
Panodome
Version 1.0

ITB CompuPhase

ii ITB CompuPhase

“Borland” and “Borland C++” are registered trademarks, and “Delphi” is a trademark of Borland

International, Inc.

“IBM” and “OS/2” are registered trademarks of International Business Machines Corporation.

“Microsoft” and “Microsoft Windows” are registered trademarks, and “Visual Basic” and “Visual

C/C++” are trademarks of Microsoft Corporation.

“Paint Shop Pro” is a trademark of JASC, Inc.

“Watcom” is a trademark of Sybase, Inc.

“CompuPhase” and “EGI” are registered trademarks of ITB CompuPhase, and “AniSprite” and

“Panodome” are trademarks of ITB CompuPhase.

Copyright c© 1997–1999, ITB CompuPhase, Brinklaan 74-b, 1404 GL Bussum,
Netherlands (Pays Bas); tel.: +31 35 693 9261; fax: +31 35 693 9293;
CompuServe: 100115,2074; e-mail: info@compuphase.com;
WWW: http://www.compuphase.com

No part of this manual may be reproduced or transmitted by any means (elec-
tronic, photocopying or otherwise), without prior written permission by ITB
CompuPhase.

The examples and programs in this manual have been included for their instruc-
tional value. They have been tested with care, but are not guaranteed for any
particular purpose.

Typeset with TEX in the “Computer Modern” and “Pandora” typefaces at a base size of 11 points.

Panodome iii

Table of Contents
Introduction .1

Panorama overview . 2
Making panoramic images .4

Making adjustments to the panoramic image . 6
Storing panorama attributes .7

Using the Panodome engine . 10
Compiling and linking .10
Opening a panorama .10
Creating a viewer window . 11
Responding to events . 12
Closing down . 13
Adding a compass . 13

Function reference .15
Data reference .33
Message reference .35
Error codes . 37
Appendices . 37

A: Handling DIBs .38
B: Resources . 40

Index . 43

iv ITB CompuPhase

Panodome Introduction — 1

Introduction

Panodome is a toolkit for embedding views of cylindrical panoramic images into
an application. Making a standard panoramic image navigator with Panodome
requires only a few simple function calls. Panodome also lets you extent the
viewer and combine it with sound and animation toolkits, in order to create
lively panoramas, or to make interactive games.

Features:
� High performance, critical routines hand-optimized in assembler.
� Combines with EGI (a frame animation toolkit), AniSprite (a sprite animation

toolkit) and many other graphic and animation libraries.
� Support for hot spots (which generate events) and tooltip or balloon text on

these hot spots.
� Free pan, tilt and zoom.
� Compass orientation.
� Partial cylinders, horizon correction, . . .
� Multiple concurrent panoramic views.
� Windows DLL interface, libraries/definition files for C/C++.
� Many configuration options; both low level and high level functions.
� Source code is available.

Panoramic images create a photo-realistic, three dimensional, navigable environ-
ment. A panoramic image captures the surroundings of a location in a 360◦
cylindrical environment. The spectator is immersed in this environment and he
or she has control over viewed area, through panning, tilting, zooming and hot
spot selection. The Panodome viewer warps the panoramic image to create the
illusion that the spectator is immersed in a 3D space, rather than just scrolling
through a flat panoramic image.

Panoramic imaging presents opportunities to a variety of entertainment and edu-
cational uses. Adventure style games with realistic (photographed or scanned) or
semi-realistic backgrounds are one example. Guided tours and real estate images
are another (museums, exhibitions, building sites).

When compared with full 3D engines, panoramic images represent a trade-off
between image quality, speed of display and the ability to move freely through
a scene. Panoramic imaging takes the path of pre-rendering the scenes as much
as possible. This allows you to use high quality, very detailed, photo-realistic
images for the panorama. 3D engines are usually restricted to textures of limited
size and of limited number and the number of polygons in a scene directly affects

2 — Panorama overview ITB CompuPhase

the frame rate. The drawback of panoramic imaging is that you can only move
along pre-computed paths.

Game and multi-media objects, whether these are flat sprites or volume-objects
generated by a real-time 3D renderer, can be put on top of a panorama. This
technique allows to spend most of the available computer power on rendering
the (relatively small) foreground objects, and have beautifully high resolution
backgrounds at low processor cost.

Panorama overview

There exist at least three types of panoramic images: cylindrical, cubical and
spherical. The techniques underlying each kind of panoramic image are quite
different. Hence, it is important not to confuse the varieties.

Spherical panoramic images are usually taken with a fish-eye lens. The photo-
grapher captures two pictures in opposite directions using a camera with a fish-
eye lens. Each picture covers a hemisphere; the combination of both pictures
covers the full sphere. The quality of a spherical panorama is uneven, because
the source images are much denser along the (circular) circumference than in the
centre. That is, the pixels in the centre of the image represent a much smaller
area of the photographed scene than the pixels near the circumference. The effect
of a fish-eye lens is that of a magnifying lens: there is much detail in the centre,
but very little detail at a 90◦ angle.

Cubical panoramic environments consist of 6 images, one for every face of a cube.
The images for cubical panoramas are usually generated by a computer, because
the angle of a camera lens would need to be 90◦ to capture the required images
(and still produce rectilinear images).

Cylindrical panoramas offer only limited freedom of “tilting”. That is, one can
turn around in a full circle, but the amount by which one can look up and
down is restricted. The images for a cylindrical panorama are best captured
with a special panoramic camera with a rotating lens and a vertical diaphragm.
However, the most common method of image acquiring for panoramic images
is to capture a series of pictures with a standard camera that turns around a
single point of rotation, usually on a tripod. After digitizing the pictures into
a set of computer image files, these images are stitched together with computer
software. The source images can be captured with nearly any type of lens and
camera combination; a common “35 mm film” camera is adequate.

Panodome Panorama overview — 3

Cylindrical panoramas are the most popular of the panorama varieties, and they
are the only type supported by Panodome. One reason why the use of cylin-
drical is so wide spread in comparison to spherical or cubical panoramas is that
cylindrical panoramas are relatively easy to create using common tools.

4 — Making panoramic images ITB CompuPhase

Making panoramic images

A panoramic image is usually made from one or more photographs that are
scanned in (or, in the case of a digital camera, simply transferred). For com-
puter generated panoramic images, look at appendix B for a link to Wasabi
software’s “SkyPaint”. Rendering packages like POV-ray and Bryce can also
produce panoramic images.

The first step in making a panoramic image, suitable for Panodome to display,
is to take the photographs. Here, already, you have several choices:
� Put a standard camera on a tripod and take 8 to 12 pictures while rotating.

Post-processing software later warps and stitches the images together in a way
that mimics the operation of a panoramic camera.

� Put a video camera on a tripod and rotate it around the (vertical) axis while
filming. After digitizing the movie, you have a large number of overlapping
frames to choose from (stitching software usually needs pictures with 30% to
50% overlap, so you do not need all frames of the movie). The quality of the
final panoramic image is not very high, because of the unavoidable noise in
individual frames of a video stream.

� Use a panoramic camera with a narrow vertical shutter and a rotating lens.
These cameras are expensive and the film that they use may be difficult to
develop and to scan. The biggest advantage of panoramic cameras is that no
post-processing software is required (and hence, no quality loss).

� Attach a panoramic lens on a standard camera. The lens is actually a cone-
shaped mirror that is mounted in front of the camera lens. The picture that is
taken via the panoramic “lens” is heavily deformed, which must be corrected
with special software. Panoramic lenses are fairly expensive.

