
vxBase

Copyright © 1991, 1992
by vxBase (512523 Alberta Ltd.)

Visual Basic
xBase Functions for Windows 3.x

vxBase is Shareware, not freeware. After a thirty day evaluation
period, if you continue to use vxBase, you are required to register the
product and include a license fee of $59.95 plus $5.00 Shipping and
Handling (North America) by check, money order, Visa, or Mastercard.
Registration Information may be found at the end of this document. The
License fee will entitle you to a registration code (to be rid of the
opening nagware) and the latest version of the software.

If you distribute vxBase with your Visual Basic application, you
must distribute an unregistered copy of the software unless you
purchase a developer distribution license.

Developer Distribution Licenses
You may distribute an unlimited number of copies of vxBase with your

application by purchasing a developer distribution license for $295.00
(less the shareware registration fee if already registered). This
license entitles you to a printed copy of the manual, the latest
version of the software, and a run time only version of vxbase.dll
which is distributed to the end user. See the last page in this
document for a limited time offer on the Developer's kit.

Please read the License Agreement and Limited Warranty found at the
back of this manual before you begin to use vxBase.

Manuals
A printed copy of this manual is available for $20.00 to users who

do not purchase the developer distribution license.

Release Notes
Release 2.02 October 21, 1992

vxBase was written in C by Terry Orletsky. Address inquiries and bug
reports (preferably Dr. Watson along with a listing of the offending
code) to

Terry Orletsky

vxBase (512523 Alberta Ltd.)
#200, 10310 - 176 Street
Edmonton, Alberta, Canada
T5S 1L3

Phone (403) 489-5994
Fax (403) 486-4335
BBS (403) 483-5687
Compuserve I.D. 70524, 3723

Trademarks
Visual Basic, Windows, and MSC C/C++ are registered trademarks of
Microsoft Corporation.
Borland C++ is a registered trademark of Borland International.
Clipper is a registered trademark of Nantucket Corporation.
Realizer is a trademark of Within Technologies, Inc.

Acknowledgements
Thanks to Ray Donahue of Hamden, CT for his three dimensional

controls, to Jonathan Zuck of UFI for his help and advice through the
Microsoft Basic forum on Compuserve, to Willy Koch of Geneva for his
French translation, to George Santamarina of Miami for his Spanish
translation, to Manfred Waldmeyer of Tornesch-Esingen, Germany for his
German translation, and to Massimiliano Bellucci of Cecina, Italy for
the Italian translation.

Testing
vxBase was written and tested extensively on a Pegasus 386 33mhz

microcomputer with 8 megabytes of RAM, SVGA, and a 200 megabyte hard
disk running Dos 5.0, QEMM 6.0, Stacker 2.0, and Windows 3.1 in
Enhanced mode. The sample application has been installed and
successfully run on a variety of 286, 386, and 486 PCs.

Record and file locking routines were tested and verified on an 18-
station Novell 386 Netware LAN with 3 workstations running the sample
application concurrently.

If your hardware or LAN software differs significantly and vxBase
does not run properly, I would appreciate a Dr. Watson report sent by
fax, to the vxBase BBS, or to my Compuserve address. Please describe
your operating environment in detail and include a listing of your
config.sys file.

vxBase Page 2

vxBase Table of Contents
Installation 6
Release History 7
Creating a vxBase Application 16
 Visual Basic 16
 Visual Basic and VXLOAD.EXE 16
 Realizer 17
 C 17
xBase Expressions, Functions and Operators 18
 Compatibilities and Incompatibilities 18
 Conventions 18
 Expressions 19
 Constants 19
 Operators 20
 Numeric Operators 20
 Relational Operators 20
 Logical Operators 20
 Character (String) Operators 21
 Operator Precedence 21
 Functions 22
Sample Application 26
Tips and Techniques 30
 Entry and Exit Strategies 30
 Access to Form Menus 30
 Data Entry 30
 Parents for vxBase Windows 31
 Data Paths 31
 Controlling Multiple Windows 31
 Browse Windows 31
 DataWorks 31
MultiTasking and MultiUser Considerations 32

Functions
vxAppendBlank 36
vxAppendFrom 37
vxAreaDbf 39
vxAreaNtx 41
vxBof 42
vxBottom 43
vxBrowse 44
vxBrowseCase 51
vxBrowsePos 52
vxBrowseSetup 53
vxChar 56
vxClose 57
vxCloseAll 58
vxCloseNtx 60
vxCollate 61
vxCopy 63
vxCopyStruc 64
vxCreateDbf 66
vxCreateNtx 68
vxCtlBrowse 70
vxCtlBrowseMsg 73
vxCtlFormat 79

vxBase Page 3

vxCtlGrayReset 81
vxCtlGraySet 82
vxCtlHwnd 83
vxCtlLength 84
vxCtlPenWidth 85
vxCtlStyle 86
vxDateFormat 88
vxDateString 89

Contents (continued)
vxDbfCurrent 90
vxDbfDate 91
vxDbfName 92
vxDeallocate 93
vxDecimals 94
vxDeleted 95
vxDeleteRange 96
vxDeleteRec 97
vxDescend 88
vxDouble 99
vxEmpty 100
vxEof 101
vxErrorTest 102
vxEval 105
vxEvalDouble 106
vxEvalLogical 107
vxEvalString 108
vxExactOff 109
vxExactOn 110
vxField 111
vxFieldCount 112
vxFieldName 113
vxFieldSize 114
vxFieldTrim 115
vxFieldType 116
vxFile 117
vxFilter 119
vxFilterReset 121
vxFormFrame 122
vxFound 123
vxGetVersion 124
vxGo 125
vxInit 127
vxInteger 128
vxIsMemo 129
vxIsRecLocked 130
vxJoin 131
vxJoinNoAuto 134
vxJoinReset 135
vxLocate 136
vxLocateAgain 141
vxLockDbf 142
vxLocked 143
vxLockRecord 144
vxLong 145
vxMemoEdit 146
vxMemoRead 148

vxBase Page 4

vxMenuDeclare 150
vxMenuItem 151
vxNtxCurrent 155
vxNtxDeselect 156
vxNtxExpr 157
vxNtxName 158
vxNtxRecNo 159
vxNumRecs 160
vxPack 161
vxPrinterDefault 163
vxPrinterEnum 164
vxPrinterSelect 166
vxRecall 167
vxRecNo 168
vxRecord 169
vxRecSize 171
Contents (continued)
vxReindex 172

 vxReplDate 173
vxReplDateString 175
vxReplDouble 176
vxReplInteger 177
vxReplLogical 178
vxReplLong 179
vxReplMemo 181
vxReplRecord 182
vxReplString 184
vxSeek 186
vxSeekFast 189
vxSeekSoft 191
vxSelectDbf 193
vxSelectNtx 194
vxSetAlias 195
vxSetAnsi 198
vxSetCollate 200
vxSetDate 201
vxSetErrorCaption 202
vxSetErrorMethod 203
vxSetHandles 204
vxSetLanguage 205
vxSetLocks 206
vxSetMeters 207
vxSetRelation 208
vxSetString 211
vxSetupPrinter 212
vxSkip 213
vxSum 215
vxTableDeclare 216
vxTableField 221
vxTableFieldExt 223
vxTableReset 225
vxTestNtx 226
vxTop 227
vxTrue 228
vxUnlock 229
vxUseDbf 231

vxBase Page 5

vxUseDbfRO 232
vxUseNtx 234
vxWindowDereg 235
vxWrite 236
vxWriteHdr 237
vxZap 238

Error Messages 239
Software License Agreement 246
Limited Warranty 247
Ordering Information 248

vxBase Page 6

Installation from Diskette
If you receive a copy of vxBase from the manufacturer on diskette,

insert the diskette in drive A: or B: and run A:INSTALL or B:INSTALL
from the Program Manager Run Command.

The Visual Basic sample programs and files will be set up in
directory \VB\VXBTEST. It is strongly recommended that you do not
change this directory. A sample application written in C will be set up
in directory \VB\VXC.

The following files will be set up in your \WINDOWS directory:
vxbase.inf vxbase language and registration info
vxbase.dll the vxbase dynamic link library
vxbase.wri vxbase documentation in a Windows Write file
vxload.exe vxbase dll loader for use with Visual Basic

in Design Mode
unpack.exe unpacking utility in case you have to copy

any vxbase installation files directly from
the diskette

Installation from Compuserve, Other Bulletin Boards, or Shareware
Houses

vxBase is distributed on bulletin boards or from Shareware Houses as
two compressed .ZIP files. The first ZIP file is vxbdoc.zip, which
contains the Windows Write file that you are reading now. It is
separated from the rest of vxBase to allow potential users to preview
the documentation before installing and actually using vxBase. This is
especially helpful to potential users who extract vxBase from a
bulletin board. They can evaluate the system from a documentation
standpoint before committing to down-loading the larger system.

The second ZIP (vxbase.zip) file contains the sample source code and
Visual Basic project files, vxbase.txt which includes all of the Visual
Basic declarations for the routines in the vxBase DLL and the vxBase
DLL itself.

If you are going to upload vxBase to a bulletin board, it must be
sent as it was received - in two ZIP files.

When the system ZIP file is decompressed, it contains a readme.doc
file which contains these installation instructions, and 2 more ZIP
files. These ZIP files are:

vxbdll.zip the vxBase DLL and vxload.exe
vxbtest.zip sample source code, sample database,

and vxbase.txt

To install vxBase, first make a subdirectory under your \VB
directory named \VB\VXBTEST and copy the vxbtest.zip file there. Unzip
it and delete the vxbtest.zip file from your hard disk. To run the
sample application it is essential that these files be in directory
\VB\VXBTEST because this path is hard-coded into the sample code. If
you MUST put it somewhere else, you'll have to modify the file names in
the source code to reflect your new location.

Unzip vxbdll.zip and place the resulting files (VXBASE.DLL and
VXLOAD.EXE) in your \WINDOWS directory. The DLL must be in a directory
that Windows can find (i.e., in your path). The handiest place is in

vxBase Page 7

your \WINDOWS directory.

To run the sample application see Creating a vxBase Application and
the Sample Application sections below.

vxBase Page 8

Release History

vxBase 1.00
November 10, 1991 original release

vxBase 1.01
November 19, 1991

String routines handled by Jonathan Zuck's vbpoint.dll replaced by
Microsoft VBAPI functions and installation procedure changed
accordingly.

New functions:
vxCtlGrayReset Resets disabled color to system standard.
vxCtlGraySet Sets disabled color to dark gray.
vxCtlLength Set data entry length for a control.
vxCtlStyle Set recessed, raised, creased contol style.
vxFormFrame Draw a frame around the form.

Most of the new functions have been added to enhance the appearance
of your VB application. VGA/SVGA users can now give their forms a
metallic, three dimensional look. The sample application forms have
been redesigned using the new functions.

Anomalies Discovered in Version 1.00
Two problems surfaced in Release 1.00. The first resulted in UAEs

when running Windows in 386-enhanced mode. This was a memory
deallocation error. Apparently 386-enhanced protected mode is more
protected than Standard protected mode. Go figure.

The second problem was the inadvertent deletion of a stock object in
the browse function. Problems caused by this bug were intermittent.

vxBase 1.02
December 1, 1991

New Functions:
vxBrowseCase Set browse case to upper or lower as default.

vxMemoRead Creates Vis Basic string out of a memo either
unformatted for multiline text boxes or
formatted for printer output.

vxReplMemo Replace memo with a Visual Basic string. You
may now edit memos in your own text boxes.

vxSetErrorCaption Set your own error message box caption if you
want to replace the default "vxBase Error".

vxSetupPrinter Allows direct access to Windows Print Manager
setup routines. Especially useful for changing
form sizes from your app instead of having to
bring up the control panel.

vxWindowDereg Deregister a select area attached to a window.
This is a new function that helps implement the
vxBase multitasking scheme.

vxBase Page 9

Important changes implemented include:
(1) up to 8 browse windows may be active at one time. Reports

reflecting your browse table layout may now be printed from the
vxBrowse Utilities menu.

(2) restriction on multiple instances removed.
(3) select areas are now attached to windows so you can have

multiple forms displaying data from several databases.
(4) indexing buffer space increased to handle very large files

with complex key structures.
Please read the new section on Multitasking to get some idea of the

way select areas are now attached to windows.

Anomalies Discovered in Version 1.01
UAEs browse windows with complex filter expressions. Stack overflow

problem corrected.

vxBase 1.03
January 22, 1992 1.03 Maintenance Release

Indexing problem corrected on very large files (over 200,000
records).

Scrolling and quick key positioning in Browse windows corrected for
files with more than 10,000 records.

Field structure added to "About File" dialog box in vxBrowse.
Enhanced mode UAE corrected in vxClose() (inconsistent memory

deallocation).
C run time library bug on close index file corrected if more than 20

files open in a given task.

vxBase 1.04
February 20, 1992

New functions:
vxBrowsePos Allows setting initial position and size of a

browse window.

vxDateString Returns a date string conforming to a selected
international convention.

vxDeallocate Releases memory supplied by vxBase to VB.EXE
when in design mode. See explanantion below.

vxDescend Creates a search key to seek records in indexes
built with the new xBase DESCEND() function
added to the xBase Function list that vxBase
supports.

vxMenuDeclare Allocate memory for a user defined menu to be
placed on an upcoming browse window.

vxMenuItem Define a menu structure for a user defined menu
to be placed on a browse window.

vxRecord Returns an entire record as a string or a
defined data structure.

vxBase Page 10

vxSetDate Sets the international date format to be used
in

vxBrowse displays of date fields, on-screen
editing of date fields, and the format of dates
returned by xBase functions CTOD(), DTOC() and
DATE().

vxSetHandles Allows opening more than 20 files per task.

vxSetString All vxBase functions that return VB variable
length strings may be set to return standard
ASCIIZ strings instead.

vxBase Page 11

Corrections and changes made to Version 1.03
vxReplLong function corrected.
vxBrowse menu item Query Find Next corrected to retain previous

search string.
vxBrowse quick key with dashes and ampersands corrected.
VB.EXE memory growth problem in VB Design Mode corrected. Repeated

test runs of a vxBase application in VB Design Mode resulted in the
non-discardable memory portion of VB.EXE growing arithmetically by at
least 130k with each repeat until VB ran out of memory. The problem has
been corrected with the new vxDeallocate function (which only works
when in design mode).

Scrolling problem in vxBrowse corrected if start record was not the
first in the file or the first in a defined subset.

Intermittent stack error in vxMemoRead and vxMemoRepl corrected.
If a join is defined in a browse window, the joined window is

automatically displayed without the user having to select the Join menu
item from the browse menu.

vxBase 1.05
March 20, 1992

New Functions:
vxDbfDate Extract the date of last database access.

vxInit Required first call to vxBase to register task
for multitasking management.

vxIsRecLocked Determine if current record is locked.

vxJoinNoAuto Turn off automatic joining of linked windows.

vxReplLogical Replace logical field by passing boolean
values.

vxSetLanguage French language support added.

vxTestNtx Test the integrity of an open index.

vxUseDbfRO Open a database file READ ONLY.

Corrections and changes made to Version 1.04
vxBrowsePos vertical size increased slightly to always display a

full record at the bottom of the browse window.
QuickKey in vxBrowse corrected. Previous quick key entered was being

cleared if window was redrawn.
About vxBase menu item removed from Browse menus.
vxFile intermittent UAE corrected. Call to DOS function now

initializes segment registers.
vxReplLong corrected if number being saved was greater than short

integer max.
vxDeallocate changed to report a true or false condition depending

on whether or not the current task can be terminated without
interfering with other vxBase tasks concurrently running.

vxTop() and vxBof() corrected when used with filters and the first
record or records in the file do not pass the filter.

Cleaner redrawing of vxBrowse menus if modifications made.

vxBase Page 12

F3 accelerator key attached to Find Again item in browse search
menu.

vxPack NOW PACKS attached memo files!
vxCopy now does NOT copy deleted records. It also uses the active

index to copy records so the new database is in sorted order. vxCopy
now copies (and compresses) memo files attached to the From database.

Meter bar added to index routines. vxPack meter bar changed. Also
includes meter bar on memo file compression.

vxBase Page 13

vxBase 1.06
April 23, 1992

New Functions:
vxEval evaluates an XBase expression and returns

TRUE or FALSE depending on whether it will
return a valid XBase result.

vxSetLocks now allows the traditional locking schemes
used by Clipper. The default is

vxSetLocks(TRUE)
which automatically locks a record when it
occupies the vxBase record buffer. By using
vxSetLocks(FALSE), records must be locked
explicitly with vxLockRecord.

vxWriteHdr vxBase only updates the XBase header with date
and time information, and the number of records
when the file is closed. The programmer may now
force the write of the header info with this
function at any time. If you are using third
party XBase file management tools in

conjunction
with vxBase, they normally retrieve the record
count from the header. After adding a record
with vxBase, the third party manager would not
recognize the new record unless we use
vxWriteHdr to update the header after every
append.

IMPORTANT PROCEDURAL CHANGE:
A utility program named vxload.exe has been included in this release

for use with Visual Basic in Design Mode. vxBase maintains a single
memory pool for use by all concurrent vxBase applications. This memory
pool is attached to the FIRST program that calls a vxBase function.
Programmers testing their Visual Basic/vxBase programs by running them
in Design Mode have frequent program failures (syntax errors, etc.). In
Windows 3.0 we relied on a call to the vxDeallocate() function to
detach the vxBase memory pool from VB.EXE (i.e., Visual Basic running
in Design Mode). Whenever the test run ended, we could always rely on
vxbase.dll being unloaded. Under Windows 3.1, however, an ungraceful
exit from a test run does not always unload the DLL. Subsequent
attempts at running the program (or even another Visual Basic program)
end in failure with a General Protection Fault in the memory allocation
routines. vxload was written to overcome this problem.

Set up vxload as a program item with its icon adjacent to the Visual
Basic icon and ALWAYS RUN IT prior to starting up Visual Basic. It runs
in an iconized state, consumes little extra memory, and controls the
vxBase memory pool. With vxload running, any unexpected failures of
your test programs in Visual Basic design mode will never result in
compromised memory because vxload controls it.

It is highly recommended that you also include two statements after
your call to vxInit() in your program initialization sequence:

Call vxSetLocks(FALSE)
j% = vxCloseAll()

vxBase Page 14

The first statement will ensure that no file is locked if your
program terminates abnormally. Subsequent runs will not balk because of
a lock left in place due to the program terminating before its time.

The second statement will close all files left open by an abnormal
termination so you can start with a clean slate when you try again.

If you wish to use the default locking scheme in your running
application, remove the vxSetLocks command before creating your .EXE
file.

Note that vxInit and vxDeallocate are still required elements in a
vxBase program.
 Also note that if you terminate Visual Basic with vxDeallocate never
having been called, an attempt to close vxload from the vxload system
menu will fail with a "Task Closure Sequence Error" because Visual
Basic as a task has never been deregistered from the vxBase task list
(vxDeallocate does this). If this happens to you, you may force an
unload of vxload by restoring the window and selecting the EXIT item
from the vxload menu.

Corrections and changes made to Version 1.05
vxBase recompiled with Borland's Turbo C++ for Windows version 3.0.

Some errors attributed to the version 2.0 run time libraries have
magically disappeared - especially those associated with opening more
than 15 files.

Loss of data after the decimal point in vxBrowse onscreen edit of
numeric fields corrected.

Spanish and German language support added via vxSetLanguage.
Database-window-task registration now loops through current window

list looking for ultimate parent. This should stop some of those
annoying "Field not found" messages.

Print item moved to Edit menu on vxBrowse menu. This makes it easier
to get rid of.

Captions on dialog boxes that contain the word "vxBase" changed to
remove references to "vxBase".

vxTop(), vxBottom(), and vxAppendBlank() corrected when more than 15
files open.

Large file scrolling approximation algorithms now apply to files
with more than 5,000 records (formerly 10,000) in vxBrowse.

Scroll thumb and quick key in vxBrowse corrected on large files.
Scrolling problems associated with filters in vxBrowse corrected.
XBase TRIM() function added (see vxTableField for example of proper

usage).
XBase SPACE() and LEN() functions added.
Maximum filter string length increased to 511 chars from 255.
Meter bar added to vxTestNtx function.
Min/Max buttons removed from browse windows.
Filter expressions are now pseudo compiled for faster evaluation

both in vxBrowse and in normal record movement with vxTop, vxBottom,
vxSkip, vxSeek, etc.

vxBase 1.07
June 2, 1992

New Functions:
vxEvalDouble evaluates an xBase expression that returns a

Double value and copies the evaluated result

vxBase Page 15

to a predimensioned double.

vxEvalLogical evaluates a logical xBase expression and
returns

.T. or .F. in a predimensioned string.

vxEvalString evaluates an xBase expression that returns a
string result and copies the evaluated result
to a predimensioned string.

Corrections and changes made to Version 1.06
 Handle to user defined browse menu memory cleared after browse

closed. Browse called without a user menu after displaying a browse
that had a user menu would cause a General Protection Fault because
second browse would attempt to release memory that had belonged to the
first browse.

vxReplMemo with empty string now clears the memo block reference in
the dbf file.
 Handle to pseudo-compiled filter string now cleared in vxFilterReset,
which corrects a possible memory deallocation error if vxClose
followed.

vxBase 2.00
October 9, 1992

vxBase recompiled with Microsoft C 7.0. Windows 3.1 functionality
now complete (corrected problems such as max memo length 7120 instead
of 32k and other bugs directly attributable to the C Run Time
libraries). Better code optimization and some architectural changes
made (now smaller and faster).

vxSetLanguage corrected to reinstitute German and Spanish language
switches (inadvertently lost in 1.07).

Obscure memo bug repaired. If formatting was used with vxMemoRead,
and the memo ended with a string that ended with 2 or more spaces,
vxMemoRead caused a GPF.

Multitasking index select error corrected.
Obscure "No Database Selected" and "Internal Index Root Seek Error"

bugs corrected.
On multiuser Retry? message boxes, caption now set to

vxSetErrorCaption string instead of "vxBase".
Italian language support added to vxSetLanguage.
Windows API function OpenFile implemented to replace MSC _sopen

which does not recognize Windows SetHandleCount if file limit per task
is increased to more than 20 (with vxSethandles).

vxLocked/vxIsRecLocked now reports correct lock status on network
files. Previously, only the status as imposed by the current
workstation was reported.

vxUseDbf, vxUseDbfRO, and vxUseNtx now position the record pointer
to the top of the file and fill the record buffer a la Clipper. Filters
are respected.

Search algorithm in vxBrowse changed. If a table has been defined
with the vxTablexxx functions, the search is limited to browse
displayable data only. The search also will not cross field boundaries
as it does in the raw data display (where the entire record is searched
- unchanged from previous releases).

VX_FLAT style added to vxCtlStyle. Define Global Const VXFLAT = 3 in

vxBase Page 16

global module before using as an attribute with vxCtlStyle. VX_FLAT
flattens VX_RECESS and VX_RAISE control styles. This attribute may be
used effectively to indicate the readiness of a text box to accept
data. If the text box is drawn on the form with no borders and colored
light gray, it is invisible on the form. You can use vxCtlStyle with
VX_RECESS, VX_RAISE, and VX_FLAT to dynamically change the control's
appearance.

The type of an index expression is now tested when the index is
opened with vxUseNtx. If the expression evaluates as numeric or as a
date, the open is denied. YOU MUST USE CHARACTER INDEX EXPRESSIONS IN
VXBASE. Use The STR() function to convert numbers to strings and the
DTOS() function to convert dates to strings within your index
expressions.

Date insertion in memo editor via F5 key now conforms to inter-
national standards set with vxSetDate.

Potential sharing violation when opening a read only file with
vxUseDbfRO (or subsequent vxUseNtx calls) corrected.

Field functions changed to speed up alias testing.
Error 912 incorrectly defined in manual as "Index key does not

exist" when it should have been "Index key already exists". Occurs when
attempting to add a key whose key expression and record number already
exist in the index. This is not really an error to be concerned about
so it no longer exists anyway.

vxAreaDbf now reports system wide area as reported in the
documentation.

Potential close error with vxCloseAll() corrected.
Sporadic no index key addition with big files corrected.
vxZap now clears associated dbt file as well.
VGA determination algorithm changed to allow 3d support on ps/2

monitors.
Alias names defined with vxSetAlias now allowed in xBase expressions

with the classic alias delimiter "->" (e.g., "master->namefld"). The
delimiter for alias name use in vxBase function calls remains the same
(i.e., "master.namefld").

vxCopy now respects filters. It may be used to create file subsets.
vxCtlFormat passes Enter and Escape keys to VB default procedure.
Logical vxNtxRecNo is now synchronized with a physical vxGo.

New Functions:
vxBrowseSetup allows the user to fine tune the appearance of

a
Browse table (both the old window browse and

the
new vxCtlBrowse).

vxCtlBrowse allows the placement of a browse table in a
form

multiline text box. Communication with the
browse table is enabled with the new
vxCtlBrowseMsg function. The Browse table no
longer has to be terminated when a selection is
made, etc. It also allows dynamic memo linking.
All standard events and procedures attached to
the text box may be used in normal fashion

while

vxBase Page 17

the browse is running.

vxCtlBrowseMsg communicates with a vxCtlBrowse. Messages the
programmer can pass are both interrogatory and
procedural (e.g., VXB_GETCURRENTREC extracts

the
record number of the currently highlighted
record and VXB_REFRESH redraws the browse
starting at a different record number).

vxCtlFormat adds TEXT FORMATTING to vxBase.

vxCtlHwnd gets the window handle associated with a Visual
Basic control.

vxCtlPenWidth added to control the depth of Recessing and
Raising a control when using vxCtlStyle.

vxDbfCurrent reports the current database select area.

vxErrorTest added to test the result of a vxBase function
that uses the alternate error method set by
vxSetErrorMethod. Add VxErrorStruc type as
defined in the function reference.

vxGetVersion returns a string containing the current
vxBase version number.

vxLocate searches for a record from and including the
current record position that satisfies a

logical
xBase expression. The search direction may be
specified.

vxLocateAgain searches for a record from and NOT including
the current record position that satisfies a
logical xBase expression as defined by the last
vxLocate for the selected database. The search
direction may be specified.

vxFieldTrim returns a string representing the defined field
with trailing spaces removed.

vxNtxCurrent reports the current index select area.

vxNtxRecNo returns the ordinal position of the key in the
current index.

vxPrinterDefault returns a string describing the Windows default
printer in a format suitable for use by
vxPrinterSelect

vxPrinterEnum enumerates all printers on the system and
returns a string suitable for setting the
default printer with vxPrinterSelect.

vxPrinterSelect changes the default Windows printer. The

vxBase Page 18

printer
setup string must be in the same format as that
returned by vxPrinterEnum.

vxReplDateString replaces a field with a date string formatted
as

per vxSetDate (default "mm/dd/yy"). This goes
hand in glove with dates input into text boxes
via vxCtlFormat or displayed with vxDateString.

vxReplRecord replaces the entire record buffer with the data
pointed to by a record typedef or string (see
vxRecord). BE CAREFUL with this function. No
data checks are implemented!

vxSeekFast speeds up seek times on Read Only files by 35%.

vxSetAlias allows field qualification in all vxBase field
functions.

vxSetErrorMethod allows an alternate method of trapping errors
found by vxBase. The normal method is to report
the error through a message box at run time. If
you use the alternate method, nothing is
reported (for most functions); instead, an

error
structure is filled with information about the
error which may be extracted with the
vxErrorTest function.

vxSetMeters allows you to turn the analog meter bars
displayed by vxPack, vxReindex, and vxTestNtx

on
or off (default is ON).

vxSetRelation adds true relational capability to vxBase.

vxTableFieldExt added to provide column definitions to vxBrowse
when using vxSetRelation to add multi-file
fields on the same browse row.

vxBase 2.02
October 21, 1992

Corrections made to Version 2.00
File open error when using vxSetupPrinter corrected.
vxFilterReset memory deallocation corrected.
vxBrowse creeping window corrected when using a parent window that

has no menu bar.
vxUseNtx consecutive calls now returns the correct, previous select

area and does not open the index file again.

vxBase Page 19

International Functions Added
The following functions all deal with the problem of a database that

contains characters from the high end of the ANSI or OEM character
sets, which is commonplace if the database stores data in a language
other than English.

vxSetAnsi(FALSE) properly handles databases that were created
with a DOS based application (such as Clipper). These databases
are OEM databases. Characters with diacritical marks in the high end of
the OEM character collating sequence are NOT the same as the ANSI
characters. It is necessary for vxBase to translate the characters to
ANSI (both Windows and vxBase native mode) before they can be used in a
vxBase application. They also must be translated back again when they
are written.

