
Visualib Help Index

Overview

Programming Guide

Function Reference

Registration Information



Registration Information

License Information

Warrenty

Registration Form



License

All versions of Visualib are NOT    public Domain software    NOR    are    they    free    software.    Visualib    
is    a    copyrighted program    and requires the user to register the program if he or she    intends to use it 
except for the purpose of limited evaluation described below.
  
Registration grants    the user a license to use Visualib on a single computer at    any    one    time.    A    
registered    user    may    have Visualib installed on more than one computer, but the program may not be 
in use
on more than one computer at the same time.
  
 No user    may modify    Visualib    in    any    way,    without    the    written permission of    Visual Tech, 
including, but not limited to, disassembling, debugging or otherwise reverse-engineering the program.
  
Non-registered users    are granted a limited license of 45 days to use Visualib on a    trial basis    for the    
purpose of    evaluation and    determining if Visualib is suitable for their needs. Use of , except for this 
limited purpose, requires the user to register the product.
  
All users    of Visualib    are granted    limited license    to    copy    the product only    for the    trial use    by    
others,    subject    to    the    above limitations,    provided    that    Visualib is    copied    in    its    full    and 
unmodified form. That is, the copy must include all files necessary to permit    full      operation    of    the    
program,    this    license    agreement, registration form    and full    documentation. No    fee, charge,    
license, warranty, registration    obligation or    other compensation    of any kind may be    accepted by    the 
donor    or recipient in exchange for a copy of Visualib.
  
Operators of    Electronic Bulletin    Board Systems    (BBS Sysops)    may permit Visualib    to be    
downloaded by    any user,    and any    user may be permitted to    upload a    copy of    Visualib to    a BBS, 
with the Sysop's permission, provided the above conditions are met. 
  
Use of non-registered copies of Visualib by any person in connection    with a    business, corporation, 
educational establishment or government    agency is forbidden. Such users must register the product.



Warranty

 Visual Tech makes    no warranty    of any    kind, express    or implied, as to the suitability of the product 
for a particular purpose and shall not be liable for any damages, loss of productivity, loss of profits or    
savings or any other incidental or consequential damages, whether direct, indirect or consequential, 
arising from any failure of the product    to operate in any manner desired by the user for which it was not 
intended or as a result of the user's inability or failure to use the program in the manner in which it was 
intended.    Visual Tech shall    not    be liable    for any    damage to    data or property which may be caused 
directly or indirectly by use of the program.
  



Registration Form
  
Visual Tech Co.

P.O. Box    8735

Fort Wayne, IN 46898-8735

(219) 489-0235

________________________________________________________________________

Product Quantity Unit Price Amount

Visualib for Windows ______ $50.00 $ ______
        (Microsoft C version)
Visualib for Windows ______ $50.00 $ ______
        (Borland C++ version)
Visualib for DOS  ______ $40.00 $ ______
        (Microsoft C version)
Visualib for DOS ______ $40.00 $ ______
        (Borland C++ version)

Subtotal $ ______

Tax $ ______
(Indiana Residents must add 5.0 % sales tax)

Shipping $ 5.00

TOTAL $ ______

Disk Format : ( )5.25"          ( )3.5"

________________________________________________________________________

Name : ___________________________________________________

Company : ________________________________________________

Address : _________________________________________________

                                  __________________________________________________
  
City : _______________________ State : _______ Zip : ____________ 
  



Overview

Visualib is a comprehensive state-of-the-art graphics library for the Microsoft Windows environment. It 
contains powerful and efficient    functions to transform and display both 2D and 3D graphic objects. 
Visualib can be used with either Microsoft Windows Software Development Kit version 3.0 or Borland C++ 
version 2.0 and up.

Main features of Visualib includes:

2D and 3D viewing systems

Transformations and    stack

Drawing functions



Viewing systems for 2D and 3D graphics

User can establish virtually unlimited number of independent 2D and 3D viewers. In each viewer, user 
can select various parameters such as the viewport, eye position, perspective or orthogonal projections, 
view volume, etc.



Transformation functions and stack

Visualib provides a sophisticated transformation mechanism to support virtually all types of graphics 
transformations. Visualib maintains a transformation stack which can be used in conjunction with the 
transformation functions to achieve flexible and efficient graphic effects.



Graphic object drawing functions

Visualib supports a full set of common 2D and 3D drawing functions such as lines, polygons, ellipses, 
spheres, polyhedra, etc. Backface culling is implemented for 3D viewers. User may also select double 
buffer mode to achieve smooth animation effects.

Visualib also provides the powerful curve and surface drawing functions such as Bezier, Hermit curves, B-
Spline, NURBS curves and surfaces.

Visualib greatly extends the capabilities of windows' GDI functions. Visualib uses float type for specifying 
coordinates and avoids the common integer overflow problem associated with the GDI functions. 
However, all GDI functions are still available and the function calls from both systems can be used at the 
same time. Visualib can be used with any types of device context - screens, printers, or memory. 
Consequently, the same routine for display can also be used for printing or storing. Visualib uses the 
attributes such as colors, line width of the device context set by the GDI functions.



Visualib is the only graphics package for the Windows that delivers the
power of high-end graphics work stations. For everyone interested in using
graphics in the Windows, Visualib is an indispensable tool.
Whether you are developing a CAD application or simply want to draw
a nice business char, you will find that Visualib can save your time and
money. Visualib will free
the user from writing highly sophisticated and tedious graphics routines
and obtain beautiful 2-D and 3-D graphics quickly.

About This Manual

Chapter II. GET STARTED    provides a brief introduction on how to
use Visualib in your windows programming.

Chapter III. INSIDE Visualib    is a detailed explanation of all features
of Visualib.

Chapter IV. Visualib FUNCTION REFERENCE is the alphabetical
 reference of all Visualib functions.

Appendix A. BIBLIOGRAPHY lists graphics books and research papers related
to the features of Visualib.

Appendix B. COMMON QUESTIONS contains answers to some most commonly asked
questions about Visualib.



Getting Started

Visualib disk contains the following files:

README.1ST - read me first
REGISTER.TXT - ASCII registration form
VISUALIB.LIB - the main library file
VISUALIB.H      - the header file
VISUALIB.HLP    - on-line Windows help of Visualib
VLIBDEMO.C        - Visualib demo program source code
VLIBDEMO.EXE    - Visualib demo program executable

The best place to start your Visualib programming is the demo program VLIBDEMO included in the 
distribution disk. The executable file is ready to run in Windows. Try it and enjoy the show!

The source code VLIBDEMO.C illustrated the application of Visualib    library to create beautiful graphics 
applications. It uses many features on Visualib and may serve as a template on using Visualib.

Visualib functions are contained in the library file VISUALIB.LIB. Place it in a directory so that your linker 
can find it. In order to use the library functions in your Windows program, the header file VISUALIB.H 
needs to be included in your C source code after WINDOWS.H.

To use the Visualib system, first you need to initialize the graphics system by calling either 
initialGraphics2D or InitialGraphics3D. After the graphics system is initialized, you may create 2D or 3D 
viewers by calling CreateViewer2D or CreateViewer3D. Then call the viewing transformation functions 
and projection transformation functions to setup the viewers.

Now you can start to draw graphics through the viewers. Using the rich set of drawing functions provided 
by Visualib together with the modeling transformation functions and the matrix stacks, you will be able to 
achieve most sophisticated visual effects with ease.

Call the ExitGraphics function to exit the Visualib system.



Refer to 3.4 for a complete description of drawing functions.

The following is a very simple program segment that illustrates the
general procedure of using Visualib library.

#include "windows.h"
#include "Visualib.h"

/* in the function initInstance */
        InitialGraphics3D(3, 100, 100);

/* in the function WindProc */
        case WM_CREAT:
            hVIEW = CreatViewer3D("sample viewer",100,20,100,100);

        case WM_PAINT:



 Visualib Programming Guide

Getting Started

Initialization and Termination

Coordinate Systems

Viewer

Modeling Transformations

Drawing Functions



Visualib Initialization and Termination

The 2D and 3D systems contained in Visualib are completely independent.    You may use one of them or 
both of them at any time. Depending on your choice of graphics systems, one or both of the following 
initialization functions should be called before using the Visualib systems.

InitialGraphics2D
InitialGraphics3D

The initialization function allocates and initializes necessary system variables. When calling 
InitialGraphics2D or InitialGraphics3D, you specify the maximum number of viewers, the maximum 
number of points for each object, and the maximum depth of the matrix stack. The initialization function 
allocates the internal memory based on the given information. If an parameter is set to 0, the default 
maximum value for that parameter will be used.

The following functions set the default maximum values.