The first alternative in the above list is also the most common. It achieves high
quality at low material costs. Because of the number of photographs that must be
scanned in and the post-processing step, this technique may become quite costly,
time-wise, when you have to create a large number of photographs, however.

To use the “standard camera on a tripod” technique, there are a few criterions
to which you must adhere:
� The camera must rotate on an axis perpendicular to the axis of the lens. For

a horizontal horizon, this means that the axis through the lens must be level
(spirit-level) at every orientation.

Panodome Making panoramic images — 5

� The tripod should have a radial scale, or the camera should be corrected for
parallax. Otherwise, getting even angle increments while taking pictures be-
comes very hard. Note that stitching software needs the pictures to overlap,
and that the software usually specifies a minimum and a maximum overlap.

� The lens must produce rectilinear images-that is, straight lines in the input
image must appear as straight lines in the resulting image. This rules out
fish-eye lenses.

� When photographing objects near to the camera (say, within one meter of the
lens), the rotation point should also be precisely below the lens. Most cameras,
when fitted on a tripod, rotate around a point that is 20 to 40 millimeter behind
the lens.

Some manufacturers sell “panoramic tripod heads” that keep the camera hori-
zontally leveled, automatically snap to the desired angles and that position the
rotation point of the camera just below the lens. There exist even motorized
tripod heads, see also appendix B.

While I mentioned a “radial scale” above, one issue I have stepped over is by
how many degrees you must turn the camera after each picture. Another way of
asking basically the same question is: how many pictures must one take for the
photographs to stitch correctly. The first thing to determine is the “field of view”
in degrees of a single picture. Some camera or lens manuals give this value, but
otherwise you can calculate it from the focal length of the lens.

fov = 2× arctan
(

width/2
focal length

)

where width is the usable width of the film in millimeter. The frame size of
common 35 mm film is 36×24 millimeter, but the frame edges are often cropped
off, typically reducing the frame size by 5%. That is, in landscape mode, a good
rule-of-thumb value for the width is 34 mm. The “focal length” value is the focal
length of the lens, also in millimeter.

As an example: the field of view (fov) of a common camera with a lens with a
focal length of 35 mm is approximately 52◦.
Stitching software requires a minimum overlap for the photographs; a common
value is 20◦. When subtracting the required overlap from the field of view, you
get the maximum angle at which the camera may turn from one photograph to
the next. To continue my example of the standard camera with a 35 mm lens,
the field of view is 52◦ and the maximum rotation angle is 32◦. The number

6 — Making adjustments to the panoramic image ITB CompuPhase

of pictures required flows from this angle, because a full circle is 360◦. In this
example, the number of pictures is 12 (the division 360/32 gives 11.25, which
must be rounded upwards). The final step is to get the final rotation angle from
this “number of pictures” (note that the angle calculated earlier represented the
maximum rotation angle; for stitching it is better to make all pictures overlap
by the same amount, including the first and last pictures). Again, one finds
this value by dividing 360◦ by the number of pictures. Here, the rotation angle
becomes 30◦.

Making adjustments to the panoramic image
After acquiring the panoramic image in one way or another, the next step is
to make it ready for the Panodome viewer. The Panodome viewer itself sup-
ports only Windows Bitmap images with 256 colours. This file type may be
directly supported by your stitching/post-processing software; if not, use one of
the many graphic image editors to convert the output of the stitching software
to the Windows Bitmap file format.

Alternatively, you can use one of the many graphic libraries to load an image
into memory and pass it on to the Panodome functions. Panodome requires the
image in an in-memory DIB format. Any graphic library for Windows that is
worth its salt can provide you the images that they load in DIB format.

• Horizon adjustment

In the initial photographs, the horizon is precisely halfway the height of each
photo (this flows from the requirements for taking the photographs mentioned
earlier). After stitching and cropping the image, this no longer needs to be true,
however. Panoramic images that are taken with a panoramic “lens” (actually a
mirror) also need not to have the horizon in the middle of the image.

If the horizon is not exactly halfway the height of the panoramic image, you
should add a horizon adjustment instruction to the image. The horizon adjust-
ment is an integer value that gives the offset in pixels of the horizon from the
vertical centre of the image. For example, if the panoramic image is 100 pixels
high, and the horizon is at 30 pixels from the top of the image, then the horizon
adjustment should be 20 (or, 100/2−30). In other words, the horizon is 20 pixels
above the vertical middle line of the image.

See the section “storing panoramic attributes” below for how to attach the hori-
zon adjustment to the image.

Panodome Storing panorama attributes — 7

• Make sure the image has a width that is a multiple of 4 pixels

For technical reasons, the Panodome viewer requires that each input image has a
width that is a multiple of four pixels. This requirement follows from the way that
Windows stores DIBs (device independent bitmaps). Many stitching programs
already generate images that comply with this requirement, and otherwise, you
need to stretch or compress the image width to the nearest multiple of four pixels
with any graphic editor.

You can also call pan_ScaleDIB to scale a image at run time, if needed. This is
what the PANVIEW example program does.

Storing panorama attributes

The attributes, like the horizon correction and the angle covered by a non-full
cylinder panorama, are best stored inside the same computer file that also holds
the pixels of the panoramic image. Several formats, like CompuServe’s GIF and
PPM (“Portable Pixel Map”) support the inclusion of general purpose comments
in the picture file, which suits this purpose perfectly. Other file formats, like
ZSoft’s PCX or Microsoft’s BMP, do not allow such extensions and, hence, require
that the properties be stored in a separate companion file.

At the lowest level, the Panodome engine holds the properties in a structure that
is documented at page 33 (the “PANATTRIB” structure). Whatever the source
of the panoramic image properties, filling in this structure with the relevant
information is all that is needed.

In the (common) cases that the panoramic attributes are available either in a
string, for example from a “comment” field from the image file, or in a text file,
Panodome offers two convenient functions to parse the attributes and fill in the
low level structure. The string-based function pan_AttribString can handle
ASCII/ANSI strings that are optionally, but not necessarily, zero-terminated.
Function pan_AttribFile retrieves the required information from a text file.

Both functions use the same syntax to specify the properties of the panoramic
image. As stated before, the information is kept in a stream (or string) of
ASCII/ANSI characters. In this string, each attribute starts with a keyword
and it has its value or parameter enclosed in parentheses behind the keyword.
The keywords defined so far are:

8 — Storing panorama attributes ITB CompuPhase

horizon(value)
Gives the offset of the “horizon” of the panoramic image from the
vertical centre of the image. A positive value indicates that the
horizon (of the panoramic image) is above the vertical centre, a
negative value moves the horizon below the vertical centre. See also
the section “horizon adjustment” on page 6. If absent, the horizon
is assumed to be exactly at the vertical centre of the image.

angle(value)
The field of view (in degrees) that the panoramic image presents. If
absent, Panodome assumes the image to be a full 360◦ panorama.

orientation(value)
The position on a compass of the left edge of the panoramic image.
This setting is in degrees counter-clockwise. For example, when
setting the orientation to 90◦, the left edge of the image points to
the West.

hotspot(x1 y1 x2 y2 label text)
Adds a rectangular hot spot to the image. The “label” is a general
purpose string whose meaning depends on the application using the
Panodome viewer. A common case is that the label is the filename
or the URL of the panoramic image that one jumps to when clicking
on the hot spot.