The default value of vxSetAnsi is TRUE (no translation takes place).
If the database was created and is maintained by vxBase (or DataWorks),
and the database is going to be used exclusively by Windows
applications, vxSetAnsi should be TRUE.

vxCollate allows the programmer to create his own collating sequence
table (for EITHER an ANSI database or an OEM database). The OEM
character set in particular does not use any kind of logical collating
sequence for characters with diacritical marks. The ANSI table handles
these characters more intelligently - but its sequence is also
incorrect for some languages.

It is necessary to define a collating sequence table to properly
build an index that uses these characters.

vxSetCollate can toggle a defined collating table on or off.

vxBase Page 20

Creating a vxBase Application

SHARE.EXE
The program SHARE.EXE must be loaded at the workstation to run

vxBase. This is a WINDOWS 3.1 requirement!

Visual Basic
Your application requires the vxbase.txt file (which should be in

directory \vb\vxbtest if you followed the installation instructions)
placed in the Global module. You may simply wish to copy the Global
module from the sample application, which contains some useful
declarations from the WIN API, as well.

Visual Basic and VXLOAD.EXE
A utility program named vxload.exe is included with the vxbase DLL

and is normally installed in your \WINDOWS directory. This program is
for use with Visual Basic in Design Mode. vxBase maintains a single
memory pool for use by all concurrent vxBase applications. This memory
pool is attached to the FIRST program that calls a vxBase function.
Programmers testing their Visual Basic/vxBase programs by running them
in Design Mode have frequent program failures (syntax errors, etc.). In
Windows 3.0 we relied on a call to the vxDeallocate() function to
detach the vxBase memory pool from VB.EXE (i.e., Visual Basic running
in Design Mode). Whenever the test run ended, we could always rely on
vxbase.dll being unloaded. Under Windows 3.1, however, an ungraceful
exit from a test run does not always unload the DLL. Subsequent
attempts at running the program (or even another Visual Basic program)
could end in failure with a General Protection Fault in the memory
allocation routines. VXLOAD was written to overcome this problem.

Set up VXLOAD as a program item with its icon adjacent to the Visual
Basic icon and ALWAYS RUN IT prior to starting up Visual Basic. It runs
in an iconized state, consumes little extra memory, and controls the
vxBase memory pool. With VXLOAD running, any unexpected failures of
your test programs in Visual Basic design mode will never result in
compromised memory because VXLOAD controls it.

It is highly recommended that you also include two statements after
your call to vxInit() in your program initialization sequence:

Call vxSetLocks(FALSE)
j% = vxCloseAll()

The first statement will ensure that no file is locked if your
program terminates abnormally. Subsequent runs will not balk because of
a lock left in place due to the program terminating before its time.

The second statement will close all files left open by an abnormal
termination so you can start with a clean slate when you try again.

If you wish to use the default locking scheme in your running
application, remove the vxSetLocks command before creating your .EXE
file.

Note that vxInit and vxDeallocate are still required elements in a

vxBase Page 21

vxBase program.

vxBase Page 22

 Also note that if you terminate Visual Basic with vxDeallocate never
having been called, an attempt to close VXLOAD from the VXLOAD system
menu will fail with a "Task Closure Sequence Error" because Visual
Basic as a task has never been deregistered from the vxBase task list
(vxDeallocate does this). If this happens to you, you may force an
unload of VXLOAD by restoring the VXLOAD window and selecting the EXIT
item from the VXLOAD menu.

Realizer
vxBase may be used with Realizer as well as Visual Basic. VB Strings

are not compatible with Realizer, however. See vxSetString and vxRecord
for an example of extracting data from a database using Realizer. VB
specific functions that use handles to Visual Basic controls (e.g.,
vxCtlLength, vxCtlStyle) will not work either.

C
vxBase functions may also be called from C languages (Borland C++,

Turbo C for Windows, Microsoft C++ 7.0, Microsoft Quick C). Contact the
author for a sample application written in Microsoft C/C++ 7.0. The
sample includes the vxbase header file and import library.

vxBase Page 23

xBase Expressions, Functions, and Operators

Compatibilities and Incompatibilities
vxBase dbf files (database files) and dbt files (memo files) are

compatible with those of Clipper, dBase III and III+, and any other
"xBase product". They are not compatible with dBase IV.

vxBase index files use Clipper standard .ntx files. These indexes
are more efficient both in speed and size than traditional ndx files.
vxBase again imposes one important restriction. In the interests of
speed and simplicity, all indexing expressions must evaluate as
strings.

NOTE: current indexes you wish to use in a new vxBase application must
be converted if they contain numeric fields or date fields. Use the
STR() function to convert numeric fields to strings, and the DTOS()
function to convert date fields to strings within your index
expression.

xBase style alias names and alias names set with the vxSetAlias
function are supported within a vxBase xBase expression. The alias
names used must be set with vxSetAlias. File alias names are separated
from the field reference by "->" (classical xBase syntax) within an
xBase expression string. When alias names are used within vxBase
functions that refer to field names, a period delimiter is used instead
(to conform to Visual Basic syntax).
 For example,
 If Not vxEval("master->country = 'Canada'") Then
 MsgBox "Country does not exist"
 Else
 Country$ = vxField("master.country")
 End If

Conventions
This section and those following on Expressions, Constants,

Operators, and Functions refer to xBase conventions. xBase expressions
are used within vxBase to communicate with the xBase file via standard
xBase index expressions, filter strings, etc. These expressions are not
available directly from Visual Basic; rather, they are passed as
parameters to vxBase functions that do the low level work of
translating and validating the expressions.

For example, Newdate$ = DTOS(datefield) is illegal. Instead, the
xBase expression must be evaluated by the vxBase parser by passing the
expression as a character string parameter (either as a literal string
or as a string variable) in a vxBase function that takes xBase
expression parameters.

The following vxBase functions take xBase expressions as parameters:

vxCreateNtx vxJoin
vxEval vxLocate
vxEvalDouble vxSetRelation
vxEvalLogical vxTableField
vxEvalString vxTableFieldExt
vxFilter vxCtlBrowseMsg

Program variables may not be used directly within an xBase

vxBase Page 24

expression. For example, suppose you wish to build a filter expression
to display only records in a certain country. You would solicit the
name of the country from the user and store it in variable Country$. To
build a filter string suitable for passing to vxFilter, you would use
the following code (assuming the xBase field name is "country").

Filter$ = "country = upper('" + Country$ + "')"
Call vxFilter(Filter$)

If the user entered "Canada" and you stored it in Country$, the
content of Filter$ would be country = upper('Canada'), which is a valid
xBase expression.

Expressions
Expressions are character strings that consist of field names,

functions, constants, and operators that are formatted in conventional
xBase syntax. They are used for index expressions, filter expressions,
and expressions that control vxBrowse displays. The only difference
between vxBase expressions and conventional xBase expressions is in the
characters that delimit strings. vxBase only supports single or double
quotes; the traditional square bracket [] is not supported. Visual
Basic functions must not be included in a parameter passed to a vxBase
function that requires an xBase expression.

Conventional xBase functions and operators that are supported by
vxBase are listed below. These and only these may be included in the
construction of an xBase expression.

An expression may be as simple as a single field name (e.g.,
cust_name) or as complicated as an IIF function which returns the
result of complex expressions (e.g., IIF(left(phone_num,1)=" ","No
phone on File",area_code+phone_num)).

The IIF example expressed in normal language would read as "If the
first character of the phone_num field is blank, output the phrase 'No
phone on file'; otherwise, output the area code plus the phone number".
This expression contains two functions (IIF() and LEFT()), two
constants (a space between the two quotation marks and the phrase "No
phone on file"), two field names (phone_num and area_code), and two
operators (the relational operator equal sign = and the string
concatenation operator plus sign +).

Expressions are used in index keys, filter definitions, definition
of beginning of file and end of file logic to a user table, in
statements used to join (or relate) one file to another, in statements
used to define the contents of a display column when creating a browse
table, and to return the results of logical, numeric, or character
expressions to the program when using the vxEvalXXX functions.

All expressions return a value of a specific type - either
character, numeric, date, or logical. In many cases, vxBase requires
that an expression return a value of a specific type. For example, when
defining a filter expression to limit the viewable records, the
expression must evaluate as logical (i.e., either TRUE or FALSE). A
conditional filter may be defined that limits a view to all customer
records that begin with the letter "A". This condition could be
expressed as LEFT(cust_name,1)="A". vxBase would interpret this as "If
the leftmost character of the field CUST_NAME is an "A", then display

vxBase Page 25

the record". The presence of a relational operator (in this case, the
equal sign) generally denotes an expression that will evaluate as
logical.

Expressions may be entered in upper or lower case.

Constants
An expression may contain one or more numeric, character, or logical

constants. An expression which consists of a single constant is not
very useful. Constants are usually used within more complex
expressions.

A numeric constant represents a number. For example, 4, 9.21, and
-26 are all numeric constants.

Character or string constants are always delimited with quotation
marks, either single or double. "This is a string", 'so is this', and
"John has 3 apples" are all character constants. A string that contains
either a double or single quotation mark must be delimited with the
other mark. For example, "John's apple" is a valid string. 'John's
apple' is not a valid string. You will normally be passing constants
from the Visual Basic environment to vxBase. In this case, the normal
procedure would be to delimit the entire expression in double quotes
and any string constants that form part of the expression in single
quotes.

Logical constants are represented by .TRUE. or .FALSE.. Note the
leading and trailing periods. .T. and .F. are valid abbreviations for
the logical constants and the letters must be bounded by periods on
both sides.

Operators
Operators are signs used to manipulate fields, constants, and the

results of functions. A plus sign (+) is used as an Add Operator in the
expression 4+5. Two numeric constants are added together to return the
numeric value 9.

Operators are type specific. For example, arithmetic operators must
act on numeric types. The Divide Operator (/) only acts on numeric
types. Some operators perform double duty. The Plus and Minus signs are
both arithmetic and string operators. vxBase determines the appropriate
operation according to the type of data being acted upon. The data
types on either side of a relational operator must be the same (i.e.,
strings must be compared to strings and numbers must be compared to
numbers). Functions which change the data type may be used to convert
operands for use in relational expressions.

The only mixed operands allowed are involved in Date Arithmetic. A
numeric constant, field, or expression may be added to or subtracted
from a date type. Dates subtracted from dates yield a numeric type
(i.e., the number of days between two dates).

Numeric Operators
+ Addition
- Subtraction
* Multiplication

vxBase Page 26

/ Division (divide by zero returns zero instead of crashing)
^ or ** Exponentiation
() Groups sets of numbers (evaluation order)

Relational Operators
= Equal to
Not equal to
<> Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
$ Is contained in the set or is a subset of

All relational operators return a Logical result. All operators
except the Contains($) operator work on numeric, character, or date
values. The $ operator works on two values of type character and
returns true if the first value is contained in the second (e.g.,
"DC"$"ABDC" returns .TRUE.).

Logical Operators
.AND. both expressions are true
.OR. either expression is true
.NOT. either expression is false

Note the leading and trailing periods that delimit a logical
operator.

Character (String) Operators
+ Concatenates (joins) two or more character expressions. Trailing
blank spaces in the expressions will be placed at the end of each
expression.

- Concatenates two or more expressions. Trailing blank spaces will be
removed from the expression preceding the operator and placed at the
end of the expression following the minus sign operator.

Operator Precedence
When more than one type of operator appears in an expression, the

order of evaluation is as follows:
string
numeric
relational
logical

Expressions containing more than one operator are evaluated from
left to right. Parentheses can be used to change the precedence level
of operators (see example below). If parentheses are nested, the
innermost set is evaluated first.

Numeric operators are evaluated as follows:
operators contained in parentheses
exponentiation
multiplication and division
addition and subtraction

vxBase Page 27

Evaluation order may be altered with parentheses:
1+2*3+4 = 11
(1+2)*3+4 = 13
(1+2)*(3+4) = 21

Functions
Functions may be used as expressions or parts of expressions.

Functions always return a value.

One of the most common uses of functions is to convert one data type
into another. Functions can also extract system and database-specific
information.

Functions are formatted as FunctionName(Parameters). The number and
type of parameters contained within the function parentheses depend on
the specific function being called.

The following functions are available. For more information, see
the specific commands following the table.

vxBase Page 28

Function Returns
CTOD(Char_Value) Character to date
DATE() System date
DAY(Date_Value) Numeric day
DELETED() .TRUE. if deleted
DESCEND() Create descending index
DTOC(Date_Value) Date to character
DTOS(Date_Value) Date to string
IIF(Logical, True Result, False Result) Logical if
LEFT(Char_Value, Length) Leftmost n characters
LEN(Char_Value) Return the length of the char expr
MONTH(Date_Value) Numeric month
RECNO() Record number
RIGHT(Char_Value, Length) Rightmost n characters
SOUNDEX(Char_Value) String to phonetic complement
SPACE(n) Generate a string consisting of n spaces
STR(Number, Len, Dec) Numeric value to string
SUBSTR(Char_Value, Start, Length) Substring
TIME() System time as string
TRIM(Char_Value) Trim trailing spaces from string
UPPER(Char_Value) Convert to uppercase
VAL(Char_Value) Character to numeric value
YEAR(Date_Value) Numeric Year

CTOD(Char_Value)
Character to date function.
Converts a character value in the form "MM/DD/YY" into a date value.

If vxSetDate has been used to set a different date format,
that format MUST be used instead of the default "MM/DD/YY".

Example: CTOD("07/22/91") returns a date in the form CCYYMMDD
19910722. A blank date defaults to January 1, 1980.

DATE()
System date function.
Returns the system date as a date value.
Example: DTOC(DATE()) returns "07/22/91" If the date is July 22,

1991 and the default date format is used (VX_AMERICAN). If
another international format is selected with vxSetDate then
that format will be used.

DAY(Date_Value)
Numeric day function.
Returns the day in a date_value as a number.
Example: DAY(DATE()) returns 22 if the date is July 22, 1991

DELETED()
Logical delete function.
Returns .TRUE. if the current record has been flagged for deletion.
Example: IIF(DELETED(), "Deleted", "Not Deleted")

DESCEND()
Create descending index.
An entire index expression or an element of a complex index

expression may be encapsulated within a DESCEND function to
reverse the normal ascending sequence.

Example: UPPER(cust_name) + DESCEND(DTOS(order_day)) could be used

vxBase Page 29

with vxCreateNtx to create an index that displayed records in
ascending customer name order and descending order date
(i.e., the latest dates first instead of the oldest).

vxBase Page 30

DTOC(Date_Value)
Date to character function.
Converts a date value into a character string in the format

"MM/DD/YY" or into whatever format has been selected with
vxSetDate.

Example: DTOC(DATE()) returns "07/22/91" if the date is July 22,
1991

DTOS(Date_Value)
Date to string function.
Converts a date value into a character string in the format

"CCYYMMDD". Should always be used in index expressions if a
date field is part of the index key expression.

Example: DTOS(DATE()) returns "19910722" if the date is July 22,
1991

IIF(Logical_Value, True_Result, False_Result)
Logical if function.
If Logical_Value is evaluated as .TRUE., then the expression

represented by True_Result is returned; otherwise, the
expression represented by False_Result is returned.

 True_Result and False_Result must be of the same type.
Example 1: IIF(YEAR(DATE()) < 1992, "Last Year", "This Year")
Example 2: IIF(amt_owing>0, amt_owing, 0)

LEFT(Char_Value, Length)
Leftmost characters function.
Returns the characters on the left side of the string for the

specified length.
Example: IIF(LEFT(NAME,1)<>"A", "Does not begin with A", "begins

with A")

LEN(Char_Value)
Get the length of a character expression.
The length of a blank character expression that has been TRIMmed

will be zero.
Example: IIF(LEN(TRIM(company))>0, company, name)

MONTH(Date_Value)
Numeric month function.
Returns the month in a date_value as a number.
Example: MONTH(DATE()) returns 7 if the date is July 22, 1991

RECNO()
Record number function.
Returns the physical record number of the current record. The

record's logical position according to the current index is
probably not the same as this number. The record number
normally reflects the sequence in which the record was
entered.

Example: STR(RECNO(),6,0)

RIGHT(Char_Value, Length)
Rightmost characters function.
Returns the characters on the right side of the string for the

specified length.

vxBase Page 31

Example: RIGHT("ABCDEF", 3) returns "DEF"

vxBase Page 32

SOUNDEX(Char_Value)
Character string to phonetic complement function. Useful for

indexing and searching.
Returns a character string in the form AA111.
Used primarily for indexes on names and descriptions to conserve

index file space and simplify lookups where the precise
spelling of an item (other than the first two characters) is
unknown. Always results in a table display that approximates
alphabetical order.

Note: The vxBase Soundex function is NOT the same as the Clipper
function of the same name. The vxBase function preserves the
first TWO characters before translating the remainder of the
field into a numeric phonetic complement.

This algorithm results in table displays that more closely
approximate alphabetical order than the traditional soundex
algorithm which only preserves the first character of the
field.

Example: SOUNDEX(cust_name) returns a 5 character string

SPACE(n)
Generate a string consisting of n spaces.
Would be generally used iin conjunction with the TRIM() function

to create fixed length strings for use in vxBrowse and
index expressions. See vxTableField for a practical example.

Example:
SUBSTR((TRIM(lastname)+", "+TRIM(firstname)+ SPACE(40)),1,40)

STR(Number, Len, Dec)
Numeric to string function.
Converts a number to a string representation of that number. Len is

the number of characters in the new string, and Dec is the
number of decimals.

Note: If you wish to use a numeric field as an element in an index
expression, always use the STR() function to convert the
number into a string.

Example: STR(CURRENT+PAST_DUE,9,2) would result in "123456.78" if
the sum of the fields CURRENT and PAST_DUE was equal to the
number 123,456.78.

Note: If the resulting number is too large for the allotted space,
the string is filled with asterisks.

SUBSTR(Char_Value, Start, Length)
Substring function.
Returns a substring of the string represented by Char_Value.
Example: SUBSTR("abcdef,4,3") returns "def" (i.e., extract a

substring from "abcdef" beginning with the fourth character
for a length of 3)

TIME()
Time of day function.
Returns the system time as a character string in the form HH:MM:SS.
Example 1: TIME() returns 12:00:00 at noon
Example 2: TIME() returns 13:45:00 at one forty-five p.m.

TRIM(Char_Value)

vxBase Page 33

Trim trailing (rightmost) spaces from a character field.
May be used to logically concatenate fields in a browse column or in

an index expression AS LONG AS the length of the resultant
expression is FIXED.

Example: See vxTableField for correct usage.

vxBase Page 34

UPPER(Char_Value)
Convert string to uppercase.
Only alphabetic characters are affected.
Should ALWAYS be used in index expressions to ensure correct

collating sequence for character strings without regard to
data entry formats.

Example: UPPER("abCD123g") returns "ABCD123G"

VAL(Char_Value)
String to numeric conversion.
Evaluation is terminated when a second decimal point, the first non-

numeric character, or the end of the string is reached.
Example 1: VAL("23") returns 23
Example 2: VAL("12A12") returns 12
Example 3: VAL("-76.5") returns -76.5
Example 4: VAL(" 12.12") returns 12.12
Example 5: VAL("12. 12") returns 12.00
Example 6: VAL("A12") returns 0

YEAR(Date_Value)
Numeric year function.
Returns the year in a date_value as a number.
Example: YEAR(DATE()) returns 1991 if the date is July 22, 1991

vxBase Page 35

Sample Application
Run vxload and then Visual Basic. Load project vxbtest from the

\VB\VXBTEST directory.

The sample application forms are designed for VGA/SVGA monitors
using vxBase control drawing functions to give them a metallic, three-
dimensional appearance. If you are running vxBase on a machine that
does not have VGA capabilities, the appearance of the forms will not
impress. Text on a gray background on an EGA monitor uses a different
fill gray than the standard light gray that appears on a VGA screen,
and the controls will all have a standard black border around them
instead of a recessed or raised appearance.

The sample application included with vxBase is intended to be used
as a template for the developer in designing his own applications.

The source code is liberally sprinkled with comments. In some cases,
more error checking would be required in a real application to provide
a more stable product for the end user. Source code comments point out
a number of these areas.

Almost all vxBase functions return a TRUE or FALSE value depending
on the outcome of the operation. It is up to the individual programmer
to decide just how much error trapping he would like to include. Some
functions would fail only rarely (and only in the case of severely
corrupted data). Such is the case with vxSkip(), for example, in a
single user environment. In a multiuser environment, vxSkip() could be
counted on to fail regularly when an attempt is made to access a record
that another user has locked. In this case, vxBase will tell the end
user that the record is locked and give him the opportunity to retry
the operation or abort. What if he aborts? Now it is up to the
programmer to decide on a strategy to take care of this eventuality.

The sample application is intended to illustrate the use of the
vxBrowse function in controlling the logical flow of an application. It
is used everywhere as a primary entry point for file editing and also
as a help mechanism when the user is required to select a value from
another file as input to a relational field.

Study the examples that set up visual relationships in a browse
table that are accessed through the LINK menu in the sample
application. This is a very powerful and unique function in the xBase
world.

To institute a file editing application, use the VXFORM2 module as
your first guide. This is a simple file consisting of two character
fields that illustrates most of the techniques you will use to build
your own applications. More advanced techniques can be found in other
modules.

The Problem
Our client is an aircraft brokerage firm who deals in used single

engine aircraft. He does not maintain an inventory of airplanes.
Rather, he solicits business from potential sellers, who usually are
interested in selling their existing airplane and buying something else
more upscale (or downscale depending on their current financial

vxBase Page 36

status). If he can find a buyer for the airplane, he receives a
commission on the sale. The whole business is rather like real estate.

His problem is keeping track of what he has available for sale and
remembering who was interested in it last month. In this sample
application we are going to solve his problem.

First of all we build a sign-on screen. This is VXFORM0. The main
controlling form will be VXFORM1. On it we will place all of the menu
items we need to complete the application.

Note that this sample application doesn't do any printing. I'll
leave that to you.

The Airtypes.Dbf File
The first thing we need is some way of categorizing the airplanes.

We build a database of aircraft makes and models and assign simple
three character codes to each type that we deal in. This file is
critical to the whole operation. A buyer is interested in this or that
category. Seller "A" is selling that category, and seller "B" is
selling this category, so we can easily match them up.

Module VXFORM2 is used to maintain the airtypes file. Its file
layout is as follows:

Field Name Type Length Decimals
---------- ---- ------ --------
category C 3 0 user defined code
catname C 35 0 make and model

This file is indexed on the CATEGORY field to file AIRTYPES.NTX.

Module VXFORM2 (Menu item File Types) does all the work of
maintaining this file. This is an excellent place to start your
investigation of vxBase because its as simple as it gets.

The Aircust.Dbf File
The next thing we need is some way to keep track of the names of our

buyers and sellers. Instead of having two files (one for buyers and one
for sellers), we can get away with just one. On the customer record we
have logical fields telling us if the customer is a buyer and/or a
seller.

Field Name Type Length Decimals
---------- ---- ------ --------
a_code C 6 0 user defined code
a_name C 40 0 his name
a_company C 40 0 and company
a_address C 40 0 street address
a_city C 25 0 city
a_state C 2 0 state/prov abbreviation
a_zip C 10 0 postal code
a_phoneres C 13 0 residence phone
a_phonebus C 13 0 business phone
a_fax C 13 0 fax
a_buyer L 1 0 buyer?

vxBase Page 37

a_seller L 1 0 seller?
a_cdate D 8 0 record creation date
a_rdate D 8 0 record revision date
a_memo M 10 0 memo reference

The file is indexed three ways:
(1) on a_code to aircust1.ntx
(2) on upper(a_name) to aircust2.ntx
(3) on a_state + a_code to aircust3.ntx

There is a supporting file for the state/provincial abbreviation
(I'm Canadian so you'll have to put up with the province bit and
probably some strange spelling). It simply contains the valid postal
abbreviation for the state or province and the state/provincial name.
We use it to validate data entry and also to provide a vxBrowse help
example when the user is entering data in the a_state field. The file
is airstate.dbf

Field Name Type Length Decimals
---------- ---- ------ --------
statecode C 2 0 postal abbreviation
statename C 20 0 name

This file is indexed on statecode to airstat1.ntx and on
upper(statename) to airstat2.ntx. It was built with DataWorks, my xBase
File Manager for Windows (which you've just got to have if you plan to
do any serious development with vxBase: they go hand in glove).

Form VXFORM3 maintains the customer file. The customer file is
accessed through the menu item File Customers.

The Airbuyer.Dbf File
If the user flags the customer record as a buyer, we enable the

Buyer Records button on the form. If it is clicked, we can peruse
and/or edit the buyer records attached to this customer. A buyer can be
interested in more than one type of aircraft, and he may be willing to
spend differing amounts on different types. We're setting up a many to
one relationship with the customer record on the one hand and the
Airtypes file on the other.

Field Name Type Length Decimals
---------- ---- ------ --------
b_code C 6 0 customer code
b_cat C 3 0 aircraft category
b_desc C 35 0 make and model
b_low N 8 0 low price range
b_high N 8 0 high price range

The file is indexed on b_code + b_cat to airbuy1.ntx, and b_cat +
b_code to airbuy2.ntx. We will use both sequences in our different
joins when we try to match buyers to sellers or sellers to buyers.

The Aircraft.Dbf File
If the user flags the customer record as a seller, we enable the

Aircraft Button on the customer form. Only one aircraft record is
allowed to a customer. Clicking the Aircraft button on the customer

vxBase Page 38

form takes us directly to an aircraft description form (VXFORM5). This
form is duplicated as VXFORM6 with different buttons for use with the
Aircraft display module accessed by the File Aircraft menu item.

Field Name Type Length Decimals
---------- ---- ------ --------
c_code C 6 0 customer code
c_nno C 6 0 aircraft identifier
c_cat C 3 0 aircraft type
c_desc C 35 0 make and model
c_price C 8 0 asking price
c_year C 2 0 model year
c_annual C 4 0 year-month annual due
c_ttsn N 6 0 total time since new
c_smoh N 4 0 time since major o/haul
c_spoh N 4 0 time since prop overhaul
c_stoh N 4 0 time since top overhaul
c_gwt N 5 0 gross weight
c_ewt N 5 0 empty weight
c_fuelcap N 4 0 fuel capacity
c_net N 8 0 net to broker

vxBase Page 39

c_navcom1 L 1 0 1st of 16 avionics flds
 ... which answer the
 ... question "Is this
 ... equipment installed?"
c_deice L 1 0 last avionics field
c_memo M 10 0 memo about the aircraft

The file is indexed on c_code + c_nno to aircraf1.ntx and c_cat +
c_code to aircraf2.ntx.

The Forms
VXFORM0 is the startup form.
VXFORM1 is the menu form and system controller.
VXFORM2 is the Airtypes record editing form.
VXFORM3 is the Aircust record editing form.
VXFORM4 is the Airbuyer record editing form.
VXFORM5 is the Aircraft record editing form.
VXFORM6 is the Aircraft detail display form.
VXFORM7 is a sample form that shows you how to extract xBase field and
file details using vxBase commands.
VXFORM8 is an example of using the vxRecord function to extract the
contents of an xBase record.
VXFORM9 shows how to use vxCtlFormat to control data entry and data
verification in Visual Basic text boxes.
VYFORM0 is an example of using database alias names and vxSetRelations.
VYFORM1 shows you how to use printer enumeration and printer selection
functions.

The Link Menu
These two functions show off the power of vxBrowse and visual joins

to best advantage. Bring up the Buyers to Sellers item and hit the Join
menu item. Its magic! With an absolute minimum of effort we can link
potential buyers to sellers and vice versa.

