt packet-switching technology to international

satellite communications, resulting by 1979 in the Atlan-

tic SATNET system which spanned the US, United

Kingdom and Norway [6]. As part of an intensive meas-

urement and evaluation effort, Fuzzballs were used as

traffic generators, statistics collection platforms and

general-purpose data reducers [3]. At the 1979 National

Computer Conference, Fuzzballs were used in a

demonstration of SATNET with real-time packet-voice

conferencing, image transmission, and an experimental

small-aperture Earth terminal [MIL80].

As additional countries such as Italy and the Federal

Republic of Germany joined the SATNET community

the Fuzzball was often used as a vehicle to gain

familiarity with the SATNET technology and as a tool

for experiments and measurements. At one time or

another, the research and defense establishments of

every SATNET participant had nests of Fuzzballs

spliced to their local-net infrastructure and functioning

as gateways, lightweight electronic-mail hosts and ex-

perimental platforms.

In order to support these activities a good deal of ad-hoc

experimental software was developed, including data-

reduction, graphics-display and format-conversion ap-

plications. The multiple virtual-process architecture and

RT-11 emulator features of the Fuzzball proved highly

useful and suited to this effort. Since the emulated RT-11

environment supports the FORTRAN, BASIC and C

programming languages, as well as most RT-11 utility

programs and text editors, real-time traffic generators,

5

statistics processors and display generators can be quick-

ly constructed or adapted to particular experiments.

4.2. INTELPOST Network

The INTELPOST system was an electronic-mail net-

work built in 1981 by BBN and COMSAT and operated

by the US Postal Service and overseas affiliates. It linked

sites in the US and Canada with several cities in Europe

and South America and consisted of about a dozen

PDP11-class processors with high-speed facsimile scan-

ners and printers interconnected by serial lines with

speeds to 56 Kbps. Each processor used the DEC RSX-

11 operating system together with the Fuzzball TCP/IP

networking software and Hellospeak routing algorithm.

The software was adapted from the native Fuzzball code

by simply replacing the macro library with another

specifically tailored for the RSX-11 environment.

This system is believed to be the first commercial

deployment of the TCP/IP protocol suite outside the

research community. It operated for several years carry-

ing revenue traffic, but remained largely a pilot project

and unknown by most of the public. It was in this

environment that early experiments in congestion con-

trol were carried out, including those based on flow

modulation, which is described in another section. While

the system used the standard TCP/IP protocol suite and

addressing conventions and an experimental gateway

was set up at COMSAT Laboratories, the only traffic

ever exchanged between INTELPOST and the DARPA

research community was monitoring and debugging

packets and an occasional misrouted file.

4.3. NSFNET Backbone

The NSFNET is a loosely organized community of net-

works funded by the National Science Foundation to

support the sharing of national scientific computing

resources, data and information [7]. NSFNET consists of

a large number of industry and academic campus and

experimental networks, many of which are intercon-

nected by a smaller number of regional and consortium

networks. The NSFNET Backbone Network [15], which

is the primary means of interconnection between the

regional networks, includes switching nodes located at

six supercomputer sites and three regional interties. Ad-

ditional nodes are used for program development and

testing, bringing the total to about thirteen.

A Backbone node consists of a Digital Equipment Cor-

poration LSI-11/73 system with 512K bytes of memory,

dual-diskette drive, Ethernet interface and serial inter-

faces. One or two low-speed serial-asynchronous inter-

faces are provided, as well as one to three high-speed

serial-synchronous interfaces. All Backbone nodes in-

clude crystal-stabilized clock interfaces, while one node

(NCAR) is equipped with a WWVB radio time-code

receiver providing a network time reference accurate to

the order of a millisecond.

The Backbone nodes function as Internet gateways [2]

and include all the switching, monitoring, control and

error-recovery functions necessary to forward packets

from one regional Ethernet to another. Other gateways

connect the Ethernets to regional and consortium net-

works, which in some cases span large regions of the

country. Some sites are connected to other backbone

networks such as ARPANET and public data networks

as well.

In mid-June 1988 there were 5856 hosts on 918 networks

interconnected by 236 gateways listed at the Department

of Defense Network Information Center alone, which in

itself is only a small fraction of the overall Internet. Of

the approximately 460 nets now in regular operation,

about 130 are either directly connected to the Backbone

or indirectly by means of gateways and other regional

and consortium networks. The aggregate backbone traf-

fic has doubled over the last nine months to about 71

packets per second, or about 4.4 packets per second per

56-Kbps line.