Max2DViewer
Max3DViewer
Max2DMStack
Max3DMStack

If a parameter in the initialization function is not 0, then the given value overrides the default value.

To exit a Visualib graphics system, use the function

ExitGraphics

ExitGraphics will free the memory used by the Visualib system.



Coordinate Systems

Visualib has three different coordinate systems that concern users.

The world coordinate system is the one that users deal with most often. A world coordinate system is a 
logical 2D or 3D coordinate in which most Visualib functions use to specify the geometric objects. You 
may define the world coordinates in any way to suit your application. It does not need to be correlated to 
the display configuration. Because of the powerful viewing transformations of Visualib, you can set up 
arbitrary viewing configurations in any world coordinates. The axes of a 3D world coordinate system may 
be displayed by calling the function:

MarkPosition3D

The screen coordinate system is the coordinate system used in MS Windows GDI functions. Several 
Visualib functions use this system to specify certain parameters related to the display devices. Because 
Visualib is compatible with the GDI functions, user may also call some GDI functions with this kind of 
coordinates while using Visualib.

The viewing coordinate system is an intermediate coordinate system    used by Visualib. The following 
viewing transformations may be best thought of as operations in the viewing coordinate system.

MoveViewer3D
RotateViewer3D ZoomViewer3D
MoveViewer2D
RotateViewer2D

The coordinates used in the world coordinate system are the 2D and 3D homogenous coordinates. 
Visualib defines the following types.

typedef struct {float x,y,w} POINT2D;
typedef struct {float x,y,z,w} POINT3D;

Therefore, three floating point numbers (x,y,w) are used to define a 2D point and four floating point 
numbers (x,y,z,w) are used for a 3D point. A point in the 2D space with homogeneous coordinate (x,y,w) 
corresponds to    the Euclidean coordinate (x/w,y/w) and a 3D point with homogeneous coordinate 
(x,y,z,w) corresponds the Euclidean coordinate (x/w, y/w, z/w). Although this representation will take a 
little more memory. There are many advantages associated with the homogeneous coordinates:

All affine transformations (including translation) can be handled in a uniform manner by linear 
transformations.

Perspective projections can be applied naturally and with the clipping in the homogeneous 
coordinates, the overflow problem associated with the perspective projections is avoided.

For the NURBS curves and surfaces, it is necessary to specify the homogenous coordinates.

To help users convert the regular nonhomogeneous coordinates to the format used by Visualib, Visualib 
provides the following functions:

AssignPoint2D
AssignPoint3D



 Viewer

A viewer is a logical structure which specifies precisely how the graphics objects in a world coordinate 
system (2D or 3D) is displayed in a two dimensional screen viewport.



Viewport

The viewport of a    viewer is a rectangular region in a window client area which is used for the actual 
display of the content of the viewer.



Viewing Transformation

The viewing transformation of a viewer defines the position of the eye related to the world coordinate 
system.



Projection Transformation

Projection transformation of a viewer defines the view volume and the way it is mapped to the viewport. A 
3D projection can be either perspective or orthogonal.



Setup Viewer

A 2D or 3D viewer contains three major components:

Viewport
Viewing Transformation
Projection Transformation

The following functions create a 2D or 3D viewer and set its viewport and name:

CreateViewer2D
CreateViewer3D

The viewport of a viewer can be changed by the following function.

SetViewport2D
SetViewport3D

The name of a viewer is changed by the functions:

SetViewerName2D
SetViewerName3D

The frame of    a    viewer can be displayed by the functions:

DisplayViewerFrame2D
DisplayViewerFrame3D

The name of    a viewer is displayed by the functions:

DisplayViewerName2D
DisplayViewerName3D

The viewing transformation of a 2D viewer is set by

SetView2D

The projection of a 2D viewer are set by the following functions:

SetProjection2D

The following function combines the actions of SetView2D and SetProjection

SetWindow2D

The viewing transformation of a 3D viewer is set by the functions:

SetView3D
SetPolarView3D

The projection    of a 3D viewer is set by the following functions:

SetPerspective3D
SetOrthogonal3D



To select a viewer for drawing, use the functions:

SelectViewer3D
SelectViewer2D

The content of a viewer is cleared by the functions:

ClearViewer2D
ClearViewer3D

The viewing transformations may be modified by the following functions

MoveViewer3D
MoveWorld3D
RotateViewer3D
RotateWorld3D
ZoomViewer3D
ZoomWorld3D
MoveViewer2D
RotateViewer2D

Note that the viewing transformations are different from the modeling transformations. The modeling 
transformations affect the current transformation matrix on the stack top only, while the viewing 
transformations change the setting of a viewer.

To get information on a viewer, use the following functions:

Num2DViewer
Num3DViewer
ViewerPosition3D
ViewerOrientation3D
ViewerDirection3D
ViewerPosition2D
ViewerField3D
ViewerField2D



SetView3D defines the VRP, VPN, and VUP of the viewer. VRP is specified by the world coordinates VX, 
VY, VZ; VPN is specified by VRP and another point (RX, RY, RZ); VUP is determined by the twist angle, 
which is the angle of rotation about the VPN. 

SetPolarView3D sets the viewer's VRP, VPN and VUP. (CX,CY,CZ) defines a reference center (not 
necessarily the origin) in the world coordinates. VRP is given by the polar coordinates (dist, Azim, Inc). 
Dist is the distance from VRP to the center. Azim is a rotation about y-axis and Inc is the angle of rotation 
about z-axis. VUP is again defined by the the twist angle.

SetPerspective3D defines a perspective projection according to the
field of view angle of Fovy, Aspect ratio, Front and Back clipping panes.

SetOrthogonal3D defines an orthogonal projection according to the
viewing box defined by the Left, Right, Bottom, Top, Front, and Back.

Visualib provides a rich set of viewing transformations to help users achieve various viewing effects.

View reference point (VRP) - A reference point in the view plane that defines
the camera position.

View plane normal (VPN) - the direction normal to the view plane.
Together with VRP, it defines the
view plane and the direction of the projection.

View up vector (VUP) - the vector in the view plane that points to the
up direction.

Field of view angle (Fovy) - the angle of the viewing pyramid in
the y-direction.
Together with the Aspect ratio, it defines the projection point.

Aspect ratio - the ratio the y size over the x size of the view pyramid.

Clip depth - the minimum and maximum clipping values in z direction. It
defines the top and bottom of the viewing pyramid.



Modeling Transformations and Matrix Stack

Transformations are important part of the graphics system. Visualib provides full support of all types of 
affine geometric transformations. Users may arbitrarily    translate, scale, or rotate any object in any 
sequence.

Rotate3D
Translate3D
Scale3D
Rotate2D
Translate2D
Scale2D

Note that the modeling transformations are different from the viewing transformations. The modeling 
transformations affect the current transformation matrix on the stack top only, while the viewing 
transformations change the setting of a viewer.

To systematically manage the transformation processes, Visualib provides transformation stacks for 2D 
and 3D modeling transformations. The stack top determines the final effect of transformation process. All 
the transformation functions discussed above changes some aspects of the stack top. To save the current 
transformation configurations, use the following functions

PushMatrix2D
PushMatrix3D

These functions will push the current stack top and leave the stack top unchanged. You may get back to 
this particular state later by using the following function.

PopMatrix2D
PopMatrix3D



Drawing Functions

Visualib provides a full set of    common 2D and 3D drawing functions.

MoveTo2D
LineTo2D
DrawLine2D
Polyline2D
Polygon2D
Rectangle2D
Circle2D
Ellipse2D
Ngon2D
NsideStar2D
NsideFlower2D
MoveTo3D
LineTo3D
DrawLine3D
Polyline3D
Polygon3D
Rectangle3D
Prism3D
NsideStar3D
NsideFlower3D
Cube3D
Sphere3D
NsidePyramid3D
Cone3D
NsidePrism3D
Cylinder3D

Visualib also provides advanced curve and surface functions. Visualib supports cubic Bezier, Hermit, B-
Spline, and NURBS curves and surfaces. 

BezierCurve2D
HermitCurve2D
BSplineCurve2D
NURBSCurve2D
BezierCurve3D
HermitCurve3D
BSplineCurve3D
NURBSCurve3D
BezierSurface3D
HermitSurface3D
BSplineSurface3D
NURBSSurface3D



NURBS (NonUniform Rational B-Spline) curves and surfaces have gained popularities in CAD/CAM 
because of their power and flexibility. NURBS has some distinctive advantages:

NURBS is invariant under perspective projections.

The continuity and smoothness of NURBS curve or surfaces can be controlled
by the knots.

All conic sections and quadric surfaces can be represented by NURBS exactly.