The “text” is a general purpose string that may serve for tooltips
or balloon texts. The “text” parameter is optional.

Several hot spots (with different coordinates) may refer to the same
label.

If the strings for the label or the text contain space characters
or other non-alphanumeric characters, they should be enclosed in
quotes. Both single and double quotes are acceptable.

userstring(string)
A general purpose string that a viewer may use for any purpose.
A typical employ of the user string is to set a sound track for the
panorama.

Line breaks, spacing and indenting are all irrelevant in the attribute string.
The keywords in the attribute string should be all lower case, the functions
pan_AttribString and pan_AttribFile are case sensitive. To accommodate

Panodome Storing panorama attributes — 9

the PPM file format, the “#” character, which is used for comments in PPM
files, is equivalent to white space.

When stored as a separate file, the suggested extension is .PAN. Below is an
example of several settings for the “Arena” example image.

horizon(-20)
angle(360) orientation(90)
hotspot(404 167 463 252 "@close" "Leave the panorama")

Figure 1: Syntax of the panorama attribute file

10 — Using the Panodome engine ITB CompuPhase

Using the Panodome engine

This chapter presents a simple panoramic image viewer. The code snippets are
based on the “PANVIEW” example program that comes with the Panodome toolkit.

The following sections describe the process in more detail, but basically the steps
needed to display a panorama are:
� Open a panorama with pan_Create after reading in the image bits and (op-

tionally) the panorama attributes.
� Create a navigation window for the panorama and to attach the panorama to

that window.
� Add settings to the panorama; respond to events while navigating.
� Destroy the window and close the panorama upon exit.

Note that, in pure example spirit, error checking is lacking from the code snippets
in this chapter. In real live programs, you should of course check the return value
of each function.

Compiling and linking
Each source file that calls the Panodome functions should include PANODOME.H.

Linking is less straightforward, due to incompatibilities between the tools of
compiler vendors there is a library file per supported compiler brand:
� PAN32M.LIB for Microsoft Visual C/C++ version 4.0 or higher, and for other

compilers that are compatible with the COFF object library format.
� PAN32B.LIB for Borland C++ 4.5 or higher.
� PAN32W.LIB for Watcom C/C++ 10.6 or higher.

Opening a panorama
The first step is to open the panoramic image and to read it in memory in the
DIB format. The Panodome toolkit only reads in 256 colour Windows Bitmap
(“.BMP”) files from disk, either in uncompressed or RLE compressed format. It
does not have functions to read image files from any of the other common raster
image file formats, but many imaging toolkits floating around on the marketplace
can provide the image data in DIB format.

Next to the image, you will also want to read in the attribute file for the
panoramic image, if one exists, or fill in a “PANATTRIB” structure by hand (see

Panodome Creating a viewer window — 11

page 33 for the field descriptions). When filling in the PANATTRIB structure man-
ually, make sure that you set the “reserved” field to zero; this field may be used
in future versions of the Panodome viewer. The “flags” field should also be
zero.

With the raw image data and the attributes in hand, a call to pan_Create is
all that is needed to obtain a handle to a panorama. With the handle, one can
already extract a “view” and pass it on to a sprite library to display it. The
simplest way to display any view from a Panodome panorama, and to obtain
some navigational capabilities, is to create a special window for it. . . which is
discussed next.

LPBITMAPINFO Image;
PANATTRIB Attribs;
PANINFO Pan;
RECT rect;

. . .
Image = pan_LoadDIB("arena.bmp", NULL);
pan_AttribFile("arena.pan", &Attribs);
GetClientRect(hwnd, &rect);

Pan = pan_Create(Image, NULL, &rect, &Attribs);

Figure 2: Opening the panorama

As a side note, pan_Create copies the information that it needs from the DIB
header and the PANATTRIB structures, but it does not copy the bits of the image.
In other words, you may not free the memory to the DIB image bits (the pointer
Image in the above example) until the panorama is closed.

Another aside is that the DIB format separates the image header (“BITMAPINFO”)
from the pixel data. Many graphic libraries, however, allocate the header and
the pixel data in one continuous memory chunk. Panodome can work with both
schemes. As used in the above example, pan_LoadDIB returns a single pointer to a
memory block with the DIB header prepended to the pixel data, and pan_Create
accepts this format. See appendix A for details.

Creating a viewer window

You must open a panorama before you can create a viewer window. The viewer
window is also called the “navigation window”, since it allows you to pan, tilt
and zoom through the panoramic image.

12 — Responding to events ITB CompuPhase

There is no need to specify a location for the viewer window; the window uses
the same location (and size) as that of the viewport. Many other attributes for
the viewer window are also copied from the previously opened “panorama” data
structure. For the call to pan_CreateWindow, only three parameters are needed:
the panorama, the window style and the parent window.

A typical style for the viewer window is that of a child window that is embedded
inside its parent. Child windows do not automatically receive the input focus
upon creation. To allow keyboard navigation, it is therefore best to set the focus
to the viewer window explicitly after creation.

HWND hwndPan;

. . .
hwndPan = pan_CreateWindow(Pan, WS_VISIBLE | WS_CHILD, hwndParent);
SetFocus(hwndPan);

Figure 3: Creating a viewer window & set the input focus

The parent window is also the window to which the viewer window sends its
navigation events, like clicking on a hot spot. You can change this afterwards by
calling pan_SetHandle with the code PAN_HANDLE_NOTIFYWND.

Responding to events

The user can freely pan and tilt in the panorama or zoom in and out. There are
some actions, however, that the application wishes to be kept informed about,
such as a click on a hot spot. The viewer window sends such notification messages
to its parent window (or any other window of your choosing).

By default, the message that the viewer windows sends is PAN_NOTIFY, which
is defined as (WM_USER+79). In case this message conflicts with other “user”
message numbers that the application uses, you can change this message number
with pan_SetValue.

The notification message only gives you the index (or sequence number) of the
hot spot that fired. To get the more useful attributes, such as the hot spot’s
label, use pan_GetData.

PANINFO Pan;
LPSTR label;

. . .
case PAN_NOTIFY:
if (wParam == PN_SELHOTSPOT) {

Panodome Adding a compass — 13

label = pan_GetData(Pan, PAN_DATA_HOTSPOTLBL, LOWORD(lParam));
GoToNextPanorama(label);

} /* if */
break;

Figure 4: Intercepting a click on a hot spot

The function GoToNextPanorama is one that would be written by you. Of course,
you can do anything else upon reception of an event.

Closing down

Eventually, you will have to clean up the panorama. There are two things
that you must explicitly clean: the panorama and the DIB image bits for the
panorama that you passed to pan_Create earlier. Function pan_Delete removes
the panorama data structure; it can also delete the image bits, provided that
the image was loaded with pan_LoadDIB or that the memory for the image data
was allocated with pan_AllocResource. Closing the panorama automatically
destroys the viewer window (if there is one).

PANINFO Pan;

. . .
pan_Delete(Pan, TRUE);

Figure 5: Closing a panorama & deleting the image

Adding a compass

Panodome provides a simple compass that you can put on the screen to show
the current orientation. This can keep you from “getting lost” in a presenta-
tion based on panoramas. Creating a compass is is simple matter of calling
pan_CreateCompass. To set the position of the needle of the compass, you must
also monitor the PN_MOVE event of viewer window.

