
VBXTASY, VOL. 1 -- TECH NOTE #1

This tech note describes how to use 256-color images with VBXtasy on a
256-color display adapter.

The problem

When you place any control that displays a 256-color image (such as a
Picture box) on a form containing VBXtasy controls, the colors on those
VBXtasy controls (including the background) become garbled on 256-
color displays.

Background

When Windows runs on a monitor that is set to display 256 colors, all
applications must share the system “palette ” — also called the color
look up table (CLUT). The only colors that can be displayed at any one
time are the 256 colors present in the current system palette (sometimes
called the "hardware palette," because it defines what colors the
monitor and adapter can display). For most Windows applications, this
limitation is of no concern; they use only the twenty "static" colors that
Windows automatically places in the system palette, so they're always
guaranteed to have the colors they need. Applications that want to
display more than those few predefined colors, however, must reserve
the colors they need by participating in a negotiation process that is
governed by the Windows palette manager. Simply put, Windows asks
every application that desires access to the system palette to reserve the
colors it needs (such applications are said to be "palette-aware"). This
process starts with the active application (the one that's on top) and
then steps through all other palette-aware applications in z-order, top
to bottom.

In Visual Basic applications, individual controls can be palette-aware.
When a Visual Basic application is asked to reserve the colors it needs in
the system palette, it in turn queries all of the palette-aware controls on
the currently active form in z-order, top to bottom, telling them to
reserve the colors they need.

When VBXtasy controls are present on a 256-color display, they claim
all 256 colors in order to enhance both their appearance and their
drawing performance. Indeed, for performance reasons their display
behaviors are based on the assumption that they have full control of the
entire system palette on 256-color displays. If, however, you place a
palette-aware, non-VBXtasy control in front of all VBXtasy controls on a
form, that control may claim some or all of the colors on the system
palette before any VBXtasy controls have the chance to stake their



claim. The result will be a serious distortion of the way the VBXtasy
controls display.

Any solution to this problem must respect VBXtasy's need to control the
system palette on 256-color displays. Fortunately, there are solutions
which allow for the display of high-fidelity images, although not at the
level of quality that would be possible in the absence of VBXtasy.

Each of VBXtasy's design sets has a single palette used by all of the
design set's controls, including the Background control. We have made
an effort to incorporate in all seven palettes a set of "rainbow colors"
that will allow most high-fidelity images to be dithered gracefully.
Dithering is a technique whereby a color that the hardware can't display
is simulated by mixing adjacent pixels with available colors that
approximate it. Gray is simulated on black and white displays, for
example, by dithering together equal numbers of black and white pixels.
As a result, using the techniques below will allow you to display 256-
color images in the presence of VBXtasy controls in a way that will
preserve the overall integrity of the image, although it may look more
"dotty" or "rough" than it would look if you were to display the image
without any VBXtasy controls present.

Solution #1 - Controlling the z-order

This technique assures that VBXtasy controls will be in a position to
retain control of the system palette. Since Visual Basic bestows this
power based on z-order, you just have to make sure that one or more
VBXtasy controls lie in front of the control displaying the 256-color
image in order for those controls to establish their authority over the
system palette. When laying out your form, here's how you would
accomplish this:

• Place the image-displaying control on the form.

• Place one or more of the VBXtasy controls you intend to use on the
form.

• Optionally, you may now load the bitmap image you intend to use
in the image-displaying control.

If you have already composed your form and you don't want to go
through the trouble of laying it out again from scratch, then simply
select the image-displaying control and execute the "Send to back"
command in the "Edit" menu. If the display doesn't properly update
right away, save your project, leave Visual Basic, and then re-run Visual
Basic and open your project back up again.



Solution #2 - Using the design set palette

If, at design time, you already know what 256-color image you are going
to need to display, you can change the image's own palette to match
the palette for the design set you are using. You can obtain better
results this way because many paint programs, such as JASC's excellent
Paint Shop Pro (which is available as shareware), can load a new palette
into an existing bitmap and do a better job of dithering the resulting
colors than Windows normally does.

Included with this tech note are seven bitmap files, each containing a
one-pixel-by-one-pixel image whose palette is the same as one of the
design sets in VBXtasy, Volume 1. Their names correspond to the names
of the VBX files for those design sets (e.g., XTCALUM.BMP,
XTCMONDO.BMP, etc.). Any image manipulation program capable of
loading a new palette for an existing image should also be able to
extract the palette from an existing image. Simply extract the palette
from the bitmap that corresponds to the design set you're using, then
apply that palette to the image you want to display.

You will have to refer to the documentation for whatever image
manipulation program you're using in order to find out how to load a
new palette for an existing 256-color image. Once you've done so, you
can load the resulting image into any image-displaying Visual Basic
control and not worry about that control's z-order relationship with any
VBXtasy controls that are present on the same form.