5. Experiments

Among the many experiments mounted on the Fuzzball,

three have been selected as typical and representing the

scope and application of the Fuzzball implementation.

The first examines issues in type-of-service routing and

queueing, the second involves preemption and conges-

tion management and the third describes an internetwork

time service.

5.1. Type-of-Service and Precedence Queueing

The Internet protocol includes provisions for specifying

type of service (TOS), precedence and other information

useful to improve performance and system efficiency for

various classes of traffic. The TOS specification deter-

mines whether the service metric is to be optimized on

the basis of delay, throughput or reliability and is or-

dinarily interpreted as affecting the route selection and

queueing discipline. The precedence specification deter-

mines the priority level used by the queueing discipline.

The Fuzzball routing mechanism includes provisions to

determine the route based on TOS. The mechanism

simply decodes the eight combinations of three TOS bits

and appends the resulting octet to the four-octet Internet

address. The routing tables use a mask-and-match

scheme where the resulting 40 bits are first filtered by a

mask specific to each entry, then matched against an

address specific to that entry. The tables are ordered, with

possibly several entries for the same address range, but

different TOS masks, and with the first match found

terminating the search. This scheme allows TOS inter-

pretation to be integrated directly into the routing

6

mechanism and protocols; however, existing routing

protocols, including Hellospeak, do not provide means

to propagate TOS masks so entries using this feature

have to be manually configured.

As the NSFNET Backbone has reached its capacity,

various means have been incorporated to improve inter-

active service at the possible expense of deferrable (file-

t ransfer and mai l) service. An experimenta l

priority-queueing discipline has been established based

on the precedence specification. Queues are serviced in

order of priority, with FIFO service within each priority

level. However, many implementations lack the ability

to provide meaningful values and insert them in this field.

Accordingly, the Fuzzball cheats gloriously by impugn-

ing a precedence value of one in case the field is zero and

the datagram belongs to a TCP session involving the

virtual-terminal TELNET protocol.

The results of this scheme are mixed, as could be ex-

pected. Customers of the NSFNET Backbone were

thrilled when TELNET response dramatically improved

after the new scheme was installed. However, it some-

times happens that low-priority traffic is continually

pushed back in the queue as the result of high-priority

arrivals, only to be preempted, cause a quench message

(see below) or simply to time out. However, if large

quantities of deferrable data, such as file-transfers and

mail, get pushed back in this way, quench messages tend

to concentrate on the originating hosts and help dissipate

the load.

5.2. Congestion and Preemption Strategies

In the TCP/IP protocol suite, which is based on end-to-

end connectionless service, it is usually assumed that

gateways have little state except that induced by the

routing algorithm. In particular, the state of the various

resources, including processor time, buffer space and

queue contents, is generally invisible outside the

gateway. This makes congestion avoidance and control

very difficult, since the only access a congested gateway

has to the state of any virtual flow is the composition of

the queues in the gateway itself.

In order to deal with traffic surges, the Internet architec-

ture specifies the ICMP Source Quench message, which

is in effect a choke packet sent to the originating host by

a downstream gateway when it experiences an overload.

Some gateway implementations make an attempt to cope

with congestion by emitting a quench when a datagram

arrives for a queue whose size exceeds a threshold or

when the number of datagrams dropped due to conges-

tion-related reasons exceeds a threshold. Host im-

plementations respond to quenches in various ways;

some ignore it, some including (modified) Berkeley 4.3

Unix and Fuzzball, reduce the TCP window size by a

multiplicative factor, after which each acknowledgment

received causes an additive increase, and some, includ-

ing Cray Research Unix, operate on rate-based principles

such as described in [PRU86].

Experience suggests that such simple mechanisms have

only marginal utility and then only for traffic surges

where the delay on the path to the originating host is short

compared to the period of the traffic surge. In the case of

the NSFNET Backbone gateways, which is typical of

other Internet gateway systems, congestion is charac-

terized by frequent surges lasting up to a few minutes

along with occasional intense bursts lasting only a few

seconds. Bursts, often caused by misengineered TCP

implementations, can be extremely damaging, since they

tend to fill up queues quickly and are resistant to

quenches.

Upon review of the extensive log information collected

by the NSFNET Backbone Fuzzballs a key fact emerges:

most congestion surges and bursts are caused by a rela-

tively small number of originating hosts. This suggests

an effective congestion policy should fairly distribute

resources such as buffer space on the basis of originating

host address. Congestion causes large queues, large

delays, large delay dispersions and invites further abuse

by undisciplined host retransmissions, even if heroic

buffer space is available [18]. These observations sug-

gest an effective congestion avoidance policy should be

based on mean queue size and attempt to fairly equalize

the sizes if more than one queue is present.

