


 

The Windows Programmer's Journal    Volume 01 
 Copyright 1993 by Peter J. Davis    Number 03 
 and Mike Wallace    Mar 93 

A monthly forum for novice-advanced programmers to share ideas and concepts about programming in 
the Windows (tm) environment.    Each issue is uploaded to the info systems listed below on the first of 
the month, but made available at the convenience of the sysops, so allow for a couple of days. 

You can get in touch with the editors via Internet or Bitnet at: 

HJ647C at GWUVM.BITNET      or      HJ647C at GWUVM.GWU.EDU 

CompuServe: 71141 2071 

GEnie: P.DAVIS5 

or you can send paper mail to: 
 Windows Programmer's Journal 
 9436 Mirror Pond Dr. 
 Fairfax, Va. 22032 

We can also be reached by phone at: (703) 503-3165. 
 The WPJ BBS can be reached at: (703) 503-3021. 

The WPJ BBS is currently 2400 Baud (8N1). We'll be going to 14,400 in the near future, we hope. 

- WPJ is available from the WINSDK    WINADV, MSWIN32, BPASCAL and BCPPWIN forums on 
CompuServe, and the IBMPC, WINDOWS and BORLAND forums on GEnie.    It is also available on 
America Online in the Programming library.    On Internet, it's available on WSMR-SIMTEL20.ARMY.MIL 
and FTP.CICA.INDIANA.EDU.    We upload it by the 1st of each month and it is usually available by the 
3rd or 4th, depending on when the sysops receive it. 

                                LEGAL STUFF 
- Microsoft    MS-DOS, Microsoft Windows, Windows NT, Windows for Workgroups, Windows for Pen 
Computing, Win32, and Win32S are registered trademarks of Microsoft Corporation. 

- Turbo Pascal for Windows    Turbo C++ for Windows, and Borland C++ for Windows are registered 
trademarks of Borland International. 

- Other trademarks mentioned herein are the property of their respective owners. 

- WordPerfect is a registered trademark of WordPerfect Corporation. 

- The Windows Programmer's Journal takes no responsibility for the content of the text within this 
document. All text is the property and responsibility of the individual authors. The Windows Programmer's 
Journal is solely a vehicle for allowing articles to be collected and distributed in a common and easy to 
share form. 



- No part of the Windows Programmer's Journal may be re-published or duplicated in part or whole, 
except in the complete and unmodified form of the Windows Programmer's Journal, without the express 
written permission of each individual author. The Windows Programmer's Journal may not be sold for 
profit without the express written permission of the Publishers, Peter Davis and Michael Wallace, and only 
then after they have obtained permission from the individual authors. 

                      Table of Contents 

  Cover 

  WPJ.INI Pete Davis 

  Letters Readers 

  Beginner's Column    Dave Campbell 

  Install Program Part III Pete Davis 

  Home Cooking - C++ From Scratch Andrew Bradnan 

  Creating and Using Owner Draw Buttons Todd Snoddy 

  Hacker's Gash    Mike and Pete 

  Special News Mike Wallace 

  Windows 3.1: Using Version Stamping Library Alex Fedorov 

  Book Review Pete Davis 

  Book Review Mike Wallace 

  Printing in Windows  Pete Davis 

  Advanced C++ and Windows Andrew Bradnan 

  Trials and Tribulations Part 1 Jim Youngman 

  Getting in Touch with Us Pete & Mike 

  Last Page Mike Wallace 

Windows Programmer's Journal Staff: 

 Publishers Pete and Mike 
 Editor-in-Chief Pete Davis 
 Managing Editor Mike Wallace 
 Contributing Editor David Campbell 
 Contributing Editor Andrew Bradnan 

 Contributing Writer Alex Federov 
 Contributing Writer Andrew Bradnan 
 Contributing Writer Jim Youngman 
 Contributing Writer Todd Snoddy 





 

                                      WPJ.INI 
                                by Pete Davis 

Issue #3    wow... So far things have been going really well. The third issue is almost as big as the first 
and second put together! We've even got some extra articles for next month. We're getting a good 
response from the readers and the contributions are coming in. It seems like every day we get a letter 
from someone in another country. We've been getting mail from people in Romania, Czechoslovakia, 
Russia, Hong Kong, Australia, England, Germany, etc... In fact, the amount of mail we're getting is getting 
pretty high. We try to answer it all, but we don't always get a chance to. Also, some of the replies don't 
make it back. I've noticed this more often with certain Internet sights in the U.K. I don't know why that is, 
but the ones that have something like ac.uk in them don't seem to make it back. Sorry about that. The list 
goes on and on. Keep the mail coming, we love to get it. 

I mentioned in the last issue about readers suggesting different formats for the text. So far, the biggest 
response has been in favor of the WINHELP format and the plain text format. That way you can read it 
on-screen and, if you want, print it out. Speaking of printing it out, we've had some negative responses 
about the printing format. I have to take responsibility for that. I had the page length a bit too long and a 
lot of you were getting pages with three or four lines of text. I'll try not to let that happen again. 

As far as the Help format    because we can do bitmaps now, it would be nice if we could get someone 
who is artistically inclined (Not us, as you'll see in this first issue) to give us a hand with some of the 
graphics. You don't have to be a Renoir, just better than us. If you can draw stick figures, you probably 
qualify. 

So    this issue we'll be starting with the WINHELP format. We hope you like it. We're pretty pleased with 
the idea. Right now we're using minimal tools for getting it into the help format, but we're looking into 
getting some better ones later on. 

We'd like to thank the guys at America Online for giving us some time each month to get on and be able 
to stay in touch with our readers there. Mike will have more to say about all this in the Last Page.    [See 
the "Special News" column - MW] 

This month I'm going to be doing my article on printing that I should have done last month. Sorry for the 
delay, but we've just been real busy. I'm also going to do the third article in the series on the install 
program. This article is basically going to give some insight into the data structure that we're going to use 
for storing data about each of the files for the install. 

This month David Campbell will be taking over the Beginners Column in C and we have Andrew 
Bradnan taking over the Beginners Column in C++. (We could still use someone to do the Beginner's 
Column in Pascal for Windows). This brings me to another point. Beginner's Column might be a bit of a 
misnomer. Yes, they'll all be basic, but like anything else, as time goes on, the articles will progress. They 
will all be, eventually, an intermediate programmer's column. There's only so much that you can say about 
the basics and eventually you have to move on. 

We're starting a new feature this month called Hacker's Gash. Hacker's Gash is going to be a bunch of 
little tips and tricks that you can use in Windows. This is where the readers can really get in on the fun. 
Read through it, get an idea of what kinds of things we're doing and send in a list of your own tricks. 



Ah    good news, the BBS is finally up. Haven't replaced the hard drive, but I've done some serious work 
on it and did some pretty strenuous testing on it and it seems to be ok for now. I will need to replace it 
eventually, but we don't have the money right now for that. Besides being the first place to get the 
Windows Programmer's Journal, the WPJ BBS has the SIMTEL20 CD-ROM which has 600+ megs of 
public domain and shareware software. We will try to add a second CD-ROM in the near future and add 
some new disks. We'll probably try to add the CICA disk next, which has a very large library of Windows 
public domain and shareware software. The number's around here somewhere, but to make it easier, and 
as long as you're reading here, it's (703) 503-3021. (That's in the U.S. for you guys overseas.) 

Mike and I have debated doing this    but we're really getting to the point where we don't have much 
choice. Seeing as we're going into the Windows Help format, which will allow us to support graphics, 
we've decided that we're going to start allowing some advertisers in the magazine. We're going to keep 
the ads to a minimum, but, even though the magazine is free, there are some costs involved in putting it 
together and we really need some reimbursement for it. Right now, our Compuserve and Genie bills alone 
are costing us a fair amount. Running the BBS will cost us $25/month in phone bills alone, not to mention 
possible hardware maintenance. We're hoping to get a few advertisers to help offset some of those costs. 
The ads will be, most likely, from shareware authors. If you are a Windows shareware author and you're 
interested in advertising, get in touch with us and we'll discuss the costs, size, design, etc. 

One last thing before I wrap up. We've gotten a lot of comments about the format of the magazine. 
Most of these were in reference to the format we're going to distribute it in. If you have preferences about 
the layout or other stylistic concerns, we'd like to hear them. 

That's really about it for this month    I guess. We just wanted to thank all of you for reading and to keep 
the comments and suggestions coming. We'd also like to thank those of you who have submitted articles 
and we ask that you please keep the articles coming in. It would be nice if we got a few more submissions 
each month so we could get the magazine up to the size that we'd really like. I think 50 pages would be a 
good size, although, with something like this, I suppose, the bigger the better, so more than 50 pages 
would be fantastic. Well, I've said enough. Enjoy the magazine. 

                                                                                          _Pete Davis 

P.S. I just read Mike's Last Page (He does it last    so I didn't see it when I was writing the WPJ.INI) You 
might want to read that and then come back to this, but I wanted to give my own thoughts on what Mike 
said regarding the WPJ as a source of information. We are not here to be a sole source of information, 
nor will we always be correct. We do our best to make sure that the information we give out is correct. 
The only people who check the submissions are Mike and myself. Neither one of us has a PhD in 
Windows Programming. We both make mistakes. The WPJ is going to have errors in it. We're going to 
give out completely wrong information at times. When that happens, we will try to correct ourselves by the 
next issue (usually in response to someone saying "You guys screwed up!"). 

What I'm saying is that there are a lot of sources out there. You need to check out as many as you can. 
Cross- reference the information between different books and magazines and when you see an 
inconsistency, that's probably a fault. 

Mike and I have several reasons for doing the WPJ. First of all, we felt beginners weren't being 
addressed well enough. Also, we wanted to cover as many Windows programming languages and 
environments as possible. (We're getting there, but slowly.) Most important, I think, we wanted to address 
Windows programming and Windows programming only. 

Windows is an enormous programming environment and there's tons of information to absorb. No one 
publication can even approach covering it all. I like to think that one of our advantages is that, unlike a lot 
of other programming magazines, we don't center on a topic each month. Other magazines might have, 
say, an issue on Custom Controls or an issue on Multi-media. Well, that's great, but what about those of 
us who don't work with Custom Controls or Multi-media? There are two issues that we don't care for. We 
try to keep a variety of topics each month so we can appeal to as many people as possible with each 
issue, but I digress. 



To wrap up    I just want to say, (this feels like deja vu, I'll check later, but I think I said this in the last 
issue also) don't count on us being right every time. If something we wrote about doesn't work, try it 
again. If it still doesn't work, we probably screwed up. Let us know, and we'll try to correct it by the next 
issue. I know, I'm getting repetitive. I know, I'm getting repetitive. Until the next issue, peace. 





                                    Letters 

 Date:    10-Feb-93 07:04 EST 
 From:    Chris Newham [100027,16] 
 Subj:    Windows Programmer's Journal 
 Hi, 

I would just like to say that I have enjoyed the two issues of WPJ so far. You can add at least 1 to your 
readership numbers as my friend and I download it once between us. 

The sections on DLLs & install progs are of particular interest to us as we have just finished work on a 
DLL and are now working on the install prog. A point that I think you might mention and give some 
consideration to for the install prog is this: 

If you are installing DLLs then you need to check if the file exists first (easy); if it exists you then need to 
check its version control information    to determine if the copy you wish to install is newer (also quite 
easy); the difficult part comes when you have determined that you need to replace the existing DLL but 
the DLL is already in use by Windows. 

Windows will not let you delete or replace the file. Microsoft's install program works around this but we 
haven't yet worked out how; we think that it copies the new DLL to a temp dir or hides it somewhere then 
replaces it when Windows next starts up. 

It's an interesting little problem and has at present got us stumped.    If you know how to solve it let's 
see it published.    If we find a solution we will let you know. [We're working on this problem, too. - MW] 

I am very impressed by the quality of the journal and would like to see it remain in either text or 
Windows write format as my time on the PC is limited and so what I do is take a hard copy of the journal 
to work to read at lunch time so Winhelp format would not suit me. 

Keep up the good work Best wishes Chris. 