Running the Sample Application
The name of the project is vxbtest.mak. It should reside in the

\vb\vxbtest directory you were asked to set up when you installed
vxBase. Remember to run vxload.exe before starting Visual Basic. Open
the vxbtest project and run, or make an .EXE and run it.

vxBase Page 40

Tips and Techniques

Entry and Exit Strategies
Please study the methods of form loading/unloading and exit

procedures in the sample application and emulate these methods in your
own application. Remember that in a Windows environment we can shut
down a running application from a number of areas - your own Exit menu
item, the application's system menu, or even shut down Windows entirely
while your application is running. It is imperative that xBase files
that have undergone changes are closed properly to ensure no loss of
data, header information, or index corruption. Always include a vxInit
call as the first statement in your vxBase application. Always include
a vxDeallocate call as the last statement before terminating your
Visual Basic application. This call ensures that memory allocated by
vxBase is released when in design mode and that it is safe to unload
the application when running as an .EXE.

The sample application allows the form with the system menu on it to
remain visible. We use global flags that are set when a form is loaded
and reset when it is unloaded to test whether there are any active
forms running when an exit is taken from this top level window.

Access to Form Menus
vxBase requires parent windows to draw upon. If your Visual Basic

parent form contains menus, remember that the menu items will be
available to the user when a vxBrowse table is being shown and program
accordingly. For example, it would be foolhardy to pack a file that was
already open and unlocked and being displayed in a browse table. The
application WILL crash when the user attempts to access the browse
table again. See the sample code in vxPack for a method of checking the
open status of files before performing critical operations on them. You
can also disable menu items temporarily before beginning the browse.
Almost every sub-function in the sample application disables one or
more menu items.

Data Entry
xBase programmers have become accustomed to a get system that

effectively defines what data is entered, how it looks, and how long it
is. vxBase provides a somewhat similar facility thorugh the vxCtlFormat
funcion.

The sample application has many examples of manual data validation
as an alternate method. The sample uses these methods attached to each
edit control to achieve some logical flow for you as the programmer to
use as a guide without getting lost in a maze of global subroutines.

Most of the methods would be better served as global functions. Over
time, you should be able to build your own library of data validation
routines to make life simpler for your next application.

Particularly examine the GotFocus and KeyPress events attached to
the various edit controls in the sample application. I think you'll get
some good ideas there for limiting data entry length, case conversion,
and numeric validation.

Logical fields have been much ignored among xBase programmers but I

vxBase Page 41

think they'll make a comeback considering how effective they are in
controlling Windows' check boxes and radio buttons.

Release 1.07c: See the new vxCtlFormat Function to control data
entry and validation.

vxBase Page 42

Parents for vxBase Windows
Windows created with vxBase functions (vxBrowse and vxMemoEdit)

absolutely require an active Visual Basic form to act as parent. Their
default sizes are calculated based upon the size of the active window.

Data Paths
The sample application has data paths for the files hard coded into

each vxUse. You would be well advised to set up a system that solicited
a path that you could save and prepend to each file name for each
command that requires it. vxBase acts like other xBase systems in that
it does not find data files that are simply in the system path. You
have to tell vxBase where the files are.

Controlling Multiple Windows
vxBase maintains an internal task-window manager that registers

database select areas with windows if certain rules are followed.
Always include a vxSelectDbf (or vxUseDbf) statement accessing the
first database you will be working on in any form as the first
statement in the Form_Load procedure and as the first statement in the
Form_Paint procedure (see Multitasking issues discussed below). The
Form_Load select registers the database as the default for the
application; the Form_Paint select registers the database with the
window.

If you are going to leave a window visible that contains access to
menu items (as in the sample application), carefully disable menu items
that could adversely affect the data currently displayed on the form.
For example, if you had a record editing form visible for FileX, you
would not want the user to select a pack or reindex item from a
background menu that could compromise the status of the current file
(especially if the pack or reindex function closes the file when it
terminates).

You should also always disable the menu item that brought you to the
current form. In any single instance, any given database is opened only
once, no matter how many vxUseDbf commands you issue for it. If the
user wants two forms up editing or displaying records in the same file,
he can run a second instance of your program. The second instance gets
its own select area. Always remember that you don't know what the user
is liable to do, so disable those functions that could compromise your
current position.

Browse Windows
vxBrowse windows contain their own message loops. Conflicts could

arise when running a vxBase application in Design Mode. For example,
when a browse window is displayed in VB Design Mode, it is possible to
click on the VB Menu Window and select RUN again (because vxBrowse is
not dependent on the VB controlled message loop). If you do this, the
system will hang.

Dataworks
Dataworks is a dictionary based xBase file management system for

Windows that allows you to interactively create dbf/ntx files, import
your own files, display, join, modify xBase structures, and so on. It
is an excellent visual additive tool for the vxBase programmer - much
like the dBase dot prompt was to a whole generation of xBase

vxBase Page 43

programmers. It was written by the same author as vxBase and is
available for the same price (and probably in the same library if you
obtained vxBase from a bulletin board - the name of the file is
dworks.zip. See the form at the back of this manual for ordering
information.

vxBase Page 44

MultiTasking and Multiuser Considerations

MultiTasking
vxBase supports multitasking. You can run a number of applications

using vxBase all at the same time. You can run multiple instances of
the same program. You can have multiple windows visible each accessing
a different database (in the same instance of the program) or the same
databases (in multiple instances of the same program or other
programs). As a programmer, you don't know what the user is liable to
do. He can easily compromise a database by injudicious use of the
Windows multitasking environment. You can make every effort to disable
menu items that could harm the current window data, but these efforts
could be circumvented by a user playing with multiple instances of your
program. You may wish to limit Windows by only allowing one instance of
your program. You can do this by implementing a window test scheme in
the form load procedure of the first form in your application.

If you don't wish to place artificial limits on the user, you may
wish to create separate file maintenance programs for packing and
reindexing files that won't run if your main application is running.
This is probably your best course of action.

The first call to vxBase from your application must be to vxInit and
the last statement in the application must be a call to vxDeallocate.
vxInit registers the task with a multitask list maintained by the DLL.
If the task registered is the first to load vxBase, it controls the
database memory that will be shared by all other vxBase tasks running
at the same time. This task must be unloaded last. If it unloaded prior
to other concurrently running vxBase tasks, all the database memory
goes with it - and the other vxBase tasks crash with an Unrecoverable
Application Error or General Protection Fault as soon as their windows
get the focus. We ensure that it is unloaded last by calling
vxDeallocate when we are making an exit. If it is the controlling task,
and there are other tasks using vxBase that were loaded after it, the
user is informed via an error message box that a task closure sequence
error has occurred. It is up to the programmer to test the result of
vxDeallocate to determine whether we can safely unload the task. See
the writeups in the function section of this manual for vxInit and
vxDeallocate for examples of correct procedures.

If running your program in Visual Basic Design Mode, see the section
entitled "Visual Basic and VXLOAD.EXE".

To implement a vxBase application in a multitasking environment,
vxBase places minimal restrictions on the programmer other than the
vXinit and vxDeallocate calls described above. The user might have two
or more windows open each displaying different data and he may move
back and forth between them at will. In a normal xBase application,
there may be only one active database select area. In a Windows
environment, however, we may have three or four or five active windows
with different databases represented in each, representing the same
program or different programs (a task). Every time the user moves from
one open window to another, as a programmer in the old xBase tradition,
you would have to ensure the proper database was selected. vxBase
removes this onus by maintaining a task-window-select area table that
automatically selects the correct database when the window controlling

vxBase Page 45

that database receives the input focus. vxBase also maintains a default
select area for the task that it uses to register databases with
windows if no database has been selected for that window. As a
programmer, you are required to insert three vxBase calls into every
separate form procedure that accesses a database:

(1) vxSelectDbf() or vxUseDbf() the first database accessed by the
form as the first line in the Form_Load procedure. This registers the
database as the default database for the task.

(2) vxSelectDbf() the first database accessed by the form as the
first line in the Form_Paint procedure. This registers the database
with the window associated with the current task.

(3) issue the vxWindowDereg command in your form unload procedure to
remove the task-window-select entry from the vxBase task management
table. This table is limited to 96 entries and could overflow if you
fail to deregister the windows. Issue the vxWindowDereg command after
closing any databases you wish to close in the Form_Unload procedure.

vxSelectDbf or vxUseDbf register databases with windows. These are
the only two vxBase functions that register databases with windows.

vxBase field functions should also have field names qualified with
an alias (see vxSetAlias). The alias names ensure proper database
selection in all circumstances.

If printing a report from a database, always reselect that database
after the Printer.EndDoc has been issued because the database becomes
attached to the print task if any vxBase functions are called from
within the body of the print routine.

While testing, if you get an "Invalid field name" error message from
vxBase, and you know the field exists in the database (i.e., the name
is correctly spelled), in all likelihood the wrong database is active
because of vxBase's automatic selection. To correct the problem, simply
insert a vxSelectDbf statement for the database you want in front of
the statement that conatins the field reference or set up an alias name
for the database with vxSetAlias. Some things go on in the background
that you are hardly aware of (e.g., Form painting), and if you have the
required select statement in the Form_Paint procedure then a reference
to a field in another database may be invalid if a Form Paint has taken
place since you last accessed the file you thought was still active.
See the code examples in the sample application for the Help buttons
(e.g., CustStateHelp in VXFORM3) for a perfect instance of the above.
Disabling and then re-enabling a background form for a help browse
causes a Form_Paint message to be issued, which selects a different
database than the one we just used, so we have to re-select the
database to access its fields.

If the database has been registered with a window, any call to a
vxBase function that accesses a database will result in a search in the
task management table for the window id of the window that currently
owns the input focus. If found, the database is automatically selected.
If no entry is found, the database selected will be the task default.
The user may then have multiple forms open and switch between them at
will. It doesn't matter to you as the programmer which window is
selected or where the program instruction pointer is residing when the

vxBase Page 46

user switches to another window. The correct database is automatically
selected if the simple rules outlined above are followed.

Windows allows up to 20 file handles per task (15 useful handles).
Use the vxSetHandles function to increase the number of file handles
available to a task if you will have more than 15 files open
simultaneously. Only one select area is assigned to a database in any
given task. The select area contains critical information about the
state of the database (e.g., current record number, filter, table
definition, etc.). Opening the file in the same task again will change
this information for the subtask that opened the file in the first
place. Bear this in mind and disable access to functions that could
change the state of the database when you don't want it changed. Use
the sample application as a guide.

The same database may be opened in different tasks (multiple
instances of the same program are different tasks as well) and each
different task gets its own select area for the database. Changes made
to records by one task are reflected in the other task as soon as the
records come into view. Records currently in view, such as in a browse
table, won't reflect the changes until the view window has been
repainted. Because each task has its own select area, changes to record
positions, tables, etc. in one task do not affect the state of the
database in the other task (or tasks).

MultiUser
On a local area network, many workstations can run the same Visual

Basic program using vxBase at the same time, all accessing the same
files on a network drive. Obviously, there are no internal conflicts
between the allocated memory buffers residing on the individual
workstations. There may, however, be file and record conflicts when
more than one user attempts to access the same record (or file) as
another user.

Always install vxbase.dll on each workstation local drive rather
than on the server drive.

If vxBase applications are going to run concurrently with other
xBase applications (e.g., those written in Clipper), always use
vxWriteHdr after appending a record in vxBase to ensure that the other
applications are kept informed of the state of the database.

Traditional (i.e., Clipper style) record and file locking is
provided by vxBase by using the vxSetLocks(FALSE) function. vxBase file
and record locking is perfectly compatible with Clipper. Clipper
recognizes vxBase locks and vice versa.

If you use the default vxSetLocks setting (which is TRUE), it is not
necessary for the user or the programmer to be concerned with explicit
file and/or record locking, although these functions are provided as
part of the vxBase command set. Commands that obviously require a file
lock (such as vxPack or vxReindex) are automatically locked by vxBase
during the processing of the command. Records that occupy any given
workstation buffer are also automatically locked if vxSetLocks() is
TRUE, as opposed to Clipper (or vxSetLocks(FALSE)) which allows
simultaneous access to the same record and therefore also allows

vxBase Page 47

simultaneous updating of the record while it resides in each
workstation's record buffer. In this case, the last update always wins
and the user who wrote the record out first loses his changes.

In a multiuser environment, it is usually necessary to provide a
network signature flag on any record that could be affected by
simultaneous updates. The signature is simply a number that is
incremented each time the record is updated. When a user reads in the
record for updating, he saves the contents of the signature field and
he moves the contents of every other field in the record to working
storage. When the update on the working storage variables is finished,
it is necessary to re-read the record and check to see that the
signature field has not changed since he first read the record. If it
is the same, he locks the record, replaces required fields with his
changed data, increments the signature field, and then unlocks the
record. If the signature field had changed since he first read the
record, it would be necessary to re-do the update because the other
user could have changed sensitive data.

With vxSetLocks(TRUE), any record currently occupying a workstation
buffer automatically locks out other users from accessing that record.
The programmer must be aware of this fact when designing a system for
multiuse. A signature system such as the one described above could
easily be implemented as follows:

 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxField("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

The only real difference between a Clipper implementation
(vxSetLocks(FALSE)) and the vxBase default lock procedure
(vxSetLocks(TRUE)) is that with the TRUE locks you must explicitly

vxBase Page 48

unlock the record instead of locking it. If you fail to do so, other
users even attempting to browse in the same area of the file will have
to wait until the user who has the locked record finishes his update.

The sample code attached to VXFORM2 contains complete protocols for
unlocking the database in a multiuser environment when the default
locking mechanism is used. Signature fields are not used, however, for
simplicity's sake. Bear in mind that for a robust multiuser system they
should be attached to all master files that could be affected by
simultaneous updates.

Note that records displayed via a vxBrowse table are not locked.
Only when a selection has been made from a vxBrowse table does a locked
record occupy the workstation buffer space if vxSetLocks is TRUE.

Files may be accessed in Read Only mode. If network server files are
marked with the read only attribute for a specific user, vxUseDbf will
fail. You must use vxUseDbfRO to open files for reading only. Note that
files opened with vxUseDbfRO are not required to have the read only
attribute. vxBase will simply not perform any function that produces a
file write on the database or any of its related files (i.e., index and
memo files).

Share
If attempts at running vxBase applications on a LAN fail with

file/record locking errors, or if they fail on a single workstation
when vxSetHandles is used, ensure that SHARE.EXE is loaded by each
workstation that will be running vxBase.

vxBase Page 49

vxAppendBlank

Declaration
Declare Function vxAppendBlank Lib "vxbase.dll" () As Integer

Purpose
Append a blank record to the physical end of the database file in

preparation for using the vxReplx functions to replace the fields with
your data.

Parameters
None.

Returns
TRUE if record successfully appended.
FALSE if not successfully appended. Always FALSE if the file was

opened as Read Only with vxUseDbfRO.

Usage
Always append a blank record to receive fields for a new record that

is being inserted into the database. If you forget to do this, the
current record will be changed instead.

Always close the database before exiting your application. Use
vxCloseAll in your exit routine to ensure that all records are flushed
to disk and the xBase header is updated correctly.

Multiuser Considerations
All active index files associated with the selected database are

locked until the record is written. The record is written either by
performing an explicit vxWrite command or implicitly by performing some
other action on the file such as vxClose, vxSkip, or vxGo.

Example
If AddMode Then
 If Not vxAppendBlank() Then

 MsgBox "Append Error"
 Else

 vxReplString("Field1","New Field")
 End If
End If

See Also
vxWrite
vxReplxxx

vxBase Page 50

vxAppendFrom

Declaration
Declare Function vxAppendFrom Lib "vxbase.dll" (ByVal FromFile As

String) As Integer

Purpose
Append all of the records from the named database onto the currently

selected database.

Parameters
FromFile is either a string variable that contains the name of the

file that will be appended from (including an optional path
specification) or a literal string. If no file extension is supplied,
vxAppendFrom defaults to ".dbf". This file does not have to be open for
the operation to succeed. If it is open, it will be closed when the
function returns to your program.

Returns
TRUE if the operation was successful or FALSE if it was not. Always

FALSE if the target file was opened as Read Only with vxUseDbfRO.

Usage
Useful for processing transactions in a batch and then, after

verification, appending the transactions to a master file. For example,
in a general ledger application, it would be commonplace to collect
transactions in a batch. The user could enter and edit transactions at
will in one or more sessions. When the user decides to post the
transactions, they would then be applied to the general ledger, added
to the master transaction file with the vxAppendFrom function, and then
the records in the batch file would be deleted to protect the integrity
of the audit trail. In this case, the structure of the transaction
batch file would probably be the same as the structure of the master
file.

This function would also be used when transferring fields from one
file to fields that have the same name and type in another file. Any
fields in the From file that match in name and type to fields in the
current database are appended record by record to the current
selection. Truncation in the receiving file occurs on the right for
character fields and on the left for numeric fields if the lengths of
the fields differ. If the field is numeric and the number of decimals
differs, truncation occurs on the right if the number of decimals in
the receiving field is less than the sending field.

Files that duplicate current structures may also be dynamically
created at run time with the vxCopyStruc function, used as batch files,
appended to master files, and then deleted.

Note that filters on either the FromFile (if it happens to be open)
or on the currently selected database have no effect. All records,
including deleted records, in the FromFile are appended.

Warning: If the sending and receiving files have memo fields with
the same name, the receiving file will get the memo reference but no
memo will be transferred.

vxBase Page 51

Multiuser Considerations
Both databases are locked for the duration of the operation. When

the function completes, the current selection is the same as on entry,
and the record pointer is pointing to the top record in the file, which
is locked if vxSetLocks is TRUE.

vxBase Page 52

Example
 ' open transaction batch file
 ' ---------------------------
 TransDbf% = vxUseDbf("Transbat.dbf")
 TransNtx% = vxUseNtx("Transbat.ntx")
 j% = vxDbfSelect(Transdbf%)

 ' call transactions editing procedure
 ' -----------------------------------
 CollectTrans

 ' if posting now, append transactions to
 ' master file after they have been posted
 ' and then clear the batch file in preparation
 ' for the next editing session
 ' ---
 j% = MsgBox("Post Now?", 52)
 If j% = 6 Then
 PostTrans
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom("Transbat.dbf")
 j% = vxClose() ' close master file

 ' reopen transaction batch because the From
 ' file is closed by vxAppendFrom
 ' --
 TransDbf% = vxUseDbf("Transbat.dbf")
 TransNtx% = vxUseNtx("Transbat.ntx")
 j% = vxDbfSelect(TransDbf%)
 j% = vxZap() ' clear the batch
 End If
 j% = vxClose() ' close the batch

See Also

vxCopy
vxCopyStruc

vxBase Page 53

vxAreaDbf

Declaration
Declare Function vxAreaDbf Lib "vxbase.dll" (ByVal DbfName As

String) As Integer

Purpose
Extracts the select area assigned by vxBase to the named database

file when it was opened with vxUseDbf. The select area is an integer
greater than zero.

Many vxBase functions take a select area as a parameter when
identifying a dbf and its related ntx files instead of using the file
name.

This function would be used primarily to test the open status of
a .dbf. Under normal conditions, the select area integer is assigned to
a global variable when the file is opened with vxUseDbf.

Parameters
DbfName is either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxAreaDbf defaults to ".dbf".

Returns
An integer identifying the select area of the named file that was

assigned by vxBase when the file was opened with vxUseDbf. A number > 0
identifies an open file. If the file is not open, FALSE is returned.
Note that you cannot test the return value with a NOT expression
because a number greater than zero is NOT TRUE (but neither is it
FALSE) according to Visual Basic. Store the return value in a variable
and explicitly test it for FALSE.

Usage
Use the returned value as input to any other vxBase function that

may require a number instead of a file name to identify the requested
dbf-ntx set or to check on whether the file is open or not. Use GLOBAL
variable names that uniquely identify each dbf in your application.
"CustomerFile" is a better name than "DbfFile".

This function may be used to test the open status of a file that is
about to undergo a critical operation (such as vxPack or vxReindex). A
FALSE return indicates that no active task (not just the current one)
has the file open.

Note that since this function returns the area selected by any task
that is active, you cannot rely on it to return a value that you can
use in your application.

Example
 ' See if file is open at this workstation
 ' ---------------------------------------
 NamesDbf% = vxAreaDbf("c:\database\names.dbf")
 If NamesDbf% = FALSE Then
 vxUseDbf("c:\database\names.dbf")
 j% = vxPack()

vxBase Page 54

 j% = vxClose()
 Else
 MsgBox "File is open. Function aborted."
 End If

vxBase Page 55

See Also
vxDbfCurrent
vxPack
vxSelectDbf
vxSetHandles
vxUseDbf
vxUseDbfRO

vxBase Page 56

vxAreaNtx

Declaration
Declare Function vxAreaNtx Lib "vxbase.dll" (ByVal NtxName As

String) As Integer

Purpose
Extracts the select area assigned by vxBase to the named index file

when it was opened with vxUseNtx. The select area is an integer greater
than zero.

Many vxBase functions take a select area as a parameter when
identifying an open index instead of using the file name.

This function would be used rarely. Under normal conditions, the
select area integer is assigned to a global variable when the file is
opened with vxUseNtx.

Parameters
NtxName is either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxAreaNtx defaults to ".ntx".

Returns
An integer identifying the select area of the named file that was

assigned by vxBase when the file was opened with vxUseNtx. A number > 0
identifies an open file. If the file is not open, FALSE is returned.
Note that you cannot test the return value with a NOT expression
because a number greater than zero is NOT TRUE (but neither is it
FALSE) according to Visual Basic. Store the return value in a variable
and explicitly test it for FALSE.

Usage
Use the returned value as input to any other vxBase function that

may require a number instead of a file name to identify the requested
ntx or to check on whether the file is open or not. Use GLOBAL variable
names that uniquely identify each ntx in your application. "CustIndex"
is a better name than "NtxFile".

Note that since this function returns the area selected by any task
that is active you cannot rely on it to return a value that you can use
in your application.

Example
NamesNtx% = vxAreaNtx("c:\database\names.ntx")
If NamesNtx% = FALSE Then
 MsgBox "NAMES.NTX is not open"
End If

See Also
vxAreaDbf
vxNtxCurrent
vxSelectNtx
vxSetHandles
vxUseNtx

vxBase Page 57

vxBof

Declaration
Declare Function vxBof Lib "vxbase.dll" () As Integer

Purpose
Test if beginning of file has been reached in the currently selected

database.

Parameters
None.

Returns
TRUE if an attempt was made to skip beyond the first record in the

file. Otherwise FALSE.

Usage
When skipping through a file backwards, always use vxBof to test if

the top of the file has been reached. Once the condition has been
satisified, it remains true until the record pointer is repositioned
with a call to vxGo, vxTop, vxBottom, vxSkip, or vxSeek. It is never
possible to skip to a record prior to the first record in the file. If
vxBof is true, the record buffer will contain the elements of the first
record. (It is possible, however, to skip beyond the end of the file to
an empty record buffer.)

Example
' skip back one record
' -----------------------
Do
 j% = vxSkip(-1)
 If j% = FALSE Then
 MsgBox "Error on Skip Previous. Try Reindex."
 Exit Sub
 End If
 If vxBof() Then Exit Do
Loop Until Not vxDeleted()

' test for beginning of file
' --------------------------
If vxBof() Then
 Beep
 TypeStatus.text = "Beginning of File!"
 j% = vxTop() ' make sure we've got a record
Else
 TypeStatus.text = "Skipped to " + LTrim$(Str$(vxRecNo()))
End If

See Also
vxEof
vxSkip

vxBase Page 58

vxBottom

Declaration
Declare Function vxBottom Lib "vxbase.dll" () As Integer

Purpose
Position record pointer to the last record in the currently selected

file. If an index is active, this is the last logical record in the
file. If no index is in use, it is the last physical record in the
file.

Parameters
None.

Returns
TRUE if the attempt was successful. Otherwise, it is FALSE. A FALSE

condition can occur on an empty database or on a file with a corrupted
index.

Usage
Useful when your program requires a forced end of file condition.

See the example below.

If a filter is active, vxBottom will attempt to find the last record
in the file that satisfies the filter.

Multiuser Considerations
If vxSetlocks(TRUE), then the last record in the file is locked.

Example
 If vxSeek("ABC") Then
 Do While Not vxEof()
 j% = vxSkip(1)
 If vxField("CustCode") <> "ABC" Then
 PrintTotals
 j% = vxBottom() ' Exit Do would work
 j% = vxSkip(1) ' just as well but this is
 Else ' an example
 PrintRecord
 End If
 Loop
 End If
 j% = vxUnlock()

See Also
vxSetLocks
vxTop

vxBase Page 59

vxBrowse

Declaration
Declare Sub vxBrowse Lib "vxbase.dll" (ByVal Hwnd As Integer, ByVal

DbfArea As Integer, ByVal NtxArea As Integer, ByVal EditMode As
Integer, ByVal AllowFilter As Integer, ByVal EditMenu As Integer, ByVal
StartRec As Long, ByVal Caption As String, RetVal As Long)

Purpose
Create and display a table of records using the defined database and

index. This is a very powerful function that eliminates the need for a
grid control or huge arrays to display a data table. Combined with the
vxTable functions and the vxJoin function it gives the programmer an
extremely useful tool with little effort.

For a variation of vxBrowse, see vxCtlBrowse as well. vxBrowse runs
in its own window and must be closed before any user actions performed
on the browse can be evaluated by the programmer. vxCtlBrowse allows
the use of a browse grid within a form control. The user and the
programmer can retrieve information from and direct the actions of the
browse window interactively.

Parameters
Hwnd is the hWnd property of an active window which assumes the role

of parent to the vxBrowse window. There must be an existing form to act
as a reference point for the browse window.

DbfArea is the select area of an already opened database. If it is
not currently selected, vxBrowse will make it the current selection. It
will be the current selection when vxBrowse returns as well.

NtxArea is the select area of an index file attached to the DbfArea.
If you do not wish to browse with an index, pass a 0 (zero) to the
function.

EditMode is passed as TRUE or FALSE. If TRUE, when the user double
clicks on any column in the table, the field attached to that row and
column is presented for update. Note that the only data validation
possible with the onscreen edit is for type (i.e., numeric fields must
contain numbers, etc.). If your data requires more sophisticated
validation, never pass a TRUE to this function. If EditMode is FALSE,
doubleclicking on a record will return the selected record number
(which is the same result as Edit Update or pressing the ENTER key). If
EditMode is TRUE, it would probably be a good idea to add the words
"Edit Enabled" to your browse window caption to alert the user that
onscreen editing is active.

If a vxTableDeclare has been issued to control your browse display,
any column defined as an expression rather than as a field will not be
available for edit (obviously). You can use this fact to your advantage
if you wish to limit onscreen editing to only a few fields. All of the
fields which would have editing disallowed could be defined in the
table as expressions rather than fields (e.g., instead of displaying
field "category", you could define the column to display
"substr(category,1,3)" (assuming the length of field "category" is 3),
which would effectively rule out any editing on that field, or you
could simply tell vxBase that the item is an expression with the

vxBase Page 60

VX_EXPR parameter (see vxTableField for more information).

AllowFilter is passed as TRUE or FALSE. If TRUE, an item on the
vxBrowse menu will allow the user to invoke a dialog box that accepts a
standard xBase expression as a filter string. If the expression passes
the evaluation test (and that test ensures that the expression returns
a logical result), then the filter will be applied to the current
browse table. For example, areacode = '403' would be a valid filter
expression if the file contained a character field named "areacode".
The table would then only contain records whose areacode matched "403".
Note that this filter applies only to the active browse window. It goes
away when the window is closed and will not affect any program logic.
It will, however, override any filter set by vxFilter before the browse
is invoked. When the window is closed, the old vxFilter expression will
once again take effect. If AllowFilter is FALSE, the user is not
allowed to enter a filter when browsing. vxBrowse always filters out
deleted records.

Use filters judiciously. A filter can slow the vxBrowse display in a
large file enormously. See vxFilter for more details.

EditMenu is passed as TRUE or FALSE. If TRUE, an Edit menu item is
presented on the vxBrowse menu bar. The Edit menu contains Update, Add,
and Delete selections. If any of these are selected by the user, a code
is passed back to the program in the RetVal parameter (see below)
informing the program what the user wants to do. These three items are
standard fare in maintaining files. If you are going to use the
vxBrowse table as display only, or as a help window, then EditMenu
would be passed as FALSE. It should also be passed as FALSE if you use
vxMenuDeclare and vxMenuItem to define your own browse menus.

StartRec is a long integer that contains the starting record number
for the browse. If passed as 0 (zero), then the record pointer is
positioned to the first record in the file (either logical or physical
depending on whether an index was specified or not). If you are
interested in a subset of records in the file, it is your
responsibility to position the record pointer to the first one that
meets your criteria before beginning the browse. See the sample code
attached to VXFORM3 (Proc BuyRecs_Click) for an example of using
vxBrowse to display a record subset. If an invalid StartRec is passed,
the browse will begin at the first record in the file.