However, when a burst exceeds the buffer space avail-

able, the only defense possible is to either drop arriving

packets or selectively preempt ones already queued for

transmission. This naturally suggests the preemption

policy should be an extension of the quench policy and

result in preemption of those hosts which do not respond

to quench. Furthermore, fairness in the form of equal

access to system resources should be observed in order

to avoid capture of excessive network resources by reck-

less hosts [15].

In an experiment designed to evaluate various realiza-

tions based on the above policies, the Fuzzball im-

plementat ion was modif ied to incorporate

comprehensive quench, preemption and service dis-

ciplines based on the specifications explicit and implicit

in every IP datagram header. The result is a service model

based on IP precedence and type-of-service, a fairness

model based on IP source address and a congestion-con-

trol model based on mean queue size. This architecture

can be summarized in the following rules:

1. Customers are identified on the basis of IP source

address. Each distinct IP address is associated with

a different customer for quench and preemption

purposes.

7

2. Customer service classes are determined on the

basis of IP precedence and type-of-service. Queues

are serviced in order of class, with all customers of

a higher class serviced in FIFO order before any

customer of a lower class.

3. Every customer has equal claim to critical system

resources, most importantly buffer space. In case of

insufficient resources, the quench and preemption

mechanisms operate to reduce the allocations of

those customers claiming the most resources, so that

the available resources will tend to be equally allo-

cated among all customers.

4. The congestion state for each queue is determined

by its mean size. Below a selected threshold no

quench messages are sent. Above the threshold,

quench messages are sent to customers determined

by (3) above and at a rate proportional to mean queue

size.

5. If upon a new arrival insufficient system resources

(e.g. input buffers) can be found for subsequent

arrivals, customers determined by (3) above (which

may include the new arrival) are preempted from the

queues until these resources can be found.

6. In case of ties when the above mechanisms would

preempt any one of two or more queues, the queue

selected is the one going longest since the last

preemption.

In order to implement these mechanisms without sig-

nificant performance penalty, it is necessary to minimize

per-packet processing and minimize queue scanning.

The technique implemented in the Fuzzball was adapted

using timestamp mechanisms already in place for other

functions. An arriving packet buffer is timestamped and

inserted on an output queue determined by the routing

algorithm in FIFO order by service class. When the

buffer is removed from the queue for output, the dif-

ference between the removal time and the timestamp

represents the queueing time for the buffer and is used in

conjunction with the time-to-live field in the Internet

header to determine whether the packet has lived too long

in the system and should be destroyed.

The queueing time can also be used to estimate the mean

queue size as follows. The queueing times for successive

packets are summed over an interval depending on the

output line speed or service rate, currently about four

times the maximum packet transmission time. At the end

of each interval the sum is exponentially averaged into

an accumulator with a selected weight, currently one-

half, and the accumulator compared against a threshold.

If the threshold is exceeded a quench is sent to the

originating host with the largest total buffer space on the

queue and the accumulator is forced to zero.

This scheme is designed to avoid quenching hosts if the

mean queue size is small, yet protect against excessive

quench rates in case of overload. The averaging interval

is chosen to match the expected mean path delay in the

Internet, about a couple of seconds. The weight and

threshold are chosen to begin triggering quenches when

the mean queue size exceeds about one-half and reach

maximum frequency (once quench per interval) when

the mean queue size approaches two.

As reported previously [15] there is no doubt the selec-

tive preemption scheme is highly effective in reducing

the impact of bursts due to misengineered host im-

plementations or profound speed mismatch at the entry

points to the NSFNET Backbone. Some idea of the

effectiveness of the quench scheme is evident from the

following: In July 1988 before quench was implemented,

the NSFNET Backbone aggregate traffic load per queue

ranged from 0.3 to 4.0 packets per second, with a mean

of 2.0. At that time the preemption rate was .06 and

timeout rate .03 percent. In March 1988, several months

after quench was installed, the load ranged from 2.6 to

9.2 packets per second, with a mean of 4.7. At that time

the preemption rate was 0.37, timeout rate 0.11 and

quench rate 0.27 percent. The traffic on the sixteen

56-Kbps internodal trunks had doubled from 31.5 to over

71 packets per second, but the aggregate loss rate was

still well below the system objective of one percent.

Tests with the Cray TCP/IP implementation show that

congestion on NSFNET Backbone paths where the flow

enters the system via an Ethernet are effectively throttled

by the quench mechanism. Tests with a recently im-

proved Unix 4.3bsd implementation show mean queue

size reductions of about one-third over the uncontrolled

size when quench is used. These data alone are insuffi-

cient to estimate the effect of the quench policy.