Date:    12-Feb-93 17:29 EST 
 From:    Tammy Steele 
 Subj:    WPJ 

Hi Mike 

          I just downloaded my mail today.    I generally only read it once a month. So, sorry for the delay in 
my comments about WPJ.    I had a chance to skim the first issue and have just spent some time reading 
through the second issue. Of course I cannot make official "Microsoft" comments, but I can give you my 
opinion. 

          Generally speaking    I think the WPJ will be another good place for us to point people to for 
information. One problem will be getting the Microsoft support engineers familiar with the content of the 
journal.    Another problem is the accuracy of the articles.    In order for Microsoft to point people to the 
articles, we need review the accuracy of them.    We are pretty swamped now with too much to do, not 
enough people.    I am sending mail to my group about the journal.    So we'll see what happens. 

          Specifically    I thought it was good that you discussed the feedback you received from the first 
journal. Especially the Linked List sample.    If the sample were used for a large number of nodes, as I'm 
sure someone probably mentioned, it would not be a "cooperative" windows app because each 
globalalloc eats a selector and the selectors (8K of them) are shared between *all* windows apps and the 
Windows system itself. 



          Also    it would be useful for samples to be updated to the current software although there is still 
value to having the code and comments (ie, the DLL article.) 

          People who submit articles should check the MSKB and if they have areas that they are uncertain 
about, should post questions in the forum before they submit articles. For example, the DLL article talks 
about WEPS and says something like "the documentation says the WEP is called once...but I haven't 
seen it be called in Codeview in Windows 3.0."    There is an article that discusses the reason why you 
can't see it be called in Codeview under Windows 3.0 and/or this question could have been easily 
answered in the DLL section on WINSDK. [This question is answered farther down in this column. - MW] 

          I like the coding style and the sample makefiles (the makefiles are easy to read.) 

          I'm sure you've had lots of comments    as you mentioned, about how to format this.    I personally 
think you should offer it in helpfile format *and* text format so that people have the option. [editors note: 
This seems to be the most common opinion.] 

          Overall    I see this journal as a really great place for people to compile information and share it. 
 Thanks for all your work, 
 Tammy 

Editor's Note: We got a letter from Craig Derouen (CompuServe ID: 75136, 1261) of Seattle.    I'll reprint 
his letter here and let him explain his BBS: 

I've looked at your 2 first issues of WPJ and am impressed. I run an    extensive programmer's BBS out 
here in Seattle, primarily Windows code but    also C, C++ and 8086 code for DOS. I carry both your 
issues. I am also in Fidonet and have all the listings for WPJ available for Frequest.    Also I am a support 
BBS for WinTech,Windows/DOS,CUJ and PC Techniques Magazine. I have a LOT of code on line. 
Anyways here's the details: 
 Cornerstone BBS        (2400,9600 baud) 
 (206) 362-4283 
 Fidonet 1:343/22 

All magazine listings are available for first time callers; free downloads    and some file requests are also 
available. 

Editor's Note: In our last issue    we had an article by Rod Haxton on DLLs.    In the article, he mentioned 
that he had never seen WEP get called under CodeView in Windows 3.0.    So, I posed the question to the 
WINSDK forum on CompuServe and got a response from Brian Scott of Microsoft.    Thanks, Brian. 
 Mike, 

          If you implicitly link to a DLL in Windows 3.0, the WEP is called after the application has unloaded. 
Since Codeview stops debugging after the application terminates, it does not see the WEP get called.    If 
you need to debug the WEP, you can load it using LoadLibrary() and free it using FreeLibrary(), instead of 
linking to the import library.    In this case, you will see the WEP get called when you call FreeLibrary().    If 
you need to link to the DLL using an import library, then you can debug the WEP using something like 
WDEB386, putting OutputDebugString() statements in your WEP, or moving the code in the WEP into a 
cleanup function that you call just before the application terminates. 

Hope this helps 
 Brian Scott - Microsoft 





Editor's Note: Pete and I started a beginner's column with the first issue, and Dave Campbell offered last 
month to take it over.    Dave is a confirmed Windows hacker and so will be writing this column starting 
with this issue.    We hope you like it. Questions should be directed to Dave.    Means of reaching him are 
given at the end of his column. 

                            Beginner's Column 
                            By Dave Campbell 

          My name is Dave Campbell and    I write Windows software under the business name WynApse. I 
am going to be writing the beginner's column until I get buried in work (wouldn't that be too bad?) or I get 
usurped by someone who wants to do this more than I do. 

          Up until recently    I have been a Borland programmer, so the tools I am most familiar with are the 
Borland C++ suite, 3.0 and 3.1, in particular.    Pete and Mike's previous two columns have been 
Microsoft, and I am leaning that way myself right now, so I will continue that. My intention is to provide 
code and ideas that aren't tied to Borland or Microsoft, but could be used with either compiler. A major 
difference between the two is make files, so I will stay away from those as much as possible. 

          My intention is to write code that is useable on 3.0/3.1 Windows. If enough questions come in for 
3.1- specific applications, we will cover them. This leads directly into the request for requests. I would like 
to present code that is useful to all the readers, and the best way would be to be responsive to readers 
questions. Please send questions! I will list various ways of reaching me at the end of each article. 

          Now on to the fun stuff...Mike and Pete have been working on a Hello World program for a few 
issues, and I am going to add some configuration to that code and demonstrate some basic uses for radio 
buttons and INI files. 

Radio Buttons 

          A radio button is one of several control types available to Windows programmers inside dialog 
boxes. They work similar to the buttons on your car radio...only one may be pressed at a time, at least in 
this application. There are other controls available in the basic set, and we will look into them later. For 
now, let's look a little deeper into the declaration of a radio button. 

          Radio button declarations are made in the .RC file, for example: 
 CONTROL "Hello", IDM_HELLO, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | 
WS_TABSTOP, 20, 15, 42, 12 

          We will use one more button in our dialog box, and that is a pushbutton. The ever-present OK 
button to be precise. The control is a graphical representation of a 3D button with text written on it. By 
making a pushbutton an "OK button", we are really painting the word OK on the face of a 3D pushbutton. 
The button definition we are going to use is: 
 CONTROL "OK", IDOK, "BUTTON", BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | 
WS_TABSTOP, 29, 57, 24, 14 

          The explanation of the fields in these two declarations is covered later in this article. 
 INI files 

          INI files are used by Windows to control the environment under which Windows executes. 
Windows programs use INI files to manage the individual environmental changes available to users to 
customize the system to his needs. There are two ways to read a variable from an INI file, but only one 
way to write information into one: 
 Reading: 

ReadPrivateProfileString 
ReadPrivateProfileInt 



 Writing: 

WritePrivateProfileString 

          This does seem clunky    but it's what we've got to work with. When we get to that point, I'll 
demonstrate that it's not that big of a problem. 

          Windows handles the INI files very nicely in that you will always get something for your efforts. In 
the Read calls, a default value is given, in case the variable does not exist in the INI file (or the INI file 
doesn't exist, for that matter). In the Write call, if the variable doesn't exist (or even if the INI file doesn't 
exist) prior to the call, it will when the call returns. This means that you needn't be concerned about the 
pre-existence of an INI file before trying to use one. 

          Let's consider an INI file for our application, HELLO.INI: 

 [Hello] 
 Setup=0 

          This is the simplest form of an INI file: there is a single 'Application Name', [Hello], and a single 
'Keyname', Setup, that is associated with it. The value for Setup is 0. During execution of our program, if 
we had a need for picking up the Setup value, we would simply use the line: 

 nDflt = ReadPrivateProfileInt("Hello", "Setup", 0, "hello.ini"); 

where nDflt is defined: 

int nDflt; 

          This reads from hello.ini    looking for the 'Setup' keyword under the 'Hello' application name, and 
assigning the value equivalence listed there, or 0 for default, to the variable nDflt. 

          If    however, the INI file was defined as: 

[Hello] 
 Setup=Hello World 

          you now cannot read the file with ReadPrivateProfileInt. Now the line to read the value is: 

char szDflt[25]; 

          ReadPrivateProfileString("Hello"    "Setup", szDflt, "Goodbye World", 13, "hello.ini"); 

          This has some similarities    and some differences from the one above. The "Hello", "Setup", and 
"hello.ini" are self-explanatory, but the string read also adds other parameters. The string name to store 
the result into is listed as the third parameter, in this case szDflt. The fifth parameter is an integer variable 
declaring the maximum number of characters accepted from the INI file, and the fourth parameter, in this 
case "Goodbye World", is the default value. If this line were to be executed and the INI file not even exist, 
szDflt would contain the string "Goodbye World". This is also the case if the file exists but does not 
contain either [Hello] or Setup, or both. 

          To change an INI file    the WritePrivateProfileString function must be called: 

char szDflt[25]; 
 int    nDflt; 

wsprintf(szDflt    "%d", nDflt); 
 WritePrivateProfileString("Hello", "Setup", (LPSTR) szDflt, "hello.ini"); 

          'wsprintf' should be used in place of 'sprintf' because it is already in    Windows, and will not cause 
the linking to another library. The downside is the need to cast the string as a LPSTR. wsprintf will build a 



string, in this case, containing the ASCII representation of the single integer nDflt. That string is then 
passed to the INI file using the syntax shown. If the Setup variable were a string, the variable to be 
inserted would be given in the WritePrivateProfileString call rather than using the intermediate wsprintf 
step. 

          Whew    I'm glad that's over. 

Dialog Box 

The dialog box we're going to display will have two radio buttons, and an OK button. Typically, the 
buttons to complete a dialog box are located either along the bottom, or if the dialog is very busy, they can 
be placed along the right edge. Of course, this has nothing to do with programming Windows. This is all 
aesthetics and being kind to users. Look at a thousand Windows applications, and you'll get used to 
seeing things a certain way. Users get used to them being that way, and you will lose some people just 
with your user interface, or lack thereof. 

          The code I propose for the dialog box is: 

Hello DIALOG 63    56, 83, 77 
 STYLE WS_POPUP | WS_CAPTION 
 CAPTION "Hello Setup" 
 FONT 8, "Helv" 
 BEGIN 
 CONTROL "Hello",        IDM_HELLO,      "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE | WS_TABSTOP, 20, 15, 42, 12 
 CONTROL "Goodbye",    IDM_GOODBYE, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE | WS_TABSTOP, 20, 28, 42, 12 
 CONTROL "OK", IDOK, "BUTTON", BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | 
WS_TABSTOP, 29, 57, 24, 14 
 END 

          This code can be produced either by hand with any text editor, or by graphically placing the 
objects with Borland's Resource Workshop or some similar tool. I usually start with the Resource 
Workshop, and make small tweeks by hand. Large changes are best done graphically to ensure the 
placement, and logical usefulness of the dialog box is alright. 

          I am going to take a break right here and talk about coding style. This is something that is as 
peculiar to a person as their name. Everybody has their own, and I wouldn't think of trying to force my 
ideas on someone. But...(have you ever noticed there's always a big But around somewhere?), if you 
don't have your mind made up yet about those long Windows lines like the 100+ character ones above, 
please split them onto succeeding lines! Line-wrap on listings is UGLY!! OK, that's over, I've got it out of 
my system. But (another one), since I am writing this, you are going to have to put up with my style... 

          I'm done now.    That short dissertation was free, now back to the program. The field explanations 
are as follows: 

Hello DIALOG 63    56, 83, 77 

This line defines the name    "Hello" of the dialog, and the coordinates of the box relative to the client 
area of the parent window. The units are NOT pixels, and beyond that, I don't want to get into it now. Just 
play with it for now until you get it where you like it. The first two numbers are the x,y coordinates, and the 
second two are the width and height of the dialog. 

STYLE WS_POPUP | WS_CAPTION 

The STYLE line defines the manner in which the dialog box is built. WS_POPUP is pretty standard for 
dialog boxes. There are real differences between POPUP windows and OVERLAPPED windows, the 
main one being the CAPTION on a POPUP is an option. Because we are going to call this as a modal 



dialog box, we are going to give it a caption bar to allow it to be moved. 'Modal' dialog boxes, as opposed 
to 'modeless', disable the parent window, and demand attention until closed. Without the caption bar, the 
box cannot be moved. 

CAPTION "Hello Setup" 

The CAPTION line declares the caption used with the WS_CAPTION style parameter. 

FONT 8    "Helv" 

This defines the default font used throughout the dialog box. You could pick any conceivable font here, 
but it is best to be kind and only use those shipped to Windows users, or you are going to get some nasty 
mail messages. 