Caption is a string that is used as a Window caption for the
vxBrowse table.

RetVal must be dimensioned as a long integer before the browse
commences. The result of the browse is passed back to the program in
this parameter. Usually, the programmer will set up a number of GLOBAL
RetVals (one for each file that will be browsed) and use these as prime
movers in his logical flow. Study the code in VXFORM2 and the use of
the TypeReturn variable to control the flow of logic surrounding the
AirTypes file.

The values returned in RetVal are defined as Global constants in the
vxbase.txt file.

BROWSE_CLOSED: The user closed the window with the System menu or

vxBase Page 61

Alt-F4. He doesn't want to do anything with this browse.

BROWSE_EDIT: The user selected the Update function from the Edit
menu. The record pointer is positioned at the record that was
highlighted on the browse table immediately prior to the menu
selection.

BROWSE_ADD: The user selected the Add item from the Edit menu. The
record pointer is positioned at the record that was highlighted on the
browse table immediately prior to the menu selection.

BROWSE_DELETE: The user selected the Delete item from the Edit menu.
No action is taken by vxBase on the selection. Instead, it is the
programmer's responsibility to ensure that the delete is handled
properly. This usually involves a confirmation window and cross-
referencing logic to remove related records from other files. The
record pointer is positioned at the record that was highlighted on the
browse table immediately prior to the menu selection.

BROWSE_ERROR: An error occurred when attempting to start the browse.
For example, the defined database or index area is invalid.

In addition to these constants, BROWSE_USER is also defined to
handle circumstances known only to the programmer. BROWSE_USER could be
used if the RetVal parameter is indeed the prime mover behind your
logical flow. See an example of its use in the VXFORM2 Form_Unload
procedure.

If the user presses the ENTER key, or doubleclicks a record (when
EditMode is FALSE), RetVal will contain the record number that was
highlighted in the browse table immediately prior to the user action.
All of the BROWSE_ constants are negative numbers. If RetVal is greater
than zero, then you know what action the user took.

Returns
See the RetVal parameter above.

Usage
vxBrowse and vxCtlBrowse are intended to be the primary tools you

will use to create vxBase applications. You can display only the data
you want in the table by using the vxTable functions. You can define
visual relationships between one file and another (and another and
another) with the vxJoin command that are absolutely splendid in
execution (try the Link items in the sample system and let your
imagination flow). vxJoin links are only possible with vxBrowse - not
vxCtlBrowse.

The entire set of sample programs revolves around the use of
vxBrowse. Use them freely as templates for your own applications.

vxBrowse is also very handy in implementing help lists. For example,
suppose a form control required the entry of a valid customer code. You
can set up a help button beside the customer code control that
activates a browse window on the customer file. When the user finds the
record he wants, he simply doubleclicks it or presses the ENTER key to
pass the record back to you. You can then extract the required field

vxBase Page 62

data and place it directly into the control without the need for typing
the data.

 The vxTable functions allow you customize your browse tables as to
column heads and the sequence and format of the data you display. If no
table is declared, vxBrowse provides a raw data display with the field
names as column heads. Numeric fields are right justified in columns
and dates are formatted as "mm/dd/yy" (default) or whatever format has
been set with vxSetDate.

The vxMenu functions allow you to define custom menus on the browse
table.

Function vxBrowsePos allows you to position and size the browse
window. If this function is not called prior to beginning a browse, the
size and position are dependent on the size and position of the
underlying window.

Data from more than one database may be displayed in a horizontal
row if a relationship is set up with vxSetRelations and column contents
are defined with vxTableFieldExt.

vxBase Page 63

Quick Key
Quick Key searches are a standard feature of a vxBrowse window.

Usually, you will set up a browse with the vxTableDeclare function and
place the index key field first in the column array. If an index is
active during a browse. the user simply presses the sequence of
characters he is looking for and the browse table reacts accordingly.
The status of the Quick Key field is shown in the window caption.

For example, if the user had a browse table active consisting of
customer codes and names, and the file was keyed on the code, then
pressing the "T" key would position the table to the first record that
had a customer code beginning with the letter "T". Subsequent key
presses without intervening actions (such as pressing an arrow key or
using the vertical scroll bar) will expand the quick key and narrow the
search. If a quick key item is not found, the table will be positioned
to the next higher record and the quick key adjusted accordingly (for
example, if "TH" was entered and no code existed that began with these
two letters, but a code existed that began with the letters "TI", then
the table would be positioned there, and the quick key in the caption
would show "TI" instead of the "TH" that the user entered).

One limitation on Quick key access becomes evident if you have a
filter defined. If the partial key entered matches a filtered record,
vxBrowse makes no attempt to find a record past that to satisfy the the
logic in the paragraph above. Instead, a single beep is sounded and we
stay where we are.

NOTE: All key presses directed at the quick key algorithm are
converted to upper case before the seek is performed. You should ALWAYS
use the UPPER() xBase function when indexing character fields.

The column head that contains the quick key may be marked with "*"
by specifying its relative position in vxBrowseSetup.

Vertical Scrolling
Records that are displayed in a browse table with a controlling

index react to a movement in the vertical scroll bar thumb in two ways.
First, the relative position of the thumb in the scroll bar is
ascertained to determine where, approximately, the display should
start. For example, if the thumb was positioned halfway down the bar,
the display should begin at the halfway point in the file. Because the
file is indexed, we cannot simply go to the halfway record (i.e., if
there were 5000 records in the file, we cannot go to 2500 and start
there). Instead, we must find the 2500th index pointer so we read 2500
index keys to get the start record. Second, we use the record number
attached to the key to get the first actual record and we're away.
Obviously, if the file is very large, using the thumb to move around in
the file will be on the slow side. The quickest way to traverse the
records in a browse table is to use the Quick Key feature or the Page
Keys (or click on the paging area in the vertical scroll bar).

The method for finding the record which relates to the position of
the scroll thumb may be controlled with the Threshold parameter of
vxBrowseSetup.

vxBase Page 64

Other Menu Items
The browse table always has a menu bar unless turned off with

vxBrowseSetup. If vxBase menus are not turned off with vxBrowseSetup,
items that always remain on the menu bar are Query and Utilities.

In the query dialog box that is brought up when Query Search is
selected, the user may enter any string. The search is case
insensitive. It is also field insenstive. If the string is found
anywhere in the record (even crossing field boundaries), that record is
highlighted. The Query Find Next command simply finds the next
occurrence of the same string. The standard Find Next accelerator key,
F3, may be used instead of the menu item.

The utilities provide a lowercase toggle. When checked (the default
value), the records in the table are displayed in all lowercase. This
makes a cleaner and more readable display. If the user wishes to
display the records exactly as entered, he toggles the lowercase switch
off. The default case used in the browse window may be changed with
vxBrowseCase.

The utilities Print option prints all records that vxBrowse would
display. Defined tables are used to supply headings and the printout is
exactly in the same format as the display. Use vxTableDeclare with
vxBrowse to format quick reports. The position of the Print menu item
may be changed with vxBrowseSetup.

The About File item tells the user a little bit about the file - its
name, size, etc. - and a listbox displaying the field structure.

User defined menus may also be created and displayed on the browse
table with vxMenuDeclare and vxMenuItem.

vxBrowse Limitations
Up to 8 vxBrowse windows may be active at a time (total for all

active tasks using vxBase). vxBrowse windows attached to a task must be
closed in the reverse sequence of opening. vxBase maintains an internal
stack of browse windows and informs the user about the closure sequence
if he picks the wrong one to close.

There is a reason for this. vxBrowse is a function and as such it
maintains a return address to the program line following the original
call. In C or Assembler, it is a simple matter to extract this address
and maintain an internal stack to always go back from whence you came,
no matter what the sequence of function return.

Unfortunately, Visual Basic maintains a program area for a call to a
DLL function in only one place in its structure. Therefore every call
to vxBrowse from Visual Basic emanates from the same program location
and returns to the instruction following the
call. Visual Basic maintains its own internal stack of return addresses
and pops the address of the LAST call to vxBrowse off of this stack and
returns to the instruction following that call. It always returns to
the instruction following the last call to vxBrowse.

The popping of the return address by Visual Basic follows a whole
lot of other things which essentially restores the Visual Basic state
to what it was before the call. What this means to us is that a
function such as vxBrowse, which does not return to Visual Basic
immediately after the call to it, and which may be called again in the

vxBase Page 65

Windows environment while other vxBrowses still have not completed,
must be terminated in the reverse sequence of call in order for Visual
Basic to return to the instruction following each vxBrowse.

On exit from a vxBase application, no vxBrowse table may be active.
See the example shown in vxCloseAll for an exit protocol that ensures
both windows and files are closed properly, and that allocated memory
is released.

Use vxCtlBrowse if you require a table that is always visible and
that does not have the limitations described above.

Multiuser Considerations
No records are locked by vxBrowse unless and until the user makes a

record selection and vxSetLocks is TRUE (the default). If other users
lock records that will be displayed by the browse, the browse will wait
until the file is free unless vxSetLocks is set to FALSE. If the user
selects a record for update or deletion that is already in use, he is
informed immediately via a message box that the record is locked and he
can retry the operation or abort and carry on with the browse.

Example
 j% = vxSelectDbf(AirtypesDbf) ' select database
 j% = vxSelectNtx(AirtypesNtx)

 TypeReturn = 0 ' Browse return value
 ' declared as GLOBAL

' An active form must be visible because we need a
' parent for our browse
' ---
 If Not VXFORM1.Visible Then VXFORM1.Show

' Execute the browse routine (will use table declared
' in TypesOpen - in sample file VXBMOD.BAS)
' --
 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx,
 TRUE, TRUE, TRUE, 0, "Aircraft Types", TypeReturn)
' (the above would be on one line)

' Browse returns a code or record number in TypeReturn var.
' If an edit menu item is selected, a code is returned.
' If the enter key is pressed, the rec number is returned.
' Double clicks when EditMode is true allow edit onscreen.
' (return codes defined in global vxbase.txt)
' ---
 Select Case TypeReturn

 Case BROWSE_ERROR
 MsgBox "Error in AirTypes Browse!"
 Exit Sub

 ' user closed browse with sys menu
 ' --------------------------------
 Case BROWSE_CLOSED
 j% = vxSelectDbf(AirtypesDbf)

vxBase Page 66

 Call vxTableReset
 j% = vxClose()
 Exit Sub

 ' all other choices are processed by VXFORM2
 ' --
 Case Else
 VXFORM1.Hide
 VXFORM2.Show
 End Select

vxBase Page 67

See Also
vxBrowseCase
vxBrowsePos
vxBrowseSetup
vxCtlBrowse
vxJoin
vxMenuDeclare
vxMenuItem
vxSetDate
vxSetLocks
vxSetRelations
vxTableDeclare
vxTableField
vxTableFieldExt

vxBase Page 68

vxBrowseCase

Declaration
Declare Sub vxBrowseCase Lib "vxbase.dll" (ByVal DefCase As Integer)

Purpose
Set the default case for ALL vxBrowse displays.

Parameters
DefCase is one of VX_UPPER or VX_LOWER as defined in vxbase.txt.

Returns
Nothing.

Usage
The default case used to display data in vxBrowse tables is VX_LOWER

(i.e., lower case). The user can change the display to reflect the
exact contents of the database (as entered) by unchecking the Utilities
Lowercase menu item on the vxBrowse menu bar. The programmer may change
the default to VX_UPPER, which displays the data exactly as entered, in
both upper and lower case.

This is a SYSTEM WIDE function. All vxBrowse displays for all active
tasks will be affected. It would normally be issued in your startup
form FORM_LOAD procedure.

Example
Call vxBrowseCase(VX_UPPER)

See Also
vxBrowse
vxBrowsePos
vxBrowseSetup
vxCtlBrowse
vxCtlBrowseMsg

vxBase Page 69

vxBrowsePos

Declaration
Declare Sub vxBrowsePos Lib "vxbase.dll" (ByVal StartX As Integer,

ByVal StartY As Integer, ByVal xWidth As Integer, ByVal yHeight As
Integer)

Purpose
Set the start position and size of an upcoming browse window that

will be opened using the currently selected database file.

Parameters
All parameters to this function use familiar character units in the

x dimension and line height units in the y dimension. The units are
converted to the average character width and height of the standard
Windows system font and are therefore device independent.

StartX is the start position of the browse window in characters from
the left edge of the screen.

StartY is the start position of the top of the browse window from
the top of the screen.

xWidth is the start width of the browse window in characters.
yHeight is the height of the browse window (including caption and

menu bar) in lines.

Returns
Nothing.

Usage
Browse window start position and size are defaulted according to the

size of the underlying window (the Hwnd parameter passed to vxBrowse)
if this command is not issued. If this command is issued, the position
and size are relative to the entire screen.

If a file is browsed with vxBrowse and not closed, and the browse is
called again, the second and subsequent window positions and sizes will
be as they were when the window was closed (i.e., if the user changes
size and/or position, this information is retained with the selected
database).

Example
 ' The proc below will set up an initial size and
 ' position for the browse window
 ' --
 Call vxBrowsePos(10, 5, 50, 15)
 ' the coordinates are in familiar character and line
 ' units. The first param is x (characters in from left),
 ' the second param is y (lines down from top), the third
 ' param is the width of the window in characters, and the
 ' last param is the window height in lines

 ' if the user movers or sizes the window, and subsequent
 ' vxBrowse calls are made without an intervening close of the
 ' file, the window will retain its last position and size.

See Also

vxBase Page 70

vxBrowse
vxBrowseCase
vxBrowseSetup

vxBase Page 71

vxBrowseSetup

Declaration
Declare Sub vxBrowseSetup Lib "vxbase.dll" (ByVal Menus As Integer,

ByVal PrintMenu As Integer, ByVal QCol As Integer, ByVal V3D As
Integer, ByVal FontName As String, ByVal FontSize As Integer, ByVal
Weight As Integer, ByVal Italic As Integer, ByVal Hdr As Integer, ByVal
MinMax As Integer, ByVal Thresh As Integer)

Purpose
Controls the appearance and some of the functionality of a vxBrowse

or vxCtlBrowse.

Parameters
Menus controls the standard menus added to a vxBrowse window. If

FALSE, both the Utility menu and the Query menu are suppressed. This
parameter has no effect on a vxCtlBrowse because a vxCtlBrowse has no
menus.

PrintMenu controls the placement of the "Print" menu item on the
vxBrowse menus. If the value is 0 (zero), no print menu item will be
added; if 1, the print menu item appears on the standard edit menu (the
default); if 2, the print menu item will appear on the Utilities menu.
This parameter has no effect on a vxCtlBrowse.

QCol is the number of the column (relative to 1) that responds to
Quick Key seeks. If this parameter is specified, an asterisk "*" is
placed in front of the header text for that column to indicate that
this column is seekable with quick key strokes.

V3D if TRUE will display the browse table in 3d format on a gray
background. If FALSE, the browse is displayed as conventional black
text on a white background. Each record and column is separated with a
light gray line to give the appearnce of a grid.

FontName is the name of an available font that will be used to
display the browse table. It must be a valid name. A good place to look
at an enumeration of your fonts is in the list box of fontnames on the
VB properties bar for a text box.

FontSize is the size of the font in points. This number is device
dependent to some extent (on your video resolution). Experiment before
assuming that a given font size will yield the desired result.

Weight is a vxBase Global constant that specifies the weight of the
font. The following constants are defined in vxbase.txt:

Global Const VX_DONTCARE = 0
Global Const VX_THIN = 100
Global Const VX_EXTRALIGHT = 200
Global Const VX_LIGHT = 300
Global Const VX_NORMAL = 400
Global Const VX_MEDIUM = 500
Global Const VX_SEMIBOLD = 600
Global Const VX_BOLD = 700
Global Const VX_EXTRABOLD = 800

vxBase Page 72

Global Const VX_HEAVY = 900

Italic if TRUE will display the font in italic. If FALSE (the
default), the display is not in italic.

If you do not wish to change the font (from the default Windows
System font), pass the font name as a space, the fontsize as 0, the
weight as 0, and italic as FALSE.

Hdr defines the type style used in the column headers. The default
is FALSE (which is shadowed text). If passed as TRUE, the header text
is displayed in a flat style.

MinMax defines whether or not minimize and maximize buttons will
appear on the browse window. If FALSE (the default) there are no
buttons; if TRUE, the buttons appear. This parameter has no effect on
vxCtlBrowse.

Thresh defines the number of records used as a threshold for
implementing the vxBase relative scroll thumb positioning algorithm.
The default value is 5000 (which is what you get if you specify 0).

Threshold Explanation: If the user positions the vertical scroll
thumb, the browse display will begin at a point that is relative to the
proportion of the new thumb position to the vertical scroll bar length.
In other words, if the thumb is positioned to the middle of the
vertical scroll bar, the record pointer is moved to the middle of the
file.

This is easy if no indexes are being used (and in this case the
threshold does not apply). We simply take the number of records and
divide by 2 and that's where we start the display.

If the file is indexed, however, we must position the record pointer
to the logical middle of the file. This means we have to count keys
(just like vxNtxRecNo does) until we reach the middle key and then
position the record pointer to the physical record pointed to by the
ntx key entry.

This can take time if the file is large. An optimum size that yields
a respectably short time is about 5000 records (which is the default
threshold). If the file is larger than this, vxBase uses a key analysis
algorithm to determine the approximate position of the file (high key
value minus low key value times the scroll thumb proportion plus the
low
key value equals an approximate key we can softseek on). This algorithm
works quite well on a database that is regularly sequenced (for
example, a name and address file with a fairly regular distribution of
names throughout the alphabet will yield a key close to "M" to start
the display at if the thumb is positioned in the middle of the scroll
bar).

If your database contains more than 5000 records, and the
distribution of keys is irregular (e.g., many duplicate keys or
duplicate starting portions of keys or lots of A's and Z's with nothing
in between), then you will likely wish to increase the threshold value
to a number greater than the number of records in the file (maximum
32,767) to use the exact relative positioning algorithm. If there are
more than 32,767 records in the file, the approximation alorithm will
be used.

vxBase Page 73

What's more important? Speed or an accurate thumb? This is a
question for the ages.

Returns
Nothing.

Usage
Use this procedure to fine tune the appearance and functionality of

your browse tables (both of the vxBrowse and the vxCtlBrowse variety).

Note: the database you are going to be browsing must be open and
selected when the call to this procedure is issued.

vxBase Page 74

Example
' the browse must be set up either prior to
' or during the load of the form that contains
' the text box that will hold the browse
' --
Sub Form_Load ()
 vxClientDbf = vxUseDbf("\ab2\abacus\sam\vxuser.dbf")
 vxCl1Ntx = vxUseNtx("\ab2\abacus\sam\vxuser.ntx")

 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 6)
 Call vxTableField(1, "Serial", "vxser", VX_FIELD)
 Call vxTableField(2, "Name", "vxname", VX_FIELD)
 Call vxTableField(3, "Company", "vxcompany", VX_FIELD)
 Call vxTableField(4, "Phone", "vxphone", VX_FIELD)
 Call vxTableField(5, "City", "vxcity", VX_FIELD)
 Call vxTableField(6, "Country", "vxcountry", VX_FIELD)

 Call vxBrowseCase(VX_UPPER)
 Call vxBrowseSetup(0, 0, 1, 1, "Arial Narrow", 15, VX_SEMIBOLD,
 FALSE, 0, 0, 0)
End Sub

See Also

 vxBrowse
 vxBrowseCase
 vxBrowsePos
 vxCtlBrowse
 vxCtlBrowseMsg
 vxMenuDeclare
 vxMenuItem
 vxSetLanguage
 vxSetRelation
 vxTableDeclare
 vxTableField
 vxTableFieldExt
 vxTableReset

vxBase Page 75

vxChar

Declaration
Declare Function vxChar Lib "vxbase.dll" (ByVal FieldName As String)

As String

Purpose
Extract the first character from a defined field.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
A visual basic string that contains the first character of the

field.

Usage
Commonly used to test the contents of a field whose data format is

known,

Example
 If UCase$(vxChar("PersonSex")) = "M" Then
 MaleProcess
 Else
 FemaleProcess
 End If

See Also

vxEmpty
vxField

vxBase Page 76

vxClose

Declaration
Declare Function vxClose Lib "vxbase.dll" () As Integer

Purpose
Close the currently selected database.

Parameters
None.

Returns
TRUE if the close was successful, FALSE if not. A FALSE return could

mean that one of the index files associated with the database had an
error in closing.

Usage
A dbf file opened with vxDbfUse must always be closed. This ensures

that any changes to the xBase header info become permanent as well as
freeing any memory allocated to store the database structure, file
structures, record buffer, table declarations and table joins. If an
attempt is made to close a file that resides in an active browse window
(for example, by another task that is using the file), the file is not
closed but the result reported to the current task is TRUE and the file
is no longer available to be selected from the task that initiated the
close without another vxUseDbf being issued.

If the record buffer has been changed and not yet written, it is
written to disk.

All open index files associated with the dbf are also closed. It is
not necessary to explicitly close the index files.

After a file has been closed, it must be opened again with vxUseDbf
before it may be accessed again.

Example
 j% = vxSelectDbf(AirtypesDbf)
 If Not vxClose() Then
 MsgBox "Error in Airtypes close"
 End If

See Also

vxCloseAll
vxCloseNtx
vxDbfDate
vxJoinReset
vxTableReset
vxUseDbf
vxUseDbfRO
vxUseNtx

vxBase Page 77

vxCloseAll

Declaration
Declare Function vxCloseAll Lib "vxbase.dll" () As Integer

Purpose
Close all open database and index files.

Parameters
None.

Returns
TRUE if the operation is successful, otherwise FALSE. The operation

will always return FALSE if there are any active browse windows open.
The user is informed that the browse windows must be closed before an
exit is allowed. In your exit strategy, follow the protocol shown in
the example below (which comes directly from the sample application) to
ensure that everything is cleaned up properly when an exit is
requested.

Usage
Normally called when an application exit is taken to ensure that all

record buffers, index nodes, and xBase headers are written and all
associated memory is released.

Example
' ---
' This routine is activated from either the
' Exit menu item on VXFORM1 or by selecting
' the Close item from the system menu.
'
' We MUST test the vxCloseAll result in
' case there are any active browse windows
' that require closure before we can
' terminate the application
'
' If the close operation is successful, any
' open databases are closed (which updates
' the database header information) and all
' attached memory objects (Tables and Joins)
' are released.
' ---
Sub Form_Unload (Cancel As Integer)
 If Not vxCloseAll() Then
 Cancel = -1
 VXFORM1.Show ' redraw top level form
 Exit Sub
 Else
 ' we MUST test the result of vxDeallocate
 ' to ensure that the task is not controlling
 ' memory for any other vxBase tasks that
 ' might be running at the same time as this one
 ' ---
 If Not vxDeallocate() Then
 Cancel = -1
 VXFORM1.Show

vxBase Page 78

 Else
 vxCtlGrayReset
 End If
 End If
End Sub

vxBase Page 79

See Also
vxClose
vxCloseNtx
vxDeallocate
vxInit

vxBase Page 80

vxCloseNtx

Declaration
Declare Function vxCloseNtx Lib "vxbase.dll" (ByVal NtxArea As

Integer) As Integer

Purpose
Close a previously opened index file.

Parameters
NtxArea is the select area of the index you wish to close. This

number is returned by vxUseNtx when the file is opened or by vxAreaNtx
after it has been opened.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
A dbf file is normally opened with all of its index files if there

is any chance that the file may change in the current procedure. This
will ensure that all index files are updated if any key fields are
altered or records are appended. A file opened for display only may be
used with one index, and then another requirement may necessitate the
closure of that index and the opening of one or more other index files
(or none if freeing a file handle is your intention) as the case may
be. If a dbf file is going to be left open, ensure that its index files
are also open if it may be altered.

Example
 MastFile% = vxUseDbf("Transfil.dbf")
 MastIndex% = vxUseNtx("Transfil.ntx")
 DisplayRecords
 j% = vxNtxClose(MastIndex%)
 MastIndex2% = vxUseNtx("Transfi2.ntx")

See Also

vxClose
vxCloseAll
vxNtxDeselect
vxSetHandles

vxBase Page 81

vxCollate

Declaration
Declare Sub vxCollate lib "vxbase.dll" (CharMap As Integer)

Purpose
Define a collating sequence table to be used for indexing other than

the native collating table (ANSI or OEM depending on the setting of
vxSetAnsi).

Parameters
CharMap is the first element in an array of 256 integers. Each

integer represents the new collating sequence number for the character
that would normally occupy that slot (array index - 1).

The collating sequence table is composed of 256 characters that
range in value from zero to 255. Consequently, the index (minus 1) into
the character map represents the current native character. By placing a
different number into the integer at that spot we change its collating
sequence to the new number.

For example, suppose you wanted a space character to be first
(lowest) in your new collating sequence. A space is represented by
decimal 32 (it is the 33rd character in the set which begins at zero)
in both the ANSI and OEM character sets. To make a space the lowest
value in your index collating sequence, you would place a zero in
CharMap(33). The index number is the same as the decimal value of the
character you wish to change plus one (for relative zero).

 Note that the first integer in the array is passed BY REFERENCE
rather than by value.

Returns
Nothing.

Usage
This function is used primarily for non-English language databases.

The collating sequence of characters with diacritical marks that are
used heavily in languages other than English is certainly incorrect in
the OEM character set (for any language) and could be incorrect for
certain languages if you are using ANSI databases as well (e.g.,
Swedish). To maintain index keys in a sequence that the user can
understand, this function must be used to build a collating table.

The example below shows you how to build a true descending index in
English (the DESCEND() xBase function simply complements the bits in
the key and creates a normal ascending index that results in descending
order).

vxCollate can also be used for purposes like this but you must be
careful to toggle the use of the table on and off with vxSetCollate.
The table shown in the example would only be turned on for the file and
index that it applied to. If there is more than 1 index for the file,
using a table like this WILL be disastrous.

The new collating sequence table passed to vxCollate() MUST contain

vxBase Page 82

256 elements. If fewer than 256, Windows will crash with a GPF.

THIS IS A SYSTEM WIDE FUNCTION THAT APPLIES TO ALL CONCURENT VXBASE
TASKS!

vxBase Page 83

Example
 Dim CharMap(256) As Integer

 Sub Form_Load ()
 Call vxInit
 Call vxCtlGraySet
 Call vxCtlGraySet
 Call vxSetLanguage(VX_GERMAN)
 Call vxSetLocks(FALSE)
 Call vxSetString(0)
 j% = vxCloseAll()

 ' using OEM databases
 ' -------------------
 Call vxSetAnsi(FALSE)

 ' create descending collating sequence table
 ' --
 i% = 255
 For j% = 1 To 256
 CharMap(j%) = i%
 i% = i% - 1
 Next j%
 Call vxCollate(CharMap(1))

 ' build descending index
 ' ----------------------
 vxDbf = vxUseDbf("\vb\vxuser.dbf")
 vxBackNtx = vxCreateNtx("\vb\vxback.ntx", "upper(vxname)")
 j% = vxClose()

 ' turn off table usage until required
 ' -----------------------------------
 Call vxSetCollate(FALSE)

 End Sub

See Also
 vxSetAnsi
 vxSetCollate

vxBase Page 84

vxCopy

Declaration
Declare Function vxCopy Lib "vxbase.dll" (ByVal NewDbfName As

String) As Integer

Purpose
Make an exact copy of the currently selected database.

Parameters
NewDbfName is the name of the new database file that receives the

copy. The parameter may be a literal string or a string variable. It
may include a complete path name. If an extension is not specified,
vxBase defaults it to ".dbf". If a file exists with the same name it is
overwritten. File names must begin with a letter.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
A copy is made of the selected database that excludes deleted

records. Memo files attached to the database are also copied to
NewDbfName.dbt. Any file that matches NewDbfName is overwritten without
warning.

This function is useful for sorting and packing data files without
losing the originals, and for compressing memo files.

vxCopy respects filters defined with vxFilter as well. File subsets
may be created by setting a filter and then using vxCopy to build the
smaller file.

Multiuser Considerations
The currently selected database and its index files are locked for

the duration of the operation. When it terminates, the record pointer
is reset to its value before the function was called and that record is
locked if vxSetLocks is TRUE.