Visualib Function Reference

A
Arc2D
AssignPoint2D
AssignPoint3D

B
BackfaceCulling
BeginDoubleBuffer3D
BeginDoubleBuffer2D
BezierCurve2D
BezierCurve3D
BezierSurface3D
BrushColor
BSplineCurve2D
BSplineCurve3D
BSplineSurface3D

C
Circle2D
ClearViewer2D
ClearViewer3D
Cone3D
CountClockwise
CreateViewer2D
CreateViewer3D
Cube3D
Cylinder3D

D
DisplayViewerFrame2D
DisplayViewerFrame3D
DisplayViewerName2D
DisplayViewerName3D
Dodecahedron
DrawLine2D
DrawLine3D

E
Ellipse2D
EllipseArc2D
EndDoubleBuffer3D
EndDoubleBuffer2D
ExitGraphics

G
GetViewerName2D
GetViewerName3D
GetViewport2D
GetViewport3D

H
HermitCurve2D



HermitCurve3D

I
InitialGraphics2D
InitialGraphics3D
Icosahedron

L
LineTo2D
LineTo3D

M
MarkPosition3D
Max2DMStack
Max2DViewer
Max3DMStack
Max3DViewer
MoveTo2D
MoveTo3D
MoveViewer2D
MoveViewer3D
MoveWorld3D

N
Ngon2D
NsideFlower2D
NsideFlower3D NsidePrism3D
NsidePyramid3D
NsideStar2D
NsideStar3D
Num2DViewer
Num3DViewer
NURBSCurve2D
NURBSCurve3D
NURBSSurface3D

O
Octahedron

P
PenColor
Polygon2D
Polygon3D
Polyline2D
Polyline3D
PopMatrix2D
PopMatrix3D
Prism3D
PushMatrix2D
PushMatrix3D
Pyramid3D

R
Rectangle2D
Rectangle3D
Rotate2D



Rotate3D
RotateViewer2D
RotateViewer3D
RotateWorld3D

S
Scale2D
Scale3D
SelectViewer2D
SelectViewer3D
SetOrthogonal3D
SetPerspective3D
SetPolarView3D
SetProjection2D
SetView2D
SetView3D
SetViewerName2D
SetViewerName3D
SetViewport2D
SetViewport3D
SetWindow2D
Sphere3D

T
Tetrahedron
Translate2D
Translate3D

U
UpdateBuffer3D
UpdateBuffer2D

V
ViewerDirection3D
ViewerField2D
ViewerField3D
ViewerOrientation3D
ViewerPosition2D
ViewerPosition3D

W
Wedge2D

Z
ZoomViewer3D
ZoomWorld3D



HermitSurface3D

short SetWindow3D (HVIEW hview, float left, float right,
float top, float bottom, float front, float back);

void Revolution3D (HDC hDC, float x1, float y1, float z1,
float x2, float y2, float z2,
float start, float angle, LPPOINT3D vertex, short count);

void Ball3D (HDC hDC, float x, float y, float z, float r);

void Mark3D (HDC hDC, float x, float y, float z, LPSTR mark);



AssignPoint2D

Function
Assigns 2D homogeneous coordinate.

Syntax
void AssignPoint2D(POINT2D *point, float x, float y);

Remarks
AssignPoint2D sets the homogeneous coordinate in point by the x, y coordinate.

Return Value
None.

See also
AssignPoint3D



AssignPoint3D

Function
Assigns 3D homogeneous coordinate.

Syntax
void AssignPoint3D (POINT3D *point, float x, float y, float z);

Remarks
AssignPoint3D sets the homogeneous coordinate in point by the x, y, z coordinate.

Return Value
None.

See also
AssignPoint2D



BackfaceCulling

Function
Sets backface culling flag.

Syntax
short BackfaceCulling (short flag);

Remarks
BackfaceCulling sets the backface culling flag. If the flag is set to a nonzero value, the drawing 
functions will implement backface culling.

Return Value
BackfaceCulling returns the previous value of    backface culling flag.

See also
CountClockwise



CountClockwise

Function
Sets the counter-clockwise flag.

Syntax
short CountClockwise (short flag);

Remarks
CountClockwise sets the counter-clockwise flag. The flag is used for backface culling to 
determine the direction of a polygon normal. If the flag is set to a nonzero value, the drawing 
functions will assume that a polygon is specified by the vertices in counter-clockwise order, i.e., 
the direction of the polygon normal is determined by the right-hand system.

Return Value
CountClockwise returns the previous value of the counter-clockwise flag.

See also
BackfaceCulling



BeginDoubleBuffer3D

Function
Starts double buffer mode.

Syntax
short BeginDoubleBuffer3D (HDC *hpdc, HVIEW hview);

Remarks
BeginDoubleBuffer3D starts the double buffer mode for the 3D viewer hview. hpdc is a    pointer to 
the handle of the device context used by the viewer. After calling this function, all drawing function 
calls to the viewer will be redirected to a buffer. The buffer can be displayed by calling 
UpdateBuffer3D.

Return Value
On success, BeginDoubleBuffer3D returns 0. On error, it    returns a nonzero value.

See also
EndDoubleBuffer3D, UpdateBuffer3D



BeginDoubleBuffer2D

Function
Starts double buffer mode.

Syntax
short BeginDoubleBuffer2D (HDC *hdc, HVIEW hview);

Remarks
BeginDoubleBuffer2D starts the double buffer mode for the 2D viewer hview. hpdc is a    pointer to 
the handle of the device context used by the viewer. After calling this function, all drawing function 
calls to the viewer will be redirected to a buffer. The buffer can be displayed by calling 
UpdateBuffer2D.

Return Value
On success, BeginDoubleBuffer2D returns 0. On error, it    returns a nonzero value.

See also
EndDoubleBuffer2D, UpdateBuffer2D



EndDoubleBuffer3D

Function
Ends double buffer mode.

Syntax
short EndDoubleBuffer3D (HDC *hdc, HVIEW hview);

Remarks
EndDoubelBuffer3D ends the double buffer mode and releases the memory allocated for the 
buffer.

Return Value
On success, EndDoubleBuffer3D returns 0. On error, it    returns a nonzero value.

See also
BeginDoubleBuffer3D, UpdateBuffer3D



EndDoubleBuffer2D

Function
Ends double buffer mode.

Syntax
short EndDoubleBuffer2D (HDC *hdc, HVIEW hview);

Remarks
EndDoubelBuffer2D ends the double buffer mode and releases the memory allocated for the 
buffer.

Return Value
On success, EndDoubleBuffer2D returns 0. On error, it    returns a nonzero value.

See also
BeginDoubleBuffer2D, UpdateBuffer2D



UpdateBuffer3D

Function
Displays the buffered image in the double buffer mode.

Syntax
short UpdateBuffer3D (HDC hdc, HVIEW hview);

Remarks
UpdateBuffer3D displays the buffered image in the double buffer mode. The content of the buffer 
is copied to the actual device context.

Return Value
On success, UpdateBuffer3D returns 0. On error, it    returns a nonzero value.

See also
BeginDoubleBuffer3D, EndDoubleBuffer3D



UpdateBuffer2D

Function
Displays the buffered image in the double buffer mode.

Syntax
short UpdateBuffer2D (HDC hdc, HVIEW hview);

Remarks
UpdateBuffer3D displays the buffered image in the double buffer mode. The content of the buffer 
is copied to the actual device context.

Return Value
On success, UpdateBuffer2D returns 0. On error, it    returns a nonzero value.

See also
BeginDoubleBuffer2D, EndDoubleBuffer2D



Tetrahedron

Function
Draws a tetrahedron.

Syntax
void Tetrahedron (HDC hdc, float r);

Remarks
Tetrahedron draws a tetrahedron in the current 3D viewer with current pen color the edges and 
current brush color for the interior. r specifies the radius of the circumscribing sphere.

Return Value
None.

See also
Octahedron, Dodecahedron, Icosahedron



Octahedron

Function
Draws a octahedron.

Syntax
void Octahedron (HDC hdc, float r);

Remarks
Octahedron draws a octahedron in the current 3D viewer with current pen color the edges and 
current brush color for the interior. r specifies the radius of the circumscribing sphere.

Return Value
None.

See also
Tetrahedron, Dodecahedron, Icosahedron



Dodecahedron

Function
Draws a dodecahedron.

Syntax
void Dodecahedron (HDC hdc, float r);

Remarks
Dodecahedron draws a dodecahedron in the current 3D viewer with current pen color the edges 
and current brush color for the interior. r specifies the radius of the circumscribing sphere.

Return Value
None.

See also
Tetrahedron, Octahedron, Icosahedron



Icosahedron

Function
Draws a icosahedron.