At this time few definitive conclusions can be reached

on the effectiveness of the quench and preemption

schemes with respect to the global environment, since

they are implemented only in the Fuzzball (although

some Fuzzballs are in busy places) and responsive host

implementations are far from ubiquitous. While the ex-

periment demonstrated that the schemes can be effective,

additional work is necessary to determine the parameters

and their affect on the overall system performance. Final-

ly, the fact that quenches are generated at intervals

depending on mean queue size, not at regular intervals

or as the result of new arrivals, suggests that host

response mechanisms based on flow estimators may

work much better than those based on window-size

estimators with these schemes.

5.3. Time Synchronization

Experiments conducted since 1981 have demonstrated

that the Fuzzball implementation is ideally suited as an

8

internet time server. The Fuzzball local clock is con-

structed as a first-order phase-lock loop, in which

measured offsets between the local clock and an external

reference source are used to adjust the local-clock phase

and frequency. The implementation is carefully con-

structed to minimize sources of jitter, such as interrupt

latencies and resource conflicts. The resulting accuracy

at the application interface is usually less than a mil-

lisecond in phase and less than a part per million in

frequency.

A time-synchronization function is built into the DCN

routing protocol [12], which uses a variant of the dis-

tributed Bellman-Ford algorithm [1]. One or more DCN

hosts synchronize to an external reference source, such

as a radio clock or time daemon, and the routing protocol

constructs a minimum-delay spanning tree rooted on

these hosts. The clock offsets along the tree are then

computed using timestamps included in routing-update

messages. Typical local-clock accuracies using Fuz-

zballs and the DCN routing protocol connected over

LAN paths with serial lines and Ethernets are in the order

of a few milliseconds.

In 1985 after an extensive set of experiments and

prototype refinement using Fuzzballs at several locations

in the US and Europe, an architecture model and protocol

based on the DCN design, but suitable for use as a

ubiquitous Internet time service, was proposed. The pur-

pose of the protocol, called the Network Time Protocol

(NTP), is to connect a number of master clocks,

synchronized to national standards by wire or radio, to

widely accessible resources such as backbone gateways.

These gateways, acting as primary time servers, use NTP

between them to cross-check the clocks and mitigate

errors due to equipment or propagation failures. While

multiple primary servers may exist, there is no require-

ment for an election protocol, such as used in some Unix

systems [5].

In order to reduce the protocol overhead, some number

of local-net hosts or gateways, acting as secondary time

servers, can run NTP with one or more primary servers,

then redistribute time to the remaining local-net hosts

using NTP, DCN or some other protocol such as

described in [9] and [5]. In the interest of reliability,

selected local-net hosts can be equipped with less ac-

curate but less expensive backup clocks and used in case

of failure of the primary and/or secondary servers or

communication paths between them.

The Fuzzball implementation includes algorithms for

deglitching and smoothing clock-offset samples col-

lected on a continuous basis, as well as algorithms for

selecting good clocks from a population possibly includ-

ing broken ones. These algorithms were evolved under

typical operating conditions over the last two years. A

comprehensive description of the NTP architecture,

protocol and algorithms is given in [16].

Timekeeping accuracies achieved with the Fuzzball im-

plementation on typical Internet paths are in the range of

a few tens of milliseconds. Figure 1 shows the NTP clock

offsets (absolute) measured between Fuzzball primary

servers at the University of Delaware and University of

Maryland over a period of about a week. Performance

data collected with the primary servers show that this

accuracy can be reliably maintained throughout most

portions of the Internet, even in cases of failure or dis-

ruption of clocks, servers or communication paths.

There are presently six Fuzzball primary time servers

located on the east coast, west coast and midcontinent,

each of which serves 20-40 Fuzzball and Unix secondary

time servers in the US and Europe. A survey reported in

[16] suggests there may be well over 2000 potential

clients in the ARPANET/MILNET community, plus

probably several thousand more in the NSFNET com-

munity.

6. Parting Shots

During the past decade when the Fuzzball has been most

useful, it represented a relatively inexpensive way to pry

into network technology, prototype new architectures

and protocols and in general fan the fuzes of the explod-

ing Internet. As the cost of sophisticated workstations has

plummeted in recent years, the LSI-11 technology itself

is no longer economically attractive. The software,

having been lashed together by several generations of

programmers and in support of novel applications and

ad-hoc experiments lasting over a decade, is not readily

portable. For awhile, at least, Fuzzballs may lurk in dark

corners of various laboratories in the hulks of otherwise

outmoded PDP11 and LSI-11 systems and occasionally

barge out to resolve routing problems and rescue wander-

ing packets. In the long term Fuzzballs may endure as

time servers and ad-hoc intelligence platforms, for which

they are well suited.