BEGIN 

          BEGIN..END or .. define the body of the dialog box. 

CONTROL "Hello"          IDM_HELLO,      "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE | WS_TABSTOP, 20, 15, 42, 12 
 CONTROL "Goodbye",    IDM_GOODBYE, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE | WS_TABSTOP, 20, 28, 42, 12 

          The two radio button definitions following the declaration CONTROL are: 

- The text of the control    in our case "Hello" or "Goodbye" 

- The ID value to be returned to the parent window, IDM_HELLO or IDM_GOODBYE are defined in our 
".H" file. 

- BUTTON declares the control class. Buttons are generally small child windows. 

- BS stands for BUTTON STYLE    and BS_AUTORADIOBUTTON declares the buttons will only be 
pressed one at a time, and the button is automatically checked. 

- WS_CHILD declares the dialog box as a child window. This means it resides within the boundaries of 
the parent window. 

- WS_VISIBLE applies to overlapped and popup windows. The initial condition is visible. 

- WS_TABSTOP specifies that the user may step through the control sequence with the tab key. 

- 20    28, 42, 12 are the coordinates and size of the control, similar to that of the dialog box itself. 

CONTROL "OK"    IDOK, "BUTTON", 
 BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 29, 57, 24, 14 

          The OK button declaration: everything should be self-explanatory except the 
BS_DEFPUSHBUTTON style. DEFPUSHBUTTON means that this is the default PUSHBUTTON. 
Pushbuttons are: OK, CANCEL, ABORT, RETRY, IGNORE, YES, NO, and HELP. Only one may be the 
default, and it has a dark border around it, so that if the Enter key is pressed, that is the one you get. 
IDOK is defined in windows.h, so we don't have to declare it. 

          The user will get this dialog box on the screen, and select one of the radio buttons, or toggle them 
back and forth a few times, then select OK. The dialog box procedure should read the INI file and preset 
the proper radio button to show the user the current value. Upon selecting OK, the procedure will have to 
set the selected information into the INI file. 

          That completes the dialog box procedure discussion. The code follows: 



BOOL FAR PASCAL HelloDlgProc (HWND hDlg    WORD message, WORD wParam, LONG lParam) 

switch (message) 
  

      case WM_INITDIALOG : 
            CheckRadioButton(hDlg    IDM_HELLO, IDM_GOODBYE, InitSettings); 
            return TRUE; 

      case WM_COMMAND : 
            switch (wParam) 
  

                  case IDM_HELLO : 
                            WritePrivateProfileString("Hello" "Setup", "1", "Hello.ini"); 
                                    InitSettings = wParam; 
                                    break; 

                  case IDM_GOODBYE : 
                            WritePrivateProfileString("Hello" "Setup", "0", Hello.ini"); 
                                    InitSettings = wParam; 
                                    break; 

                  case IDOK : 
                                    EndDialog(hDlg    wParam); 
                                    return TRUE; 

  
            break; 

  
return FALSE; 

              /* HelloDlgProc */ 

          Notice the WM_INITDIALOG call: 

CheckRadioButton(hDlg    IDM_HELLO, IDM_GOODBYE, InitSettings); 

          An assumption is being made here that the variable InitSettings has been read into our program 
somewhere, and is set to (in our case) either IDM_HELLO or IDM_GOODBYE. CheckRadioButton uses 
the dialog box handle hDlg to identify a numerical sequence of buttons from IDM_HELLO to 
IDM_GOODBYE, and ensures that only InitSettings is set. 

          More advanced Windows programmers will probably want to skip the 

      case IDM_HELLO 
 . 
 case IDM_GOODBYE 

statements altogether    and wait until OK is pressed to check the state of the buttons. That is fine, and 
more streamlined, but for now, let's not leave    anyone behind. I want all of us to learn this stuff. 

          Let's change one more function    or else the whole idea of the dialog box selecting radio buttons is 
wasted. Let's read the INI file in WndProc, and change the text displayed based upon the Select value. 

          This is going to take two steps    just like the two parts of the previous sentence: 

      case WM_CREATE : 
          InitSettings = GetPrivateProfileInt("Hello" "Setup", 1, "Hello.ini"); 
          InitSettings = InitSettings ? IDM_HELLO : IDM_GOODBYE; 
          hdc = GetDC(hWnd); 
          InvalidateRect(hWnd    NULL, TRUE); 
          ReleaseDC(hWnd    hdc); 



and: 

/*------------------------------------------------------------------------- 
 fall through to WM_PAINT... 

--------------------------------------------------------------------------*/ 
case WM_PAINT : 

          hdc = BeginPaint(hWnd &ps);                /* returns pointer to hdc */ 
          GetClientRect(hWnd    &rect); 

/* 
 -1 tells the DrawText function to calculate length of string based on      NULL-termination 
 */ 

        DrawText(hdc    (InitSettings == IDM_HELLO) ? "Hello Windows!" : "Goodbye Windows!", -1, &rect, 
DT_SINGLELINE | DT_CENTER | DT_VCENTER); 

    EndPaint(hWnd &ps); 
 return 0; 

          The WM_CREATE case reads the INI file to find out which we want printed and sets up the 
'InitSettings' variable used in the dialog box. Then we get a "handle to a device context" or hdc for our 
window. 

          A device context is the area into which we "paint" text in a window. In a dialog box, we can use 
wsprint, but in a window, we have to "DrawText", and we draw it into a device context. A device context 
could be a window or a printer page, Windows doesn't care. At this point, we are getting the device 
context for our main window's client area. We then report to Windows that the entire area is invalid, which 
will set us up for a repaint. 

          In handling the WM_PAINT case    we again need an hdc, and this time do it with a call to 
BeginPaint, passing a pointer to a structure variable of type PAINTSTRUCT. BeginPaint has Windows fill 
in the ps for us, and is then available for our use. We aren't going to use it, however. 

          We call GetClientRect to get the dimensions of the client area into the rect structure. 

          DrawText uses the hdc    the rect structure, and the InitSettings value to decide what to paint and 
where. Ultimately, either "Hello Windows!", or "Goodbye Windows!" is printed on a single line, centered 
horizontally and vertically: DT_SINGLELINE | DT_CENTER | DT_VCENTER. Notice the note above the 
DrawText line. Instead of telling Windows how many characters we are painting, let Windows do it for us! 

          EndPaint closes the ps structure    and finishes our WM_PAINT case. 

The Setup dialog 

          I almost forgot    we do need to get the dialog box onto the screen. I have added three lines to the 
hello.c file: 

hMenu = GetSystemMenu(hWndMain    FALSE); 
 AppendMenu(hMenu, MF_SEPARATOR, 0, NULL); 
 AppendMenu(hMenu, MF_STRING,        IDM_SETUP, "Setup..."); 

          These get a handle to the system menu of the window, and insert a menu separator followed by 
the word "Setup...". When "Setup..." is chosen, the value IDM_SETUP is sent to our windows message 
loop: 

      case WM_SYSCOMMAND : 
            switch (wParam) 
  

                  case IDM_SETUP : 



                        lpfnHelloDlgProc = MakeProcInstance(HelloDlgProc, hInst); 
                        DialogBox(hInst    "Hello", hWnd, lpfnHelloDlgProc); 
                        FreeProcInstance(lpfnHelloDlgProc); 
                        return 0; 

  
            break; 

          This is handled as WM_SYSCOMMAND    because the system menu is the one used. 

          We must get a long pointer to a function lpfnHelloDlgProc, to use in the DialogBox function call. 
The parameter "Hello" in the call is the title of the dialog box we built. Because of the 'DialogBox' call, this 
dialog box will be modal, and control will not return to the main window until OK is pressed in the dialog 
box. 

          Don't forget the classical Windows programmer's bug...any ideas?? Ok, since nobody is raising 
their hand...it's exporting the dialog box in the .def file. I have forgotten this so many times, I hesitate to 
admit it. If you don't list the dialog box in the .def file, it is guaranteed not to work in Windows 3.0, and will 
be extremely unreliable in 3.1. The next time you get an unreliable dialog box, remember the "classical 
Windows programmer's bug". 

          The files are archived with the magazine. I have made one other excursion, and that is the dialog 
box code is in a separate file named HELLO.DLG. The file HELLO.RC contains the following line to 
include the .DLG file: 

rcinclude Hello.dlg 

          This is pretty standard among Windows programmers, because it keeps the dialog box code in its 
own file. 

3.0/3.1/Borland 

          I just checked and found that I had produced great 3.1 code, but the thing wouldn't run under 3.0. 
If you are programming for the general public, you better keep at least a 'virgin' copy of 3.0 around on 
your hard disk for this sort of checking. Users tend to get a little touchy about that sort of thing. The fix is 
really easy for Microsoft people. The problem lies in the Resource Compilation stage. If you type 'RC -?' 
at the command line, you will see a '-30' switch listed. This is what will get you 3.0+ executables. That is 
the way I have it in the make file. 

          Borland 3.1 programmers have a couple more lines. In addition to the RC file change, you must 
also add the line: 

#define WINVER 0x0300 

ahead of your include of windows.h in your hello.c file. Also you must change the 

wc.lpfnWndProc      = WndProc;                              /* Name of proc to handle window */ 

line to be: 

wc.lpfnWndProc      = (WNDPROC)WndProc;        /* Name of proc to handle window */ 

          I may have left off some stuff here    if so, let me know about it. We're all in this thing together. 

          Please hang in there. If you are beyond the scope of this article, stick with me we are going to go 
places together. If you are way beyond this, write us an article. If you are bogged down, just compile it, 
and stare at the source. If you want help with something, send me a note. 

          That's it for this time. Next month I plan on building an About box with live compile date inserted, 



and I'll discuss Icons and Menus. In coming issues my intention is to discuss File Open boxes, Help files, 
Dialog Boxes as main windows, Obscure Dialog Box uses, Timers, and debugging. Feel free to contact 
me in any of the ways below. I want to rat out the things other people are having questions about, not just 
what I think people want to hear. 

Dave Campbell WynApse PO Box 86247 Phoenix    AZ 85080-6247 

 (602)863-0411              ---                CIS: 72251    445 

                            Phoenix ACM BBS (602) 970-0474 - WynApse SoftWare forum 





                Install Program Part III: 
                          The SETUP.INF File 

                                by Pete Davis 

          Before I get started this month    there are a couple of things I wanted to talk about. First of all, 
because of some stuff coming up in the near future, I won't be able to do Part IV of the install program 
next month. It will, however, continue in May. Sorry about this, but Part IV is going to be a big one and I'm 
not going to have the time to do it yet. 

          I'd also like to respond to Chris Newham's letter (found, oddly enough, in the Letters section) 
regarding installing DLLs which are currently active. I have to admit I haven't yet tried this, but plan, by 
Part IV to have a solution. I went through Microsoft's code for their install program and I couldn't find 
anything that seemed to make exceptions for DLLs. This leads me to believe that the solution is 
something fairly simple. If worst comes to worst, you could always just find out who's using it and shut 
them down. I doubt this is a very good way to do it, but it's just a thought. Like I said, I'm going to look into 
it and I can hopefully have a solution to it by Part IV. (I better have a solution by then, 'cause Part IV is 
going to handle copying the files over.) 

          Ok    this one's going to be short and sweet. There's not much to it. We're using a SETUP.INF file 
which is going to tell us what the name of our application is, how big it is, what files have to be installed, 
what disks they're on, whether or not they're executables, etc. I had two options for doing this. I could 
have used the GetPrivateProfileString and GetPrivateProfileInt functions and make it into a .INI file, but I 
wanted to maintain Windows 2.0 compatibility. (Just kidding :-) Actually, one reason I didn't is because I 
didn't think of it until it was too late. Actually, there are some problems with that approach. The problem is 
that we're dealing with multiple files and they're going to have the same entry names. I'm sure you 
understand completely now, right? Ok, here's an example of a SETUP.INF file and then I'll explain it 
again. 