Example
 CustDbf% = vxSelectDbf("Custmast.dbf")
 CustNtx% = vxSelectNtx("Custmast.ntx")
 if vxCopy("Custcopy") Then
 MsgBox "Copy OK"
 Else
 MsgBox "Copy Failed"
 End If

See Also
vxAppendFrom
vxCopyStruc
vxCreateDbf
vxCreateNtx
vxFilter
vxPack
vxSetLocks

vxBase Page 85

vxCopyStruc

Declaration
Declare Function vxCopyStruc Lib "vxbase.dll" (ByVal NewDbfName As

String) As Integer

Purpose
Create an empty file whose structure is the same as the currently

selected database.

Parameters
NewDbfName is the name of the new database file that is created. The

parameter may be a literal string or a string variable. It may include
a complete path name. If an extension is not specified, vxBase defaults
it to ".dbf". An existing file with the same name is overwritten. File
names must begin with a letter.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
Commonly used to create a temporary batch file that will be used to

capture data. The captured data would then be appended to a master file
and the batch file erased. We can modify the sample code shown under
vxAppendFrom to dynamically create a batch file instead of using a
permanent file to hold temporary records.

Example
 ' create transaction batch file with the same
 ' structure as the master file
 ' --
 BatchName$ = "Tr" + SignOnId$
 FileSpec$ = MyPath$ + BatchName$ + ".dbf"
 IndexSpec$ = MyPath$ + BatchName$ + ".ntx"

 ' if file exists, error
 ' ---------------------
 If vxFile(FileSpec$) Then
 MsgBox "Error. Batch file exists!"
 Exit Sub
 Else
 ' if no error, create empty transaction file
 ' --
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 If Not vxCopyStruc(BatchName$) Then
 MsgBox "Error in batch file creation"
 j% = vxClose()
 Exit Sub
 Else
 ' now create index same as master file
 ' ------------------------------------
 IndexExpr$ = vxNtxExpr(TrMasterNtx%)
 If Not vxCreateNtx(BatchName$, IndexExpr$) Then
 MsgBox "Error in index creation"

vxBase Page 86

 Kill FileSpec$
 j% = vxClose()
 Exit Sub
 End If
 End If
 End If
 j% = vxClose() ' close master file
 TransDbf% = vxUseDbf(BatchName$)
 TransNtx% = vxUseNtx(BatchName$)

 ' call transactions editing procedure
 ' -----------------------------------
 CollectTrans

 ' if posting now, append transactions to
 ' master file after they have been posted
 ' and then clear the batch file in preparation
 ' for the next editing session
 ' ---
 j% = MsgBox("Post Now?", 52)
 If j% = 6 Then
 PostTrans
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom(BatchName$)
 j% = vxClose() ' close master file
 Kill FileSpec$ ' erase batch file
 Kill IndexSpec$ ' and index
 Exit Sub
 End If
 j% = vxClose() ' close the batch

See Also

vxAppendFrom
vxCopy
vxCreateDbf
vxCreateNtx

vxBase Page 87

vxCreateDbf

Declaration
Declare Function vxCreateDbf Lib "vxbase.dll" (ByVal NewDbfName As

String, ByVal NumFields As Integer, FStructure As FileStruc) As Integer

Purpose
Create a new database file.

Parameters
NewDbfName is the name of the new database file that is created. The

parameter may be a literal string or a string variable. It may include
a complete path name. If an extension is not specified, vxBase defaults
it to ".dbf". An existing file with the same name is overwritten. File
names must begin with a letter. Their length is limited by DOS to 8
characters.

NumFields is the number of fields the new database will contain.

FStructure is a user defined type that is filled in by the
programmer with the data about the fields required to build the new
database. The FileStruc type is defined in vxbase.txt (which should be
included in your Global module). The type may be modified to suit your
needs by adding or deleting "Fldnn" definitions to conform to the
largest database (in number of fields) that your application will
create.

The FileStruc type is composed of fixed length strings (each 16
characters in length) that represent the field definitions in your new
file. Each string is named Fldnn where nn represents the field number.
The structure supplied in vxbase.txt is defined with 32 fields. Add
more if necessary.

The fixed length string that defines the field structure is composed
of the following elements:

field name 10 characters
field type 1 character
field width 3 characters
field decimals 2 characters

The field type must be one of "C" for character, "N" for numeric,
"L" for logical, "D" for date, or "M" for memo. A logical field length
cannot exceed 1 character, a date field must be 8 characters wide, and
a memo field length is 10 characters. If your new file definition
contains a memo field, a file with the same name as NewDbfName will be
created with a ".dbt" extension.

A numeric field cannot exceed 19 characters in width, which includes
the decimal point and sign position if the number can be negative. If a
numeric field has a number of defined decimals, the minimum length of
the field is the number of decimal positions plus 2 (1 for the decimal
point and 1 for a leading zero). If there is a possibility that the
number may be negative, add another for the sign.

Field names must begin with a letter. The other nine positions can
be letters, numbers, or the underscore character (not a hyphen) and may

vxBase Page 88

not contain embedded spaces. Trailing spaces of course are allowed (the
field name can be from 1 to 10 characters in length).

The field structure for a new database is passed to vxBase as a user
defined type because the elements in the structure must be contiguous
in memory. Visual Basic string array elements are not necessarily
contiguous in memory so we can't use an array. The fixed length
requirement for the elements of the structure simplifies and speeds up
the parsing vxBase performs to create your new database.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
Your application could be shipped without any supporting database or

index files. The first time it is run, you could create your files in a
directory specified by the user.

Example
 Dim CustFile As FileStruc
 Dim NumFields As Integer

' 1234567890123456 (alignment ruler)
 CustFile.Fld01 = "NAME C 30 0"
 CustFile.Fld02 = "ADDRESS C 30 0"
 CustFile.Fld03 = "CITY C 20 0"
 CustFile.Fld04 = "PHONE C 13 0"
 CustFile.Fld05 = "AMTOWING N 15 2"

 NumFields = 5

 If Not vxCreateDbf("custfile", NumFields, CustFile) Then
 MsgBox "Error in database creation"
 End If

See Also
vxAppendFrom
vxCopy
vxCopyStruc
vxCreateNtx

vxBase Page 89

vxCreateNtx

Declaration
Declare Function vxCreateNtx Lib "vxbase.dll" (ByVal NewNtxName As

String, ByVal NtxExpr As String) As Integer

Purpose
Create a new index file.

Parameters
NewNtxName is the name of the new index file that is created. The

parameter may be a literal string or a string variable. It may include
a complete path name. If an extension is not specified, vxBase defaults
it to ".ntx". An existing file with the same name is overwritten. File
names must begin with a letter. Their length is limited by DOS to 8
characters.

NtxExpr is a valid xBase expression (which may be as simple as a
field name) that is passed as either a literal string or as a string
variable. The expression must evaluate to a string. The expression must
also, of course, reference field names in the currently selected
database.

Returns
The new index is created, selected, and attached to the current

database. The NxtArea is returned as an integer greater than zero if
the operation was successful. If the operation was not successful,
FALSE is returned. Always test the return value.

Note that you cannot test the return value with a NOT expression
because a number greater than zero is NOT TRUE according to Visual
Basic. Use the test format shown in the example below.

Usage
The index expression must evaluate as a string. If elements of your

index are numeric or date fields, use the xBase STR() and DTOS()
expressions to convert the fields to strings within the expression.
Always use the UPPER() xbase function when indexing character fields.
This allows instant Quick Key access in browse windows and correct
alphabetical order being maintained in the index.

"custcode + datefield + numfield" is an invalid index expression if
datefield and numfield are date and numeric fields respectively. If we
assume the numeric field has a format of length 11 with 2 decimals, to
create a valid index out of the same elements, we would use "custcode +
dtos(datefield) + str(numfield,11,2)".

You can use this function to create new indexes for new databases
created with the vxCreateDbf function (or however) or to create
temporary indexes that you require for a one-shot report that is rarely
run. Remember to explicitly close one-shot indexes and kill them after
you are done with them.

A descending index may be built using the xBase DESCEND() function
within your index expression (see vxDescend).

vxBase Page 90

If you are soliciting an expression from the user, always use the
vxEval function on the user supplied expression to test its validity
before creating the index.

vxBase Page 91

Example
Sub TestCopy_Click ()
 Dim NtxExpr As String
 Dim Ret As Long

 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")

 ' get index expression from master file
 ' -------------------------------------
 NtxExpr = vxNtxExpr(AirTypesNtx)

 If Not vxCopyStruc("\vb\vxbtest\testcopy.dbf") Then
 MsgBox "Error in database copy struc"
 Exit Sub
 End If
 j% = vxSelectDbf(AirtypesDbf)
 j% = vxClose()

 TDbf% = vxUseDbf("\vb\vxbtest\testcopy.dbf")

 ' index create opens and selects new index and
 ' returns the index select area. Zero (FALSE)
 ' is returned if there was an error
 ' --
 TNtx% = vxCreateNtx("\vb\vxbtest\testcopy.ntx", NtxExpr)
 If TNtx% = FALSE Then
 MsgBox "Error in index create"
 j% = vxClose()
 Exit Sub
 End If

 If Not vxAppendFrom("\vb\vxbtest\airtypes.dbf") Then
 MsgBox "Error in append from"
 j% = vxClose()
 Exit Sub
 End If

 Call vxBrowse(VXFORM1.hWnd, TDbf%, TNtx%, 0, 0, 0, 0,
 "Test", Ret)
 j% = vxClose()
End Sub

See Also
vxCopy
vxCopyStruc
vxCreateDbf
vxDescend
vxEval
vxNtxExpr

vxBase Page 92

vxCtlBrowse

Declaration
Declare Function vxCtlBrowse Lib "vxbase.dll" (ByVal ControlHwnd As

Integer, ByVal DbfArea As Integer, ByVal NtxArea As Integer, ByVal
EditMode As Integer, ByVal StartRec As Long, ByVal MemoHwnd As Integer,
ByVal MemoField As String) As Integer

Purpose

Place a browse table into a multiline text box control. The browse
table is bounded by the confines of the text box. The browse reacts to
standard events (mouse pointing and clicking, quick key presses, etc.)
in the same fashion as vxBrowse. Communication with the Browse table is
accomplished though the use of button controls (or menu items) on the
main form and the use of vxCtlBrowseMsg.

The main differences between vxBrowse and vxCtlBrowse are:

vxBrowse is a popup window unto itself (even a task), and is
controlled with its own message loop. It may be resized,
moved, minimized, etc. After it is started, communication
between the calling program and vxBrowse is a one way street;
vxBrowse can tell the calling program what the user did but
the calling program cannot interrogate anything that happens
during the browse. After the browse window is closed, vxBrowse
reports the user action to the calling program.

vxCtlBrowse is a child window that resides entirely within the
confines of a bounded text box on a main form. Communication
works both ways; the browse window can report certain events
through standard procedures (e.g., key presses and key downs),
it can report its state (what record number is highlighted?),
and it can be controlled by the programmer and by the user
(e.g., redraw thyself starting someplace else). It does not
have to go away in order for the programmer to react.

vxBrowse is perfect for help pick lists and as a primary tool to
view a set of records in tabular format. As a pick list help tool, the
window pops up over top of another window, the user picks something (or
not), and the window goes away - leaving the programmer with the user's
choice (or not). vxBrowse can also be used to initiate and display
dynamic one to many relationships. vxCtlBrowse cannot do this
dynamically - only under programmer control by creating another
vxCtlBrowse window and manually implementing the browse.

vxCtlBrowse is much more flexible in that it can stay around and
react to and be affected by user (and programmer) actions. Its not as
good as a help pick list and its no good at all as a quick and dirty
report generator.

vxCtlBrowse can also dynamically display memos in a second text box!
(highlight a record that has a memo and the memo appears in the defined
text box).

Parameters
 ControlHwnd is the window handle of the multiline text box that the

vxBase Page 93

browse is going to inhabit. The window handle is not directly available
from Visual Basic. It must be extracted with vxCtlHwnd (see the example
in vxCtlBrowseMsg below).

DbfArea is the select area of an open database. If it is not
currently selected, vxCtlBrowse will make it the current selection.

NtxArea is the select area of an index file attached to DbfArea%.
Pass a 0 (zero) if no idex is to be used.

EditMode is passed as TRUE or FALSE. If TRUE, a mouse doubleclick on
a browse row/column will pop up an edit window with the text of the
selected field ready for edit. Note that the only data validation
possible with the onscreen edit is for type (e.g., numeric fields must
contain numbers). If your data requires more sophisticated validation,
never pass a TRUE in this parameter.

If EditMode is FALSE, a mouse doubleclick will be converted to an
ENTER key value and may be interrogated in the textbox_keypress event
procedure. Before the key is passed, the record pointer is positioned
to the currently highlighted record so it is automatically available to
vxRecNo() if desired.

See the writeup in vxBrowse under EditMode for information on the
relationship between this parameter and vxTableDeclare/vxTableField.

 StartRec is a long integer that contains the browse table starting
record number. If passed as 0 (zero), the display will commence at the
top of the file. If a record subset has been defined with
vxTableDeclare, it is the programmer's responsibility to ensure that
the pointer is positioned to the correct starting record prior to
calling vxCtlBrowse.

MemoHwnd is the window handle of a multiline text box that may
contain the contents of a dynamic memo link. The window handle is not
directly available from Visual Basic. It must be extracted with
vxCtlHwnd (see the example in vxCtlBrowseMsg below). If there is no
memo link, pass this parameter as a 0 (zero).

MemoField is the name of the memo field that will be dynamically
linked to the browse table. Whenever a record in the browse table
receives the highlight, and that record contains a memo reference in
this field, then the memo will be displayed in the MemoHwnd% text box.
Pass this parameter as a space (" ") if there is no memo link. If a
relationship has been set up and is being displayed by the browse, the
memo field must belong to the parent file. NO ALIAS NAMES ALLOWED.

Returns
TRUE if the browse was successfully set up. FALSE is returned for

one of the following reasons:
 (1) no current database.
 (2) DbfArea is invalid.
 (3) no more browse windows available (maximum of 16 active at once
 in all concurrent vxBase tasks - NOT including any vxBrowse
 windows).
 (4) ControlHwnd% is invalid.
 (5) The browse has already been set up in ControlHwnd (you don't
 have to worry about calling the same browse twice into the same

vxBase Page 94

 window - it simply returns FALSE).
 (6) The file selected with DbfArea is empty.
 (7) Invalid memo field name.
 (8) Memo field name is not a memo.
 (9) MemoHwnd is invalid.
(10) Out of memory.

vxBase Page 95

Usage
A wonderful tool for displaying and activating file editing

procedures. Users expect data to be presented in tabular format. That's
why phone books are so successful. Use vxCtlBrowse to provide a gross
view of the data, and then use vxCtlBrowseMsg to react to the user's
requests.

Please see the sections entitled "Quick Key", "Vertical Scrolling",
and "Multiuser Considerations" under vxBrowse.

NOTE: The text box that is created to hold the browse must be given the
multiline property. If scroll bars are required to allow all of the
browse data to be viewed (horizontal, vertical, or both), vxCtlBrowse
automatically provides them.

In the Form_load procedure of the form that calls vxCtlBrowse, you
should change the MousePointer property of the text box that is going
to hold the browse to an arrow as follows:

BrowseBox.MousePointer = 1

This will stop an annoying flicker that results from vxCtlBrowse
constantly changing the mouse pointer from an I-Beam to an Arrow
whenever the mouse is moved.

vxCtlBrowse may not be called from a Form_Load procedure. The text
box that is to hold the browse has not been created yet so no window
handle may be passed to vxCtlBrowse. The best place to call it is in
the Form_Paint procedure. Form_Paint of course may be called many
times during the life of the form but vxCtlBrowseMsg will not invoke
itself any more than once for a defined text box control. See the
example in vxCtlBrowseMsg below.

Browse Navigation
The browse may be perused vertically with the mouse and the scroll

bar, the Page Up and Page Down keys, the Home and End Keys, and the up
and down arrow keys.

The horizontal aspect may be controlled with the mouse and the
scroll bar, the right and left arrow keys, and Ctrl-Left and Ctrl-Right
to move horizontally a page at a time.

Example
 SEE vxCtlBrowseMsg BELOW.

See Also
 vxBrowse
 vxBrowseSetup
 vxCtlBrowseMsg
 vxSetRelation
 vxTableDeclare
 vxTableField
 vxTableFieldExt
 vxTableReset

vxBase Page 96

vxCtlBrowseMsg

Declaration
Declare Function vxCtlBrowseMsg Lib "vxbase.dll" (ByVal Hwnd As

Integer, ByVal Msg As Integer, Param As Any) As Long

Purpose
Communicate with a vxCtlBrowse text box. Messages and directives to

the browse are passed via this function, usually via a button or menu
item click event. The browse can return requested information or react
to a directive issued by vxCtlBrowseMsg.
 The vxCtlBrowse may also send messages back to the KeyPress and
KeyDown event procedures for the text box.

Parameters
Hwnd is the window handle of the multiline text box that the browse

resides in. The window handle is not directly available from Visual
Basic. It must be extracted with vxCtlHwnd (see the example below).

Msg is one of the following Global Constants as defined in
vxbase.txt:

Global Const VXB_REFRESH = 0
Global Const VXB_FILTERDLG = 1
Global Const VXB_FILTERPRG = 2
Global Const VXB_GETCURRENTREC = 3
Global Const VXB_GETTOPREC = 4
Global Const VXB_STATS = 5
Global Const VXB_CASE = 6
Global Const VXB_SEARCHDLG = 7
Global Const VXB_SEARCHPRG = 8
Global Const VXB_SEARCHAGAIN = 9
Global Const VXB_SEEK = 10
Global Const VXB_CLOSE = 11

Each message is discussed under Param below.

Param is a parameter that accompanies a message to the vxCtlBrowse.
Each message that requires a Param must have that Param passed ByVal.
If a message does not require a Param, it may be passed as 0 (zero).

 * -----------------------*
 DON'T FORGET THE BYVAL.
 * -----------------------*

VXB_REFRESH: redraws the browse window. Param must be passed as a
long integer that contains a display start record number. This
message would be sent after editing, adding, or deleting a
record that affects the visible browse display. If you wish to
start the display at the same position, use VXB_GETTOPREC to
set the start record number passed with this message. If the
record number is 0 (zero) or greater than the number of
records in the file (vxNumRecs()), no refresh takes place. The
return value may be ignored.

VXB_FILTERDLG: invokes the same vxBase filter dialog box that is

vxBase Page 97

used by the vxBrowse Filter menu command. The user may enter
his own xBase filter expression. This message should be
reserved for expert users only. Use the next message
(VXB_FILTERPRG) after extracting filter parameters from the
user and building the xBase expression under program control.
Param is passed as 0 (zero). The return value may be ignored.

vxBase Page 98

VXB_FILTERPRG: Sets a filter on the browse table. Param is passed
BYVAL as a complete xbase expression that evaluates as a
logical TRUE or FALSE. Note that deleted records are always
filtered out of a vxCtlBrowse display. This is the preferred
method of filter setting because things like field names and
xBase function syntax can be controlled by the programmer
(what user expects an address field to be named "A1"?). The
return value may be ignored.

A filter set on the file with vxFilter() prior to the browse
will be overridden by a filter set by either VXB_FILTERDLG or
VXB_FILTERPRG (even though it is in effect when the browse
commences). The filter will take effect again when the browse
is closed.

A filter may be cancelled by passing Param as ByVal 0& as
follows:

 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_FILTERPRG, ByVal 0&)

VXB_GETCURRENTREC: Retrieves the physical record number of the
record that is currently highlighted in the browse display.
Param is passed as 0 (zero). A long integer containing the
record number is returned. This message would normally be used
in response to a button press that invoked a record edit
procedure. The user clicks the "Edit" button; the programmer
reacts in the EditButton_Click event procedure by first
going to the record using this message, extracting the record
contents and presenting the data in text boxes on the same or
another form for editing.

VXB_GETTOPREC: Retrieves the physical record number of the record
that sits at the top of the browse display. Param is passed as
0 (zero). A long integer containing the record number of the
top record is returned. After editing, adding, or deleting
records, you probably want the display to restart at the same
place that the user left off (to provide some continuity to
the session). See VXB_REFRESH above.

VXB_STATS: Presents a file statistics dialog box - its name, size,
number of records, and a list box containing the field
structure of the file. Param is passed as 0 (zero). The return
value may be ignored.

VXB_CASE: The case of the display is toggled. If it started out as
VX_UPPER (see vxBrowseCase), it becomes all lower, and vice
versa. Note that VX_UPPER means as it was entered - not
necessarily all upper case.

VXB_SEARCHDLG: Invokes a search dialog box that prompts the user for
a string. If the string exists in the table, the record that
contains the string is highlighted. If the browse was set up
with vxTableDeclare, only columns defined with vxTableField
are searched. Field boundaries are respected. If the browse is
a raw data display, the entire record is searched for the
string. If a match is found that crosses field boundaries or

vxBase Page 99

not, the record is highlighted. Param is passed as 0 (zero).
The return value may be ignored.

VXB_SEARCHPRG: Searches for a string passed ByVal in Param. This
search is under programmer control. The same search algorithm
as above is used. The return value may be ignored.

vxBase Page 100

VXB_SEARCHAGAIN: Search for the same string (as passed via
VXB_SEARCHDLG or VXB_SEARCHPRG) again - skipping forward one
record first. Param is passed as 0 (zero). The return value
may be ignored.

VXB_SEEK: Perform a softseek on the index (see vxSeekSoft). Param is
passed ByVal as a string. A record is highlighted if there is
a partial match or exact match. If there is no match, but a
record exists with a key higher than the search key, it is
highlighted instead. The return value may be ignored.

VXB_CLOSE: This is a very important message that must be issued to
the vxCtlBrowse window when the form containing the text box
is unloaded. It reclaims memory, clears the data structure
that was set up vxCtlBrowse, and clears the edit box that the
browse lived in. You may issue this message any time (not just
when unloading the form) to start a new browse on a different
file, or with a different index, or whatever. Just remember
that there shouldn't be any active vxCtlBrowses left over when
you unload the form (or end the program). Param is passed as 0
(zero). The return value may be ignored.

Returns

The only two messages that result in a return of any value are
VXB_GETCURRENTREC and VXB_GETTOPREC. These return record numbers as
long integers. Returns from all other messages may be ignored.

Usage
vxCtlBrowseMsg is the only way you have of communicating with a

vxCtlBrowse. vxCtlBrowse also communicates with you through the
KeyPress and KeyDown event procedures attached to the text box.

If the user presses the ENTER key, or doubleclicks on a record when
the EditMode parameter of vxCtlBrowse is FALSE, an value of 13 is
passed through the KeyAScii parameter of the TextBox_KeyPress event.
This is usually a signal that the user wishes to do something with the
record that currently has the highlight (expand it, edit it, etc. - its
up to you). YOU MUST SET KEYASCII TO 0 (ZERO) BEFORE THE KEYPRESS EVENT
PROCEDURE EXIT AFTER RECEIVING AN ENTER KEY SO IT DOESN'T GET THROUGH
TO THE TEXT BOX.

The ESCAPE key is also passed to the KeyPress event procedure as
KeyAscii value 27.

The TextBox_KeyDown event procedure receives INSERT presses (as
KeyCode 45) and DELETE presses (as KeyCode 46) as well. You may react
or not react to these events as you wish.

The KeyDown event procedure also receives a KEY_MBUTTON (KeyCode as
4) whenever a record is highlighted in the Browse box. You can
dynamically link a detail form display to this event.

Focus Issues
The browse display receives the focus automatically when it is

created. The focus is also automatically shifted back to the browse
after vxCtlBrowseMsg completes its task. Whenever the focus leaves the
browse window, the column header row is inverted (red becomes cyan,

vxBase Page 101

etc.) The user can reset the focus if it is gone by tabbing to the text
box, clicking on it, etc. - all the normal ways. You can also reset the
focus with the SetFocus Method under program control.

Memos
Dynamic memo links result in the display of a defined memo whenever

one exists that is attached to a highlighted record. You may allow the
user to edit the memo or not - save it or not (with vxReplMemo).

vxBase Page 102

Example
The following example is the actual code used to alpha test the

vxCtlBrowse function. The VB form had the following elements:

 BrowseBox: multiline text box with vertical and horizontal
 scroll bars attached.

 MemoBox: multiline text box with a vertical scroll bar attached.

 Buttons:
 ButtonAgain to test VXB_SEARCHAGAIN
 ButtonCancFilt to test VXB_FILTERPRG, ByVal 0&
 ButtonCase to test VXB_CASE
 ButtonCurRec to test VXB_GETCURRENTREC
 ButtonExit to unload form and test VXB_CLOSE
 ButtonFilter to test VXB_FILTERDLG
 ButtonPrgFilt to test VXB_FILTERPRG
 ButtonRefresh to test VXB_REFRESH
 ButtonSearch to test VXB_SEARCHDLG
 ButtonStrSearch to test VXB_SEARCHPRG
 ButtonTopRec to Test VXB_GETTOPREC

Note the use of vxCtlHwnd to convert a VB control handle into a
Window Handle (in vxCtlBrowse and vxCtlBrowseMsg calls).

' --
' the browse must be set up either prior to
' or during the load of the form that contains
' the text box that will hold the browse
' --
Sub Form_Load ()
 vxClientDbf = vxUseDbf("\ab2\abacus\sam\vxuser.dbf")
 vxCl1Ntx = vxUseNtx("\ab2\abacus\sam\vxuser.ntx")

 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 6)
 Call vxTableField(1, "Serial", "vxser", VX_FIELD)
 Call vxTableField(2, "Name", "vxname", VX_FIELD)
 Call vxTableField(3, "Company", "vxcompany", VX_FIELD)
 Call vxTableField(4, "Phone", "vxphone", VX_FIELD)
 Call vxTableField(5, "City", "vxcity", VX_FIELD)
 Call vxTableField(6, "Country", "vxcountry", VX_FIELD)

 Call vxBrowseCase(VX_UPPER)
 Call vxBrowseSetup(0, 0, 1, 1, "Arial Narrow", 15, VX_SEMIBOLD,
 FALSE, 0, 0, 0)
 ' the fontsize param of 15 comes out as about 8 point type
 ' on an SVGA at 1024/768 res

 ' change the mousepointer for the text box to an arrow
 BrowseBox.MousePointer = 1
End Sub

' call vxCtlBrowse from the form_paint after
' the form has been initialized and displayed
' ---

vxBase Page 103

Sub Form_Paint ()
 j% = vxSelectDbf(vxClientDbf)
 Call vxFormFrame(VXFORMX.hWnd)
 Call vxCtlStyle(BrowseBox, VX_RECESS)
 j% = vxCtlBrowse(vxCtlHwnd(BrowseBox), vxClientDbf, vxCl1Ntx,
 TRUE, 0, vxCtlHwnd(MemoBox), "vxmemo")
End Sub

vxBase Page 104

' to redraw formframe if resized
' ------------------------------
Sub Form_Resize ()
 VXFORMX.Refresh
End Sub

' important to close vxCtlBrowse in form unload
' ---
Sub Form_Unload (Cancel As Integer)
 k& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_CLOSE, 0)
 j% = vxSelectDbf(vxClientDbf)
 j% = vxClose()
 vxWindowDereg (VXFORMX.hWnd)
End Sub

' message testing functions
' invoked when buttons clicked
' ----------------------------
Sub ButtonExit_Click ()
 Unload VXFORMX
End Sub

Sub ButtonSearch_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEARCHDLG, 0)
End Sub

Sub ButtonAgain_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEARCHAGAIN, 0)
End Sub

Sub ButtonCase_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_CASE, 0)
End Sub

Sub ButtonCurRec_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETCURRENTREC, 0)
 Debug.Print j&
End Sub

Sub ButtonTopRec_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETTOPREC, 0)
End Sub

Sub ButtonFilter_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_FILTERDLG, 0)
End Sub

Sub ButtonSeek_Click ()
 SeekKey$ = InputBox$("vxBase License?", "SearchKey", "")
 If EmptyString(SeekKey$) Then
 Exit Sub
 End If
 SeekKey$ = UCase$(SeekKey$)
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEEK, ByVal SeekKey$)
End Sub

vxBase Page 105

vxBase Page 106

Sub ButtonRefresh_Click ()
 SeekRec$ = InputBox$("goto record?", "Refresh", "")
 If EmptyString(SeekRec$) Then
 Exit Sub
 End If
 GoRec& = Val(SeekRec$)
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_REFRESH, ByVal GoRec&)
End Sub

Sub ButtonStrSearch_Click ()
 SeekStr$ = InputBox$("Search string?", "Search For String", "")
 If EmptyString(SeekStr$) Then
 Exit Sub
 End If
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEARCHPRG, ByVal
SeekStr$)
End Sub

Sub ButtonPrgFilt_Click ()
 Filt$ = "trim(vxcountry)='U.S.A.'"
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_FILTERPRG, ByVal Filt$)
End Sub

Sub ButtonCancFilt_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_FILTERPRG, ByVal 0&)
End Sub

' --
' KEY EVENTS Passed on to VB
' Enter (13) and escape (27) key presses initiated
' during the browse may be interrogated here.
' --
Sub BrowseBox_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then
 MsgBox "Enter key pressed"
 ' do your update or expansion routine here
 Debug.Print vxRecNo()
 KeyAscii = 0
 Else
 Debug.Print KeyAscii
 End If
End Sub

' Insert and Delete keys (45 and 46) will show up here
' As well as KeyCode 4 when a rec is highlighted
' --
Sub BrowseBox_KeyDown (KeyCode As Integer, Shift As Integer)
 ' insert key?
 If Keycode = 45 Then
 AddRec
 End If

 ' delete key?
 If KeyCode = 46 Then
 DeleteRec
 End If

vxBase Page 107

 ' record highlighted in browse?
 If Keycode = 4 Then
 vxGo(vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETCURRENTREC, 0))
 DisplayRec
 End If
End Sub

See Also
 vxBrowse
 vxBrowseSetup
 vxCtlBrowse
 vxSetRelation
 vxTableDeclare
 vxTableField
 vxTableFieldExt
 vxTableReset

vxBase Page 108

vxCtlFormat

Declaration
Declare Function vxCtlFormat Lib "vxbase.dll" () (ByVal TextLen As

Integer, ByVal Picture As Integer, ByVal Decimals As Integer) As
Integer

Purpose
Control the format of text entry into Visual Basic form text boxes.