Time (UT hours)

O
ff

s
e
t

(s
e
c
o

n
d

s
)

20 40 60 80 100 120 140 160 180

0
.0

0
1

0
.0

1
0
.1

1
1
0

Figure 1. Measured Clock Offsets

9

A new generation of Fuzzballs may in fact have already

happened in the form of recent Unix-based workstations,

which are fast becoming as ubiquitous as the common

video terminal. However, the casual abuse heaped on the

Fuzzball operating system is much harder to do in these

workstations, since much of the code is licensable and

sources are not commonly available. In addition, the

Unix kernel is considerably less tractable than the Fuz-

zball and much of the networking code is not easily

modifiable. Nevertheless, the Unix programming sup-

port is far superior to the Fuzzball and much more

portable. The ideal next-generation Fuzzball would be

programmed in C, support the Unix run-time environ-

ment, TCP/IP and ISO protocol suites and contain no

licensed code.

7. References

1. Bertsekas, D., and R. Gallager. Data Networks.

Prentice-Hall, Englewood Cliffs, NJ, 1987.

2. Braden, R. Requirements for Internet gateways.

DARPA Network Working Group Report RFC-

1009, USC Information Sciences Institute, June

1987.

3. Chu, W.W., D.L. Mills, et al. Experimental results

on the packet satellite network. Proc. National

Telecommunications Conference (November

1979), 45.4.1-45.4.12.

4. Defense Communications Agency. DDN Protocol

Handbook. NIC-50004, NIC-50005, NIC-50006,

(three volumes), SRI International, December 1985.

5. Gusella, R., and S. Zatti. The Berkeley UNIX

4.3BSD time synchronization protocol: protocol

specification. Technical Report UCB/CSD 85/250,

University of California, Berkeley, June 1985.

6. Jacobs, I.M., R. Binder, and E.V. Hoversten.

General purpose packet satellite networks. Proc.

IEEE 66, 11 (Nov 1978), 1448-1467.

7. Jennings, D.M., L.H. Landweber, I.H. Fuchs, D.J.

Farber and W.R. Adrion. Computer networks for

scientists. Science 231 (28 February 1986), 943-

950.

8. Leiner, B., J. Postel, R. Cole and D. Mills. The

DARPA Internet protocol suite. Proc. INFOCOM

85 (Washington, DC, March 1985). Also in: IEEE

Communications Magazine (March 1985).

9. Marzullo, K., and S. Owicki. Maintaining the time

in a distributed system. ACM Operating Systems

Review 19, 3 (July 1985), 44-54.

10. Mills, D.L. An overview of the Distributed Com-

puter Network. Proc. AFIPS 1976 National Com-

puter Conference (New York, NY, June 1976).

11. Mills, D.L. Internetworking and the Atlantic SAT-

NET. Proc. National Electronics Conference (Oc-

tober 1981), 378-383.

12. Mills, D.L. DCN local-network protocols. DARPA

Network Working Group Report RFC-891, M/A-

COM Linkabit, December 1983.

13. Mills, D.L. Exterior Gateway Protocol formal

specification. DARPA Network Working Group

Report RFC-904, M/A-COM Linkabit, April 1984.

14. Mills, D.L. Internet Delay Experiments. DARPA

Network Working Group Report RFC-889, M/A-

COM Linkabit, December 1983.

15. Mills, D.L., and H. Braun. The NSFNET Backbone

Network. Proc. ACM SIGCOMM 87 Symposium

(Stoweflake, VT, August 1987), 191-196.

16. Mills, D.L. Network Time Protocol (Version 1)

specification and implementation. Electrical En-

gineering Department Report 88-04-01, University

of Delaware, April 1988.

17. Mocapetris, P. Domain names - implementations

and specifications. DARPA Network Working

Group Report RFC-1035, USC Information Scien-

ces Institute, November 1987.

18. Nagle, J. On packet switches with infinite storage.

DARPA Network Working Group Report RFC-970,

Ford Aerospace, December 1985.

19. Prue, W., and J. Postel. Something a host could do

with source quench: the source quench introduced

delay (SQuID), DARPA Network Working Group

Report RFC-1016, USC Information Sciences In-

stitute, July 1987.

10