Syntax
void Icosahedron (HDC hdc, float r);

Remarks
Icosahedron draws a icosahedron in the current 3D viewer with current pen color the edges and 
current brush color for the interior. r specifies the radius of the circumscribing sphere.

Return Value
None.

See also
Tetrahedron, Octahedron, Dodecahedron



CreateViewer2D

Function
Creates a 2D viewer

Syntax
HVIEW CreateViewer2D (NPSTR Name, int X, int Y, int Width, int Height);

Remarks
CreateViewer2D creates a 2D viewer. The viewport dimension is Width by Height with Upper-left 
corner at    (X ,Y). The name of the viewer is given by Name. 

Return Value
The viewer handle will be returned if it is created successfully. Otherwise, NULL will be returned. 
The function returns a handle to the viewer. The handle is used for all other Visualib functions to 
reference the viewer.

See also
InitialGraphics2D,    SetViewport2D



CreateViewer3D

Function
Creates a 3D viewer.

Syntax
HVIEW CreateViewer3D (NPSTR Name, int X, int Y, int Width, int Height);

Remarks
CreateViewer3D creates a 3-D viewer. The viewport dimension is Width by Height with upper-left 
corner at (X , Y). The name of the viewer is given by Name.

Return Value
The viewer handle will be returned if it is created successfully.    Otherwise, NULL will be returned.

See also
InitialGraphics3D,    SetViewport3D



Max2DViewer

Function
Sets the default maximum number of 2D viewers.

Syntax
void Max2DViewer (short N);

Remarks
Max2DViewer sets the default maximum number of 2D viewers to N.

Return value
None.

See also
CreatViewer2D, InitialGraphics2D



Max3DViewer

Function
Sets the default maximum number of 3D viewers.

Syntax
void Max3DViewer (short N);

Remarks
Max3DViewer sets the default maximum number of 3D viewers as N.

Return vlaue
None.

See also
CreatViewer3D, InitialGraphics3Df_initialgraphics3d



Max2DMStack

Function
Sets the default maximum depth of the 2D transformation matrix stack. 

Syntax
void Max2DMStack (short N);

Remarks
Max2DMStack sets the default maximum depth of the 2D transformation matrix stack as N.

Return value
None.

See also
InitialGraphics2D



Max3DMStack

Function
Sets the default maximum depth of    the 3D transformation matrix stack.

Syntax
void Max3DMStack (short N);

Remarks
Max3DMStack sets the default maximum depth of the 3D transformation matrix stack as N.

Return value
None.

See also
InitialGraphics3D



InitialGraphics2D

Function
Initializes the 2D graphic system.

Syntax
short InitialGraphics2D (short nview, short npoint, short ndepth);

Remarks
InitialGraphics2D initializes the 2D graphic system with the specified    maximum numberof 
viewers, points, and depth of matrix stack.    If any of the numbers is set to zero. the default 
maximum number will be used.

Return value
On successful completion, InitalGraphics2D returns 0. It returns a nonzero number on error.

See also
ExitGraphics, Max2DViewer, Max2DMStack



InitialGraphics3D

Function
Initializes the 3D graphic system.

Syntax
short InitialGraphics3D (short nview, short npoint, short ndepth);

Remarks
InitialGraphics3D initializes the 3D graphic system with specifying the maximum number of 
viewers, points, and depth of matrix stack.    If any number is set tozero.    the default maximum 
number will be used.

See also
ExitGraphics, Max2DViewer, Max2DMStack



ExitGraphics

Function
Exits the graphic system and free the memory used.

Syntax
void ExitGraphics (void);

Remarks
ExitGraphics exits the graphics systems. The memory allocated by Visualib is released. 

Return value
None.

See Also
InitialGraphics2D, InitialGraphics3D



PenColor

Function
Selects pen color. 

Syntax
HPEN PenColor (HDC hDC, short Color);

Remarks
PenColor selects a system pen with color index for the current device context.

Return value
PenColor returns a handle to the previously selected pen.

See also
BrushColor



BrushColor

Function
Selects a brush color. 

Syntax
HBRUSH BrushColor (HDC hDC, short Color);

Remarks
BrushColor selects a system brush with color index for the current device context.

Return value
BrushColor returns a handle to the previously selected brush.

See also
PenColor



PushMatrix2D

Function
Pushes the 2D transformation matrix stack.

Syntax
short PushMatrix2D (void);

Remarks
PushMatrix2D pushes the 2D transformation matrix stack. A copy of the stack top is pushed to the 
stack.

Return value
PushMatrix2D returns 0 upon successful completion.    A nonzero value is returned if the stack is 
full.

See also
PopMatrix2D



PushMatrix3D

Function
Pushes the 3D transformation matrix stack.

Syntax
short PushMatrix3D (void);

Remarks
PushMatrix3D pushes the 3D transformation matrix stack. A copy of the stack top is pushed to the 
stack.

Return value
On success, PopMatrix3D returns 0. A nonzero value is returned if the stack is full.

See also
PopMatrix3D



PopMatrix2D

Function
Pops the 2D transformation matrix stack.

Syntax
short PopMatrix2D (void);

Remarks
PopMatrix2D pops the 2D transformation matrix stack. The stack top is discarded.

Return value
On success, PopMatrix2D returns 0.    A nonzero value is returned if the stack is empty.

See also
PushMatrix2D



PopMatrix3D

Function
Pops the 3D transformation matrix stack.

Syntax
short PopMatrix3D (void);

Remarks
PopMatrix3D pops the 3D transformation matrix stack. The stack top is discarded.

Return value
On success, PopMatrix3D returns 0. A nonzero value is returned if the stack is empty.

See also
PushMatrix3D



SetView3D

Function
Sets 3D viewer's view transformation matrix.

Syntax
short SetView3D (HVIEW Hview, float VX, float VY, float VZ, float RX, float RY, float RZ, float 
Twist);

Remarks
SetView3D sets 3D viewer Hview's viewing transformation matrix according tothe viewer position 
VX, VY, and VZ; the viwe reference RX, RY, and RZ;and the viewer Twist angle.

Return value
On success, SetView3D returns 0. On error, it    returns a nonzero value.

See also
SetPolarView3D



SetPolarView3D

Function
Sets 3D viewer based on polar coordinates.

Syntax
short SetPolarView3D (HVIEW Hview, float CX, float CY, float CZ, float Dist, float Azim, float Inc, 
float Twist);

Remarks
SetPolarView3D sets viewer Hview's viewing transformation matrix according to the reference 
center CX, CY, and CZ; the Dist form the reference center to the viewer; and the three orientation 
angles Azim, Inc, and Twist.

Return value
On success, SetPolarView3D returns 0. On error, it    returns a nonzero value.

See also
SetView3D



SetPerspective3D

Function
Sets perspective projection of a 3D viewer.

Syntax
short SetPerspective3D (HVIEW Hview, float Fovy, float Aspect, float Front, float Back);

Remarks
SetPersperspective sets 3D viewer Hview's perspective projection matrix according to the field of 
view angle of Fovy, Aspect ratio, Front and Back clipping panes.

Return value
On success, SetPerspective3D returns 0. On error, it    returns a nonzero value.

See also
SetOrthogonal3D



SetOrthogonal3D

Function
Sets orthogonal projection of a 3D viewer. 

Syntax
short SetOrthogonal3D (HVIEW Hview, float Left, float Right, float Bottom, float Top, float Front, 
float Back);

Remarks
SetOrthogonal3D sets 3D viewer Hview's orthogonal projection matrix according to the viewing 
box defined by the Left, Right, Bottom, Top, Front, and Back .

Return value
On success, SetOrthogonal3D returns 0. On error, it    returns a nonzero value.

See also
SetPerspective3D



SetViewport2D

Function
Sets a 2D viewer's viewport. 

Syntax
short SetViewport2D (HVIEW Hview, short X, short Y, short Width, short Height);

Remarks
SetViewport2D sets 2D viewer Hview's viewport according to the upper left point (X,Y) and the 
Width and Height in display coordinates.

Return value
On success, SetViewport2D returns 0. On error, it    returns a nonzero value.

See also
GetViewport2D



SetViewport3D

Function
Sets 3D viewer's viewport .

Syntax
short SetViewport3D (HVIEW Hview, short X, short Y, short Width, short Height);

Remarks
SetViewport3D sets 3D viewer Hview's viewport according to the upper left point (X,Y) and the 
Width and Height in display coordinates.

Return value
On success, SetViewport3D returns 0. On error, it    returns a nonzero value.

See also
GetViewport3D



SetView2D

Function
Sets a 2D viewer's viewing transformation matrix . 

Syntax
short SetView2D (HVIEW Hview, float X, float Y, float Angle);

Remarks
SetView2D sets 2D viewer's    view transformation according to the center coordinates X, Y, and 
the rotation Angle.