; Semicolons    as is typical for these kinds of files, mean comments follow 
 ; and the line is ignored. 
 Application=My Application 
 AppSize=1204558 
 DefaultDir=
 ; 
 ; Now we'll have information about each file 
 ; 
 ; CompName = Name of file compressed on install disk 
 ; UCompName = Name of the file when we uncompress it. 
 ; FileType = 0 - EXE      1 - DLL      2 - Other (Other is the default) 
 ; FileSize = Uncompressed file size 
 ; AddDir = Sub-directory name if it's a sub-dir of the DefaultDir 
 ; (i.e. AddDir=would mean the file is in 
 CompName=MYAPP.EX0 
 UCompName=MYAPP.EXE 
 FileType=0 
 FileSize=10294 
 CompName=DATA1.DA0 
 UCompName=DATA1.DAt 
 FileType=2 
 AddDir=

          Ok    that should be enough for a sample. Now our code is going to start a separate node in our 
linked list of files to install each time it hits a CompName= statement. This is harder to do with the 
GetPrivateProfile... functions. We could throw in a new section like [FILE1] for the first file, [FILE2] for the 
second, etc. But back to the topic, we're not doing it that way. I just wanted to give you ideas of how it 
could be done if you choose to do it that way. 



          All right    well, that was all simple enough. Did I mention linked list in the last paragraph? Yup, that 
nasty phrase!!! Ok, it's pretty simple linked list. To make it easier, it's essentially a stack, so each time we 
get a new file, we just add it to the front of the list. The code is in the READSET.C file and the FILES.H 
file. I've commented it pretty heavily, so I won't go in depth here. It's all very simple. 

          In Part IV    which will be in May, we're going to do a lot of the real work.    Like I said, it's going to 
be a big one, and we're going to be tying in all the stuff from the first three parts. I might have to finish the 
entire thing in June, just because what's left is so big. I've tried to break this series up into easily 
recognizable parts, First I had the DDE with Program Manager, then I had the LZEXPAND.DLL part, and 
this month we had the READSET stuff. I feel like what's left all goes in the category of 'the rest of it', but 
there's so much, that I'll have to break it up into two hard do divide sections. I'll probably just do a few of 
the small things in each one, like the Progress Bar, creating directories, copying files, etc... 

          Oh well    that's it for this month. Sorry it was so short and sorry I can't do it next month. If I can, I 
might try to do all of the rest in May to make up for not doing it at all in April. We'll see. Until next time...... 





[Editor's Note: Last month, I started a Beginner's column on C++.    Andrew Bradnan was kind enough to 
offer to take over the column, and will be writing it starting with this issue.    Any questions you have can 
be directed to him.    His CompuServe ID is given at the end of his column.    - MW] 

Home Cooking - C++ from Scratch 
                            by Andrew Bradnan 

          This month I'll be starting a new column WPJ will be doing every month to introduce people to C++ 
and Windows.    I am going to try and keep this simple enough for a programmer new to Windows 
programming and C++.    Your brain may melt if you are at this stage,    but give it a try and it will sink in 
after a while.    Feel free to send me some email on Compuserve [70204,63].    I'll answer any questions 
and put the good ones at the end of next month's article. 

          I've read many books on C++ and I considered all but a few totally confusing.    (I don't plan on 
adding my name to this list.)    There is another rumor that C++ is really slow because it writes all sorts of 
code behind your back. This is kind of like complaining that C writes all kind of assembly behind your 
back.    The compiler is supposed to write code for you. The great thing about C++ is that you can forget 
many of the details.    I usually forget them all by myself.    Instead of me rambling how great C++ is, let's 
find an example of exactly how we can forget some things.    On purpose.    The simplest place to start is 
constructors and destructors.    Of all the confusing C++ terms (abstraction, encapsulation, modularity, 
hierarchy, typing, concurrency, and persistence), constructors fall into the abstraction and encapsulation 
category.    More later.    Since we almost always want to initialize our data structures (objects) to some 
known state, C++ will automatically call your own constructor every time.    The converse is also true.    
When you delete an object, or it goes out of scope (falls out of    a curly braces), you also want to free up 
memory, and set your variables to a used state. Where in the bleep do they dome from?    You only have 
to do two things.    First declare your member functions, and then define them. Piece of cake.    For an 
example, Windows is kind enough to require us to create and destroy all sorts of stuff.    There are over 63 
calls to create something in the Windows API.    All these objects (bitmaps, etc.) have to be closed, 
deleted, freed, or destroyed (pick your favorite synonym).    Since we almost always trap the 
WM_CREATE message lets create a PAINTSTRUCT object.    We'll call it a PAINT. If you want to put 
anything on the screen, you have to ask permission. Since Windows is kind enough to let many programs 
run at once, they have to share the screen.    Kind of like kindergarten, and Windows is the teacher.    To 
get permission you have to ask for a display context (think constructor).    Your piece of the screen. A 
display context is provided when we call BeginPaint(...).    Due to the limitations of DOS and/or Windows 
you can only have five DC in use at once.    So after you are done you have to release the DC so that 
another program can draw in his corner of the sand box (think destructor).    This is done with 
EndPaint(...).    BeginPaint (...) also fills in a PAINTSTRUCT data structure.    The only additional 
information filled in is whether you should paint the background, and the smallest rectangle you have to 
paint.    In my tradition, let's write some code that uses our PAINT object.    This will clarify what 
advantages we'll gain and what member functions we are going to have to write. 

/* 
 PAINT Object Test 
 Written by Andrew Bradnan (c) 1993 
 Note: The only C++ code is in the WM_PAINT case statement and in PAINT.H */ 

 [Editors Note: There was code here. Because of problems in generating the help file, it was removed, but 
is in the plain text version of the magazine (WPJV1N3.TXT). We are investigating the problem and will try 
to prevent it from happening in the future.] 

          As you can see we have gone from four lines of code to two.    Not too bad.    The interesting part is 
that we no longer have to call BeginPaint or EndPaint, and we no longer care what those pesky 
PAINTSTRUCT members are.    The compiler grabs it from the PAINT object for us, calling our declared 
explicit cast operators.    There is also sort of an intentional bug.    If you cover up only part of the client 
window and then bring the sample application back to the foreground, "PAINT Test!" doesn't draw in the 
middle of the client window.    "PAINT Test!" will draw in the middle of the rectangle that was covered up.    



Windows is kind enough to let you do a little optimization should you want to. From the sample code 
above we can determine that we need a PAINT object with four member functions.    One constructor, a 
destructor, a cast to an HDC, and a cast to a LPRECT. 

 [Editors Note: More code belongs here. See the above Editor's note for an explanation.] 

          As you can see    strangely enough all the code is written in the header file.    This is called inlining. 
The short story is that this allows the compiler to optimize your source code.    It does this by replacing the 
function call with the code you have written.    So our call to DrawText () really won't call two functions to 
get the parameters it will just reference the members in our PAINTSTRUCT ps.    It is essentially like using 
a macro except you get all the type checking thrown in for free. Some statement will not inline but your 
compiler will let you know what these are.    You will also note that the constructor looks a little weird.    In 
the constructor, we can optionally tell the compiler how to initialize our members hWnd and ps.    If we do 
not the compiler will create them, set all the members to zero, and then we would initialize the member 
within the curly braces. Obviously one more step than you want.    To initialize hWnd we use the 
parameter passed in.    Memory for hWnd is allocated and then filled with the parameter passed in.    
Which is exactly what we wanted.    Space for ps is allocated, set to zero, and then we initialize it, using 
BeginPaint, in the function body.    An extra step but it can't be avoided in this case.      So the moral of the 
story is that C++ code can be quite easy to read when you are using the object.    Writing the actual code 
is a little messier.    Just remember you only have to get it right once.    You can forget two function calls 
and three PAINTSTRUCT member names.    You can even forget about PAINTSTRUCT.          Readers 
familiar with some of the brand name applications frameworks may be wondering why I did not add 
DrawText() as a member function to our PAINT object.    Doing this we could just remove the two cast 
operators and call DrawText with new parameters - DrawText (LPSTR szText, int cb, UINT fuFormat).    
The only problem is we have to learn more than we forget.    Now you have two versions of DrawText().    
This is supposed to be easier not more complicated.    The second reason is that you can't DrawText a 
PAINT.    English wise, this makes no sense.    You can draw some text on a DC.    That would make 
sense.    You would also end up with every drawing function listed under the PAINT and/or DC object.    
Definitely confusing.    Just look at Microsoft's AFX. Yuck!          I have built the above example using BCW 
3.1.    With minimal changes it ought to work fine with MSC 7.0 and with Windows NT.    Next month I'll 
start a little earlier so I can test it on all three platforms and send the appropriate make files to make your 
life easier.    Again if you have any problems, questions, suggestions, or answers send me a note on 
Compuserve [70204,63]. 

 --------- 

Andrew Bradnan is president of Erudite Software, Inc.    Their latest offering, which he wrote using C++, 
is called Noise for Windows, a sound utility for Windows 3.1.    Feel free to contact him for information. 





      Creating And Using Owner Draw Buttons 
                              By Todd Snoddy 

          Many of you may be wondering how some Windows programs display the fancy bitmapped 
buttons.    Although these are not standard controls, Windows does provide the capability to utilize 
controls that are custom designed.    Many times a properly displayed graphic can mean much more than 
a simple text word.    I will try to explain how you can use your own custom buttons in your programs. 

          My sample code is written in Turbo Pascal for Windows, although the techniques apply just the 
same to Turbo C++ for Windows.    I use Borland's Object Windows Library in my examples, but if you use 
Microsoft Foundation Classes it should still be possible to understand the basic concepts. 

          My code emulates some of the functions of Borland's BWCC.DLL, which many people use to 
enhance the visual appearance of their programs.    This DLL provides an assortment of functions that can 
give your program that extra visual 3D look without too much work on your part.    Unfortunately, the size 
of the DLL can be a big factor in deciding whether or not to use it, especially if you are writing a 
shareware program and want to keep its size down.    You may also have your own reasons for not 
wanting to use the DLL, and this may cause you to look for other solutions. 

          I will demonstrate how to use what is called owner drawn controls.    My examples show how to 
simulate the BWCC style buttons from BWCC.DLL using owner drawn buttons.    If you want to use owner 
drawn buttons in your programs, it should be rather straightforward to use my code "straight out of the 
box" or modify it to suit your needs. 

          We'll start with the obvious question. What are owner drawn controls?    An owner drawn control is 
a special type of control which is designed to allow the program to specify custom behavior.    It is most 
often used for listboxes with graphics or for custom buttons. 

          Whenever a user clicks on an owner drawn control or it changes state in some other way, like 
getting the focus, a special message is sent to the owning window of this control.    This message is called 
WM_DRAWITEM, and its purpose is to let the window know that one of it's owner drawn controls needs 
attention.    Along with this message, a pointer to an information structure is sent to the window.    This 
structure contains information about what exactly happened with the control, and which control it was.    
The pointer to this structure is passed in lParam. In Pascal format, the structure looks like: 

    TDrawItemStruct = record 
          CtlType: Word;                    Control type    can be  odt_Button, odt_ComboBox,    odt_ListBox, 

odt_Menu 
          CtlID: Word;                        ID of Control 
          itemID: Word;                      Not used for buttons. Has different meanings for other types of controls 
          itemAction: Word;              What happened.    For buttons, tells if gained or lost focus, or selected 
          itemState: Word;                What state control should be in after this drawing.    Buttons only use    

ods_Disabled, ods_Focused, and ods_Selected 
          hwndItem: HWnd;                  Window handle for the control 
          hDC: HDC;                              Display context to be used for drawing the control 
          rcItem: TRect;                  Defines clipping boundary rectangle for control 
          itemData: Longint;                  Not used for buttons.    Only used for listboxes and comboboxes 

 end; 

          The owning window can examine this structure and determine what needs to be done with the 
control.    By looking in the CtlType field, it will know what type of control the message is for.    For a owner 
drawn button, this will be odt_Button. The CtlID field contains the ID of the control.    The itemID field is not 
used for owner draw buttons.    The itemAction field tells what happened with the control to cause this 
WM_DRAWITEM message. It can contain oda_DrawEntire, oda_Focus, or oda_Select.    Only oda_Focus 
and oda_Select are relevant for owner drawn buttons.    If oda_Focus is set, then the focus for the button 
changed, and you must check itemState to see whether or not the control gained or lost the focus.    If 
oda_Select is set, the selection state of the button changed, and you must check itemState to know what 



the new state is. 