PANINFO Pan;
HWND hwndCompass;
int orientation;

. . .
hwndCompass = pan_CreateCompass(20, 40, hwndParent, FALSE);

. . .
case PAN_NOTIFY:
switch (wParam) {

14 — Adding a compass ITB CompuPhase

case PN_MOVE:
if (IsWindow(hwndCompass)) {

orientation = pan_GetValue(Pan, PAN_VALUE_ORIENTATION);
PostMessage(hwndCompass, PAN_COMMAND, PC_ORIENTATION, orientation);

} /* if */
break;

} /* switch */
break;

Figure 6: Setting the compass

The final parameter in pan_CreateCompass determines whether the compass
window is a child window or a popup window. The user can move a “popup
compass” around by clicking and dragging anywhere inside the window. The
location of a “child compass” is fixed (relative to its parent window).

Panodome pan AttribFile — 15

Function reference

First a few global remarks:

� Since the C++ classes are just a thin layer on top of the C function set, they
are discussed on the same pages. There are three classes, but the bulk is
in the PanView class, for the panoramic image manipulation and viewer. The
other two classes are PanCompass and PanAttrib (which manages the attribute
strings and the attribute files, see page 7).

� If a function fails, you can use pan_Error to get the reason for failure.

pan AllocResource Allocate memory

pan_AllocResource allocates a memory block.

Syntax: LPVOID pan AllocResource(long Size)

Size The requested number of bytes.

Returns: A pointer to a memory block of at least the requested size, or NULL if
unsuccessful.

Notes: The memory block should be freed with pan_FreeResource.

See also: pan_FreeResource

pan AttribFile Read panorama attributes from a file

pan_AttribFile reads panoramic image settings from a specified text file.

Syntax: BOOL pan AttribFile(LPCSTR Filename, LPPANATTRIB Attribs)

BOOL PanAttrib::File(LPCSTR Filename)

Filename The complete filename (including extension) of the text
file with the panorama attributes.

Attribs A pointer to the structure where to store the panorama
attributes in.

Returns: TRUE on success and FALSE on failure.

16 — pan AttribString ITB CompuPhase

See also: pan_AttribString

pan AttribString Read panorama attributes from a string

pan_AttribString parses a text string that contains attributes for a panoramic
image. The string is optionally zero-terminated.

Syntax: BOOL pan AttribString(LPCSTR CmdString, int Length,
LPPANATTRIB Attribs)

BOOL PanAttrib::String(LPCSTR CmdString, int Length=-1)

CmdString The string containing the panorama attributes.

Length The length of the “string” parameter. If set to -1, the
function assumes that “string” is zero-terminated.

Attribs A pointer to the structure where to store the panorama
attributes in.

Returns: TRUE on success and FALSE on failure.

See also: pan_AttribFile

pan CheckHotSpot Check for hot spots at a location

pan_CheckHotSpot determines if a coordinate pair (in the viewport) points into
a hot spot (in the source image). If the coordinate pair is at a hot spot, the
function also returns the sequence number of the hot spot.

Syntax: BOOL pan CheckHotSpot(PANINFO Pan, int X, int Y,
LPINT Index)

BOOL PanView::CheckHotSpot(int X, int Y, LPINT Index)

Pan The panorama handle.

X, Y The position in the viewport.

Index Will hold the sequential number of the hot spot at the
indicated position upon return. This parameter may be
NULL.

Returns: TRUE if the location (X,Y) is on a hot spot and FALSE otherwise.

Panodome pan Create — 17

Notes: You can use the returned index of the hot spot to query the label or
text fields of the hot spot with pan_GetData. Hot spot information is
attached to the panorama in the call to pan_Create.

The viewer window sends a notification message to inform the parent
window of clicks or hits on a hot spot.

See also: pan_GetData, pan_Create

pan Create Create a panorama

pan_Create creates in instance of a panorama and allocates all memory that it
needs for the manipulation of the panorama. The function does not create a
window for the panorama, but the position and size of this (optional) window
are set in pan_Create.

Syntax: PANINFO pan Create(LPBITMAPINFO BitsInfo,
LPVOID ImageBits, LPRECT ViewPort,
LPPANATTRIB Attribs)

BOOL PanView::Create(LPBITMAPINFO BitsInfo,
LPVOID ImageBits, LPRECT ViewPort,
PanAttrib *Attribs=NULL)

BitsInfo A pointer to the DIB header of the source image.

ImageBits A pointer to the pixel data of the source image. If this
parameter is NULL, the function assumes that the pixel
data follows the DIB header (in the BitsInfo parameter)
in a single memory block.

ViewPort The position and size of the viewport.

Attribs Points to a structure with the attributes and settings of
the panorama. If NULL, the function assumes a cylin-
drical panorama with no horizon correction and no hot
spots.

Returns: The C functions returns the PANINFO handle that most other Pano-
dome functions need. The C++ method returns TRUE on success and
FALSE on failure.

See also: pan_AttribFile, pan_AttribString, pan_CreateWindow,
pan_LoadDIB

18 — pan CreateCompass ITB CompuPhase

pan CreateCompass Create a compass window

pan_CreateCompass creates a small window with a circular scale (North, West,
South and East) and a needle. The compass window may be used to indicate the
orientation in a panorama.

Syntax: HWND pan CreateCompass(int X, int Y, HWND hwndParent,
BOOL Child)

HWND PanCompass::Create(int X, int Y,
HWND hwndParent=NULL,
BOOL Child=FALSE)

X, Y The location of the upper left corner of the compass win-
dow.

hwndParent The window handle of the parent window. Use NULL if
the compass window should not have a parent.

Child If TRUE, the compass window is created as a “child” win-
dow of the specified parent. If FALSE, the compass win-
dow becomes a popup window.

Returns: The window handle of the compass window.

Notes: The size of the compass window is 65 × 65 pixels.

To set the position of the needle, you must send the compass window
a PAN_COMMAND message. C++ programs can also use the SetOrien-
tation method of the PanCompass class.

See also: PAN_COMMAND

pan CreateWindow Create a panorama viewer window

pan_CreateWindow creates a viewer window for a previously opened panorama.
The viewer window provides navigational capabilities and hot spot detection.

Syntax: HWND pan CreateWindow(PANINFO Pan, DWORD dwStyle,
HWND hwndParent)

HWND PanView::CreateWindow(DWORD dwStyle,
HWND hwndParent=NULL)

Panodome pan Delete — 19

Pan The panorama handle.

dwStyle The window style. This must be a combination of the
WS_xxx flags from the CreateWindow function of the Mi-
crosoft Windows API. When you set the dwStyle param-
eter to zero, the function creates a (visible) child window
without border.

hwndParent The window handle of the parent window. Use NULL if
the viewer window should not have a parent. You must
give a valid parent window when the dwStyle parameter
includes the WS_CHILD flag. The parent window is also
the window that receives the notification messages, by
default.

Returns: The window handle of the viewer window, or NULL on failure.

See also: pan_Create

pan Delete Close the panorama

pan_Delete closes a panorama and releases all memory.

Syntax: BOOL pan Delete(PANINFO Pan, BOOL DeleteDIB)

BOOL PanView::Close(BOOL DeleteDIB=FALSE)

Pan The panorama handle.

DeleteDIB If TRUE, the function also frees the memory for the source
image that was passed to pan_Create. The memory re-
source for the source image must have been allocated
with pan_AllocResource for this to work.

Returns: TRUE on success and FALSE on failure.

Notes: After calling this function, any reference to the “Pan” handle is invalid.
pan_Delete frees all memory allocated for the animation.