Parameters
TextLen is an integer defining the number of characters that may be

entered into the text box. Maximum length for VX_UPPER/VX_ALPHA fields
is 255. Maximum numeric field length is 19. Maximum data field length
is 8. If these lengths are exceeded, vxBase sets the default lengths to
the maximum.

Picture is an integer that describes the type of data that may be
entered into the text box. The data types are defined as Global
identifiers in VXBASE.TXT.

VX_UPPER = 0: converts all lowercase characters to uppercase as they
are typed.

VX_CHAR = 1: accepts all characters with no conversion (see also
vxCtlLength).

VX_ALPHA = 2: only accepts alhabetic characters (both upper and
lower case).

VX_NUM = 3: accepts only numbers, a minus sign, and a decimal point.
Numeric fields must also be entered in the correct format (i.e., the
only characters other than numbers that may be entered into a numeric
box are a minus sign (-) in the first position aand a decimal character
as defined in the internation section of the WIN.INI file). Only one
sign and 1 decimal are allowed.

VX_DATE = 4: accepts and validates dates in a format as defined by
vxSetDate (default VX_AMERICAN MM/DD/YY).

VX_PASSWORD = 5: displays all typed characters as asterisks (*) nut
accepts any character.

Decimals is an integer that defines the number of decimal places
allowed in a numeric field. The maximum number of decimals allowed is
17.

Returns
TRUE if the format was successful and FALSE if not. FALSE is

returned if the maximum number of active controls is exceeded (256) or
if we run out of memory.

Usage
Use vxCtlFormat in the GotFocus() event procedure for the text box

in which you wish to control the format.

The maximum number of active controls that may be formatted with
vxCtlFormat is 256.

IMPORTANT NOTE: Always use vxWindowDereg in your Form Unload
procedure to release the memory vxBase allocates to the formatting

vxBase Page 109

routine and to reset the control procedure address.

If text is formatted as VX_UPPER, VX_ALPHA, VX_CHAR, or VX_PASSWORD,
characters are converted as they are typed. VX_DATE and VX_NUM formats
only allow numbers and delimiters as typing occurs.

VX_DATE and VX_NUM formats are validated when the control loses the
focus. An error message box is presented if the entered data does not
pass and the focus is reset to the offending control. For example, the
number 123.45- is accepted in a numeric field as it is typed but when
the control loses the focus, the user is informed that the sign must
precede the number and focus is reset to the control. If an invalid
date is entered, a date mask as defined by vxSetDate is inserted into
the control after the user has been informed of the error.

PARAMETERS CHARACTERS TYPED RESULT
---------- ---------------- ---------
6,VX_UPPER,0 abC34F ABC34F
6,VX_CHAR,0 abC34F abC34F
8,VX_NUM,2 -123.456 -123.45 (decimals truncated)
 23 23.00 (trailing .00 added)
 23. 23.00 (trailing 00 added)
 123456.7 123456.70 (truncated left)
 123.4567 123.45 (truncated right)
8,VX_DATE,0 4/1/92 04/01/92 (leading zeroes added)

6,VX_PASSWORD,0 abC34F ****** (as viewed)
 abC34F (contents of text box)

Example
Sub NumField_GotFocus()
 j% = vxCtlFormat(vxFieldSize("numfield"), VX_NUM, 2)
End Sub

See Also
vxCtlLength
vxSetDate
vxWindowDereg

vxBase Page 110

vxCtlGrayReset

Declaration
Declare Sub vxGrayReset Lib "vxbase.dll" ()

Purpose
Reset Windows Gray color for disabled items back to the system

standard.

Parameters
None.

Returns
Nothing.

Usage
Only used if vxCtlStyle and vxFormFrame are called to give your

application a metallic, three-dimensional look (VGA/SVGA only). When
using this style of form, the backgrounds of both forms and controls
are painted light gray - the same light gray used by Windows to show
that text and controls have been disabled. Disabled items therefore
disappear into the background.

At the start of our application, we issue a vxCtlGraySet to set the
disabled color to a darker gray and we use vxCtlGrayReset to set it
back when we exit. The disabled gray color is a Windows System Color
and as such it affects every other application you may have running as
well.

Note: This command has no effect if the system is not running on a
VGA or SVGA monitor.

Example
 Sub Form_Unload (Cancel As Integer)
 If Not vxCloseAll() Then
 Cancel = -1
 VXFORM1.Show ' redraw top level form
 Exit Sub
 Else
 ' we MUST test the result of vxDeallocate
 ' to ensure that the task is not controlling
 ' memory for any other vxBase tasks that
 ' might be running at the same time as this one
 ' ---
 If Not vxDeallocate() Then
 Cancel = -1
 VXFORM1.Show
 Else
 vxCtlGrayReset
 End If
 End If
 End Sub

See Also
vxCtlGraySet
vxCtlPenWidth

vxBase Page 111

vxCtlStyle
vxFormFrame

vxBase Page 112

vxCtlGraySet

Declaration
Declare Sub vxCtlGraySet Lib "vxbase.dll" ()

Purpose
Set the Windows System color for disabled items to dark gray.

Parameters
None.

Returns
Nothing.

Usage
Only used if vxCtlStyle and vxFormFrame are called to give your

application a metallic, three-dimensional look (VGA/SVGA only). When
using this style of form, the backgrounds of both forms and controls
are painted light gray - the same light gray used by Windows to show
that text and controls have been disabled. Disabled items therefore
disappear into the background.

At the start of our application, we issue a vxCtlGraySet to set the
disabled color to a darker gray and we use vxCtlGrayReset to set it
back when we exit. The disabled gray color is a Windows System Color
and as such it affects every other application you may have running as
well.

The gray settings are done at the start and end of the application
because the entire screen is repainted whenever we set a system color.

Note: This command has no effect if the system is not running on a
VGA or SVGA monitor.

vxCtlGraySet affects all Windows system colors. As such, every
running application has its windows repainted when this command is
issued. Some background tasks (such as Norton Desktop for Windows) will
come to the foreground and overlay your vxBase task when it is run as
an .EXE. To stop this, simply issue two calls to vxCtlGraySet in
succession.

Example
 ' register task and
 ' set system gray color with the
 ' first form we load so disabled
 ' items on our gray forms will not
 ' disappear
 ' --------------------------------
 Sub Form_Load
 Call vxInit
 Call vxCtlGraySet
 End Sub

See Also

vxCtlGrayReset
vxCtlPenWidth

vxBase Page 113

vxCtlStyle
vxFormFrame

vxBase Page 114

vxCtlHwnd

Declaration
Declare Function vxCtlHwnd Lib "vxbase.dll" (ControlName As Any) As

Integer

Purpose
Convert a Visual Basic control handle into a Window handle.

Parameters
ControlName is the name of a Visual Basic control.

Returns
An integer that contains the window handle of the control.

Usage
Must be used to pass a window handle to vxCtlBrowse and

vxCtlBrowseMsg so they can do their duty. May also be used to access
Windows API calls that only work on window handles and not VB control
handles.

Restriction
For Visual Basic users only.

Example
Sub ButtonStrSearch_Click ()
 SeekStr$ = InputBox$("Search string?", "Search For String", "")
 If EmptyString(SeekStr$) Then
 Exit Sub
 End If
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEARCHPRG,
 ByVal SeekStr$)
End Sub

See Also
 vxCtlBrowse
 vxCtlBrowseMsg

vxBase Page 115

vxCtlLength

Declaration
Declare Sub vxCtlLength Lib "vxbase.dll" (ByVal FieldName As String)

Purpose
Set the maximum number of characters that can be entered by the user

in a data entry box equal to the xBase field size.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
Nothing.

Usage
If used, this function must be placed in the GotFocus event

procedure for each control to set the maximum number of characters that
can be entered into a text box. The text box must of course be
associated with a vxBase field.

If you require fomatted text, use vxCtlFormat instead, which also
sets the maximum text length.

Restriction
This function is restricted to Visual Basic users only.

Example
 Sub TypeCode_GotFocus ()
 ' set up text length limit
 ' ------------------------
 Call vxCtlLength("category")
 End Sub

See Also
vxCtlFormat
vxSetAlias

vxBase Page 116

vxCtlPenWidth

Declaration
Declare Sub vxCtlPenWidth lib "vxbase.dll" (ByVal PenWidth As

Integer)

Purpose
Control the depth of recessed or raised controls when using

vxCtlStyle.

Parameters
Penwidth is either 1, 2, or 3. The default value is 2.

Returns
Nothing.

Usage
Primarily to make vxBase styled text boxes look the same as

other third party controls (e.g., 3dWidgets from Sheridan Software).

Example
 Call vxInit
 Call vxCtlGraySet
 Call vxCtlPenWidth(1)

See Also
vxCtlStyle

vxBase Page 117

vxCtlStyle

Declaration
Declare Sub vxCtlStyle Lib "vxbase.dll" (ControlName As Any, ByVal

Mode As Integer)

Purpose
Draw a frame around a control that gives it a three-dimensional

look.

Parameters
ControlName is the name of your form control.

Mode is one of the Global Constants defined in vxbase.txt that
defines the drawing style. VX_RECESS (value 1) gives the control a
recessed look. VX_RAISE (value 0)raises the control away from the form,
VX_CREASE (value 2) gives the control a creased border, and VX_FLAT
(value 3) flattens recessed or raised controls.

Returns
Nothing.

Usage
Gives your application a metallic, three-dimensional look (on

VGA/SVGA monitors only). The three-dimensional depth is controlled via
vxCtlPenWidth. Follow these steps in designing a form with this style.

(1) Lay out your form as usual, in black and white. Group boxes and
related items (even groups of buttons) may be placed inside picture
boxes and then the picture boxes may be raised for effect.

(2) When satisfied with your item placement and font selection,
color the backgound of the form and every control a light gray with the
Window Color Palette. You may wish to make the text of labels a color
other than black to distinguish them from the data entered in their
related text boxes.

(3) remove the borders from picture boxes and text boxes that you
are going to paint with vxCtlStyle. You can't remove borders from list
boxes and group boxes. It is not absolutely necessary to do this. I
just think it looks better. If you disagree, leave the borders on. Try
it both ways. (If your application is run on an EGA monitor, vxCtlStyle
draws black borders around the controls instead of making them appear
three-dimensional).

(4) use the Form_Paint procedure to draw the controls as in the
example below. If any form in your application contains disabled
controls, make sure you use vxCtlGraySet at the start of your
application to change the disabled color to a darker gray or the text
of your disabled controls will disappear into the light gray
background.

When using a Form_Paint procedure, it is important to understand the
sequence of painting events that results in the completed display.

The Form_Load procedure is executed first. Your Form_Load procedure
does not display the form. You normally use this procedure to

vxBase Page 118

initialize values that will appear in the form data boxes.
After the Form_load procedure, controls that have had values

assigned are given the focus and the data is inserted in the boxes.
Windows issues an internal WM_PAINT message to draw the form before

Visual Basic receives a Form_Paint message.
After your form has been painted, we can use the Form_Paint

procedure to enhance our controls.

What this really means is that you cannot use a Control_GotFocus
event to do anything that will affect the appearance of the form. For
example, if you had a browse table up and the user selected the Delete
record item from the browse menu, a good place to test for this would
be in the GotFocus event procedure for the first control on the form.
We could then solicit a Deletion Confirmation from the user. We
wouldn't test if Delete had been selected in the Form_Load procedure
because the data hasn't been displayed yet and we would like the user
to see the record he is deleting before we ask for verification. But
if we are using the enhanced controls that vxCtlStyle provides, the
Visual Basic Form_Paint event hasn't occurred yet so we would get a
flat form overlaid by our Confirmation message box. Not pretty.

Instead, we can test for the Delete message in the Form_Paint
procedure itself after the control borders have been drawn by
vxCtlStyle, as in the example below. Keep this sequence in mind when
you contemplate initialization procedures during any event that occurs
after the first Windows painting of the form and before Visual Basic is
informed of the Form_Paint event.

Restriction
This function is restricted to Visual Basic users only.

Example
 Sub Form_Paint ()
 Call vxFormFrame(VXFORM2.hWnd)
 Call vxCtlStyle(TypeCode, VX_RECESS)
 Call vxCtlStyle(TypeDesc, VX_RECESS)
 Call vxCtlStyle(TypeStatus, VX_RAISE)

 ' if delete request from browse, do it now
 ' because we must let enhanced controls
 ' paint before asking for delete confirmation
 ' --
 If TypeReturn = BROWSE_DELETE Then
 TypeDelete_Click
 End If
 End Sub

See Also
vxCtlGrayReset
vxCtlGraySet
vxCtlPenWidth
vxFormFrame

vxBase Page 119

vxDateFormat

Declaration
Declare Function vxDateFormat Lib "vxbase.dll" (ByVal DateField As

String) As String

Purpose
Convert an xBase date field to a Visual Basic date format that can

be used by Visual Basic date arithmetic and formatting functions.

Parameters
DateField is either a string variable or a literal string that

contains a valid date field name from the currently selected database.
DateField may be qualified with a valid alias name that points to any
open database.

Returns
A Visual Basic string in the format DD-MMM-CCYY. For example, if the

DTOS(date) in the database field is "19910722" then the returned value
will be 22-Jul-1991. If the field name does not represent a date, or if
it is empty, the value returned will be 01-Jan-1980.

Usage
This function must be used to convert a date into a format which

Visual Basic can understand. Visual Basic contains a full complement of
functions that perform date arithmetic so there is no need for vxBase
to duplicate those functions.

Example
 ' vxDateFormat() routine returns a date in the
 ' format dd-mmm-yyyy, which the Visual Basic
 ' DateValue function inderstands. We will put
 ' the creation date into a variable so we can
 ' perform some date arithmetic on it to determine
 ' the number of days on file
 ' --
 DateCreate$ = vxDateFormat("a_cdate")
 DaysOnFile% = (DateValue(Date$) - DateValue(DateCreate$))
 + 1

 CustCdate.text = DateCreate$
 CustRdate.text = vxDateFormat("a_rdate")
 CustDays.text = Format$(DaysOnFile%, "###0")

See Also

vxDateString
vxReplDate
vxReplDateString
vxSetAlias
vxSetDate

vxBase Page 120

vxDateString

Declaration
Declare Function vxDateString Lib "vxbase.dll" (ByVal DateField As

String, ByVal DateType As Integer) As String

Purpose
Convert an xBase date field to a standard display style date

formatted according to country specific conventions.

Parameters
DateField is either a string variable or a literal string that

contains a valid date field name from the currently selected database.
DateField may be qualified with a valid alias name that points to any
open database.

DateType is a country identifier as defined in vxbase.txt. It is one
of the following:

VX_AMERICAN format mm/dd/yy
VX_ANSI format yy.mm.dd
VX_BRITISH format dd/mm/yy
VX_FRENCH format dd/mm/yy
VX_GERMAN format dd.mm.yy
VX_ITALIAN format dd-mm-yy
VX_SPANISH format dd-mm-yy

Returns
A Visual Basic string in the format of the country specified. These

dates may not be used with Visual Basic date arithmetic routines
because the results are always ambiguous. Use vxDateFormat to extract
an unambiguous date if date arithmetic is to be performed on the date.
If the field name does not represent a date, or if it is empty, the
value returned will be January 1, 1980.

Usage
Use this function only for form display purposes and for filling a

data entry box with a string that will have its format controlled with
vxCtlFormat.. Use vxDateFormat if date arithmetic is to be performed on
the converted date.

Example
' format a date for display in a VB
' form textbox
' ----------------------------------

 CustRdate.text = vxDateString("a_rdate", VX_AMERICAN)

See Also

vxCtlFormat
vxDateFormat
vxDbfDate
vxReplDate
vxReplDateString
vxSetAlias
vxSetDate
vxSetLanguage

vxBase Page 121

vxDbfCurrent

Declaration
Declare Function vxDbfCurrent lib "vxbase.dll" () As Integer

Purpose
Get the current database select area.

Parameters
None.

Returns
The current database select area (as reported by vxUseDbf or

vxUseDbfRO when the file was opened). If there is no current select
area active, FALSE (0) is returned.

Usage
Can be used to ensure that the database select area you THINK is

active is really active when you are about to perform critical tasks
(such as vxZap() or even vxClose()).

Example
 If vxDbfCurrent() = MasterDbf Then
 j% = vxClose()
 End If

See Also
 vxAreaDbf
 vxNtxCurent
 vxSelectDbf
 vxUseDbf
 vxUseDbfRO

vxBase Page 122

vxDbfDate

Declaration
Declare Function vxDbfDate Lib "vxbase.dll" () As String

Purpose
Extract the date of the last read/write access performed on the

current database.

Parameters
None.

Returns
A Visual Basic string that contains the date that the file was last

opened with vxUseDbf (and successfully closed with vxClose or
vxCloseAll). The date returned is formatted according to the current
vxSetDate value (default VX_AMERICAN MM/DD/YY).

Usage
Usually for display or print purposes.

Example
 UpdateDate.text = vxDbfDate()

See Also

vxDbfName
vxSetDate

vxBase Page 123

vxDbfName

Declaration
Declare Function vxDbfName Lib "vxbase.dll" () As String

Purpose
Extract the name of the currently selected database file.

Parameters
None.

Returns
A Visual Basic string that contains the name of the database file as

it was passed to the vxUseDbf function when it was opened.

Usage
Usually for display or print purposes.

Example
 NameControl.text = vxDbfName()

See Also

vxDbfDate
vxNtxName

vxBase Page 124

vxDeallocate

Declaration
Declare Function vxDeallocate Lib "vxbase.dll" () As Integer

Purpose
Release global memory allocated to VB.EXE by vxBase when in Design

Mode and test task closure sequence if multitasking vxBase
applications.

Parameters
None.

Returns
TRUE if it is safe to unload the task and FALSE if not. FALSE is

returned if this is the memory controlling task for a number of
concurrently running vxBase tasks.

Usage
Always used as the last statement in your VB application. In Visual

Basic Design Mode, this function releases memory allotted to VB.EXE. If
this statement does not appear as the last statement in your appli-
cation, repeated test runs while in design mode will cause VB.EXE to
grow in memory by about 130k per repetition until you eventually run
out of memory unless VXLOAD.EXE is running as suggested. This procedure
only works if the Visual Basic Design mode window (which includes the
VB main menu) is visible on your screen when the Run command (or F5) is
issued. If running a compiled vxBase application, this function tests
if it is safe to unload the current application. See the Multitasking
and Multiuser Considerations section for a complete explanation of
vxBase memory sharing. Also see the section entitled Visual Basic and
VXLOAD.EXE.

Example
Sub Form_Unload (Cancel As Integer)
 If Not vxCloseAll() Then
 Cancel = -1
 VXFORM1.Show ' redraw top level form
 Exit Sub
 Else
 ' we MUST test the result of vxDeallocate
 ' to ensure that the task is not controlling
 ' memory for any other vxBase tasks that
 ' might be running at the same time as this one
 ' ---
 If Not vxDeallocate() Then
 Cancel = -1
 VXFORM1.Show
 Else
 vxCtlGrayReset
 End If
 End If
End Sub

See Also
vxCloseAll

vxBase Page 125

vxInit

vxBase Page 126

vxDecimals

Declaration
Declare Function vxDecimals Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Extract the number of decimal positions defined for the specified

field.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database. The
field should be numeric, although a zero will be returned for any other
field type. FieldName may be qualified with a valid alias name that
points to any open database.

Returns
An integer that contains the number of decimal positions.

Usage
Usually extracted to help in data validation.

Example
Sub BuyHigh_KeyPress (KeyAscii As Integer)
 ' Treat enter key as a tab
 ' ------------------------
 If KeyAscii = 13 Then
 KeyAscii = 0
 SendKeys "{Tab}"
 Exit Sub
 End If

 ' if there are any decimals defined, allow decimal point
 ' --
 If vxDecimals("b_high") > 0 And KeyAscii = Asc(".") Then
 Exit Sub
 End If

 ' limit key presses to numbers
 ' ----------------------------
 If KeyAscii < Asc("0") Or KeyAscii > Asc("9") Then
 KeyAscii = 0
 Beep
 End If
End Sub

See Also

vxFieldSize
vxFieldType
vxSetAlias

vxBase Page 127

vxDeleted

Declaration
Declare Function vxDeleted Lib "vxbase.dll" () As Integer

Purpose
Determine whether a record from the currently selected database has

been logically deleted or not.

Parameters
None.

Returns
TRUE if the record has been deleted, and FALSE if not.

Usage
When xBase records are deleted with the vxDeleteRec function, they

are only logically deleted. Every record has a Deletion Flag field as
the first byte in the record. If the vxDeleteRec function is used to
delete the record, the flag is changed from a space to an asterisk "*".
vxBrowse automatically filters these records. If the programmer is
using other record movement schemes, it is his responsibilty to ensure
that deleted records are ignored when they are supposed to be, or to
report the fact that the record has been deleted to the end user.

Deleted records are physically removed from a file only by packing
it or copying it using vxCopy.

A filter can be set to ignore deleted records with the vxFilter
function.

Example
 ' standard skip loop
 ' ------------------
 Do
 j% = vxSkip(1)
 If j% = FALSE Then
 MsgBox "Error on Skip. Try Reindex."
 Exit Sub
 End If
 If vxEof() Then Exit Do
 Loop Until Not vxDeleted()

See Also
vxCopy
vxDeleteRange
vxDeleteRec
vxPack
vxRecall
vxZap

vxBase Page 128

vxDeleteRange

Declaration
Declare Function vxDeleteRange Lib "vxbase.dll" (ByVal StartRec As

Long, ByVal EndRec As Long) As Integer

Purpose
Physically remove the specified range of records from the currently

selected database.

Parameters
StartRec is the record number of the first record to delete. EndRec

is the last record number in the range.

Returns
TRUE if the operation was successful and FALSE if not. Always FALSE

if the file was opened as Read Only with vxUseDbfRO.

Usage
StartRec must be less than or equal to EndRec. The record numbers

refer to the physical locations of the records. If an index is in use,
it is deselected prior to the commencement of the operation. If one or
more indexes are in use, the file is reindexed after the range of
records has been removed.

Multiuser Considerations
The file and its indexes are locked for the duration of the

operation.

Example
 j% = vxBottom()
 OldLastRec& = vxRecNo()
 j% = vxAppendFrom("Transfil.dbf")
 j% = vxBottom()
 NewLastRec& = vxRecNo()
 j% = MsgBox("Everything OK?", 52)
 If j% = 6 Then
 vxClose()
 Kill "Transfil.dbf"
 Else
 j% = vxDeleteRange(OldLastRec& + 1, NewLastRec&)
 j% = vxClose()
 End If

See Also
vxDeleteRec
vxPack
vxZap

vxBase Page 129

vxDeleteRec

Declaration
Declare Function vxDeleteRec Lib "vxbase.dll" () As Integer

Purpose
Logically delete the current record from the currently selected

database.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. Always FALSE

if the file was opened as Read Only with vxUseDbfRO.

Usage
This function sets the Delete Flag field that is present at the

front of every xBase record to '*', which logically deletes the record.
The record is still available for use by every function except
vxBrowse, which filters all deleted records.

The record may be recalled with the vxRecall function.

Records deleted with vxDeleteRec may be physically removed from the
file with function vxPack or function vxCopy.

The programmer is responsible for skipping by deleted records when
moving the record pointer. Alternatively, a filter may be set on the
file with vxFilter that masks deleted records from the vxSkip and
vxSeek functions.

Example
Sub TypeDelete_Click ()

 ' get user confirmation of delete
 ' -------------------------------
 j% = MsgBox("Confirm Delete", 52)
 If j% = 6 Then
 If vxDeleteRec() Then
 TypeDataClear
 TypeStatus.text = "Rec " + LTrim$(Str$(vxRecNo()))
 + " Deleted"
 Else
 TypeStatus.text = "Delete failed"
 End If
 Else
 TypeStatus.text = "Delete cancelled"
 End If
End Sub

See Also

vxCopy
vxDeleted
vxDeleteRange
vxPack

vxBase Page 130

vxRecall
vxZap

vxBase Page 131

vxDescend

Declaration
Declare Function vxDescend Lib "vxbase.dll" (ByVal KeyString As

String) As String

Purpose
Create a search key for use in seeking records indexed with the

xBase DESCEND() function.

Parameters
KeyString is either a literal string or string variable that

contains the value to be converted into DESCEND() format.

Returns
A Visual Basic string containing a complemented representation of

KeyString.

Usage
This function must be used to create search keys if you are

attempting to find records in an index built with the xBase DESCEND()
function.

If you are browsing a file with a key built with the DESCEND()
function as the first part of the key, be sure to turn Quick Key off in
vxTableDeclare (set parameter Quick to zero). Quick Key searches in a
browse window will not work on DESCENDing key elements.

Example
AirbuyerDbf = vxUseDbf("\vb\airtypes.dbf")
DescNtx = vxCreateNtx("\vb\airdown.ntx", "DESCEND(UPPER(b_cat))")
If vxSeek(vxDescend("P15")) Then
 DisplayBuyRec
Else
 MsgBox "Record Not Found"
End If

See Also

vxCreateNtx
vxSeek
vxSeekSoft

vxBase Page 132

vxDouble

Declaration
Declare Sub vxDouble Lib "vxbase.dll" (ByVal FieldName As String,

DblAmount As Double)

Purpose
Convert a numeric field to a Visual Basic double value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that
points to any open database.

DblAmount is a predimensioned double value that will receive the
result of the function. See the example below.

Returns
A double value in the DblAmount parameter.

Usage
Unlike other field reference functions, this is a procedure that

must be CALLed. The user is responsible for passing a predefined double
variable to vxDouble, which receives the result of the procedure call.

The format of this function has to do with Borland C++, phantom
parameters, and Bad DLL Calling Conventions, which you probably don't
want to know about. Unfortunately, this is the only way I could get it
to work.

Example
Sub BuyerDataLoad ()
 Dim b_low As Double
 Dim b_high As Double

 CursorWait
 EnableBuyerData
 Call vxDouble("b_low", b_low)
 Call vxDouble("b_high", b_high)
 BuyLow.text = Format$(b_low, "#######0")
 BuyHigh.text = Format$(b_high, "#######0")
 BuyType.text = vxField("b_cat")
 BuyTypeDesc.text = vxField("b_desc")
 BuyCode.text = vxField("b_code")
 CursorArrow
End Sub

See Also

vxField
vxFieldTrim
vxInteger
vxLong
vxReplDouble
vxReplString
vxSetAlias

vxBase Page 133

vxEmpty

Declaration
Declare Function vxEmpty Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Test if a character field is filled with spaces or if a numeric

field is zero.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
TRUE if the character field has nothing but spaces in it or if a

numeric field evaluates to zero. FALSE if the field contains something.
The function will actually work on any kind of field (including date,
logical, and memo fields) and return TRUE if the field is composed
entirely of spaces.