Return value
On success, SetView2D returns 0. On error, it    returns a nonzero value.

See also
SetWindow2D



SetProjection2D

Function
Sets 2D viewer's projection transformation.

Syntax
short SetProjection2D (HVIEW Hview, float Left, float Right, float Bottom, float Top);

Remarks
SetProjection2D sets 2D viewer Hview's projection transformation according to the two corner 
points of the projection rectangle defined by Left, Right, Bottom, and Top.

Return value
On success, SetProjection2D returns 0. On error, it    returns a nonzero value.

See also
SetWindow2D



SetWindow2D

Function
Sets 2D viewer's viewing and projection transformations.

Syntax
short SetWindow2D (HVIEW Hview, float X1, float Y1, float X2, float Y2);

Remarks
Set 2D viewer's viewing transformation and projection transformation according to the two corner 
points in the world coordinates defined by X1, Y1, X2, and Y2.

Return value
On success, SetWindow2D returns 0. On error, it    returns a nonzero value.

See also
SetView2D, SetProjection2D



SelectViewer3D

Function
Selects a 3D viewer.

Syntax
short SelectViewer3D (HVIEW hview);

Remarks
SelectViewer3D selects viewer Hview as the current 3D viewer. The subsequent 3D drawing 
function calls will use this viewer. hview must be a valid viewer handle returned by 
CreateViewer3D.

Return value
On success, SelectViewer3D returns 0. On error, it    returns a nonzero value.

See also
CreateViewer3D



SelectViewer2D

Function
Selects 2D viewer.

Syntax
short SelectViewer2D (HVIEW hview);

Remarks
SelectViewer2D selects viewer Hview as the current 2D viewer. The subsequent 2D drawing 
function calls will use this viewer. hview must be a valid viewer handle returned by 
CreateViewer2D.

Return value
On success, SelectViewer2D returns 0. On error, it    returns a nonzero value.

See also
CreateViewer2D



DisplayViewerFrame2D

Function
Displays the    frame of a 2D viewer.

Syntax
short DisplayViewerFrame2D (HDC hDC, HVIEW hview, short color);

Remarks
DisplayViewerFrame2D    draws the 2D viewer Hview's rectangle border with Color. The frame is 
defined by the viewport set    in the function CreateViewer2D or SetViewport2D.

Return value
On success, DisplayViewerFrame2D returns 0. On error, it    returns a nonzero value.

See also
CreateViewer2D, SetViewport2D



DisplayViewerFrame3D

Function
Displays the frame of a 3D viewer.

Syntax
short DisplayViewerFrame3D (HDC hDC, HVIEW hview, short color);

Remarks
DisplayViewerFrame3D    draws the 3D viewer Hview's rectangle border with Color. The frame is 
defined by the viewport set    in the function CreateViewer3D or SetViewport3D.

Return value
On success, DisplayViewerFrame3D returns 0. On error, it    returns a nonzero value.

See also
CreateViewer3D, SetViewport3D



DisplayViewerName2D

Function
Display 2D viewer's name.

Syntax
short DisplayViewerName2D (HDC hDC, HVIEW hview, short color, short top);

Remarks
DisplayViewerName2D displays the viewer Hview's name    with Color. 

Return value
On success, DisplayViewerName2D returns 0. On error, it    returns a nonzero value.

See also
GetViewerName2D, SetViewerName2D



DisplayViewerName3D

Function
Displays a 3D viewer's name. 

Syntax
short DisplayViewerName3D (HDC hDC, HVIEW hview, short color, short top);

Remarks
Display 3D viewer Hview's name with Color.

Return value
On success, DisplayViewerName3D returns 0. On error, it    returns a nonzero value.

See also
GetViewerName3D, SetViewerName3D



ClearViewer2D

Function
Clears a 2D viewer. 

Syntax
short ClearViewer2D (HDC hDc, HVIEW hview, short color);

Remarks
ClearViewer2D    clears a 2D viewer Hview's client area with Color.

Return value
On success, ClearViewer2D returns 0. On error, it    returns a nonzero value.

See also
CreateViewer2D



ClearViewer3D

Function
Clears a 3D viewer.

Syntax
short ClearViewer3D (HDC hDc, HVIEW hview, short color);

Remarks
ClearViewer3D clears a 3D viewer's client area with Color.

Return value
On success, ClearViewer3D returns 0. On error, it    returns a nonzero value.

See also
CreateViewer3D



MoveViewer3D

Function
Moves a 3D viewer.

Syntax
short MoveViewer3D (HVIEW Hview, float LeftRight, float UpDow, float BackForth);

Remarks
MoveViewer3D moves the 3D viewer Hview in the view coordinate system according to LeftRight, 
UpDown, and BackForth.

Return value
On success, MoveViewer3D returns 0. On error, it    returns a nonzero value.

See also
MoveWorld3D



MoveWorld3D

Function
Moves a 3D viewer. 

Syntax
short MoveWorld3D (HVIEW Hview, float X, float Y, float Z);

Remarks
Moves 3D viewer Hview in the world coordinate system along X, Y, and Z.

Return value
On success, MoveWorld3D returns 0. On error, it    returns a nonzero value.

See also
MoveViewer3D



RotateViewer3D

Function
Rotatea a 3D viewer.

Syntax
short RotateViewer3D (HVIEW Hview, float Yaw, float Pitch, float Twist);

Remarks
RotateViewer3D rotates the 3D viewer Hview in the view coordinate system according to angles 
of Yaw, Pitch, and Twist with unit of degrees.

Return value
On success, RotateViewer3D returns 0. On error, it    returns a nonzero value.

See also
RotateWorld3D



RotateWorld3D

Function
Rotates a 3D viewer.

Syntax
short RotateWorld3D (HVIEW Hview, float X, float Y, float Z);

Remarks
RotateWorld3D rotates the 3D viewer Hview in the world coordinate system arround X, Y, and Z 
Axes with unit of degrees.

Return value
On success, RotateWorld3D returns 0. On error, it    returns a nonzero value.

See also
RotateViewer3D



ZoomViewer3D

Function
Zooms a 3D viewer.

Syntax
short ZoomViewer3D (HVIEW Hview, float Zoom);

Remarks
ZoomViewer3D zooms the 3D viewer Hview by factor Zoom.

Return value
On success, ZoomViewer3D returns 0. On error, it    returns a nonzero value.

See also
ZoomWorld3D



ZoomWorld3D

Function
Zooms a 3D viewer.

Syntax
short ZoomViewer3D (HVIEW Hview, float Zoom);

Remarks
ZoomViewer3D zooms the 3D viewer Hview by factor Zoom.

Return value
On success, ZoomViewer3D returns 0. On error, it    returns a nonzero value.

See also
ZoomViewer3D



MoveViewer2D

Function
Moves a 2D viewer.

Syntax
short MoveViewer2D (HVIEW hview, float LeftRight, float UpDown);

Remarks
MoveViewer2D changes the viewing transformation of a 2D viewer Hview by moving it in the view 
coordinate system according to LeftRight and UpDown.

Return value
On success, MoveViewer2D returns 0. On error, it    returns a nonzero value.

See also
RotateViewer2D



RotateViewer2D

Function
Rotates a 2D viewer. 

Syntax
short RotateViewer2D (HVIEW hview, float Angle);

Remarks
RotateViewer2D rotates the 2D viewer Hview by Angle degrees.

Return value
On success, RotateViewer2D returns 0. On error, it    returns a nonzero value.

See also
MoveViewer2D



Num2DViewer

Function
Gets the number of 2D viewers created in the current system.

Syntax
short Num2DViewer (void);

Remarks
Num2DViewer gets the number of 2D viewers created in the current system.

Return value
Num2DViewer returns the number of 2D viewers.

See also
CreateViewer2D



Num3DViewer

Function
Gets the number of 3D viewers created in the current system.

Syntax
short Num3DViewer (void);

Remarks
Num3DViewer gets the number of 3D viewers created in the current system.

Return value
Num3DViewer returns the number of 3D viewers.

See also
CreatViewer3D



ViewerPosition3D

Function
Gets a 3D viewer's position.

Syntax
short ViewerPosition3D (HVIEW Hview, float *VX, float *VY, float *VZ);

Remarks
ViewerPosition3D gets the 3D viewer Hview's position in the world coordinate system VX, VY, 
and VZ .

Return value
On success, ViewerPosition3D returns 0. On error, it    returns a nonzero value.

See also
SetView3D



ViewerOrientation3D

Function
Gets a 3D viewer's orientation. 