See also: pan_Create

20 — pan Error ITB CompuPhase

pan Error Return the error code

pan_Error returns the most recent error code for a panorama.

Syntax: int pan Error(PANINFO Pan)

int PanView::pan Error()

Pan The panorama handle.

Returns: The last error code; zero of the latest function was successful.

Notes: If the Pan parameter is NULL, the pan_Error function returns the latest
global error number.

See page 37 for a list of error codes.

pan FreeResource Release a memory resource

pan_FreeResource releases a memory block back to the operating system. The
memory block must have been allocated by a Panodome function for this to work
correctly.

Syntax: LPVOID pan FreeResource(LPVOID Resource)

Resource A pointer to a memory block that was previously al-
located by pan_AllocResource or another Panodome
function.

Returns: This function always returns NULL.

Notes: pan_FreeResource frees memory blocks that are allocated by the fol-
lowing functions:
pan_AllocResource

pan_LoadDIB

pan_ScaleDIB

See also: pan_AllocResource, pan_LoadDIB, pan_ScaleDIB

Panodome pan GetData — 21

pan GetData Access internal data

pan_GetData returns pointers to data tables that the Panodome engine maintains
for each panorama.

Syntax: LPVOID pan GetData(PANINFO Pan, int Code, int Index)

LPVOID PanView::GetData(int Code, int Index=0)

Pan The panorama handle.

Code Specifies the data that is requested. It is one of the
following:

PAN DATA BITMAPINFO
A pointer to the DIB header for the viewport.

PAN DATA HOTSPOTLBL
A pointer to the label of a hot spot. The “Index”
parameter gives the sequential (zero-based) num-
ber of the hot spot.

PAN DATA HOTSPOTLIST
A pointer to the raw hot spot list, which is imple-
mented as an array of PANHOTSPOT structures.

PAN DATA HOTSPOTTEXT
A pointer to the “text” of a hot spot. The “In-
dex” parameter gives the sequential (zero-based)
number of the hot spot.

PAN DATA IMAGE
A pointer to the DIB of the source image (the im-
age passed to pan_Create).

PAN DATA LENS
A pointer to the “lens” data structure. The “lens”
is a data structure that contains the warping infor-
mation that pan_GetView uses.

PAN DATA VIEWPORT
A pointer to the pixel data of the DIB for the view-
port.

22 — pan GetHandle ITB CompuPhase

Index The meaning of the “Index” depends on the Code pa-
rameter.

Returns: A pointer to the data that was requested, or NULL on failure.

See also: pan_GetHandle, pan_GetRect, pan_GetValue

pan GetHandle Access internal handles

pan_GetHandle returns handles to various Microsoft Windows objects that the
Panodome engine maintains for each panorama.

Syntax: HANDLE pan GetHandle(PANINFO Pan, int Code)

HANDLE PanView::GetHandle(int Code)

Pan The panorama handle.

Code Specifies the handle that is requested. It is one of the
following:

PAN HANDLE PALETTE
The handle of the palette that pan_Create created
for the panorama.

PAN HANDLE NOTIFYWND
The handle to the window that receives the notifi-
cation messages.

PAN HANDLE VIEWERWND
The handle to the viewer window; i.e, the handle
that pan_CreateWindow returned.

Returns: A pointer to the handle that was requested, or NULL on failure.

See also: pan_GetData, pan_GetRect, pan_GetValue, pan_SetHandle

pan GetRect Query bounding boxes or hot spot positions

pan_GetRect returns pointers into lists of rectangles that the Panodome engine
maintains for each panorama.

Syntax: LPRECT pan GetRect(PANINFO Pan, int Code, int Index)

Panodome pan GetValue — 23

LPRECT PanView::GetRect(int Code, int Index=0)

Pan The panorama handle.

Code Specifies the rectangle that is requested. It is one of the
following:

PAN RECT HOTSPOT
A pointer to the bounding box of a hot spot. The
“Index” parameter gives the sequential number of
the hot spot (starting from zero).

Index The meaning of the “Index” depends on the Code pa-
rameter.

Returns: A pointer to the rectangle that was requested, or NULL on failure.

See also: pan_GetData, pan_GetHandle, pan_GetValue

pan GetValue Read panorama settings and attributes

pan_GetValue returns current settings and fixed attributes for a panorama.

Syntax: int pan GetValue(PANINFO Pan, int Code)

int PanView::GetValue(int Code)

Pan The panorama handle.

Code Specifies the value that is requested. It is one of the
following:

PAN VALUE ANGLE
The field of view of the source image in degrees. It
is 360 for a 360◦ cylindrical panorama.

PAN VALUE HORIZON
The offset of the horizon from the vertical centre
of the source image (see also page 6).

PAN VALUE ID
The “ID” of the panorama, which must have been
set by pan_SetValue.

24 — pan GetValue ITB CompuPhase

PAN VALUE MAXZOOM
The maximum zoom factor that is allowed; when
zero (the default), there is no maximum.

PAN VALUE MSGNUM
The numeric value of the notification message that
the viewer window sends. The default message
value is PAN_NOTIFY.

PAN VALUE NUMHOTSPOTS
The number of hot spots that the panorama has.

PAN VALUE ORIENTATION
The orientation (the position of the needle on the
compass), based on the current (x,y) position in
the panorama.

PAN VALUE RADIUS
The radius, measured in pixels, of the cylinder of
the panorama.

PAN VALUE SPEED
The timer interval in milliseconds at which the
viewer window refreshes. The default is 50 ms,
which gives 20 frames per second.

PAN VALUE SRCHEIGHT
The height of the source image in pixels.

PAN VALUE SRCWIDTH
The width of the source image in pixels.

PAN VALUE VPHEIGHT
The height of the viewport image in pixels.

PAN VALUE VPWIDTH
The width of the viewport image in pixels.

PAN VALUE XPOS
The current “horizontal position” in the panorama,
measured as the offset in pixels from the left edge
of the source image.

Panodome pan LoadDIB — 25

PAN VALUE YPOS
The current “vertical position” in the panorama,
measured as the offset in pixels from top edge of
the source image.

PAN VALUE ZPOS
The current “distance” from the panoramic screen,
measure as the distance in pixels from the centre
of the cylinder.

Returns: A value that was requested, or zero on failure.

See also: pan_GetData, pan_GetHandle, pan_GetRect, pan_SetValue

pan GetView Extract an unwarped DIB from the panorama

pan_GetView returns a pointer to a DIB that represents an unwarped (perspec-
tive corrected) view at the current position of the panorama.

Syntax: LPVOID pan GetView(PANINFO Pan, LPBITMAPINFO BitsInfo)

LPVOID PanView::GetView(LPBITMAPINFO BitsInfo)

Pan The panorama handle.

BitsInfo Points to a BITMAPINFO structure (a header and a colour
table with 256 entries) that will contain the DIB header
information for the DIB pixels that the function returns.
This parameter may be set to NULL.

Returns: A pointer to the DIB pixels.

See also: pan_CreateWindow, pan_Create

pan LoadDIB Load a Windows Bitmap image

pan_LoadDIB reads an image in the Microsoft Windows “Bitmap” format from
disk into memory. The function supports both uncompressed and RLE com-
pressed bitmap images. pan_LoadDIB will only read 256-colour images.

Syntax: LPVOID pan LoadDIB(LPCSTR Filename, LPBITMAPINFO BitsInfo)

Filename The complete filename of the image.