          The itemState field specifies what state the control should be drawn in next.    To check the values 
of itemAction and itemState, you must use the logical AND operation since they can contain more than 
one value.    If (itemState AND ods_Focused) = TRUE, then the button has the focus.    If (itemState AND 
ods_Selected) = TRUE, then the button is selected, or pushed. 

          The hwndItem field specifies the window handle for the control.    You can use this to send 
messages to the control's window procedure.    The hDC field is the display context that should be used 
when drawing the control.    The rcItem field defines the clipping rectangle for the control.    It is used 
mainly with owner drawn menus.    The itemData field is only used for listboxes and comboboxes. 

          There are a couple of ways that your window procedure can process the WM_DRAWITEM 
message.    It can either draw the control itself, or it can pass the message on to the window procedure of 
the control.    This will use an object oriented technique and let the control draw itself instead of the main 
window procedure having to worry about how to draw each control.    This is the technique that I used in 
my example code. The dialog window merely passes the WM_DRAWITEM message along to the control. 

          The control reacts to this message by looking at the TDrawItemStruct record and determining what 
state it should draw, and then draws the button using StretchBlt.    I originally wrote this to draw with BitBlt, 
but when the program was tested under the 1024 x 768 resolution while using large fonts, it became 
obvious that hardcoding the size of the bitmap didn't work properly when the dialog sizes were increased. 
This problem has basically two solutions.    Either use StretchBlt to draw the bitmap button at a larger than 
normal size, or have separate bitmaps depending on the resolution. 

          Both of these methods have their pros and cons, and in the long run I decided to just use 
StretchBlt.    You will notice a degradation in the quality of the bitmaps if you do run in the high resolutions 
and use the large fonts because StretchBlt can't do a perfect job scaling an image up. 

          That's the basic idea for using owner drawn buttons.    Things will probably be much clearer after 
actually looking at the source code.    I'll briefly describe how to use it. 

          My code is primarily designed to be used for owner drawn buttons in a dialog box, although there's 
no reason why you can't use them in a normal window.    There are several steps that you will have to 
take to use this code in your own programs. 

1.    DESIGN YOUR DIALOG.    When designing your dialog, you will need to create a standard button 
for each owner draw button in the dialog.    Remember what the button ID is, as that's what you'll need to 
know to associate your owner draw control object to this button.    You will need to set the size of the 
button to be 32 x 20, which is half the size of the actual bitmap for Borland's standard VGA bitmaps.    I'm 
assuming that you are using Borland's Resource Workshop to design your dialog.    After you have all of 
your buttons positioned where you want them and sized properly, bring up the control attributes dialog by 
double clicking on each control, and set the control type to owner draw button.    After this, you won't be 
able to see the button anymore, but it will still be there.    Save your dialog. 

2.    DESIGN THE BUTTON BITMAPS.    You can use any Windows graphics program that can save in 
BMP format to design the actual bitmaps.    The bitmaps will use the BWCC numbering scheme for their 
names.    The numbering scheme is: normal = button ID + 1000, pressed = button ID + 3000, and focused 
= button ID + 5000.    This means that if your button ID is 500, the bitmap number for the normal button 
without focus will 1500, for pressed 3500, and for focused it will be 5500.    These are the names that you 
will give to the bitmaps when you save them.    There is a shareware program written by N. Waltham 
called Buttons that will automate this task for you by creating all of the necessary bitmaps from one main 
bitmap.    It automatically adds a 3D shadow effect and has some other useful features.    This program is 
available on Compuserve in the BPASCAL forum, and the author can be contacted at 
100013.3330@compuserve.com.    Although you must register with the author, I don't mind sending 
copies of it via Internet email to interested users. 



3.    ADD NECESSARY CODE TO YOUR PROGRAM.    You will need to add OwnDraw to your USES 
statement in your program. You will also need to make your dialog object a descendant of TOwnerDialog. 
The sample program shows an example of doing this. The last thing to do will be to use the NewButton 
method in your dialog's constructor for each owner draw button in that dialog. The NewButton method is 
called with the button ID, and a Boolean True or False depending on whether or not you want that button 
to be the default button in the dialog.    If this is True, then it will be the button drawn with focus when your 
dialog is initially created. 

          That's all there is to it.    When your dialog is displayed, the owner draw buttons will be displayed 
along with it.    Of course, to get the buttons to do some useful function, you will need procedures in your 
dialog object to respond to each button selection.    The sample program demonstrates this too. 

          As you can see    using bitmapped buttons in your programs is not quite as difficult as it may at first 
look. When properly used, bitmaps can really make a big difference in the look of your program. 

          I welcome any comments you may have    good or bad.    I can be reached on Compuserve at 
71044,1653, on America OnLine at TSnoddy, and on the Internet at tsnoddy@nyx.cs.du.edu. 





                              Hacker's Gash 
              by Mike Wallace and Pete Davis 

          This is our first attempt at a tips/tricks column.    If you couldn't figure out what the title meant, 
blame Pete.    Here are three tricks we've come up with.    Hope you like them.    If you have any you want 
to share with our readers, send them in!    Full credit will be given for all tips we publish, of course. 

1) Menu bar on a dialog box:    We spent a lot of time on this one, but the solution turned out to be a 
simple one. In the dialog box definition in either (a) the .RC file, or (b) a .DLG file you include in the .RC 
file, throw in the lines: 

STYLE WS_OVERLAPPEDWINDOW 
 MENU <menu name> 

where <menu name> is a menu you have defined in the .RC file.    The style 
WS_OVERLAPPEDWINDOW combines WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU and 
WS_THICKFRAME, and is a standard parent window. 

2) Highlighting a button on a dialog box when the cursor is over it: By highlight, I mean the button 
moves "in" slightly, and it's a cool effect that can look pretty impressive. Add the following declarations to 
the function that controls the dialog box: 

    static BOOL        ButtnDn; 
 static int          LastDown; 
 static int          IDNumber=0; 
 int                        counter; 

Next    assume you have 5 buttons on your dialog box, and these buttons are identified by the constants 
IDB_BUTNx (where x is a number between 1 and 5), which are defined in the .H file for the .DLG file 
containing the definition for your dialog box.    Also assume these five constants are defined sequentially, 
say, 101 to 105.    The variable "hDlg" is the handle to the dialog box, and "message" is the message 
passed to the function by Windows (these are, respectively, the first and second parameters passed into 
a    standard window-handling function).    Add the following two cases inside the "switch(message) " 
structure: 

case WM_SETCURSOR: 

          ButtnDn= TRUE; 
        LastDown= IDNumber; 
        IDNumber= GetDlgCtrlID(wParam); 
        for(counter=IDB_BUTN1; counter<=IDB_BUTN5; counter++) 

              if(counter==IDNumber) 
                        SendDlgItemMessage(hDlg    counter, BM_SETSTATE, TRUE, 0L); 

          if(IDNumber != LastDown) 
              SendDlgItemMessage(hDlg    LastDown, BM_SETSTATE, FALSE, 0L); 

 break; 

case WM_NCHITTEST: 

          if (ButtnDn) 
              ButtnDn = FALSE; 
              SendDlgItemMessage(hDlg    LastDown, BM_SETSTATE, FALSE, 0L); 

 
      break; 

3) Using DlgDirList for a subdirectory:    I recently tried using the DlgDirList function passing a pathname 
like "DATA\*.DAT" to fill a list box with all the files in the DATA directory ending with .DAT (by the way, the 



double backslash ("\") is needed because the backslash is a special character in a C string).    Afterwards, 
I found out that if this function is successful, it changes the current working directory to whatever is 
specified in the string (here, the "DATA" directory).    Afterwards, I tried changing the directory back to the 
original working directory, but if the function got called again, chaos ensued.    I managed to get around 
this by including in the program the following line: 

#include <direct.h> 

          The direct.h file has prototypes for the directory-manipulating functions, including the one needed 
here: chdir, which changes the current working directory.    I replaced the call to DlgDirList with the 
following code: 

chdir("DATA"); 
 DlgDirList(hDlg, "*.DAT", IDL_POPUP, IDL_DIRSTRING, 0); 
 chdir(".."); 

          The "hDlg" variable is the handle to the dialog box, "IDL_POPUP" is the dialog box ID value for the 
list box control, "IDL_DIRSTRING" is the dialog box ID value for a static text control that will be updated 
with the current path name, and 0 is the DOS file attribute used to retrieve a list of read/write files with no 
other attributes set.    There are other values you can use for the DOS file attribute value to retrieve, for 
example, subdirectories and drives.    This code simply changes to the DATA directory, gets a list of 
the .DAT files in that directory and puts that list in the IDL_POPUP list box and the path in the 
IDL_DIRSTRING static text control, and then changes back to the parent directory.    You can use the 
DlgDirSelect function to retrieve a selected filename from the list box. 





                              Special News 
                              by Mike Wallace 

          We recently got a letter from Todd Snoddy offering to put WPJ on the America Online information 
system.    We said "Sure", and a couple of days later got a phone call from a sysop for the board.    He 
liked the magazine (all contributing authors can now pat themselves on the back) and asked how we 
would feel about holding an on-line conference on AO, giving readers a chance to talk directly to us and 
ask us any questions they have about the journal.    Sounded good to us, so we agreed, and now hope to 
bring this to you AO subscribers soon.    The details are still being worked out, so watch the AO 
Programming Library for updates. 

          For the benefit of our readers without access to America Online, I'll try to write down what 
questions get asked and our answers and include them in our next issue. 

          Thanks    Todd, and the great folks at America Online! 





Windows 3.1: Using Version Stamping library 
                              By Alex Fedorov 

          Windows 3.1 introduces the new resource type with ID number 16 called    VS_FILE_INFO.    This 
resource contains the symbolic data about the file version, its description, the company name and so on. 
Such information can be used to determine the file type/subtype and its version and can be used in 
installation programs.    Resource data lives as a set of blocks; each block contains information of its own. 
The first one (with a fixed size) describes the TVS_FixedFileInfo structure.    The fields of this structure 
contain the following information: file version, environment type and version, file type and subtype. There 
are several subblocks, which contains symbolic information with the following IDs (the table contains only 
those which must present): 
      ID Contents 

 CompanyName Company name 
 FileDescription File description 
 FileVersion File version 
 InternalName Internal file name 
 ProductName Product name 
 ProductVersion Product version 

          Resource of this type can be created with resource editor, such as Resource Workshop (version 
1.02 or higher), or with resource compiler (RC or BRC).    The latter needs the resource template.    
VS_FILE_INFO resource for resource compiler looks like the following: 

            1 VERSIONINFO LOADONCALL MOVEABLE 

            FILEVERSION                3 10,0,61 

      PRODUCTVERSION 3 10,0,61 
              FILEFLAGSMASK VS_FF_DEBUG | VS_FF_PATCHED 
              FILEFLAGS VS_FF_DEBUG 
              FILEOS VOS__WINDOWS16 
              FILETYPE VFT_APP 
              FILESUBTYPE VFT2_UNKNOWN 
              BEGIN 
                    BLOCK "StringFileInfo" 
                    BEGIN 
                            BLOCK "040904E4" 
                            BEGIN 
                              VALUE "CompanyName"    "Microsoft Corporation" 
                              VALUE "FileDescription"    "Windows Terminal application file" 
                              VALUE "FileVersion"    "3.10.061" 
                              VALUE "InternalName"    "Terminal" 
                              VALUE "LegalCopyright" "Copyright 51 Microsoft Corp. 1991" 
                              VALUE "OriginalFilename" "TERMINAL.EXE" 
                              VALUE "ProductName" "Microsoft56 Windows31 Operating System" 
                              VALUE "ProductVersion"      "3.10.061" 

                            END 
                    END 

            END 

          To get access to VS_FILE_INFO resource data you can use the functions from VER Dynamic Link 
Library included with Windows 3.1. 

 [Editor's Note: There was code that belonged here. Because of problems encountered while generating 
the help file, it had to be removed. The code is provided in the WPJV1N3.TXT file. We are investigating 
this problem and will try to find a solution before the next issue is released.] 