Syntax
short ViewerOrientation3D (HVIEW Hview, float *Azim, float *Inc, float *Twist);

Remarks
ViewOrientation3D gets 3D viewer Hview's orientation in the world coordinate system Azim, Inc, 
and Twist.

Return value
On success, ViewerOrientation3D returns 0. On error, it    returns a nonzero value.

See also
SetPolarView3D



ViewerDirection3D

Function
Gets a 3D viewer's direction.

Syntax
short ViewerDirection3D (HVIEW Hview, float *X, float *Y, float *Z);

Remarks
ViewerDirection3D gets the 3D viewer Hview's direction vector's three components X, Y, and Z on 
the three axes of the world coordinate system .

Return value
On success, ViewerDirection3D returns 0. On error, it    returns a nonzero value.

See also
SetView3D



 ViewProjectionMode3D

Function
Get 3D viewer Hview's projection mode.

Syntax
short ViewProjectionMode3D (HVIEW Hview);

Remarks

Return value

See also



ViewerPosition2D

Function
Gets a 2D viewer's certer position.

Syntax
short ViewerPosition2D (HVIEW Hview, float *CX, float *CY, float *Angle);

Remarks
ViewerPosition2D gets the 2D viewer Hview's certer position CX, CY and the rotation Angle in the 
world coordinate system.

Return value
On success, ViewerPosition2D returns 0. On error, it    returns a nonzero value.

See also
SetView2D



ViewerField3D

Function
Gets a 3D viewer's viewing field.

Syntax
short ViewerField3D (HVIEW Hview, float *Left, float *Right, float *Bottom, float *Top, float *Width, 
float *Height);

Remarks
ViewerField3D gets the 3D viewer Hview's viewing field defined by Left, Right, Bottom, Top, 
Front, and Back in the view coordinate system.

Return value
On success, ViewerField3D returns 0. On error, it    returns a nonzero value.

See also
SetPespective3D, SetOrthogonal3D



ViewerField2D

Function
Gets a 2D viewer's viewing field.

Syntax
short ViewerField2D (HVIEW Hviwe, float *Left, float *Right, float *Bottom, float *Top);

Remarks
ViewerField2D gets the 2D viewer Hview's viewing field defined by Left, Right, Bottom, and Top in 
the view coordinate system.

Return value
On success, ViewerField2D returns 0. On error, it    returns a nonzero value.

See also
SetProjection2D



Rotate3D

Function
Rotates on the current transformation matrix.

Syntax
void Rotate3D (float Angle, char Axis);

Remarks
Rotate3D rotates on the current 3D transformation matrix (the stack top) by the amount specified. 
Axis can be 'x;, 'y', or 'z'. Angle is measured in degrees.

Return value
None

See also
Translate3D, Scale3D



Translate3D

Function
Translates on the current 3D transformation matrix.

Syntax
void Translate3D (float X, float Y, float Z);

Remarks
Translate3D performs a 3D modeling transformation on the current 3D transformation matrix by a 
translation of (X,Y,Z).

Return value
None.

See also
Rotate3D, Scale3D



Scale3D

Function
Scales on the current 3D transformation matrix .

Syntax
void Scale3D (float X, float Y, float Z);

Remarks
Scale3D scales on the current 3D transformation matrix (the stack top) in the x , y, and z 
directions by the amounts specified.

Return value
None.

See also
Translate3D, Rotate3D



Translate2D

Function
Translates on the current 2D transformation matrix.

Syntax
void Translate2D (float X, float Y);

Remarks
Translate2D translates on the current 2D transformation matrix (the stack top) in the x and y 
directions by the amounts specified.

Return value
None.

See also
Rotate2D, Scale2D



Rotate2D

Function
Rotates on the current 2D transformation matrix.

Syntax
void Rotate2D (float Angle);

Remarks
Rotate2D rotates on the current 2D transformation matrix (the stack top)    by the amounts 
specified.

Return value
None.

See also
Translate2D, Scale2D



Scale2D

Function
Scales on the current 2D transformation matrix.

Syntax
void Scale2D (float x, float y);

Remarks
Scale2D scales on the current 2D transformation matrix (the stack top) in the x and y directions 
by the amounts specified.

Return value
None.

See also
Translate2D, Rotate2D



GetViewerName2D

Function
Gets the name of a 2D viewer.

Syntax
short GetViewerName2D (HVIEW hview, NPSTR name);

Remarks
GetViewerName2D gets the name string of the 2D viewer hview.

Return value
On success, GetViewerName2D returns 0. On error, it    returns a nonzero value.

See also
DisplayViewerName2D, SetViewerName2D



SetViewerName2D

Function
Sets the name of a 2D viewer.

Syntax
short SetViewerName2D (HVIEW hview, NPSTR name);

Remarks
SetViewerName2D sets the name string of the 2D viewer hview.

Return value
On success, SetViewerName2D returns 0. On error, it    returns a nonzero value.

See also
DisplayViewerName2D, GetViewerName2D



GetViewerName3D

Function
Gets the name of a 3D viewer.

Syntax
short GetViewerName3D (HVIEW hview, NPSTR name);

Remarks
GetViewerName3D gets the name string of the 3D viewer hview.

Return value
On success, GetViewerName3D returns 0. On error, it    returns a nonzero value.

See also
DisplayViewerName3D, SetViewerName3D



SetViewerName3D

Function
Sets the name of a 3D viewer.

Syntax
short    SetViewerName3D (HVIEW hview, NPSTR name);

Remarks
SetViewerName3D sets the name string of the 3D viewer hview.

Return value
On success, SetViewerName3D returns 0. On error, it    returns a nonzero value.

See also
DisplayViewerName3D, GetViewerName3D



GetViewport2D

Function
Gets the position of a 2D viewport.

Syntax
short GetViewport2D (HVIEW Hview, short *X, short *Y, short *Width, short *Height);

Remarks
GetViewport2D gets the 2D viewer Hview's viewport position in display coordinates as the upper-
left corner X and Y, and the Width and Height.

Return value
On success, GetViewport2D returns 0. On error, it    returns a nonzero value.

See also
SetViewport2D



GetViewport3D

Function
Gets the position of a 3D viewport. 

Syntax
short GetViewport3D (HVIEW Hview, short *X, short *Y, short *Width, short *Height);

Remarks
GetViewport3D gets 3D viewer Hview's viewport position in display coordinates as the upper-left 
corner X and Y, and the Width and Height. 

Return value
On success, GetViewport3D returns 0. On error, it    returns a nonzero value.

See also
SetViewport3D



MoveTo2D

Function
Moves to a new position.

Syntax
void MoveTo2D (HDC hDC, float X, float Y);

Remarks
MoveTo2D moves the current 2D display position to X and Y in the current viewer. 

Return value
None.

See also
LineTo2D



LineTo2D

Function
Draws a 2D line to a new position.

Syntax
void LineTo2D (HDC hDC, float X, float Y);

Remarks
LineTo2D draws a 2D line from the current 2D display position to X and Y in the current viewer 
with the current pen.

Return value
None.

See also
MoveTo2D



DrawLine2D

Function
Draws a 2D line segment.

Syntax
void DrawLine2D (HDC hDC, float X1, float Y1, float X2, float Y2);

Remarks
DrawLine2D draws a 2D line from X1 and Y1 to X2 and Y2 in the current 2D viewer with the 
current pen.

Return value
None.

See also
LineTo2D, MoveTo2D



Polyline2D

Function
Draws a 2D polyline. 

Syntax
void Polyline2D (HDC hDC, LPPOINT2D Point, short N);

Remarks
Polyline2D draws a 2D polyline defined by N 2D Points in the current 2D viewer with current pen 
for edges and current brush for interior.

Return value
None.

See also
Polygon2D



Polygon2D

Function
Draws a    2D polygon.

Syntax
void Polygon2D (HDC hDC, LPPOINT2D point, short count);

Remarks
Polygon2D draws a 2D polygon defined by N 2D Points in the current 2D viewer with current pen 
for edges and current brush for interior.

Return value
None.

See also
Polyline2D



 ResetVertex2D

Function
Reset temperory 2D point buffer Point2D to empty.

Syntax
void ResetVertex2D (void);

Remarks

Return value
None.

See also



 SetVertex2D

Function
Set one 2D point X and Y into the 2D point buffer Point2D

Syntax
void SetVertex2D (float X, float Y);

Remarks

Return value
None.

See also



Rectangle2D

Function
Draws a 2D rectangle. 

Syntax
void Rectangle2D (HDC hDC, float X1, float Y1, float X2, float Y2);

Remarks
Rectangle2D draws a 2D rectangle defined by X1, Y1, X2, and Y2 in the current 2D viewer with 
current pen for edge and current brush for interior.

Return value
None.