26 — pan MapCoordinates ITB CompuPhase

BitsInfo Points to a BITMAPINFO structure (a header and a colour
table with 256 entries) that will contain the DIB header
information for the DIB pixels that the function returns.
This parameter may be set to NULL.

Returns: A pointer to the DIB pixels, or a pointer to the DIB header (see notes).

Notes: If the “BitsInfo” parameter is NULL, function pan_LoadDIB allocates
a single memory block for the DIB header and the pixel data. The
function returns a pointer to the header; the pixel data immediately
follows this header. If “BitsInfo” is not NULL, pan_LoadDIB only
allocates memory for the pixels and it stores the header in the structure
that “BitsInfo” points to.

The memory block that pan_LoadDIB allocates must be freed with
pan_FreeResource.

See also: pan_Create, pan_ScaleDIB

pan MapCoordinates Convert coordinates

pan_MapCoordinates converts “viewport” coordinates to “source” coordinates,
depending on the current pan, tilt and zoom.

Syntax: BOOL pan MapCoordinates(PANINFO Pan, int X, int Y,
LPPOINT Point)

BOOL PanView::MapCoordinates(int X, int Y, LPPOINT Point)

Pan The panorama handle.

X, Y The coordinates in the viewport.

Point Will hold the coordinates in the source image (the image
passed to pan_Create) upon return.

Returns: TRUE on success or FALSE if the coordinates are invalid.

See also: pan_CheckHotSpot

Panodome pan Move — 27

pan MinImageSize Inquire the minimum image dimensions

pan_MinImageSize returns the minimum image width and height that can be
displayed in the specified viewport.

Syntax: BOOL pan MinImageSize(LPINT Width, LPINT Height, LPRECT
ViewPort, int Angle)

Width,
Height The returned minimum width and height for an image

that the viewport can hold. The returned width is always
a multiple of 4 bytes.

ViewPort Keeps the size of the viewport.

Angle The angle that the panoramic image covers; use zero for
a full cylinder.

Returns: TRUE on success or FALSE if the angle or the viewport parameters are
invalid.

See also: pan_Create

pan Move Move the viewport relative to its current position

pan_Move pans, tilts or zooms the current viewport, relative to its current posi-
tion.

Syntax: WORD pan Move(PANINFO Pan, int DeltaX, int DeltaY,
int DeltaZ)

WORD PanView::Move(int DeltaX, int DeltaY, int DeltaZ)

Pan The panorama handle.

DeltaX The change in pan, a positive value turns to the right.

DeltaY The change in tilt, a positive value moves down.

DeltaZ The change in zoom, a positive value zooms in.

Returns: A series of flags that indicate whether the position was blocked (in-
valid) in any direction. It is a combination of the flags PAN_BOUND_X,
PAN_BOUND_Y and PAN_BOUND_Z.

28 — pan Replace ITB CompuPhase

Notes: It usually makes no sense to zoom in with a factor higher than, say, 10.
There is no technical limit on zooming in, but if desired, the maximum
zoom factor can be set with pan_SetValue.

The minimum zoom factor is bound by the size of the source image
and the size of the viewport.

See also: pan_GetValue, pan_SetPos, pan_SetValue.

pan Replace Change the image for a panorama

pan_Replace replaces the image for a panorama (that was created earlier) while
keeping the current viewport settings.

Syntax: BOOL pan Replace(PANINFO Pan, LPBITMAPINFO BitsInfo,
LPVOID ImageBits, LPPANATTRIB Attribs,
BOOL DeleteDIB)

BOOL PanView::Replace(LPBITMAPINFO BitsInfo,
LPVOID ImageBits,
PanAttrib *Attribs=NULL,
BOOL DeleteDIB=FALSE)

Pan The panorama handle.

BitsInfo A pointer to the DIB header of the new source image.

ImageBits A pointer to the pixel data of the new source image. If
this parameter is NULL, the function assumes that the
pixel data follows the DIB header (in the BitsInfo pa-
rameter) in a single memory block.

Attribs Points to a structure with the attributes and settings of
the new source image. If NULL, the function assumes a
cylindrical panorama with no horizon correction and no
hot spots.

DeleteDIB If TRUE, the function also frees the memory for the pre-
vious image (the one that pan_Replace replaces). The
memory resource for the source image must have been
allocated with pan_AllocResource for this to work.

Returns: TRUE on success or FALSE on error.

Panodome pan ScaleDIB — 29

See also: pan_AttribFile, pan_AttribString, pan_Create, pan_LoadDIB

pan ScaleDIB Resize a device independent bitmap

pan_ScaleDIB scales a DIB up or down, at pixel precision.

Syntax: LPVOID pan ScaleDIB(LPBITMAPINFO SrcInfo, LPVOID SrcBits,
LPBITMAPINFO DstInfo,
int Width, int Height, BOOL DeleteSrc)

SrcInfo A pointer to the DIB header of the source image.

SrcBits A pointer to the pixel data of the source image. If this
parameter is NULL, the function assumes that the pixel
data follows the DIB header (in the SrcInfo parameter)
in a single memory block.

DstInfo A pointer to the DIB header of the resized image. This
header is filled by pan_ScaleDIB to reflect the new size.

width,
height The size of the new image.

DeleteSrc If TRUE, the function deletes the source image upon suc-
cessful completion. The memory block for the source im-
age must have been allocated by a Panodome function
for this to work correctly.

Returns: A pointer to the DIB pixels of the scaled image, or a pointer to the
DIB header of the scaled image (see notes).

Notes: If the “DstInfo” parameter is NULL, pan_ScaleDIB allocates a sin-
gle memory block for the DIB header and the pixel data of the scaled
image. The function returns a pointer to the header; the pixel data im-
mediately follows this header. If “DstInfo” is not NULL, pan_ScaleDIB
only allocates memory for the pixels and it stores the header in the
structure that “DstInfo” points to.

The memory block allocated by pan_ScaleDIB must be freed with
pan_FreeResource.

See also: pan_FreeResource, pan_LoadDIB

30 — pan SetHandle ITB CompuPhase

pan SetHandle Set internal handles

pan_SetHandle adjusts a handle to a Microsoft Windows object. The Panodome
engine maintains a few Microsoft Windows objects for its operation.

Syntax: BOOL pan SetHandle(PANINFO Pan, int Code, HANDLE Handle)

BOOL PanView::SetHandle(int Code, HANDLE Handle)

Pan The panorama handle.

Code Specifies the handle that must be set. It is one of the
following:

PAN HANDLE PALETTE
The handle of the palette that the viewer window
uses. By default, pan_Create creates a palette
from the colour table in the source image.

PAN HANDLE NOTIFYWND
The handle to the window that must receive the
notification messages. By default, this the the win-
dow that pan_CreateWindow creates.

Handle The value of the handle referred to by the “Code” pa-
rameter.

Returns: TRUE on success, or FALSE on failure.

See also: pan_GetHandle, pan_SetValue

pan SetPos Move the viewport to an absolute position

pan_SetPos pans, tilts or zooms the current viewport to a new position (regard-
less of the current position).

Syntax: WORD pan SetPos(PANINFO Pan, int X, int Y, int Z)

WORD PanView::SetPos(int X, int Y, int Z)

Pan The panorama handle.

X The horizontal position, measured in pixels from the left
edge of the source image.

Panodome pan SetValue — 31

Y The vertical position, measured in pixels from the top
edge of the source image.

Z The current “distance” from the panoramic screen, mea-
sure as the distance in pixels from the centre of the cylin-
der. A positive value is towards the screen.