                                Book Review 
                                by Pete Davis 

Microsoft Windows 3.1 Programmer's Reference Library 

          If you're a serious Windows programmer you've probably got Microsoft's series of books on 
Windows programming. The series is broken up into 4 volumes and two extra books, as follows: 

- Volume 1: Overview 

          This is    as it says, an overview. It covers a lot of different topics from how windows are managed, 
graphics, and how to write extensions for Control Panel and File Manager. 

- Volume 2: Functions 

          This is an alphabetical listing of all the Windows 3.1 functions. It's a big one. 

- Volume 3: Messages    Structures and Macros 

          Like the previous two    this one is exactly what it says it is. it's got some great information on all 
the structures, which comes in real handy. 

- Volume 4: Resources 

          This one has a lot of information on file formats for a bunch of different Windows files (.GRP files, 
Meta Files,    etc.) It's also got a bit of information on creating Help files, using assembly language in 
Windows, and more. 

- Programming Tools 

          Not listed as a Volume. This is more of an additional Microsoft C reference. It covers a lot of the 
SDK tools, debugging with Codeview, data compressions and that kind of stuff. 

- Guide to Programming 

          Also not listed as a Volume    but I would have made it one. It covers different types of resources 
like Icons, Dialog boxes, etc. Printing, DLLs, MDI, Fonts, Assembly and C, and more. 

          Ok    so there's our list. I would say, all- in-all, this is probably the most definitive resource on 
programming for Windows and that anyone planning on doing a lot of Windows programming should get 
the whole series. It's a big ticket item. The least expensive book is $23 (US) and the most expensive is 
$39 (US). 

          I suggest you get some other books and not limit yourself to just these. Although they cover most 
of the topics most programmer's will need, the books are lacking in some areas and there are some typos 
which have slowed this programmer down on more than one occasion. Every book has typos and that's 
why, as a serious programmer, your library should come from several sources so you can check the 
books against each other when you run into problems. 

          These books are    however, well worth the cost. There's a lot of stuff covered in these books that 
you won't find in other sources. The detail on different file formats, for example, I haven't seen in any 
other books. The structures list is very complete and is a very handy reference. There's also some good 
information on memory management and DLLs. 

                      What these books aren't 

          These books aren't everything and    like I said, don't limit yourselves to just these. The Windows 
API bible (which Mike will be reviewing) has some great information too and it's a good one to check 
against Microsoft's Function reference when you get suspicious that a function isn't doing something it's 



supposed to do. Also, because it's Microsoft, you're not going to get the wealth of inside, under-the-hood, 
information like you get from Undocumented Windows (Andrew Schulman, David Maxey, Matt Pietrek. 
Addison-Wesley. See the review in WPJ Vol.1 No.1) 

          Unfortunately    because Windows is such an enormous system and no single book can even 
begin to cover every aspect of it, we programmers have to get a lot of different books. If you're serious, 
though, you should consider setting aside the money to get this collection. 





                                Book Review 
                              by Mike Wallace 

          The Waite Group's Windows API Bible 
                          by James L. Conger 

          Earlier in this issue Pete reviewed the Microsoft Windows 3.1 Programmer's Reference Library.    
Now it's my turn to review my Windows programming reference book of choice: The Waite Group's 
Windows API Bible by James Conger.    Pardon my French, but this book kicks serious "lune".    While the 
Microsoft books spread out everything across several books, the Waite Group threw it all into one book, 
making anything you want to look up easy to find.    This book is a must-have for anyone wanting to learn 
how to program Windows.    Here are the details: 

          The book is divided into 30 chapters    each discussing a distinct area (e.g., creating windows, 
menus, windows messages, metafiles).    Each chapter starts off with a discussion of its topic (usually 
several pages long), then a summary of the associated functions (a list of the function names with a one 
line purpose), and then a complete description of the same functions in the summary.    Their descriptions 
are detailed and include suggested uses for the function, a great "see also" reference list (more complete 
than the Microsoft books), an explanation of all the parameters and the return value, and code (real 
programs) that shows how to use the function.    It's my one stop for looking up a function.    Plus, the 
inside front cover contains a list of all the API functions with a page number so I can quickly jump to the 
function I want to look up, followed by a list of messages grouped by category (e.g., button notification 
codes, windows messages). 

          But wait    there's more...the book also includes a pullout reference card containing a list of all 
functions with the type declarations for all parameters and the return value, plus the same list of 
messages that's on the inside cover.    The function list in the pullout card is organized the same way as 
the chapters, so that all the functions listed in the chapter on, say, sound functions, are grouped together 
in the pullout under the heading "Sound Functions."    I couldn't ask for a better list.    In the Microsoft 
books, you have to know the name of the function before you can look it up, and there have been many 
times when I didn't know what the function was called, but I knew what it did.    This book lets me find the 
name of the function quickly, and then shows me how to use it. 

          In the appendices    there is a discussion of useful macros from WINDOWS.H, mouse test hit 
codes, and a printout of WINDOWS.H, which has been very helpful to me on occasion.    The book ends 
with a very complete index, making it extremely easy to look up related subjects. 

          There are very few faults with this book but there a few.    One is the strange absence of the 
Windows API functions starting with the letter "N".    I am not making this up. The Microsoft reference book 
on functions lists four functions starting with "N": NetBIOSCall, NotifyProc, NotifyRegister and 
NotifyUnRegister.    None of these functions are in the API Bible. There is also no discussion of OLE or 
True Type fonts, although the author writes (in the introduction) these will be covered in a separate 
volume currently under development. 

          Also    the Microsoft volume on programming tools (those included with the SDK, such as Spy) 
covers an area not addressed by the API Bible.    If you want to use the Microsoft SDK, the API Bible won't 
be of much help, but this isn't much of a fault, because Microsoft isn't the only producer of Windows 
SDKs, and you're going to get manuals for any SDK you buy, so why include a lot of information that 
some readers won't need to know? 

          To me    the faults of this book do not detract from its overall usefulness.    It has paid for itself many 
times over, and when compared to the Microsoft reference books, the price seems insignificant.    Total 
price for the six books in the Microsoft Windows 3.1 Programmer's Reference Library: around $170- 180. 
The Windows API Bible: $40.    I recommend this book.    You'll thank me for it. 





                        Printing in Windows 
                                by Pete Davis 

          Ok    I failed to get this article out last time and I've been feeling really guilty about it, so here it is. 
Writing this article hasn't been easy. Writing about printing reminds me of my first attempt at printing 
under Windows. It wasn't a very good one. 

          Actually    printing under Windows isn't a big deal and if you're printing graphics, it's a lot easier 
than you'd think. My real problem with printing the first time was incomplete/incorrect documentation. I 
won't mention names, but I saw at least 3 examples of printing in different books on Windows 
programming and every one of them either misled me or had code that didn't work. 

          Here's the deal. When you print    you MUST, and I mean MUST (I'm really serious about this), 
have an abort procedure. This is an absolute necessity. You MUST have it. You can't do without it. You'll 
have problems if you don't have an abort procedure, so write one. Are you starting to get the picture 
here? An abort procedure is NOT optional, you MUST have it. 

          Now    you might be wondering why I'm emphasizing this point. Every book I read on printing made 
it sound like an option. I needed to print one page of text (and not much text at that) and didn't have a 
need for an abort procedure, so I didn't include one. I kept getting UAEs as soon as I tried to print. It even 
occurred to me that I might need the Abort procedure, and I specifically looked for a phrase which said 
something along those lines in every bit of documentation I had. Finally, 4 days later, I decided I'd just pop 
an abort procedure in. (I had tried just about everything else at that point, why not?) Of course, it worked, 
and I had wasted four days because I HAD TO HAVE AN ABORT PROCEDURE!!!! 

          So    I'm assuming that, after reading this, none of you are going to spend four days trying to figure 
out why your print routine UAEs only to find that you forgot your abort procedure. If I hear of any of you 
doing this after reading this article, I'm going to come over and personally give you a whuppin (as we say 
down in Arkansas). If you haven't, at this point, realized that an abort procedure might possibly be a good 
idea to include in your print procedure, you fit into one of the following three categories: 

          1> You program on the cutting edge of Atari 2600 technology. 
          (or some other cutting edge of obsolescence) 
          2> Blind and not able to read any of this anyway. 
          3> Just plain stupid 

          There    so I have that off my chest, on to the meat of this article, which is how to print. It's real 
easy!!! 

          The first thing we'll look at is our Abort procedure. (Did I mention that you need this part?) The 
abort procedure is real simple. It receives the device context of the printer and an error code. In our 
example, the nCode is the error code and if it's non-zero, you have an error. 

          Basically all your abort procedure has to do have a message loop. I don't do anything else with it, 
myself. It should look something like this. 

BOOL FAR PASCAL AbortProc(HDC hdcPrint    short nCode) 

MSG msg; 

      while(!bPrintAbort && PeekMessage(&msg    NULL, 0, 0, PM_REMOVE)) 
              if(!hDlgPrint || !IsDialogMessage (hDlgPrint &msg)) 

                      TranslateMessage(&msg); 
                      DispatchMessage(&msg); 

  
  
    return !bPrintAbort; 



 

          The next thing on our agenda is the PrintDlgProc procedure. This is basically the dialog box 
procedure for our cancel printing dialog box. Although there is a cancel button in our dialog box, instead 
of checking specifically for the cancel button, our only concern is with a WM_COMMAND. (We only have 
one button, so what other WM_COMMANDS are they going to be sending?) If we get the 
WM_COMMAND, we basically abort the printout (by setting bPrintAbort = TRUE) and destroy our dialog 
box. Pretty darn simple. 

BOOL FAR PASCAL PrintDlgProc(HWND hDlg    WORD message, WORD wParam, LONG lParam) 

 
    if (message == WM_COMMAND) 

              bPrintAbort = TRUE; 
              EnableWindow(GetParent(hDlg)    TRUE); 
              DestroyWindow(hDlg); 
              hDlgPrint = 0; 
              return TRUE; 

  

          return FALSE; 

 

          The next procedure is our printing procedure. There are a couple of neat things here that I'd like to 
talk about. First of all, there's the four lines involved with getting information about our printer driver. What 
we're doing here is just getting the default printer device. We get the information via a GetProfileString 
command. Under the section "windows" and then the line starting with "device". That's our printer. All the 
information goes into szPrinter which we then break into the Device, Driver, and PortName using the 
strtok function. This basically breaks out our string into separate strings. The second parameter of strtok 
is the thing we want to break our string apart at. In this case, we want it broken up at the commas. Also, 
notice how we only pass szPrinter once. If we use NULL in the next two occurrences of strtok, it knows to 
continue using szPrinter and to continue from where we left off which, in this case, is at the last comma. 

GetProfileString("windows"    "device", ",,,", szPrinter, 80); 
 lpDevice = strtok(szPrinter, ","); 
 lpDriver = strtok(NULL, ","); 
 lpPortName = strtok(NULL, ","); 

          Our next job is pretty simple    we just create a device context based on the information about our 
driver. 

/* Create the device context. */ 
 if ((hdcPrint = CreateDC(lpDriver, lpDevice, lpPortName, NULL)) == NULL) 
 MessageBox(hWnd, "Could not assign printer.", "ERROR", MB_OK); 
 return FALSE; 
  

          Here's another thing you don't really have to deal with in DOS. With Windows, you need to know 
where you are on the page. The reason is that you have to tell Windows when you're done with the 
current page. This means you need to know the size of a page and the size of the text on the page. Now, 
this can be a bit of a pain, but it also allows for a lot of interesting stuff. For example, you don't have to 
start from the top of the page and go down. You can print the bottom part of the page, and then print 
something in the middle of the page, and so on. Then you just tell Windows to eject the page. In our case, 
we're going to be assuming 1 page or less of text and not really deal with that. (As they say in school 
books, this is left as an exercise for the reader.) All we're going to do is use the text size to tell us where to 
print the next line of text. First we have to use CurYPos as our current Y position on the page. (I love 



descriptive variable names.) Then we need to find out how tall a single character is. That's done from 
getting a text metric for the printer and adding the character's height, plus the external leading, which is 
kind of like the blank space between lines. 