Usage
Normally used to control processing of controls depending on whether

something has been entered or not.

Example
 ' if the code has already been entered, don't
 ' allow the user to edit it
 ' ---
 If vxEmpty("buy_code") Then
 BuyCode.Enabled = TRUE
 BuyCode.text = ""
 Else
 BuyCode.Enabled = FALSE
 BuyCode.text = vxField("buy_code")
 End If

See Also

vxChar
vxField
vxFieldTrim
vxSetAlias

vxBase Page 134

vxEof

Declaration
Declare Function vxEof Lib "vxbase.dll" () As Integer

Purpose
Test for end of file.

Parameters
None.

Returns
TRUE if the record pointer has been moved past the last record in

the file and FALSE if not.

Usage
When skipping through a file in the forward direction, always use

vxEof to test if the last record has been read. If vxEof is TRUE, the
record buffer will point to an empty record (which can't be used for
anything).

Example
 ' skip forward one record
 ' -----------------------
 Do
 j% = vxSkip(1)
 If j% = FALSE Then

 ' if skip error, only allow exit
 ' ------------------------------
 MsgBox "Error on Skip Next. Try Reindex."
 TypeDataClear
 Exit Sub
 End If
 If vxEof() Then Exit Do
 Loop Until Not vxDeleted()

 ' test for end of file
 ' --------------------
 If vxEof() Then
 Beep
 TypeStatus.text = "End of File!"
 j% = vxBottom() ' go back to last record
 Else
 TypeStatus.text = "Skipped to record " +
 LTrim$(Str$(vxRecNo()))
 End If
 TypeDataLoad

See Also

vxBof

vxBase Page 135

vxErrorTest

Declaration
Declare Function vxErrorTest Lib "vxbase.dll" (ErrorStructure As

vxErrorStruc) As Integer

Purpose
Test if an error occurred in a vxBase function. This function only

works if vxSetErrorMethod is set to TRUE. vxSetErrorMethod and
vxErrorTest provide an alternate error handling procedure to the
standard vxBase error routine. If vxSetErrorMethod is FALSE, vxBase
errors are reported through an immediate run time message box.

Parameters
ErrorStructure is of type vxErrorStruc as defined in the global

module (see Example below).

Returns
TRUE if an error occurred in the previous call to vxBase and FALSE

if no error occurred.

Usage
Visual Basic 1.0 does not provide a method for a DLL to trigger a

Visual Basic Error. As a result, the standard ON ERROR method will not
work to trap errors found by a DLL. Visual Basic 2.0 WILL provide this
facility, at which time we will have another alternate error method to
choose from.

By using vxSetErrorMethod(TRUE) and vxErrorTest(vxError), the
programmer may trap errors and execute an error procedure instead of
being caught in a no win situation (such as a series of field
extraction commands that are issued to a non-selected database which
results in a seemingly never-ending sequence of the same error message
box). If an error occurs within a vxBase function, you may exit to a
special vxBase error handling procedure and, depending on the error
reported, either END the program or continue by returning to the
statement following the vxErrorTest.

Errors that occur within high level vxBase functions (vxBrowse,
vxMemoEdit, vxCtlFormat) are NOT trappable with vxTestError. Errors
that occur in these functions cannot be foreseen by the programmer
(such as an invalid date entry into a vxCtlFormat date text box) and
must be dealt with at the user level.

The error structure defined as Global var vxError (as type
vxErrorStruc) has the following elements:

 vxError.ErrorNum vxBase error number as listed in Appendix A
 vxError.ErrorMsg vxBase error message as listed in Appendix A
 or in the language selected with vxSetLanguage.
 This is a FIXED string and must be RTRIMmed
 before use.
 vxError.DbfArea the currently selected dbf area (0 if none)
 vxError.NtxArea the currently selected ntx area (0 if none)
 vxError.DbfName the name of the current dbf (blank if none)
 vxError.NtxName the name of the current ntx (blank if none)

vxBase Page 136

 vxError.BadParm an extra information field that contains
 variable data depending on the type of
 error that occurred. For example, if an
 invalid field name is passed to vxBase, that
 invalid field name will appear here. If there
 is no extra info that would have any validity,
 the element is blank. If the extra info is longer
 than 79 characters (e.g., xbase expressions) it
 is truncated on the right.

A call to vxErrorTest resets the internal vxBase error flag.
Subsequent calls to vxErrorTest when no error has occurred will always
return FALSE. Only the LAST error that occurred is available at any
given time in vxError unless you wish to save the returned error
structure in different variables.

Example
 The error structure, function declaration, and global variable must
be defined in the global module as follows (and in the same order):

 Type vxErrorStruc
 ErrorNum As Integer
 ErrorMsg As String * 80
 DbfArea As Integer
 NtxArea As Integer
 DbfName As String * 80
 NtxName As String * 80
 BadParm As String * 80
 End Type

 Declare Function vxErrorTest Lib "vxbase.dll"
 (ErrorStructure As vxErrorStruc) As Integer
 ' (above declaration on ONE line)

 Global vxError As vxErrorStruc

 ' Trapping the error in the FORM code
 ' -----------------------------------
 Call vxSetErrorMethod(TRUE)
 jj% = vxUseNtx("\vb\vxbtest\testerr.ntx")
 If vxErrorTest(vxError) Then
 ProcessError
 End If
 Call vxSetErrorMethod(FALSE)

vxBase Page 137

 ' processing the error in a General Procedure
 ' ---
 Sub ProcessError ()

 Select Case vxError.ErrorNum
 ' 620 File Open
 Case 620
 MsgBox "vxBase TEST: file open error"
 END

 ' 944 Invalid Field Name
 Case 944
 MsgBox "Bad Field " + RTrim$(vxError.BadParm)
 END

 Case Else
 MsgBox RTrim$(vxError.ErrorMsg)
 End Select

 ' see Appendix A in the vxBase manual
 ' for a description of all errors

 ' identify what you feel are catastrophic
 ' errors (like a 620 error) and abort
 ' the program run entirely with an END
 ' statement

 End Sub

See Also
vxSetErrorMethod

vxBase Page 138

vxEval

Declaration
Declare Function vxEval Lib "vxbase.dll" (ByVal xBaseExpr As String)

As Integer

Purpose
Test if a user entered xBase expression will properly evaluate.

Parameters
xBaseExpr is a character expression formatted using xBase syntax.

Returns
TRUE if the expression will evaluate and FALSE if it contains syntax

errors or errors of any other type that the vxBase parser uncovers.

Note that this function does not return the result of the
expression. Rather, it simply checks to see if the expression will
evaluate correctly once it is in use.

Usage
You may solict xBase expressions from the user in the form of

filters, index expressions, browse table column definitions, etc. If an
error is uncovered during expression evaluation, the user is informed
via vxBase error message windows but the programmer has no way of
knowing that the expression doesn't pass unless he parses it first with
vxEval.

NOTE: The record buffer must be filled with a valid record from the
database that the expression applies to BEFORE this function is called.
The database must be open and currently selected.

Example
 ' test user entered filter expression
 ' -----------------------------------
 j% = vxGo(RecNum&)
 If Not vxEval((UserFilter.Text)) Then
 MsgBox "Re-Enter filter"
 UserFilter.SetFocus
 Exit Sub
 Else
 vxFilter((UserFilter.Text))
 Call BrowseFile
 End If

See Also
vxCreateNtx
vxEvalDouble
vxEvalLogical
vxEvalString
vxFilter
vxTableField

vxBase Page 139

vxEvalDouble

Declaration
Declare Function vxEvalDouble Lib "vxbase.dll" (ByVal xBaseExpr as

String, DblAmount As Double) As Integer

Purpose
 Evaluate an xBase expression that returns a numeric value and store
the result of the evaluation in a predefined Visual Basic double
variable.

Parameters
 xBaseExpr is a valid xBase expression that will return a numeric
result.

DblAmount is a predefined double value that will receive the result
of the xBase expression.

Returns
 TRUE if the expression is a valid NUMERIC xBase expression. FALSE is
returned if the expression cannot be parsed or if the expression type
is not numeric.

Usage
NOTE: The record buffer must be filled with a valid record from the

database that the expression applies to BEFORE this function is called.
The database must be open and currently selected.

Example
 ' use vxEvalDouble to calc capacity in
 ' lbs by subtracting empty weight from gross
 ' in an xBase expression instead of Vis Bas
 ' --
 NumVal = 0
 If vxEvalDouble("c_gwt - c_ewt", NumVal) Then
 AirEmpty.text = Format$(NumVal, "####0")
 Else
 MsgBox "Numeric expression eval error"
 End If

See Also
vxEval
vxEvalLogical
vxEvalString

vxBase Page 140

vxEvalLogical

Declaration
Declare Function vxEvalLogical Lib "vxbase.dll" (ByVal xBaseExpr as

String, ByVal TrueFalse As String) As Integer

Purpose
 Evaluate an xBase expression that returns a logical value and store
the result of the evaluation in a predefined Visual Basic string. The
result will be either ".T." for TRUE or ".F." for FALSE.

Parameters
 xBaseExpr is a valid xBase expression that will return a logical
result.

 TrueFalse is a predefined string that is 4 characters long that will
receive the result of the xBase expression (either ".T." or ".F".).

Returns
 TRUE if the expression is a valid LOGICAL xBase expression. FALSE is
returned if the expression cannot be parsed or if the expression type
is not logical.

 Notice that the integer return value is NOT the same as the result of
the expression evaluation. If the expression is logical and evaluates
as ".F.", the function will return TRUE but the value in the predefined
Visual Basic string variable will be ".F.".

Usage
NOTE: The record buffer must be filled with a valid record from the

database that the expression applies to BEFORE this function is called.
The database must be open and currently selected.

Example

 ' example of xBase logical expression evaluation
 ' --
 Eval$ = String$(4, 0)
 If vxEvalLogical("left(category,1)='C'", Eval$) Then
 EvalBox.Text = Eval$
 Else
 MsgBox "Error in logical expression evaluation"
 End If

See Also
vxEval
vxEvalDouble
vxEvalString

vxBase Page 141

vxEvalString

Declaration
Declare Function vxEvalString Lib "vxbase.dll" (ByVal xBaseExpr as

String, ByVal StringVal As String) As Integer

Purpose
 Evaluate an xBase expression that returns a string value and store
the result of the evaluation in a predefined Visual Basic string.

Parameters
 xBaseExpr is a valid xBase expression that will return a character
result.

 StringVal is a predefined string that will receive the result of the
xBase expression. It MUST be long enough to hold the xBase result.

Returns
 TRUE if the expression is a valid CHARACTER xBase expression. FALSE
is returned if the expression cannot be parsed or if the expression
type is not character.

Usage
NOTE: The record buffer must be filled with a valid record from the

database that the expression applies to BEFORE this function is called.
The database must be open and currently selected.

Example

 ' example of xBase string expression evaluation
 ' ---
 EvStr$ = String$(64, 0)
 If vxEvalString("trim(catname)+' is category '+category",EvStr$) Then
 JoinBox.Text = EvStr$
 Else
 MsgBox "Error in string expression evaluation"
 End If

See Also
vxEval
vxEvalDouble
vxEvalLogical

vxBase Page 142

vxExactOff

Declaration
Declare Sub vxExactOff Lib "vxbase.dll" ()

Purpose
Turns the vxExactOn requirement OFF when using vxSeek.

Parameters
None.

Returns
Nothing. Sets an internal switch only.

Usage
Sets the ExactOn switch to OFF. OFF is the default value of this

switch. See vxExactOn for more details on exactly what it does.

Example
 vxExactOn
 If vxSeek("ABC") Then
 UpdateProcedure
 Else
 AddProcedure
 End If
 vxExactOff

See Also

vxExactOn
vxFound
vxSeek

vxBase Page 143

vxExactOn

Declaration
Declare Sub vxExactOn Lib "vxbase.dll" ()

Purpose
Sets the internal Exact switch ON.

Parameters
None.

Returns
Nothing. Internal switch setting only.

Usage
The status of the Exact switch controls whether or not vxBase will

report a successful vxSeek on a record if a partial key match is found.
For example, assume you have a customer key in the form "ABCDEF". The
vxSeek parameter could be "A", "AB", "ABC" etc. up to "ABCDEF" and it
will report the record found (if its the only one with an "A" in the
first position). In other words, vxSeek("A") will find the first record
in the file whose key begins with "A" if you pass it a single letter
"A", no matter how long the key is. There are times when you may wish
to only find a record whose key matches the vxSeek parameter exactly.
This is when you use vxExactOn. Don't forget to turn it off or things
won't work out exactly as you had planned.

If vxExactOn is TRUE, then a partially matched key will cause vxSeek
to return FALSE, and vxFound will also return FALSE. The record
pointer, however, will be set at the record whose key matched partially
if that was the case and vxEOF will be FALSE. If no part of the key was
found, vxEOF will be TRUE, vxFound will be FALSE, and the record
pointer will be pointing nowhere.

Example
 vxExactOn
 If vxSeek("ABC") Then
 UpdateProcedure
 Else
 AddProcedure
 End If
 vxExactOff

See Also

vxExactOff
vxSeek
vxSeekSoft

vxBase Page 144

vxField

Declaration
Declare Function vxField Lib "vxbase.dll" (ByVal FieldName As

String) As String

Purpose
Extract an xBase field and convert it to a Visual Basic string.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
A Visual Basic string that contains the contents of the defined

field.

Usage
Mostly used to get the contents of a character type field. Note,

however, that all xBase data is kept in character format, so you can
use this function to extract any field - including numeric, date, and
logical fields (and even a memo block reference if you wish). You could
then use Visual Basic data conversion functions to create the type of
data you are interested in.

NOTE: The maximum length of a field that can be extracted using
vxField is 255 characters. If the field is longer than 255, use
vxRecord to extract the entire record contents into a defined record
type or string.

Example
Sub BuyerDataLoad ()
 Dim b_low As Double
 Dim b_high As Double

 CursorWait
 EnableBuyerData
 Call vxDouble("b_low", b_low)
 Call vxDouble("b_high", b_high)
 BuyLow.text = Format$(b_low, "#######0")
 BuyHigh.text = Format$(b_high, "#######0")
 BuyType.text = vxField("b_cat")
 BuyTypeDesc.text = vxField("b_desc")
 BuyCode.text = vxField("b_code")
 CursorArrow
End Sub

See Also

vxDouble
vxFieldTrim
vxInteger
vxLong
vxRecord
vxReplRecord

vxBase Page 145

vxReplString
vxSetAlias
vxSetString

vxBase Page 146

vxFieldCount

Declaration
Declare Function vxFieldCount Lib "vxbase.dll" () As Integer

Purpose
Extract the number of fields in the currently selected database.

Parameters
None.

Returns
An integer with the number of fields in the current database. If no

database is selected, 0 is returned.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals
vxFieldName
vxFieldSize
vxFieldType

vxBase Page 147

vxFieldName

Declaration
Declare Function vxFieldName Lib "vxbase.dll" (ByVal FieldNumber As

Integer) As String

Purpose
Extract the name of the nth field in the field array of the current

database.

Parameters
FieldNumber is an index into the field array that ranges from 1 to

vxFieldCount.

Returns
A Visual Basic string that contains the name of the nth field.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals
vxFieldCount
vxFieldSize
vxFieldType

vxBase Page 148

vxFieldSize

Declaration
Declare Function vxFieldSize Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Extract the size of the named field.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
An integer containing the field width.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals
vxFieldCount
vxFieldName
vxFieldType
vxSetAlias

vxBase Page 149

vxFieldTrim

Declaration
Declare Function vxFieldTrim lib "vxbase.dll" (ByVal FieldName As

String) As String

Purpose
Extract an xBase field, trim trailing spaces, and convert it to a

Visual Basic string.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points
to any open database.

Returns
A Visual Basic String (or ASCIIZ string if vxSetString is 1) that

contains the contents of the defined field.

Usage
Get the contents of a character type field and trim trailing spaces.

Trailing spaces should always be trimmed if the data is going into a
text box for editing. If you use this function, it is not necessary to
use the Visual Basic RTrim$ function to trim the string before placing
it into a text box.

Note that all xBase data is stored in character format, so you can
use this function to extract any field - including numeric, date, and
logical fields (and even a memo block reference if you wish). You could
then use Visual Basic data conversion functions to create the type of
data you are interested in.

NOTE: The maximum length of a field that can be extracted with
vxFieldTrim is 255. If a field is larger than this, use vxRecord to
extract the entire record contents into a defined record type or
string.

Example
 BuyTypeDesc.Text = vxFieldTrim("b_desc")

See Also
 vxField
 vxInteger
 vxLong
 vxRecord
 vxReplRecord
 vxReplString
 vxSetAlias
 vxSetString

vxBase Page 150

vxFieldType

Declaration
Declare Function vxFieldType Lib "vxbase.dll" (ByVal FieldName As

String) As String

Purpose
Extract the type of the defined field from the current database.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
A Visual Basic string that contains the type code of the field. It

will be one of "C" for character, "N" for numeric, "D" for date, "L"
for logical, or "M" for memo.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals
vxFieldCount
vxFieldName
vxFieldSize
vxSetAlias

vxBase Page 151

vxFile

Declaration
Declare Function vxFile Lib "vxbase.dll" (ByVal FileName As String)

As String

Purpose
Determine if the named file exists.

Parameters
FileName is a literal string or string variable that contains a

complete file name including an optional path.

Returns
TRUE if the file exists and FALSE if it does not.

Usage
Especially used in batch processing applications to determine

whether or not a batch of transactions still exists. If the batch
exists, in all likelihood it has not been processed yet and therefore a
user request to create another batch file would be denied.

Example
 ' create transaction batch file with the same
 ' structure as the master file
 ' --
 BatchName$ = "Tr" + SignOnId$
 FileSpec$ = MyPath$ + BatchName$ + ".dbf"
 IndexSpec$ = MyPath$ + BatchName$ + ".ntx"

 ' if file exists, error
 ' ---------------------
 If vxFile(FileSpec$) Then
 MsgBox "Error. Batch file exists!"
 Exit Sub
 Else
 ' if no error, create empty transaction file
 ' --
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 If Not vxCopyStruc(BatchName$) Then
 MsgBox "Error in batch file creation"
 j% = vxClose()
 Exit Sub
 Else
 ' now create index same as master file
 ' ------------------------------------
 IndexExpr$ = vxNtxExpr(TrMasterNtx%)
 If Not vxCreateNtx(BatchName$, IndexExpr$) Then
 MsgBox "Error in index creation"
 Kill FileSpec$
 j% = vxClose()
 Exit Sub
 End If
 End If

vxBase Page 152

 End If
 j% = vxClose() ' close master file
 TransDbf% = vxUseDbf(BatchName$)
 TransNtx% = vxUseNtx(BatchName$)

vxBase Page 153

 ' call transactions editing procedure
 ' -----------------------------------
 CollectTrans

 ' if posting now, append transactions to
 ' master file after they have been posted
 ' and then clear the batch file in preparation
 ' for the next editing session
 ' ---
 j% = MsgBox("Post Now?", 52)
 If j% = 6 Then
 PostTrans
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom(BatchName$)
 j% = vxClose() ' close master file
 Kill FileSpec$ ' erase batch file
 Kill IndexSpec$ ' and index
 Exit Sub
 End If
 j% = vxClose() ' close the batch

See Also

vxAppendFrom
vxCopyStruc

vxBase Page 154

vxFilter

Declaration
Declare Sub vxFilter Lib "vxbase.dll" (ByVal FilterString As String)

Purpose
Define a filter expression for use in masking unwanted records from

displays, reports, etc.

Parameters
FilterString is a valid xBase expression that describes the records

you wish to retain in the current procedure. It may be a literal string
enclosed in quotes or a string variable.

Returns
Nothing. A pointer to the filter string is set up in the xBase

descriptor block.

Usage
Declare filters to limit the range of records that will be displayed

or printed. The most common filter is ".NOT. deleted()". A filter
expression must evaluate to a logical result. Any declared filter
affects the vxTop, vxBottom, vxSkip, vxSeek, and vxSum functions. vxGo
ignores set filters.

vxBrowse automatically filters out deleted records. The filter set
by vxFilter is in effect when a vxBrowse table is opened. If the user
has access to the Filter menu item on the vxBrowse table, he can change
the filter or remove it at will. The change or removal only effects the
current browse and when vxBase returns to your Visual Basic program,
the old filter is once again in effect.

Use filters judiciously. A filter set on a large file can slow
processing enormously. For example, if a filter was set on a large
names database to only show the name "BROWN", when the record pointer
moved past the last "BROWN" (either through program control with vxSkip
or with a down arrow by the user in a vxBrowse display), every record
in the file would have to be evaluated until the end was reached before
vxBase could determine there were no more "BROWN"s. If a filter is set
on a large file, vxBrowse tables called on that file will take some
time to initialize. vxBrowse must ascertain the number of records in
the file that pass the filter to properly set the vertical scroll bar
parameters. Study and use the SCOPE parameter available in
vxTableDeclare instead.

NOTE: The record buffer must be filled with a valid record from the
database BEFORE vxFilter is called. The database must be open and
selected.

Complex Filter Expressions
A complex expression is one which contains two or more elements

combined with a logical operator. For example, vxFilter("LastName =
'Smith' .and. AmtOwing > 100.00") is a complex expression which would
result in only those records that satisfy both criteria being selected
for the operation. One must take care to recognize the precedence of

vxBase Page 155

logical operators. Use parentheses to group the elements of a complex
expression if you are not sure of the potential result.

For example, the filter vxFilter(".NOT. deleted() .and. 'Tenholder'
$ LastName") would appear to give us all records that contain
"Tenholder" in the field LastName that are not deleted. In fact, the
expression is evaluated as ".NOT. (deleted() .and. 'Tenholder' $
LastName)". The expression following the .not. will ALWAYS return false
unless the record is both deleted and the last name contains
"Tenholder" (which is not a record we want anyway). .NOT. FALSE is
always TRUE; therefore, every record that is not deleted will be
returned. The proper command would be vxFilter("(.NOT. deleted()) .and.
('Tenholder' $ LastName)").

Building Filter Expressions in String Variables
If the user is supplying one of the elements of a filter expression

through a form text box, you may build a filter expression by
concatenating the various elements into a string variable and then
passing that variable to vxFilter. For example, suppose you solicit a
city name from the user via a form textbox control and then wish to
apply a filter to the database that contains only records with that
city in Field "CityFld". The filter expression you want to pass to
vxFilter may be vxFilter("'NEW YORK' $ CityFld"). The user enters the
city name in control "TB_Detail".

Sub Btn_Find_Click
 j% = vxSelectDbf(PFind)
 j% = vxSelectNtx(DetIndex)
 FString$ = "'" + (TB_Detail.Text) + "' $ CityFld"
 Call vxFilter(FString$)
 j% = vxTop()
 ...
End Sub

Example
 Dim CalifTotal As Double

 ' this routine adds up the amounts owing by customers
 ' in California
 ' ---
 Call vxFilter("(.NOT. deleted()) .AND. (state = 'CA')")
 CalifTotal = 0
 j% = vxTop()
 Call vxSum("amtowing", CalifTotal)
 TotalBox.text = Format$(CalifTotal, "#######0.00")
 vxFilterReset

See Also

vxBrowse
vxEval
vxFilterReset

vxBase Page 156

vxFilterReset

Declaration
Declare Sub vxFilterReset Lib "vxbase.dll" ()

Purpose
Removes a filter that was set with vxFilter and releases the memory

allocated to hold the expression.

Parameters
None.

Returns
Nothing.

Usage
Always used to cancel a filter that was set to perform some specific

procedure.

Example
 Dim CalifTotal As Double

 ' this routine adds up the amounts owing by customers
 ' in California
 ' ---
 Call vxFilter("(.NOT. deleted()) .AND. (state = 'CA')")
 CalifTotal = 0
 j% = vxTop()
 Call vxSum("amtowing", CalifTotal)
 TotalBox.text = Format$(CalifTotal, "#######0.00")
 vxFilterReset

See Also

vxBrowse
vxFilter

vxBase Page 157

vxFormFrame

Declaration
Declare Sub vxFormFrame Lib "vxbase.dll" (Hwnd As Integer)

Purpose
Draw a three dimensional frame inside the bounds of a form.

Parameters
Hwnd is the hWnd property of an active Visual Basic form.

Returns
Nothing.

Usage
Use in conjunction with vxCtlStyle to produce metallic, three-

dimensional forms. The frame is drawn in gray scales that complement
the look of control boxes enhanced with vxCtlStyle. Applicable to VGA
and SVGA monitors only.

Always use the Visual Basic Refresh method in the Form_Resize event
procedure to eliminate the old frame before a new one is drawn if the
user has the ability to resize the form.

Example
Sub Form_Paint ()
 Call vxFormFrame(VXFORM2.hWnd)
 Call vxCtlStyle(TypeCode, VX_RECESS)
 Call vxCtlStyle(TypeDesc, VX_RECESS)
 Call vxCtlStyle(TypeStatus, VX_RAISE)

 ' if delete request from browse, do it now
 ' because we must let enhanced controls
 ' paint before asking for delete confirmation
 ' --
 If TypeReturn = BROWSE_DELETE Then
 TypeDelete_Click
 End If
End Sub

Sub Form_Resize ()
 VXFORM2.Refresh
End Sub

See Also
vxCtlGrayReset
vxCtlGraySet
vxCtlStyle

vxBase Page 158

vxFound

Declaration
Declare Function vxFound Lib "vxbase.dll" () As Integer

Purpose
Test the status of the last vxSeek or vxSeekSoft on the selected

database.

Parameters
None.

Returns
TRUE if the last seek on the file resulted in a find, and false if

not.

Usage
Even though vxSeek and vxSeekSoft immediately return the result of

the operation, there are times when you want to know what the result of
the last seek was well after the fact of the seek. Instead of saving
the seek result in a variable, you can interrogate the status with
vxFound. vxFound acts as a sort of global variable that retains the
status of the last seek. It can even be interrogated from a module
other than the one that issued the seek,

If the file is closed and then reopened, the status of the last seek
is of course lost.

Example
 j% = vxSeek("ABCDEF")
 Call ChangeStatus
 If vxFound() Then
 UpdateProc
 Else
 AddProc
 End If

See Also
vxSeek
vxSeekSoft

vxBase Page 159

vxGetVersion

Declaration
Declare Function vxGetVersion lib "vxbase.dll" () As String

Purpose
Get a string containing the vxBase version number.

Parameters
None.

Returns
A Visual Basic String (or ASCIIZ string if vxSetString is 1) that

contains the current vxBase version number.

Usage
It would be nice if you had a text box on your ABOUT form that

displayed this number to aid vxBase tech support.

Example
 VerBox.text = "vxBase Version " + vxGetVersion()

vxBase Page 160

vxGo

Declaration
Declare Function vxGo Lib "vxbase.dll" (ByVal RecNum As Long) As

Integer

Purpose
Position the record pointer to the defined record and read the

record into the work buffer.

Parameters
RecNum is the physical record number to go to in the currently

selected database.

Returns
TRUE if the operation was successful, or FALSE if not. FALSE will be

returned if the record number is invalid, or if the record was locked
by another user and the current user answered "NO" to the retry query.
If FALSE is returned, the status of the record pointer and the data
buffer are undefined.

Usage
This command is especially important in a multiuser environment. The

current record number is usually saved prior to collecting edit data
from a record and then the record is unlocked to allow other users to
access it. After the edit operation, the record pointer is repositioned
to the saved record number and the record is updated.

vxGo will find deleted records and records that don't satisfy a
filter condition. In other words, if the record number is valid, it
becomes the current record.

Multiuser Considerations
The record gone to is locked if vxSetLocks is TRUE (the default).