Returns: A series of flags that indicate whether the position was blocked (in-
valid). It is a combination of the flags PAN_BOUND_X, PAN_BOUND_Y and
PAN_BOUND_Z.

Notes: It usually makes no sense to zoom in with a factor higher than, say, 10.
There is no technical limit on zooming in, but if desired, the maximum
zoom factor can be set with pan_SetValue.

The minimum zoom factor is bound by the size of the source image
and the size of the viewport.

See also: pan_GetValue, pan_Move, pan_SetValue.

pan SetValue Change panorama settings and attributes

Syntax: BOOL pan SetValue(PANINFO Pan, int Code, int Value)

BOOL PanView::SetValue(int Code, int Value)

Pan The panorama handle.

Code Specifies the value that must be set. It is one of the
following:

PAN VALUE ID
The “ID” of the panorama. The ID of a panorama
is passed with the notification messages. It is not
used in any other way by the Panodome functions.

PAN VALUE MAXZOOM
The maximum zoom factor that is allowed; when
zero (the default), there is no maximum.

PAN VALUE MSGNUM
The numeric value of the notification message that
the viewer window sends. The default message
value is PAN_NOTIFY.

32 — pan SetValue ITB CompuPhase

PAN VALUE ORIENTATION
The orientation (the compass position) in degrees.
This value is related to the horizontal position.

PAN VALUE SPEED
The timer interval in milliseconds at which the
viewer window refreshes. The default is 50 ms,
which gives 20 frames per second. When set to
zero, the viewer window does not create a timer.

PAN VALUE XPOS
The current “horizontal position” in the panorama,
measured as the offset in pixels from the left edge
of the source image.

PAN VALUE YPOS
The current “vertical position” in the panorama,
measured as the offset in pixels from top edge of
the source image.

PAN VALUE ZPOS
The current “distance” from the panoramic screen,
measure as the distance in pixels from the centre
of the cylinder.

Value The new value of the “Code” parameter.

Returns: TRUE on success, or FALSE on failure.

See also: pan_GetValue, pan_SetHandle, pan_SetPos

Panodome PANHOTSPOT — 33

Data reference

Definition of various data structures used by the Panodome functions.

PANATTRIB Panorama attributes
typedef struct {

int angle;
int horizon;
int orientation;
int numhotspots;
LPPANHOTSPOT hotspots;
char userstring[128];
int flags;
long reserved;

} PANATTRIB, FAR *LPPANATTRIB;

angle The “field of view” angle of the panorama. It is 360 for a full
cylinder.

horizon The horizon correction, specified as the offset in pixels from the
vertical centre. See also page 6

orientationThe compass orientation of the left edge of the source image in
degrees counter-clockwise (zero is North).

numhotspotsThe number of entries in the array that the “hotspots” field points
to.

hotspots Pointer to an array with hot spot information.

userstring This field is unused by the Panodome toolkit; it may contain any
kind of information. Usually, the contents of this field are read
from the attribute file, see page 7.

flags Used for internal purposes; when filling this structure in manually,
set this field to zero.

reserved Reserved for future expansion; set to zero.

PANHOTSPOT Hot spot data
typedef struct {

int left, top, right, bottom;
char label[128];
char text[128];

} PANHOTSPOT, FAR *LPPANHOTSPOT;

34 — PANHOTSPOT ITB CompuPhase

left, top
right, bottom

The bounding rectangle of the hot spot.

label The label, or action name, for the hot spot. This field often contains
the filename of the next panoramic image to open.

text General purpose text, for example for tooltips or balloon help.

Panodome PAN NOTIFY — 35

Message reference

PAN COMMAND Control message for panorama window and compass

A window created with pan_CreateWindow or pan_CreateCompass handles this
message to adjust its status or carry out a command. The code for the setting
must be passed in the wParam parameter of the SendMessage or the PostMessage
functions.

wParam: Holds the code of setting to adjust:

PC ORIENTATION
lParam the orientation of the needle in the compass window. It
must be a value between 0 and 360.

PC TIMERTICK
This message lets you replace the built-in timer for the panorama
window with one of your own. Each message is considered a
“tick” of an external timer, so your application should send
PC_TIMERTICK messages on a regular interval. When using the
PC_TIMERTICK messages the internal timer should be shut off by
setting it to 0.

lParam: The value of lParam depends on the setting (in wParam).

Notes: The value of the PAN_COMMAND message is WM_USER+78.

See also: pan_CreateCompass, pan_CreateWindow, pan_SetValue

PAN NOTIFY Notification message for panoramas

The window specified in the call to pan_Create receives this notification message
on various events.

wParam: Holds the “code” of notification:

PN HALT
The panorama has stopped moving. The low word of lParam is
zero.

36 — PAN NOTIFY ITB CompuPhase

PN HITHOTSPOT
The mouse cursor “floats” above a hot spot. The low word of
lParam is the sequence number of the hot spot.

PN MOVE
The panorama has moved (position or zoom). The low word of
lParam is zero.

PN SELHOTSPOT
The user clicked on a hot spot. The low word of lParam is the
sequence number of the hot spot.

lParam: Holds the associated “data” of the notification. The low word of
lParam depends on the value of wParam. The high word contains the
“id” of the panorama. This value can be set with pan_SetValue with
code PAN_VALUE_ID.

Notes: The value of the PAN_NOTIFY message is WM_USER+79.

See also: pan_Create, pan_SetHandle

Panodome Error codes — 37

Error codes

PAN ERR NONE
No error.

PAN ERR ANGLE
Invalid angle in the panorama attribute structure.

PAN ERR COORDS
Invalid coordinates.

PAN ERR IMGFORMAT
The source image has an unsupported type, it is not an uncompressed
256-colour DIB.

PAN ERR IMGSIZE
The width in pixels of the source image is not a multiple of 4.

PAN ERR INDEX
The “index” parameter to a function was out of range.

PAN ERR MEMORY
Insufficient memory.

PAN ERR PARAM
General “invalid parameter” error.

PAN ERR VPSIZE
The viewport is too large for the panorama to fit in. Reduce the viewport
size or scale the source image.

38 — Handling DIBs ITB CompuPhase

Handling DIBs appendix a

Panoramas are attractive because the spectators are immersed in an environment
that surrounds them. Panning through a panorama is quite different from sliding
a flat picture below a viewport. A photograph is a flat surface that you look at
from some distance. A panorama pulls you inside the photograph. The constant
adjustment of the perspective view of the area that you are looking at, adds
realism and indeed gives the sensation that the image is folded around you.

However, in practice, panoramas usually show deserted, static environments:
rooms with furniture, but no people; parks with trees and statues, but otherwise
empty. (Partly this is due to the difficulty of photographing panoramic scenes
with moving objects.) So, as a spectator of a panorama, you are immersed in a
silent, still world. This is a bit of a surrealistic experience.

Animation can change all that. One of the design criterions of Panodome was
to make the engine flexible enough to combine with a maximum of graphic and
animation libraries. Adhering to common standards and formats is an impor-
tant first step into that direction, and hence Panodome’s “image format” is a
device independent bitmap (DIB). Other graphic and animation engines from
CompuPhase (EGI and AniSprite) also use DIBs as their basic data type, so
attaching Panodome to EGI or to AniSprite is quite “natural”.