See also
Polygon2D



Circle2D

Function
Draws a 2D circle..

Syntax
void Circle2D (HDC hDC, float X, float Y, float Radius);

Remarks
Circle2D draws a 2D circle defined by center X, Y and Radius in    the current 2D viewer with 
current pen for edge and current brush for interior.

Return value
None.

See also
Arc2D



Arc2D

Function
Draws a 2D circular arc.

Syntax
void Arc2D (HDC hDC, float x, float y, float r, float start, float angle);

Remarks
Arc2D draws a 2D circular arc in the current 2D viewer with the current pen color. (x,y) is the 
center of the circle and r is the radius of the circle. The starting angle and the span of the arc are 
specified by the parameter start and angle measured in degrees.

Return Value
None.

See also
Circle2D



EllipseArc2D

Function
Draws a 2D elliptic arc.

Syntax
void EllipseArc2D (HDC hDC, float x, float y, float r1, float r2, float start, float angle);

Remarks
EllipseArc2D draws a 2D elliptic arc in the current 2D viewer with the current pen color. (x,y) is 
the center of the ellispe and r1, r2 are the half-axes of the ellipse. The starting angle and the span 
of the arc are specified by the parameter start and angle measured in degrees.

Return Value
None.

See also
Ellipse2D



Wedge2D

Function
Draws a 2D circular wedge.

Syntax
void Wedge2D (HDC hDC, float x, float y, float r1, float r2, float start, float angle);

Remarks
Wedge2D draws a 2D circular wedge in the current 2D viewer with the current pen color. (x,y) is 
the center of the circle and r is the radius of the circle. The starting angle and the span of the arc 
are specified by the parameter start and angle measured in degrees.

Return Value
None.

See also
Arc2D



Ellipse2D

Function
Draws a 2D ellipse. 

Syntax
void Ellipse2D (HDC hDC, float x, float y, float r1, float r2);

Remarks
Ellipse2D draws a 2D ellipse defined by center X, Y and two radius R1 and R2 in the current 2D 
viewer with current pen for edge and current brush for interior.

Return value
None.

See also
EllipseArc2D



Ngon2D

Function
Draws a 2D N-sided regular polygon.

Syntax
void Ngon2D (HDC hDC, float X, float Y, float R1, float R2, short N);

Remarks
Ngon2D draws a 2D N-sided    regular polygon define by ceter X, Y and two radius R1 and R2 in 
the current 2D viewer with current pen for edge and current brush for interior.

Return value
None.

See also
Polygon2D



NsideStar2D

Function
Draws a 2D N-point star.

Syntax
void NsideStar2D (HDC hDC, float X, float Y, float Radius, short N);

Remarks
NsideStar2D draws a 2D N-point regular star defined by center X, Y and Radius in    the current 
2D viewer with current pen for edge and current brush for interior.

Return value
None.

See also
Polygon2D



NsideFlower2D

Function
Draw a 2D N-point flower. 

Syntax
void NsideFlower2D (HDC hDC, float X, float Y, float R1, float R2, short N);

Remarks
Draw a 2D N-point flower defined by center X, Y, and the inner and outer radius R1 and R2 in the 
current 2D viewer with current pen for edge and current brush for interior

Return value
None.

See also
Polygon2D



MoveTo3D

Function
Move current 3D display position. 

Syntax
void MoveTo3D (HDC hDC, float X, float Y, float Z);

Remarks
MoveTo3D moves current 3D display position to X, Y, and Z in the current 3D viewer.

Return value
None.

See also
LineTo3D



LineTo3D

Function
Drawsa 3D line to a new position.

Syntax
void LineTo3D (HDC hDC, float x, float y, float z);

Remarks
LineTo3D draws a 3D line from the current display position to X, Y, and Z in the current viewer 
with current pen.

Return value
None.

See also
MovoTo3D



DrawLine3D

Function
Draws a 3D line segment.

Syntax
void DrawLine3D (HDC hDC, float X1, float Y1, float Z1, float X2, float Y2, float Z2);

Remarks
DrawLine3D draws a 3D line from X1, Y1, and Z1 to X2, Y2, and Z2 in the current 3D viewer with 
current pen.

Return value
None.

See also
LineTo3D, MovoTo3D



MarkPosition3D

Function
Draws 3D axes.

Syntax
void MarkPosition3D (HDC hdc, float x, float y, float z, float scale);

Remarks
MarkPosition3D draws a 3D axes in size of Scale at X, Y, and Z in the current 3D viewer with red, 
green, and blue for the three axes.

Return value
None.

See also
CreateViewer3D



Polyline3D

Function
Draw a 3D polyline. 

Syntax
void Polyline3D (HDC hDC, LPPOINT3D Point, short N);

Remarks
Polyline3D draws a polyline defined by N 3D Point with current pen for the edge and current 
brush for the interior in the current viewer.

Return value
None.

See also
Polygon3D



Polygon3D

Function
Draws a 3D polygon.

Syntax
void Polygon3D (HDC hDC, LPPOINT3D Point, short N);

Remarks
Polygon3D draws a polygon defined by N 3D Point with current pen for the edge and current 
brush for the interior in the current viewer.

Return value
None.

See also
Polyline3D



ResetVertex3D

Function
Reset the temperary 3D point buffer Point3D to empty

Syntax
void ResetVertex3D (void);

Remarks

Return value

See also



SetVertex3D

Function
Set a 3D point X, Y, and Z into the 3D point buffer Point3D

Syntex
void SetVertex3D (float X, float Y, float Z);

Remarks

Return value
None.

See also



Shape3D

Function
Draw a 2D shape defined by N 2D Point at X, Y, and Z in MS Windows' device context hDC with 
current pen for the edge and current brush for the interior

Syntax
void Shape3D (HDC hDC, float X, float Y, float Z, LPPOINT2D Point, short N);

Remarks
Draw a 2D shape defined by N 2D Point at X, Y, and Z in MS Windows' device context hDC with 
current pen for the edge and current brush for the interior

Return value
None.

See also



Rectangle3D

Function
Draw a Rectangle. 

Syntax
void Rectangle3D (HDC hDC, float X1, float Y1, float X2, float Y2, float Z);

Remarks
Rectangle3D draws a Rectangle defined by X1, Y1, X2, and Y2 and elevation Z in the current 3D 
viewer with current pen for the edge and current brush for the interior.

Return value
None.

See also
Polygon3D



Prism3D

Function
Draws a 3D prism. 

Syntax
void Prism3D (HDC hDC, float X, float Y, float Z, float H, LPPOINT2D BaseVertex, LPPOINT2D 
HeadVertex, short N);

Remarks
Prism3D draws a 3D prism defined by the N point base shape BaseVertex and head shape 
HeadVertex at X, Y, and Z with current
pen for the facets edges and the current brush for the facet interior.

Return value
None.

See also
NsidePrism3D



Pyramid3D

Function
Draws a pyramid.

Syntax
void Pyramid3D (HDC hDC, float x, float y, float z, float height, LPPOINT2D basevertex, short 
count);

Remarks
Pyramid3D draws a pyramid in the current 3D viewer. The apex is specified by (x,y,z). The 
vertices of the based is in the array basevertex and the number of base vertices is given by 
count.

Return Value
None.

See also
NsidePyramid3D



NsideStar3D

Function
Draw a 3D N point star. 

Syntax
void NsideStar3D (HDC hDC, float X, float Y, float Z, float H, float R, short N);

Remarks
NsideStar3D draw a 3D N point regular star defined by H and R and X, Y, and Z    with current pen 
for the facet edges and the current brush for the facet interior.

Return value
None.

See also
NsideFlower3D



NsideFlower3D

Function
Draw a 3D N point flower. 

Syntax
void NsideFlower3D (HDC hDC, float X, float Y, float Z, float H, float R1, float R2, short N);

Remarks
NsideFlower3D draws a 3D N point regular flower defined by R1, R2, and H at X, Y, and Z    with 
current pen for the facet edges and the current brush for the facet interior.

Return value
None.

See also
NsideStar3D



Cube3D

Function
Draws a 3D rectangular box. 

Syntax
void Cube3D (HDC hDC, float x1, float y1, float z1, float x2, float y2, float z2);

Remarks
Cube3D draws a 3D rectangular box defined by two corner points X1, Y1, Z1 and X2, Y2, Z2    
with current pen for the facet edges and the current brush for the facet interior

Return value
None.

See also
Rectangle3D



Sphere3D

Function
Draws a sphere.

Syntax
void Sphere3D (HDC hDC, float X, float Y, float Z, float R, short N1, short N2);

Remarks
Sphere3D draws a spherical polyhedron with radius R at X, Y, and Z in the current 3D viewer with 
current pen for the facet edges and the current brush for the facet interior

Return value
None.