CurYPos = 1; 
 GetTextMetrics(hdcPrint, &tm); 
 yChar = tm.tmHeight + tm.tmExternalLeading; 

          The next step is to create our dialog box and abort procedure. By the way, the abort procedure is 
not optional. 

lpfnPrintDlgProc = MakeProcInstance (PrintDlgProc hInst); 
 hDlgPrint = CreateDialog(hInst, "PrintDlgBox", hWnd, lpfnPrintDlgProc); 
 lpfnAbortProc = MakeProcInstance(AbortProc, hInst); 
 bPrintAbort = FALSE; 

          Now    the secret to printing is all in the Escape commands. (Actually, in Windows 3.1, they have 
commands you can use instead of Escape, but since we try to maintain our 3.0 backwards compatibility, 
we're going to use Escape.) The Escape is the heart of the printing routines. You use it to send different 
commands and/or data to the printer driver. The first one we'll send is our SETABORTPROC command. 
This sets up our all-important abort procedure. 

Escape(hdcPrint    SETABORTPROC, 0, (LPSTR) lpfnAbortProc, NULL); 

          The next Escape we're going to send is our STARTDOC command. We're going to pass the name 
of our document and the length of the string that has the name of our document. Pretty straight-forward. 

Escape(hdcPrint    STARTDOC, strlen(szMsg), (LPSTR) szMsg, NULL); 

          Since our example involves reading from a file, we're just going to read one line at a time from the 
file. We use a TextOut function to output our string to the printer driver. We need to give X and Y 
coordinates. In our case, the X is always 0 and the Y position is calculated from the GetTextMetric which 
we did above. We just add the text height to the current Y position after each line. 

while (fgets(CurLine    132, inFile)!=NULL) 
        TextOut(hdcPrint    0, CurYPos, CurLine, strlen(CurLine)-2); 
        CurYPos += yChar; 

 

          When we're done    we need to send a NEWFRAME command via the Escape function. This 
basically means to advance to the next page. Now, if you're printing multiple pages, you need to do a 
NEWFRAME between each page. In our case, we're only allowing one pages, so we do it right at the end. 

Escape(hdcPrint    NEWFRAME, 0, NULL, NULL); 

          The last thing to do is send an ENDDOC. This basically tells the printer driver we're done and it 
can begin printing the document. 

Escape(hdcPrint    ENDDOC, 0, NULL, NULL); 

          After all that    we just close the file and delete the device context for our printer, then get a cup of 
coffee and a smoke and relax. 

fclose(inFile); 
 DeleteDC(hdcPrint); 

          Ok    so it's a little more complex than printing text under DOS, but the thing I didn't mention is the 
graphics. Now, I'm not going to go into great detail about it, because it is a little more complex, but not 



much. Essentially, all you have to do is route all of your graphics to a printer device context instead of a 
screen device context. The complexity comes in when you're trying to figure out pages sizes and that kind 
of stuff, but for the most part, printing graphics is as easy as printing text. 

          There are some things we didn't cover here. One of them is a thing called banding, which is a way 
of printing your page in parts called bands. This is particularly useful for dot-matrix and other non-
postscript printers. Banding makes it a bit faster to do the printing. Some printer drivers have the banding 
built-in and I, personally, have never had to work in an environment where printing had to be particularly 
fast, so I've avoided banding. If someone feels that banding is of particular importance, they're more than 
welcome to write an article on it. 

          That just about wraps up printing. It's really not all that complex, and as you can see, Windows 
gives you a lot of power as to how to handle it. There are all kinds of neat and nifty things you can do, like 
mixing graphics and text, which is a cinch. Try doing that in DOS. And last but not least, please, don't 
forget your abort procedure. 





                  Advanced C++ and Windows 
                            By Andrew Bradnan 

Talking to the User 
 Overview 

While Windows offers a great variety of ways to talk to the user, none of them are very easy.    Even 
fewer are quick to implement.    In this article we will look at some C++ classes to make things a little 
easier. 

Output 
 Introduction 

Let's look at a few ways to talk to the user. The simplest way to tell the user something is to create a 
message box.    This is one of the easiest things to do in Windows.    Luckily, Windows does most of the 
work for us.    We are going to make it even easier.    With the classes we are going to create you will 
never have to remember what the parameters are, what order they go in, and exactly how they spelled all 
the constant values you can pass in and that MessageBox() passes back.    We also need a good way to 
tell the user and ourselves about error messages (God forbid). 

Message Boxes 

If you are at all familiar with the MessageBox () call you are well aware that there are several different 
incantations.    Each has its own purpose and can be used for several circumstances.    Its function 
prototype looks like this: int MessageBox (HWND hwndParent, LPSTR lpszText, LPSTR lpszTitle, UINT 
fuStyle); You can pass it 18 different flags (or combinations) and it will return seven different flags to tell 
you what the user did. Not as ugly as CreateWindow() but not easy either. 

OKBOX 

A stream is an abstraction referring to the flow of data from a producer to a consumer. The first output 
object we are going to create is an OKBOX.    Once again it does exactly what it sounds like.    It displays 
a message box with one "OK" button.    The OKBOX will allow us to use C++ stream conventions. Let's 
first look at how we would like to use an OKBOX so we can write the appropriate member functions. 

OKTEST.H 

// 
//    OKBOX Test Header 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#ifndef __OBJECTS_H 
#include <objects.h> 
#endif 

class WINDOW : public BASEWINDOW 
 public: 

    WINDOW (LPCSTR lpcszClass    HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR 
lpszCmdLine, int nCmdShow) : BASEWINDOW (lpszClass, hInstance, hPrevInstance, lpszCmdLine, 
nCmdShow) ; 

    BOOL OnCreate (CREATESTRUCT FAR *lpCreateStruct); 
; 

OKTEST.CPP 

// 



//    OKBOX Test Module 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#include <oktest.h> 

BOOL WINDOW::OnCreate:: (CREATESTRUCT FAR *lpCreateStruct) 
 

    OKBOX msg ("OK Test Caption"); 
    msg << "User notification." 
    return TRUE; 

 

int PASCAL WinMain (HANDLE hInstance    HANDLE hPrevInstance, LPSTR lpszCmdLine, int 
nCmdShow) 
 WINDOW Window ("OK Test", hInstance, hPrevInstance, lpszCmdLine, nCmdLine); 
 return Window.MessageLoop (); 
 

          We are using our WINDOW virtual function to trap the WM_CREATE message.    Here we define 
msg as an OKBOX with the caption "OK Test Caption"    When we want to send a message to the user we 
just stream some text to it.    This will invoke the message box with the "User notification."    It is much 
easier to read. Now that we have an easy way to send a message to the user or ourselves let's look in the 
"black box" to see how OKBOX works. 

OKBOX.H 

// 
//    OKBOX Header 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#ifndef __OKBOX_H 
 #define __OKBOX_H 

#ifndef __WINSTR_H 
 #include <winstr.h> 
 #endif 

class OKBOX 
 public: 

    OKBOX (LPSTR lpszCaption); 
    int operator<< (STRING& strMessage); 

 private: 
    STRING strCaption; 

 
 #endif // __OKBOX_H 

OKBOX.CPP 

// 
//    OKBOX Module 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 



#include <okbox.h> 

OKBOX::OKBOX (LPSTR lpszCaption) : strCaption (lpszCaption) 
; 

int OKBOX::operator<< (STRING strMessage) 
 

    return MessageBox (NULL    strMessage, strCaption, MB_OK); 
 

Short and sweet.    We have a constructor that takes a string which we will save as the caption for the 
message box.    Our other function, operator<<() is called by the compiler when ever it sees an OKBOX 
object on the left of the << and a STRING (or an object that can construct a STRING like a LPSTR) object 
on the right side. 

ERRORS 

Unfortunately    errors are bound to occur.    We will assume these are all going to be user errors.    If we 
think a bit, an ERROR object is going to be coded almost exactly like an OKBOX.    In fact, let's rewrite 
our OKBOX object so that we can take advantage of this.    Quality if free, but we have to pay for it up 
front. So that we can reuse some of the code we will create an object call MSGBOX.    MSGBOX will 
contain the code shared by the OKBOX and the ERROR object. 

MSGBOX.H 

// 
//    MSGBOX Object Header 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#ifndef __MSGBOX_H 
 #define __MSGBOX_H 

#ifndef __WINSTR_H 
 #include <winstr.h> 
 #endif 

class MSGBOX 
 public: 

    MSGBOX (LPSTR lpszCaption) 
    : strCaption (lpszCaption)    fuStyle (Style) 
    ; 
    int operator<< (STRING& strMessage) 
  

              return MessageBox (NULL    strOutput, strCaption, fuStyle); 
    ; 

 private: 
    STRING strCaption; 
    UINT fuStyle; 

 

#endif // __MSGBOX_H 

          The MSGBOX object only adds fuStyle so that different message boxes can be created. Now we 
can rewrite OKBOX to use the code in MSGBOX.    OKBOX will be inherited from MSGBOX.      Since we 
will inherit all the public member functions, we will only have to write a short constructor. 



OKBOX.H 

// 
//    OKBOX Object Header 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#ifndef __OKBOX_H 
 #define __OKBOX_H 

class OKBOX : public MSGBOX 
 public: 

    OKBOX (LPSTR lpszCaption) : MSGBOX (lpszCation MB_OK) ; 
 

#endif // __OKBOX_H 

The code for an ERROR object is exactly the same except for the value of fuStyle. 

ERROR.H 

// 
//    ERROR Object Header 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#ifndef __ERROR_H 
 #define __ERROR_H 

class ERROR : public MSGBOX 
 public: 

    ERROR (LPSTR lpszCaption) : MSGBOX (lpszCation MB_ICONSTOP |                                            
MB_SYSTEMMODAL | MB_OK) ; ; 

#endif // __ERROR_H 

Great!    Now we can notify the user using the OKBOX object and tell the user about errors using the 
ERROR object. 

Questions 

Your programs often need to ask the user a question.    If this is a yes or no affair we can use a 
message box. Let's look at how we would like to use an object like this.    Then we will write the member 
functions to fill out the class. 

QTEST.H 

// 
//    QUESTION Test Header 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#ifndef __OBJECTS_H 
 #include <objects.h> 
 #endif 



class WINDOW : public BASEWINDOW 
 public: 

    WINDOW (LPCSTR lpcszClass    HINSTANCE hInstance, HINSTANCE hPrevInstance, 
LPSTR lpszCmdLine, int nCmdShow) 

    : BASEWINDOW (lpszClass    hInstance, hPrevInstance, lpszCmdLine, nCmdShow) ; 
    BOOL OnCreate (CREATESTRUCT FAR *lpCreateStruct); 

 

QTEST.CPP 

// 
//    QUESTION Test Header 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#include <qtest.h> 

BOOL OnCreate (CREATESTRUCT FAR * lpCreateStruct) 
 

    OKBOX ("Question Test"); 
    if ((QUESTION) "Do you like the object?") 

              msg << "Great    I hope your programming is easier." 
    else 

              msg >> "What the hell do you know!"; 

    return TRUE; 
 

int PASCAL WinMain (HANDLE hInstance    HANDLE hPrevInstance, LPSTR lpszCmdLine, int 
nCmdShow) 

    WINDOW Window ("Question Test"    hInstance, hPrevInstance, lpszCmdLine, nCmdLine); 
    return Window.MessageLoop (); 

 

Once again we are trapping the WM_CREATE message and trying out our QUESTION object.    The 
code is kind of sneaky.    I know one thing, you can actually read C++ code if you write your classes 
carefully.    I would hate to write those four lines of code in C.    They certainly would not be as easy to 
read. Let's look at how the C++ compiler helps us.    First of all, when the compiler sees that we would like 
to cast the string to a QUESTION it creates a temporary QUESTION object using our string. Then since 
the if statement really wants a BOOL the compiler will cast the QUESTION to a BOOL.    It is in this 
explicit cast, operator BOOL (), that will make the message box call.    The cast member function will 
"look" to see if the user hit the "Yes" or "No" button, and return TRUE or FALSE. 

If you didn't understand that    let me explain it another way.    The C++ compiler did all the work. Seeing 
as how I'm trying to champion code reuse let's try and use the MSGBOX object.    We are only going to 
have to write two member functions for this object.    The constructor and the cast member function. 