However, I would not want to force you to use only other CompuPhase products
just because you work with Panodome. Most other graphic and animation li-
braries offer some kind of interface to a DIB (the other libraries that I am aware
of do not use DIBs as their internal image format, as do Panodome, EGI and
AniSprite, but they do offer conversion functions to and from DIBs). As you
might imagine, however, not all libraries access DIBs in the same way.

A device independent bitmap essentially separates the header from the pixel
data. In a Windows Bitmap file (.BMP extension), the pixel data immediately
follows the header, but the basic functions from the Windows SDK (e.g. Create-
DIBitmap) take pointers to the header and the pixel data of a DIB in separate
parameters. This has led to two major ways in which graphic libraries deal with
DIBs: they either follow the Windows SDK functions and take two pointers to
the header and the pixel data, or they use only a single pointer to the header with
the assumption that the pixel data immediately follows the header. Panodome is
compatible with both DIB handling schemes, and this duality permeates through
the engine.

Panodome Handling DIBs — 39

Panodome is both a producer and a consumer of DIBs. As a producer, function
pan_GetView returns a DIB for the current viewport; a sprite library could use
this DIB to draw moving objects onto the panorama. As a consumer, a frame
animation engine, like EGI, can also contain a movie of panoramic images and
source the frames in DIB format to Panodome, which then unwarps the frames
and shows the result in its viewport.

A function like pan_Create is prototyped as:
PANINFO pan_Create(LPBITMAPINFO BitsInfo, LPVOID ImageBits,

LPRECT ViewPort, LPPANATTRIB Attribs)

where the first parameter points to a DIB header and the second parameter
points to the pixel data. Both may be in separate memory blocks. The “header”
memory block may be deleted after pan_Create returns, but the pixel data needs
to stay allocated until the panorama is closed.

However, if the second parameter, ImageBits, is NULL, the function assumes that
the pixel data immediately follows the header. In that case, you may not delete
the header memory block after the call to pan_Create, because the pixel data
resides in the same memory block.

A typical function that returns a DIB is pan_LoadDIB. The function is prototyped
as:

LPVOID pan_LoadDIB(LPCSTR Filename, LPBITMAPINFO BitsInfo)

If the second parameter, BitsInfo, points to a memory block that can hold a
BITMAPINFO structure, pan_LoadDIB stores the DIB header in that memory block
and it returns a pointer to a memory block that holds only the pixel data. The
header and the pixel data are thus stored in two separate memory blocks, one of
which you must have allocated yourself before the call to pan_LoadDIB.

If, on the other hand, BitsInfo is NULL, pan_LoadDIB allocates a memory block
for both the DIB header and the pixel data and it returns a pointer to the start
of that memory block. There is only a single “handle” to the DIB, which may
make the manipulation of the DIB easier.

Although these examples discusses pan_Create and pan_LoadDIB, the concepts
apply to all functions in Panodome that take or return pointers to DIBs.

40 — Resources ITB CompuPhase

Resources appendix b

• CompuPhase’s homepage

The CompuPhase homepage contains information on Panodome’s companion
products EGI and AniSprite, as well as articles and technical papers on animation
from a programmer’s perspective (although nothing “moves” in a panorama, it
is generally put in the “animation” category because the real-time adjustments
of the perspective).

Please visit us at:

http://www.compuphase.com

Relevant topics are:
� The frame animation engine EGI and the sprite animation engine AniSprite,

good companions to Panodome.
� Details on Windows’ Palette Manager: how to create an identity palette, how

to prevent Windows from shuffling your carefully crafted palette, why identity
palettes are faster, . . . recommended.

� A freely available simple and fast scripting language that can be used to make
the panorama animations interactive.

� An assortment of tips and resources for computer animation.

Upon request, we can also send you this information by e-mail (in HTML format)
or by fax. Our address is on the inside title page.

• Stitching software

Producers of software packages to create panoramic images for Microsoft Win-
dows environments are:
� Live Picture produces PhotoVista for creating panoramas from photographs:

http://www.livepicture.com/.
� PictureWorks makes SpinPanorama to create panoramas from photographs:

http://www.kaidan.com/.
� VideoBrush Panorama makes panoramas from a digitized video:

http://www.videobrush.com/.
� Wasabi offers a plug-in for Photoshop (and Paint Shop Pro), called SkyPaint,

that helps in retouching panoramas, or creating them by hand:
http://www.wasabisoft.com/.

Panodome Resources — 41

• Lenses and tripod heads

Several manufacturers offers equipment to make the photographing for panora-
mas a little faster or more convenient:
� CycloVision’s ParaShot is a parabolic mirror that can snap a 360◦ image at

once:
http://www.cyclovision.com/.

� Be Here Corporation offers a similar panoramic “lens”:
http://www.behere.com/.

� Kaidan has an assortment of tripod heads that can adjust the rotation point
below the camera lens and that offer radial scales and bubble levels:
http://www.kaidan.com/.

42 — Resources ITB CompuPhase

Panodome Index — 43

Index

AniSprite, 38

BITMAPINFO, 11
BMP files, 7, 10, 25
Borland C++, 10

C language, 10
C++ language, 15
Case sensitive, 8
Compass

orientation, 8, 13, 24, 32, 33
size, 18
window, 18

Compuserve GIF, 7
CreateDIBitmap, 38
Cubical panoramas, 2
Cylindrical panoramas, 2

Device Independent Bitmap, 38
DIB format, 10, 11, 38

EGI, 38
Event, see also Notify message, 12,

13, 19

Field of view, 5, 8, 33
Focal length, 5
Focus (input), 12
Frame size, 5

Getting lost, 13
GIF files, 7

Horizon adjustment, 6
Hot spot, 8, 12, 16, 21, 23, 24, 33

label, 12

Input focus, 12

Microsoft Visual C/C++, 10

Navigation window, See Viewer
window

Needle, 18
Notify message, 12, 19, 22, 31

PAN files, 9
pan AllocResource, 15
pan AttribFile, 7, 8, 15
pan AttribString, 7, 8, 16
pan CheckHotSpot, 16
PAN COMMAND, 18, 35
pan Create, 17, 39
pan CreateCompass, 13, 14, 18, 35
pan CreateWindow, 11, 18, 35
pan Delete, 19
pan Error, 20
pan FreeResource, 20
pan GetData, 12, 21
pan GetHandle, 22
pan GetRect, 22
pan GetValue, 23
pan GetView, 25
pan LoadDIB, 11, 25, 39
pan MapCoordinates, 26
pan MinImageSize, 27
pan Move, 27
PAN NOTIFY, 12, 24, 31, 35
pan Replace, 28
pan ScaleDIB, 29

44 — Index ITB CompuPhase

pan SetHandle, 12, 30
pan SetPos, 30
pan SetValue, 12, 31
Panorama

cubical, 2
cylindrical, 2
horizon adjustment, 6
id, 31
spherical, 2

PC ORIENTATION, 35
PC TIMERTICK, 35
PCX files, 7
PN HALT, 35
PN HITHOTSPOT, 36
PN MOVE, 36
PN SELHOTSPOT, 36
PPM files, 7, 9

Radial scale, 5
Rectilinear images, 5
RLE compression, 10, 25

Speed, 32
Spherical panoramas, 2
Surrealism, 38

Timer interval, 32
Tripod, 5

panoramic heads, 5

User data, 8

Viewer window, 11–13, 17, 18, 30, 32

Watcom C/C++, 10
White space, 9
Windows Bitmap file format, See

BMP files

Zoom factor
maximum, 24, 28, 31
minimum, 28

ZSoft PCX, 7