See also
Cylinder3d, Cone3D



NsidePyramid3D

Function
Draws a regular 3D pyramid. 

Syntax
void NsidePyramid3D (HDC hDC, float X, float Y, float Z, float R, float H, short N);

Remarks
Draw a vertical 3D N sided regular pyramid defined by radius R and height H at position X, Y, and 
Z in the current viewer with current pen for the facet edges and the current brush for the facet 
interior

Return value
None.

See also
Pyramid3D



Cone3D

Function
Draws a    cone.

Syntax
void Cone3D (HDC hDC, float X, float Y, float Z, float R, float H);

Remarks
Cone3D draws a vertical 3D cone define by radius R and height H at position X, Y, and Z in the 
current viewer with current pen for the facet edges and the current brush for the facet interior

Return value
None.

See also
Cylinder3D



NsidePrism3D

Function
Draws an N sided regular prism. 

Syntax
void NsidePrism3D (HDC hDC, float X, float Y, float Z, float R, float H, short N);

Remarks
Draw a vertical 3D N side prism defined by radius R and height H at X, Y, and Z with current pen 
for the facet edges and the current brush for the facet interior.

Return value
None.

See also
Prism3D



Cylinder3D

Function
Draw a 3D cylinder.

Syntax
void Cylinder3D (HDC hDC, float X, float Y, float Z, float R, float H);

Remarks
Cylinder3D draws a vertical 3D cylinder defined by radius R and height H at position X, Y, and Z 
in the current 3D viewer with current pen for the facet edges and the current brush for the facet 
interior.

Return value
None.

See also
Cone3D



BezierCurve2D

Function
Draws a 2D Bezier curve.

Syntax
void BezierCurve2D(HDC hdc, LPPOINT2D CtrlPolygon);

Remarks
BezierCurve2D draws a Bezier curve in the current 2D viewer. The curve is specified by four 
control points in the CtrlPolygon.

Return value
None.

See also
BSplineCurve2D, HermitCurve2D, NURBSCurve2D



HermitCurve2D

Function
Draws a 2D Hermit curve.

Syntax
void HermitCurve2D(LPPOINT2D CtrlPolygon);

Remarks
HermitCurve2D draws a Hermit curve in the current 2D viewer. The curve is specified by four 
control points in the CtrlPolygon.

Return value
None.

See also
BezierCurve2D, BSplineCurve2D,    NURBSCurve2D



BSplineCurve2D

Function
Draws a 2D uniform non-rational B-Spline curve.

Syntax
void BSplineCurve2D(HDC hdc, LPPOINT2D CtrlPolygon, int N);

Remarks
BezierCurve2D draws a    unform non-rational B-Spline curve in the current 2D viewer. The curve 
is specified by    N control points in the CtrlPolygon. The first and the last knots are of multiplicity 3 
and all othe knots are simple and uniformly spaced.

Return value
None.

See also
BezierCurve2D, HermitCurve2D, NURBSCurve2D



NURBSCurve2D

Function
Draws a 2D NURBS curve.

Syntax
void NURBSCurve2D(HDC hdc, LPPOINT2D CtrlPolygon, int N, float Knots[]);

Remarks
NURBSCurve2D draws a    non-uniform rational B-spline (NURBS) curve in the current 2D viewer. 
The curve is specified by    N control points in the CtrlPolygon and N+2 Knots.

Return value
None.

See also
BezierCurve2D, BSplineCurve2D, HermitCurve2D



BezierCurve3D

Function
Draws a 3D Bezier curve.

Syntax
void BezierCurve3D(HDC hdc, LPPOINT3D CtrlPolygon);

Remarks
BezierCurve3D draws a Bezier curve in the current 3D viewer. The curve is specified by four 
control points in the CtrlPolygon.

Return value
None.

See also
BSplineCurve3D, HermitCurve3D, NURBSCurve3D



HermitCurve3D

Function
Draws a 3D Hermit curve.

Syntax
void HermitCurve3D(LPPOINT3D CtrlPolygon);

Remarks
HermitCurve3D draws a Hermit curve in the current 3D viewer. The curve is specified by four 
control points in the CtrlPolygon.

Return value
None.

See also
BezierCurve3D, BSplineCurve3D,    NURBSCurve3D



BSplineCurve3D

Function
Draws a 3D uniform non-rational B-Spline curve.

Syntax
void BSplineCurve3D(HDC hdc, LPPOINT3D CtrlPolygon, int N);

Remarks
BezierCurve3D draws a    unform non-rational B-Spline curve in the current 3D viewer. The curve 
is specified by    N control points in the CtrlPolygon. The first and the last knots are of multiplicity 3 
and all othe knots are simple and uniformly spaced.

Return value
None.

See also
BezierCurve3D, HermitCurve3D, NURBSCurve3D



NURBSCurve3D

Function
Draws a 3D NURBS curve.

Syntax
void NURBSCurve3D(HDC hdc, LPPOINT3D CtrlPolygon, int N, float Knots[]);

Remarks
NURBSCurve3D draws a    non-uniform rational B-spline (NURBS) curve in the current 3D viewer. 
The curve is specified by    N control points in the CtrlPolygon and N+2 Knots.

Return value
None.

See also
BezierCurve3D, BSplineCurve2D, HermitCurve3D



BezierSurface3D

Function
Draws a 3D Bezier surface.

Syntax
void BezierSurface3D(HDC hdc, LPPOINT3D CtrlNet, int Ns, int Nt);

Remarks
BezierSurface3D draws a Bezier surface in the current 3D viewer. The curve is specified by the 
CtrlNet which is an array of 4 by 4 points. The surface is drawn in wire-frame form with Ns+1 lines 
in s direction and Nt+1 lines in the t direction.

Return value
None.

See also
BSplineSurface3D, HermitSurface3D, NURBSSurface3D



HermitSurface3D

Function
Draws a 3D Hermit surface.

Syntax
void HermitSurface3D(LPPOINT3D CtrlNet);

Remarks
HermitCurve3D draws a Hermit curve in the current 3D viewer. The curve is specified by four 
control points in the CtrlPolygon. The surface is drawn in wire-frame form with Ns+1 lines in s 
direction and Nt+1 lines in the t direction.

Return value
None.

See also
BezierSurface3D, BSplineSurface3D,    NURBSSurface3D



BSplineSurface3D

Function
Draws a 3D uniform non-rational B-Spline surface.

Syntax
void BSplineSurface3D(HDC hdc, LPPOINT3D CtrlPolygon, int N, int Ns, int Nt);

Remarks
BSplineSurface3D draws a    unform non-rational B-Spline surface in the current 3D viewer. The 
curve is specified by    N control points in the CtrlPolygon. The first and the last knots are of 
multiplicity 3 and all othe knots are simple and uniformly spaced. The surface is drawn in wire-
frame form with Ns+1 lines in s direction and Nt+1 lines in the t direction for each rectangular 
patch.

Return value
None.

See also
BezierCurve3D, HermitCurve3D, NURBSCurve3D



NURBSSurface3D

Function
Draws a 3D NURBS surface.

Syntax
void NURBSSurface3D(HDC hdc, LPPOINT3D CtrlPolygon, float SKnots[], float TKnot[], int 
SCount, int TCount, int Ns, int Nt);

Remarks
NURBSSurface3D draws a    non-uniform rational B-spline (NURBS) surface in the current 3D 
viewer. The surface is specified by    SCount by TCount control points in the CtrlPolygon and with 
SCount+2 SKnots and TCount+2 TKnots. The surface is drawn in wire-frame form with Ns+1 lines 
in s direction and Nt+1 lines in the t direction for each bezier patch.

Return value
None.

See also
BezierSurface3D, BSplineSurface2D, HermitSurface3D



Appendix A. BIBLIOGRAPHY

Gerald Farin,

Alan Watt,

Appendix B. COMMON QUESTIONS

Q. What is the difference between your MoveTo2D, LineTo2D and GDI's
MoveTo, LineTo functions?

A. MoveTo2D and LineTo2D performs the transformation from the world
coordinates to the viewport of the selected viewer. MoveTo and LineTo
uses the screen coordinates. GDI has several screen mapping modes,
but they are all simple scaling transformations. Visualib provides much
more sophesticated viewing transformations. Another difference is that
GDI functions use 16 bit integer type for coordinates which may easily
cause overflow, while Visualib functions use float type.

Q. I just want to display some simple 2D graphics. How could Visualib
help me?

A. GDI drawing functions have sevear limitations. For example, GDI
Ellipse function can only draw ellipses with horizonal and vertical
axes. Visualib lets you draw any kinds of ellipses with its powerful
transformation capabilities.