QUESTION.H 

// 
//    QUESTION Object Header 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#ifndef __QUESTION_H 
 #define __QUESTION_H 



class QUESTION : public QUESTION 
 public: 

    QUESTION (LPSTR lpszOutput) 
    : MSGBOX ("Warning!"    MB_QUESTION | MB_YESNO), strOutput (lpszOutput) ; 

          operator BOOL (void) 
  

              if (IDYES == operator<< (strOutput)) 
                        return TRUE; 

              else 
                        return FALSE; 

    ; 
 private: 

    STRING strOutput; 
 

#endif // QUESTION_H 

          As you can see the only action really takes place in the explicit cast, operator BOOL ().    It is here 
that we call the member function operator<< () to invoke the message box call.    We didn't do too much 
but transform one call to the MSGBOX class.    Since we declared it inline we won't even gain any function 
call overhead.    The C++ compiler will put this ugly code right where our beautiful code exists right now.    
Pretty damn cool. 

Warnings 

          We also might want to warn the user of impending doom.    The File Manager uses this to confirm 
that you really want to overwrite a file.    If works almost like a QUESTION object except it can return 
whether the user chose "Yes", "No" or "Cancel". 

WARNING.H 

// 
//    WARNING Object Header 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#ifndef __WARNING_H 
 #define __WARNING_H 

class WARNING : public MSGBOX 
 public: 

    WARNING (LPSTR lpszOutput) 
    : MSGBOX ("Warning!"    MB_EXCLAMATION | MB_YESNOCANCEL) ; 

          operator BOOL (void) 
  

              BOOL fUserChoice; 
              fUserChoice = operator<< (strOutput); 
              if (fUserChoice == IDYES) 

                        return TRUE; 
              else if (fUserChoice == IDNO) 

                        return FALSE; 
              else // if (fUserChoice == IDCANCEL) 

                        return -1; 
    ; 



 private: 
    STRING strOutput; 

 

#endif // WARNING_H 

          Wondrous. 

          Why    you ask, go through all this trouble just for a MessageBox() call?    Well, there are plenty of 
reasons. Let's review them.    First, who can remember all those flag variables?    Not me.    Does the 
caption go first, like I know it should (and always write)?    No!    No matter how many times I write it the 
correct way, Windows just will not learn.    Second, the folks at Microsoft just love to change things.    The 
MessageBox() call may gain new functionality.    Why romp through all the code you have written to 
change it for the latest greatest MessageBoxEx()?    It would be a pain and you surely would miss some of 
your old code. Now all you need to do is make a change to the MSGBOX class. Third, you can add all 
sorts of checking to the base class.    This really doesn't apply in this case but in more complicated 
classes this will be important.    We even gain some checking from the string class. "How?" you ask.    
There is nothing to screw up with constant strings.    I'm afraid not, my friend.    Once upon a time, I forgot 
to export one of my functions (good thing you have never done that) that used one of these classes.    My 
data segment was pointing off to never never land and luckily my STRING's told me as much.      They 
didn't even GP fault, just quietly told me that I had screwed up. Windows 3.1 has brought multimedia to 
our clutches so let's look at a real example of how powerful C++ inheritance can be.    We will be updating 
MSGBOX. 

MSGBOX.H 

// 
//    MSGBOX Object Module 
//    Andrew Bradnan (c) 1992 
//    C++ Windows Version 
// 

#ifndef __MSGBOX_H 
 #define __MSGBOX_H 

#ifndef __WINSTR_H 
 #include <winstr.h> 
 #endif 

class MSGBOX 
 public: 

    MSGBOX (LPSTR lpszCaption); 
    : strCaption (lpszCaption)    fuStyle (Style) 
    ; 
    int operator<< (STRING& strMessage); 
  

              MessageBeep (fuStyle); 
              return MessageBox (NULL    strOutput, strCaption, fuStyle); 

 

private: 
    STRING strCaption; 
    UINT fuStyle; 

 

#endif // __MSGBOX_H 

          You have now added multimedia to everywhere you use message boxes.    All by changing one 



measly line. You're a fast worker.    Your boss will probably give you a raise. We have just implemented 
some easy ways to have dialog with the user. They are by no means complicated, but just think of the 
complicated things you can make this easy, even fun to program.    There are plenty of other nasty 
constants you can play with to create you own classes.    Then you can rip those pages right out of the 
Windows Programmer's Reference. 





The Trials and Tribulations of an Antipodean Abecedarian 
 who uses Turbo Pascal to Program Windows 

                          Part 1 
      They Also Serve Who Only Stand and Wait 

                                by Jim Youngman 
                      [CompuServe 100250 60] 

          I live in Melbourne    Australia and I work in a one man Operations Research department.    The 
programming that I do is in order to solve OR problems that I encounter.    I am very much isolated in my 
job although I do my best to keep in touch with others through professional societies and computer user 
groups.    e- mail has proved invaluable since I had a modem installed a short time ago. 

          The problems I have struck are often simple in the end, but they can be confusing for a beginning 
Windows programmer such as myself.    The documentation for the various programming languages does 
not tell you what you need to do; rather it tells you how to do something when you know what it is you 
need to do.    Perhaps sharing some of these trivial trials and tribulations in a series of short articles might 
just help another beginner. 

          I have the job of writing a user friendly front end to a mathematical programming package.    The 
end users will be line managers with a background in mechanics rather than computers.    This led me to 
decide that the best medium for them to use the final application would be Windows (we are standardized 
on IBM compatible machines). 

          One of the first things I needed to do after setting up various screens using the Borland Resource 
Workshop was to find out how to run the mathematical programming package from within a Windows 
program.    The package is DOS based and uses the Phar Lap DOS extender to run in 32 bit mode. 

          How could I do this?    I could not find any clues in the manuals, nor in the only book on TPW that I 
had at the time: Tom Swan's Turbo Pascal for Windows 3.0 Programming (1991) which is an excellent 
introduction to the subject. 

          The books being no help    I then went on to search the Borland Pascal Help file.    Eventually I 
tried a search on Load and soon discovered the function LoadModule.    This was described as loading 
and executing a Windows application, but there was a cross-reference to WinExec.    The description of 
this function did not specifically mention either Windows or DOS applications, so I tried it: 

procedure RunIPOPT; 
 begin 

      WinExec(hWindow 'c:', sw_Show) 
 end; 

          This worked OK.    However    the IPOPT program displays masses of mathematical detail on 
screen as it is running.    I do not want to confuse the end users with this detail, so I want to eventually 
hide the window in which it runs and bring up a message box to inform the user when the program has 
run to completion.    For the time being I will leave the window visible (sw_Show) so that I can monitor 
progress: 

procedure RunIPOPT; 
 begin 

      WinExec(hWindow 'c:',sw_Show); 
      MessageBox(hWindow    'Program Completed','IPOPT', mb_Ok) 

 end; 

          Surely this should work.    But    no!    The message box came up on screen before IPOPT had even 
begun to run. 

          Again all my books failed me    as did the Help file too this time.    Borland's Windows API guide had 



a description of the command, but there were still no examples that showed how it might be used in 
practice.    I was stuck! 

          All fairy tales have happy endings    but they have to begin with "Once upon a time ...". 

          Once upon a time I was browsing in my favorite computer book store and discovered a copy of 
Neil Rubenking's Turbo Pascal for Windows Techniques (1992).    A cursory look at the index found a 
reference to the WinExec function.    I looked it up. It had exactly what I wanted.    I bought a copy 
immediately.    The book is another excellent reference that I now have on my shelf and reach for often. 

          It seems that the crucial point I was missing was the need to create a loop to test whether the 
DOS program was still running.    I adapted Neil Rubenking's code to produce the following procedure: 

procedure RunDos(hWindow: hWnd; CommandLine CompletionMessage, CompletionTitle: PChar); 

var IH : word; 
        M    : TMsg; 

begin 
    IH := WinExec(CommandLine    SW_Show); 
    if IH <= 32 then 

              MessageBox(hWindow    CommandLine, 
                              'Failed to run'+chr(13)+chr(10)+'Execution Error'+ chr(13)+chr(10)+'Contact Jim 

Youngman for Help', 
                              mb_Ok + mb_IconHand) 
                else 
                    begin 
                        repeat 
                            while PeekMessage(M    0, 0, 0, PM_REMOVE) do 
                                begin 
                                    if M.Message = WM_QUIT then 
                                        begin 
                                            PostQuitMessage(M.wParam); 
                                            Exit; 

                                        end 
                                    else 
                                        begin 
                                            TranslateMessage(M); 
                                            DispatchMessage(M); 

                                        end; 
                                end; end do 

                        until GetModuleUsage(IH) = 0; 
                        MessageBox(HWindow    CompletionMessage, CompletionTitle, 
                                          mb_Ok + mb_IconInformation); 

                    end; 
 end; 

I lived happily ever after    at least until the next problem. 





                  Getting in touch with us: 

Internet and Bitnet: 

HJ647C at GWUVM.GWU.EDU -or- HJ647C at GWUVM.BITNET (Pete) 

GEnie: P.DAVIS5 (Pete) 

CompuServe: 71141 2071 (Mike) 

WPJ BBS (703) 503-3021 (Mike and Pete) 

Home Phone (703) 503-3165 (Mike and Pete) 

You can also send paper mail to: 

Windows Programmer's Journal 
 9436 Mirror Pond Drive 
 Fairfax, VA      22032 
 U.S.A. 

          In future issues we will be posting e-mail addresses of contributors and columnists who don't mind 
you knowing their addresses. We will also contact any writers from the first two issues and see if they 
want their mail addresses made available for you to respond to them. For now, send your comments to us 
and we'll forward them. 





                              The Last Page 
                              by Mike Wallace 

          Things have been hectic in the WPJ offices (i.e., our basement) - you've been sending us great 
articles and mail with lots of input (see the Letters column).    It's been great - you seem to like what we're 
doing, and we're having a good time. This month a tips/tricks column (Hacker's Gash) makes its debut in 
WPJ (Official slogan: "The original party snack").    It was written by us, but we're always glad to hear from 
you people.    If you have any tricks you want to share, let us know about them!    We seem to be 
accomplishing our basic goal of helping people learn how to program in Windows, but this goal brings up 
an issue I want to write a bit about. 

          In the Letters column    there is a letter from Tammy Steele, formerly of the SDK forum on 
CompuServe, and in her letter she discusses the accuracy of WPJ.    If the magazine isn't accurate, the 
Microsoft sysops aren't going to recommend WPJ as a source of helpful info.    When we started this 
effort, I didn't envision Microsoft referring people needing help our way.    Don't ask me why, I guess it just 
never occurred to me, but it illustrated to me the point that the available sources of help on this matter 
shouldn't be exclusive - that is, no one has a monolopy on this field (nor should anyone), because no one 
source can be everything to everybody.    I'm not going to tell you that WPJ can answer every question 
you ever had about programming in Windows, because different sources offer different things to their 
readers. We write about the topics we think the most people can benefit from, but in some ways we're 
much different than, say, "Windows/DOS Developer's Journal".    Not to say we're better, just different. 
Don't limit yourself to just one source of information. 

          If you have a specific question about Windows programming, you have several options: write us a 
letter and we'll try to answer it, or, if you have a ID on CompuServe, America Online, GEnie, etc., post it 
and see if you get a response. Microsoft also puts out a Developer CD full of articles (yes, I have this CD 
and it's a great source).    What I'm leading up to is that the sysops for these services (and their members) 
help people learn this stuff, but sometimes a complete answer isn't possible (due to space constraints), so 
why not refer someone to WPJ if we have an article that answers the question?    Much like I frequently 
refer to The Waite Group's Windows API Bible (see review in this issue), I also read some of the other 
Windows programming magazines.    Sometimes they help, sometimes not.    As long as WPJ is useful 
and offers something you can't get elsewhere, we'll stay around.    A magazine shouldn't exist for its own 
sake, and judging from your response, we're succeeding in filling a niche.    Pete and I didn't start this 
because we were bored; we saw an area we thought wasn't getting addressed, namely, help beginners 
learn the basics, while offering advanced articles for the people who have been around for a while.    If you 
don't like what we're doing, send us a note.    If we keep getting positive letters and don't hear anything to 
the contrary, we'll continue what we're doing.    Tammy's concerns about accuracy are well-founded.    
We'll be the first ones to admit it if we make a mistake.    I learn just as much from our contributing authors 
as you do, but if a mistake slips through, I want to know about it.    With your help, we can make WPJ a 
helpful source of info.    'Nuff said. 