Example
 ' multiuser update example
 ' ------------------------
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

vxBase Page 161

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

See Also
vxRecNo
vxSeek
vxSeekSoft
vxSetLocks
vxSkip

vxBase Page 162

vxInit

Declaration
Declare Sub vxInit Lib "vxbase.dll" ()

Purpose
Register the current task with the vxBase DLL. If this is the first

vxBase task, it controls the database shareable memory. If more than
one vxBase task is running at the same time, only the first task
allocates memory for use by all other tasks. It is necessary to
register each vxBase task to ensure that the controlling task is not
unloaded before any other vxBase task.

Parameters
None.

Returns
Nothing.

Usage
This procedure must be called before any other vxBase stetment is

made (usually in the Form_Load procedure of your first form). It is
used in conjunction with vxDeallocate to ensure that multitasking
memory management flows smoothly. See the Multitasking and Multiuser
Considerations section for more information.

Example
 Sub Form_Load()
 vxInit
 vxCtlGraySet
 End Sub

See Also
vxDeallocate

vxBase Page 163

vxInteger

Declaration
Declare Function vxInteger Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Extract the defined field and convert the contents to an integer.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
An integer representing the contents of the field.

Usage
This function obviously works on numeric fields. If the field

contains decimals, they are truncated. If the value of the field is
greater than the integer maximum, the result is anybody's guess. This
function also works on character fields that contain numbers.

Integer range is -32,768 to 32,767.

Example
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If

See Also

vxField
vxLong
vxReplInteger
vxSetAlias

vxBase Page 164

vxIsMemo

Declaration
Declare Function vxIsMemo Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Determine whether there is a memo attached to the defined field.

Parameters
FieldName is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
TRUE if there is a memo in the .dbt file, and FALSE if not.

Usage
Could be used to determine whether or not to display a memo for

editing.

Example
 If vxIsMemo("a_memo") Then
 SaveRec& = vxRecNo()
 Call vxMemoEdit(VXFORM2.hWnd, "a_memo")
 vxGo(SaveRec&)
 End If

See Also
vxMemoEdit
vxSetAlias

vxBase Page 165

vxIsRecLocked

Declaration
Declare Function vxIsRecLocked Lib "vxbase.dll" () As Integer

Purpose
Determine if the current record is locked or not.

Parameters
None.

Returns
TRUE if the record is locked and FALSE if not locked.

Usage
Test if a record is locked or not before attempting an update.

Example
 ' wait until rec is free before update
 ' ------------------------------------
 Do While TRUE
 If Not vxIsRecLocked() Then
 j% = vxLockRecord
 vxReplString("field1", (Text1.text))
 j% = vxWrite()
 j% = vxWriteHdr()
 j% = vxUnlock
 Exit Do
 End If
 Loop

See Also

vxLockDbf
vxLocked
vxLockRecord
vxSetLocks
vxUnLock

vxBase Page 166

vxJoin

Declaration
Declare Sub vxJoin Lib "vxbase.dll" (ByVal DbfArea As Integer, ByVal

NtxArea As Integer, ByVal JoinExpr As String, ByVal KeyType As Integer,
ByVal JoinTitle As String)

Purpose
Define a visual join window. This is truly one of the most exciting

features of vxBase. You can set up chains of visual relationships that
are activated through a vxBrowse window. In the sample application, the
LINK menu items give you a taste of the possibilities.

xBase programmers will recognize this function as a variation on the
SET RELATION TO command. We aren't limited to many to one
relationships, however. We can go from one to many to many to one ad
infinitum (or at least as far as our system will allow in terms of open
files).

Parameters
DbfArea is the select area of an open database that will be joined

to the currently selected database when its vxBrowse is activated.

NtxArea is the index to use with DbfArea. It also must be open. The
file being joined to must be indexed, and an index expression must be
able to be formed out of the field elements of the current database. We
are in fact setting up a relationship between the current database and
the database we are defining with this function.

JoinExpr is a valid xBase expression that defines the field or
expression (both of which must contain field elements from the current
database) that we will use to institute the join. Alias field
qualifiers are NOT allowed in JoinExpr.

KeyType is one of the Global constants VX_FIELD or VX_EXPR that are
defined in vxbase.txt. If the JoinExpr is simply a field, we use
VX_FIELD; if an expression, we use VX_EXPR. We define this value to
speed up the linking operation. If the join item is only a field, much
less processing occurs when we institute the join.

JoinTitle is the caption of the joined window.

Returns
Nothing. We are attaching the join definition to the current

database descriptor block and it will only take effect when we vxBrowse
the current file.

Usage
Suppose we have a customer file that we will use as the parent

browse window to our joins. We will define a table to limit the fields
displayed in the window and then set up a join to a subledger file. The
subledger file contains many records, each of which contains a customer
code and invoice number as the key. There could be many records for
each customer. We open the subledger file and also define a table to
limit its browse. This browse will be activated when the user selects
JOIN from the vxBrowse menu bar attached to the customer browse table.

vxBase Page 167

When we define the join for the customer file, we use the customer
code field as key into the subledger file. This is the common element.
When the join is activated by the user, a window opens that contains
nothing but the subledger records belonging to the customer who is
currently highlighted in the parent window. If we move the pointer in
the parent window to another record, then his subledger records
magically appear in the join window.

We could go on with more joins. For example, while we were defining
the table for the subledger, we could have set up another join to an
invoice file that contains the details of each invoice contained in the
subledger summary. Now, the user could pick invoices (which would be
the key from the subledger to the invoice file) from the second window
and watch their details appear in a third window.

The invoice details might contain a reference to an inventory code
number. There is nothing stopping us from defining another join to the
inventory file from the invoices file. Lots of possibilities, right?

When setting up a join sequence, it makes logical sense to start
with the lowest file in the join totem. It won't have a join to another
file. Open it, declare a table, and proceed to the next lowest file in
the hierarchy. If you are only joining two files, you can set up as in
the example below.

Note that if onscreen editing is enabled in the parent window, it
only applies to items on the parent window. You cannot perform onscreen
editing on joined windows.

Example
Sub LinkBuyToSell_Click ()
 ' Demonstration of setting up visual relationships
 ' with the vxJoin command. What we have is a file of buyers
 ' categorized by type of aircraft they are interested in.
 ' What we are going to do is display a browse table of
 ' these buyer records and link any buyer record to
 ' another browse table of aircraft that match the the
 ' buyer aircraft type field.

 ' Conversely, the LinkSellToBuy proc does the opposite.
 ' It links the aircraft with all prospective buyers.
 ' --

 ' open file that will control the join
 ' ------------------------------------
 AirbuyerDbf = vxUseDbf("\vb\vxbtest\airbuyer.dbf")
 Airbuy2Ntx = vxUseNtx("\vb\vxbtest\airbuy2.ntx")
 ' this index is on aircraft type
 ' ------------------------------

 ' define table to show data we are interested in
 ' --
 Call vxTableDeclare(VX_BLUE, ByVal 0&, ByVal 0&, 0, 1, 5)
 Call vxTableField(1, "Type", "b_cat", VX_FIELD)
 Call vxTableField(2, "Description", "left(b_desc,20)",

vxBase Page 168

 VX_EXPR)
 Call vxTableField(3, "Low", "b_low", VX_FIELD)
 Call vxTableField(4, "High", "b_high", VX_FIELD)
 Call vxTableField(5, "Customer", "b_code", VX_FIELD)

 ' now open secondary file and define its table
 ' --
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 j% = vxSelectDbf(AirbuyerDbf)
 j% = vxClose()
 Exit Sub
 End If
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

vxBase Page 169

 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 5)
 Call vxTableField(1, "Type", "c_cat", VX_FIELD)
 Call vxTableField(2, "Code", "c_code", VX_FIELD)
 Call vxTableField(3, "Price", "c_price", VX_FIELD)
 Call vxTableField(4, "Year", "c_year", VX_FIELD)
 Call vxTableField(5, "TTSN", "c_ttsn", VX_FIELD)

 ' reselect the master file and set up the join
 ' --
 j% = vxSelectDbf(AirbuyerDbf)
 Call vxJoin(AircraftDbf, Aircraf2Ntx, "b_cat", VX_FIELD,
 "Possible Sales")

 ' this joins the Aircraft file using the index selected
 ' for it to the buyer file. The "b_cat" param is the
 ' field we will use as a key into the aircraft file and
 ' the VX_FIELD item tells vxBase that it is a field and
 ' not an expression. The last item in the call is a
 ' title for the join window.
 ' --

 ' now set up and execute the browse. The JOIN menu item
 ' is automatically enabled.
 ' --
 Call vxBrowse(VXFORM1.hWnd, AirbuyerDbf, Airbuy2Ntx,
 FALSE, TRUE, FALSE, 0, "Buyer Details",
 BuyerReturn)

 ' when we return from the browse we can ignore anything
 ' vxBase sent back to us in the BuyerReturn param
 ' ---
 j% = vxClose()
 j% = vxSelectDbf(AircraftDbf)
 j% = vxClose()

 ' we could get fancy and get the customer record if the
 ' use hit enter and then display or edit it. Do
 ' whatever you like.
 ' --
End Sub

See Also

vxBrowse
vxTableDeclare
vxTableField

vxBase Page 170

vxJoinNoAuto

Declaration
Declare Sub vxJoinNoAuto Lib "vxbase.dll" ()

Purpose
Declared join windows are automatically displayed when a browse

window is opened. This command inhibits the creation of the joined
window and forces the user to select the Join menu item from the browse
main menu to display joined records.

Parameters
None.

Returns
Nothing.

Usage
If the file you are joining to has little chance of getting a match

when you start the browse, it is preferable to force the user to pick
the join from the menu rather than immediately displaying a vxBase
error message box informing him that there are no records to display.

Example
 ' Join is declared above...
 ' -------------------------
 Call vxJoinNoAuto
 Call vxBrowse(VXFORM1.hWnd, AirbuyerDbf, Airbuy2Ntx,
 FALSE, TRUE, FALSE, 0, "Buyer Details",
 BuyerReturn)

See Also

vxJoin
vxJoinReset

vxBase Page 171

vxJoinReset

Declaration
Declare Sub vxJoinReset Lib "vxbase.dll" ()

Purpose
Remove a join definition from the current database descriptor block

and recover the memory.

Parameters
None.

Returns
Nothing. Affects internal parameters only.

Usage
It is only necessary to use this command if you intend to retain the

open status of the current file and perhaps issue another vxBrowse
command at some other point in your program. vxClose and vxCloseAll
automatically reset the join and recover allocated memory.

Example
 If BuyerReturn = BROWSE_ADD Then
 vxJoinReset
 AddProcedure
 End If

See Also
vxClose
vxCloseAll
vxJoin

vxBase Page 172

vxLocate

Declaration
Declare Function vxLocate lib "vxbase.dll" (ByVal XBaseExpr As

String, ByVal Direction As Integer) As Long

Purpose
Searches for a record from and including the current record position

that satisfies a logical xBase expression.

Parameters
XBaseExpr is a literal string or variable containing a valid xBase

expression. The expression must evaluate as .T. or .F..

Direction is an integer defined as a global constant in vxbase.txt.
VX_FORWARD (Value 0) tells vxLocate to search in a forward direction.
VX_BACKWARD (Value 1) skips backwards during the search.

Returns
A long integer that contains the record number of the found record

OR zero (0) if the search expression was not satisfied.

If found, the record buffer contains the found record. If not found,
the record pointer is repositioned to the record that was active before
the search.

Usage
Useful for searching a database for strings or values that are not

keyed. vxLocate initiates the search from and including the current
record position. Use vxLocateAgain to restart the same search.

Example
' We have a FIND button on a customer display form.
' When the button is clicked, we set up to solicit
' search parameters from the user and then load
' a modal form to gather the user input.
' ---
Sub FindButton_Click ()
 If RecChange = TRUE Then CustSave_Click

 VXFORM3.Enabled = FALSE
 CustReturn = 0
 SaveRec& = vxRecNo() ' save where we are

 j% = vxSelectDbf(vxClientDbf)
 j% = vxSelectNtx(vxCl1Ntx) ' index on customer serial
 j% = vxTop() ' start search from top

 ' display locate form as modal
 VXFORM5.Show 1

 ' VXFORM5 will fill in a value in our standard
 ' Browse return var CustReturn
 VXFORM3.Enabled = TRUE

vxBase Page 173

 ' if rec wasn't found or user chose not
 ' to select a found rec then CustReturn will be zero
 ' --
 If CustReturn = 0 Then
 j% = vxGo(SaveRec&)
 Exit Sub
 Else
 CustReturn = BROWSE_EDIT
 CustDataLoad
 VXFORM1.StatBar.text = "Edit record " + LTrim$(Str$(vxRecNo()))
 VXFORM3.CustCompany.SetFocus
 End If
End Sub

' ---
' VXFORM5 is a modal form that solicits locate information
' from the user. It puts a value into global var CustReturn
' that we can interrogate when we return from vxform5.
'
' VXFORM5 has the following elements:
' 1. a group box with radio buttons for each field
' that we want the user to be able to search
' a. Option1 designates company name
' b. Option2 designates the client name
'
' 2. a text box (SearchBox) that accepts a string
' that we wish to locate
'
' 3. five buttons:
' a. ButtonStart initiates the search
' b. ButtonAgain looks for another FORWARD
' c. ButtonBack looks for another BACKWARD
' d. ButtonOK accepts the results and returns
' e. ButtonCancel cancels the operation and returns
'
' 4. two text boxes in which we will display the
' found data (CompanyBox and NameBox)
' ---
Dim SearchStr As String ' global var to hold search string

' events below are in logical sequence
' (starting with Form_Load)
' ------------------------------------
Sub Form_Load ()
 j% = vxSelectDbf(vxClientDbf)
 Option1.Value = 1 ' set default to company

 ' disable buttons that shouldn't work
 ' until something has been found
 ButtonAgain.Enabled = FALSE
 ButtonBack.Enabled = FALSE
 ButtonOK.Enabled = FALSE
End Sub

vxBase Page 174

Sub Form_Paint ()
 ' register the database
 j% = vxSelectDbf(vxClientDbf)

 ' make the form pretty
 Call vxFormFrame(VXFORM5.hWnd)
 Call vxCtlStyle(Frame1, VX_RAISE)
 Call vxCtlStyle(SearchBox, VX_RECESS)
 Call vxCtlStyle(CompanyBox, VX_RECESS)
 Call vxCtlStyle(NameBox, VX_RECESS)
End Sub

Sub SearchBox_GotFocus ()
 ' user input convert to uppercase
 j% = vxCtlFormat(40, VX_UPPER, 0)
End Sub

' when user clicks the button to initiate the search...
' ---
Sub ButtonStart_Click ()
 ' ensure we have something to search for
 If SearchBox.Text = "" Then
 MsgBox "Search string required"
 Exit Sub
 End If

 ' ensure a button has been selected
 OpTotal% = Option1.Value + Option2.Value
 If Not OpTotal% Then
 MsgBox "Select a field"
 Exit Sub
 End If

 ' put single quotes around search string
 SearchStr = "'" + RTrim$((SearchBox.Text)) + "'"

 ' construct xbase expression
 If Option1.Value Then SearchStr = SearchStr + " $ upper(vxcompany)"
 If Option2.Value Then SearchStr = SearchStr + " $ upper(vxname)"
 j% = vxTop() ' always start search at top

 ' perform the search
 CustReturn = vxLocate(SearchStr, VX_FORWARD)

 ' vxLocate return will be zero if nothing found
 ' ---
 If CustReturn = 0 Then
 MsgBox "Search string not found"
 CompanyBox.Text = ""
 NameBox.Text = ""
 ButtonAgain.Enabled = FALSE
 ButtonBack.Enabled = FALSE
 ButtonOK.Enabled = FALSE
 Else
 ' if found show results in text box
 CompanyBox.Text = vxField("vxcompany")

vxBase Page 175

 NameBox.Text = vxField("vxname")

 ' and enable buttons
 ButtonAgain.Enabled = TRUE
 ButtonBack.Enabled = TRUE
 ButtonOK.Enabled = TRUE
 End If
End Sub
' user can look for next occurence (FORWARD) by
' pressing ButtonAgain
' --
Sub ButtonAgain_Click ()
 CustReturn = vxLocateAgain(VX_FORWARD)
 If CustReturn = 0 Then
 MsgBox "Search string not found"
 CompanyBox.Text = ""
 NameBox.Text = ""
 ButtonAgain.Enabled = FALSE
 ButtonBack.Enabled = FALSE
 ButtonOK.Enabled = FALSE
 Else
 CompanyBox.Text = vxField("vxcompany")
 NameBox.Text = vxField("vxname")
 ButtonAgain.Enabled = TRUE
 ButtonBack.Enabled = TRUE
 ButtonOK.Enabled = TRUE
 End If
End Sub

' user can look for previous occurence (BACKWARD)
' by pressing ButtonBack
' ---
Sub ButtonBack_Click ()
 CustReturn = vxLocateAgain(VX_BACKWARD)
 If CustReturn = 0 Then
 MsgBox "Search string not found"
 CompanyBox.Text = ""
 NameBox.Text = ""
 ButtonAgain.Enabled = FALSE
 ButtonBack.Enabled = FALSE
 ButtonOK.Enabled = FALSE
 Else
 CompanyBox.Text = vxField("vxcompany")
 NameBox.Text = vxField("vxname")
 ButtonAgain.Enabled = TRUE
 ButtonBack.Enabled = TRUE
 ButtonOK.Enabled = TRUE
 End If
End Sub

' user cancels search by pressing ButtonCancel
' --
Sub ButtonCancel_Click ()
 CustReturn = 0
 Unload VXFORM5
End Sub

vxBase Page 176

' user accepts result of search and sends
' new record number back to caller
' by pressing ButtonOK
' ---------------------------------------
Sub ButtonOK_Click ()
 Unload VXFORM5
End Sub

vxBase Page 177

' deregister window and ctlformat
' when unloading form
' -------------------------------
Sub Form_Unload (Cancel As Integer)
 vxWindowDereg (VXFORM5.hWnd)
End Sub

See Also
 vxLocateAgain

vxBase Page 178

vxLocateAgain

Declaration
Declare Function vxLocateAgain lib "vxbase.dll" (ByVal Direction As

Integer) As Long

Purpose
Searches for a record from and NOT including the current record

position that satisfies a logical xBase expression previously defined
with vxLocateAgain.

Parameters
Direction is an integer defined as a global constant in vxbase.txt.

VX_FORWARD (Value 0) tells vxLocateAgain to search in a forward
direction. VX_BACKWARD (Value 1) skips backwards during the search.

Returns
A long integer that contains the record number of the found record

OR zero (0) if the search expression was not satisfied.

If found, the record buffer contains the found record. If not found,
the record pointer is repositioned to the record that was active before
the search.

Usage
Used to continue a search that was initiated by vxLocate.

Example
See example in vxLocate documentation.

See Also
 vxLocate

vxBase Page 179

vxLockDbf

Declaration
Declare Function vxLockDbf Lib "vxbase.dll" () As Integer

Purpose
Lock the currently selected database and all of its index files.

Parameters
None.

Returns
TRUE If the operation was successful and FALSE if not. The operation

could return false if the file or any of its records is already locked
and the end user chose to abort the operation. Always test the result
before proceeding with the code that requires the exclusive use of the
file.

Usage
vxBase functions and procedures that automatically require a locked

file (such as vxPack, vxZap, etc.) are already locked. It is not
necessary to lock before performing these functions. If you require
exclusive use of a file for any reason (e.g., closing a general ledger
at the end of the year), use vxLockDbf. To unlock it, either close the
file or use vxUnlock.

Example
 If vxLockDbf() Then
 CloseTheBooks
 j% = vxUnlock()
 Else
 MsgBox "Aborting year end procedure"
 Exit Sub
 End If

See Also
vxIsRecLocked
vxLocked
vxLockRecord
vxSetLocks
vxUnlock

vxBase Page 180

vxLocked

Declaration
Declare Function vxLocked Lib "vxbase.dll" () As Integer

Purpose
Determine if the current file is locked or not.

Parameters
None.

Returns
TRUE if the file is locked and FALSE if not locked.

Usage
Test if a file is locked before executing a procedure which will

require exclusive use.

Example
 j% = vxSelectDbf(GlMaster)
 If vxLocked() Then
 MsgBox "File is locked. Try again later."
 Exit Sub
 Else
 If vxLockDbf() Then

 CloseBooks
 j% = vxUnlock()
 End If
 End If

See Also

vxIsRecLocked
vxLockDbf
vxLockRecord
vxSetlocks
vxUnlock

vxBase Page 181

vxLockRecord

Declaration
Declare Function vxLockRecord Lib "vxbase.dll" () As Integer

Purpose
Lock the current record.

Parameters
None.

Returns
TRUE if the lock was successful or FALSE if it was not.

Usage
This function could be used as a status check to ensure that the

record is indeed locked by your workstation. It would not normally be
required if vxSetLocks is TRUE (the default) because vxBase auto-
matically locks records as soon as they are read. If vxSetLocks is
FALSE, this function MUST be used before updating a record.

Example
 j% = vxGo(SaveRec&)
 DoABunchOfStuff
 If vxLockRecord() Then
 UpdateProc
 Else
 MsgBox "Sorry. Can't lock the record"
 End If

See Also

vxIsRecLocked
vxLockDbf
vxLocked
vxSetLocks
vxUnlock

vxBase Page 182

vxLong

Declaration
Declare Function vxLong Lib "vxbase.dll" (ByVal FieldName As String)

As Long

Purpose
Extract the defined field and convert the contents to a long

integer.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
A long integer representing the contents of the field.

Usage
This function obviously works on numeric fields. If the field

contains decimals, they are truncated. If the value of the field is
greater than the long integer maximum, the result is anybody's guess.
This function also works on character fields that contain numbers.

Long integer range is -2,147,483,648 to 2,147,483,647.

Example
 j% = vxGo(RecNum&)
 If OrigNum& <> vxLong("OrigRecNo") Then
 MsgBox "File has been packed"
 Call vxReplLong("OrigRecNo", vxRecNo())
 End If
 j% = vxUnlock()

See Also

vxDouble
vxField
vxInteger
vxReplLong
vxSetAlias

vxBase Page 183

vxMemoEdit

Declaration
Declare Sub vxMemoEdit Lib "vxbase.dll" (ByVal Hwnd As Integer,

ByVal FieldName As String)

Purpose
Edit an existing memo or create a new memo referenced by the

specified memo field.

Parameters
Hwnd is the hWnd property of an active Visual Basic form. This

window acts as parent to the memo window. It must be enabled and should
be big enough to accomodate a reasonable edit window (though you can of
course resize the vxMemoEdit window to whatever your heart desires).

FieldName is either a string variable or a literal string that
contains a valid memo field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
Nothing. The procedure creates a standard Windows text editing

window and puts the memo text into it. You can also create a new memo
from scratch, import standard ASCII text files into the memo window,
export the memo to a text file, copy,cut, and/or paste from and to the
clipboard. Everything you would expect (including print).

Usage
The activated memo window comes with its own menu bar. You have

plenty of options.

File Save Memo: saves the current memo into the .dbt file. If the
edited memo will not fit into the same space it formerly occupied, it
is moved to the end of the .dbt file and rewritten there. The old space
is not reclaimed. vxPack or vxCopy will compress memo files by only
writing memo blocks that have active references in the .dbf file. Note
that this menu option is disabled if the dbf file has been opened with
vxUseDbfRO (Read Only). If vxSetAnsi(TRUE) (the default), the text is
saved as ANSI characters; if FALSE, the text is converted to the OEM
character set before saving.

File Import ASCII: you may import any ASCII text file available on
your system into the memo at the current cursor postiion. A standard
Windows file pick list is presented when you choose this option,
including a full disk/directory list box. Note that this menu option is
disabled if the dbf file has been opened with vxUseDbfRO (Read Only).
If vxSetAnsi(TRUE) (the default), the file is read directly from disk
into the memo buffer; if FALSE, the text is converted from OEM to ANSI
before filling the memo buffer.

File Export ASCII: you may export the current memo to a standard
ASCII file. The file is written into the current directory. A standard
Windows file pick list is displayed when you choose this option but it
gives you no opportunity to change the directory. If vxSetAnsi(TRUE)
(the default), the buffer is written to the fiel without translation;

vxBase Page 184

if FALSE, the buffer text is converted to the OEM character set before
writing.

File Print: Prints the memo to the current Windows printer exactly
as it is shown in the memo edit window.

Edit Functions: All standard Windows editing functions along with
the standard accelerator keys are available. Items can be cut, copied,
and pasted to and from the clipboard (which means you can import things
into your memo from any application that can paste into the
clipboard!). An Undo option is also available when it is possible to
undo the last operation, as well as a Select All function and an Insert
Date function, which inserts a date and time stamp directly into the
memo at the current cursor position.

All in all this is a pretty snazzy memo editor. There are only a few
rules you have to follow to successfully edit memos, and they are fully
documented in the source code example below.

Memo File Intricacies
vxBase memos are compatible with those of Clipper and dBase

III/III+. Clipper memos are always stored with soft carriage
return/line feeds that fit the memo to the size of the text window it
was edited in. vxBase strips these soft returns and linefeeds from a
Clipper maintained memo and does not restore them. A vxBase memo always
fits the size of the window it resides in with automatic wordwrap.
Remember that a Windows window can be dynamically resized by the user
so it would be foolhardy to attempt to maintain an artficial end of
line within paragraphs.

If you edit a vxBase memo with a Clipper MEMOEDIT(), the soft
returns will be restored by Clipper so there should be no compatibility
problems in moving from one type of application to another using the
same files.

Example
 Sub CustMemo_Click ()
 ' Edit memo. Always have an ENABLED form showing to act
 ' as parent to the memo window. It also must have the
 ' focus. Copy the code below EXACTLY to ensure successful
 ' memoedits (changing the form and field names to fit
 ' your application of course)
 '--
 RecNum& = vxRecNo() ' save rec num to goto later
 VXFORM3.SetFocus ' make sure form has focus
 Call vxMemoEdit(VXFORM3.hWnd, "a_memo")
 j% = vxGo(RecNum&) ' reset rec buffer
 j% = vxUnlock() ' unlock the record

 ' The vxUnlock() is only necessary if you are working in
 ' a multiuser environment. The saving of the record
 ' number and then going to same after the memoedit is
 ' ABSOLUTELY NECESSARY. After the memo edit completes,
 ' the contents of the record buffer are undefined if the
 ' user chose not to save the memo contents.
 ' --

vxBase Page 185

End Sub

See Also
vxCopy
vxIsMemo
vxMemoRead
vxPack
vxSetAlias
vxSetAnsi

vxBase Page 186

vxMemoRead

Declaration
 Declare Function vxMemoRead Lib "vxbase.dll" (Byval FieldName As
String, ByVal LineWidth As Integer) As String

Purpose
Read a memo into a Visual Basic string.

Parameters
FieldName is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

LineWidth is the width of a formatted line that vxBase will
terminate with a carriage return-linefeed.

If LineWidth is zero (or less than 10), no formatting is performed.
This would be your option if you were simply displaying the memo
contents in a multiline text box. Visual Basic will automatically
perform word wrap within the multiline control.

If LineWidth is greater than zero then vxBase will insert a carriage
return-linefeed pair at this position (if a space happens to occupy
that position) or back up to the first space that precedes this
position and insert the CR-LF there. Hard carriage return-linefeed
pairs are left intact.

Returns
A Visual Basic string that contains the contents of the memo.

Usage
Use LineWidth = 0 to display the memo in a multiline text box. If

you wish to print the memo, use a LineWidth equal to the number of
characters you wish to print on one line. The minimum line width is 10.
If less than 10, the result will be the same as if you had passed a
zero (i.e., no formatting).

Note: If the memo contains soft carriage returns and linefeeds, they
are stripped before vxBase starts processing.

Note: Maximum memo length is 32k. You will require 64k (unformatted)
or 96k (formatted) in text buffers to retrieve a string of this length.
If you have monster memos, beware.

If you want the user to edit the contents of the memo in the text
box (instead of using vxMemoEdit), use vxMemoRepl to write the memo
string.

If vxSetAnsi(FALSE), the memo is converted from the OEM character
set to ANSI before the string is returned.

vxBase Page 187

Example
 ' Read memo into a multiline text box.
 ' Ensure that the multiline property is set
 ' to TRUE at design time (this property is
 ' read only at run time). Visual Basic will
 ' take care of word wrap for us.
 ' ---
 TextBox.Text = vxMemoRead("memofld", 0)

 ' to print the memo, we must format the
 ' lines with carriage returns and
 ' linefeeds.
 ' --------------------------------------
 MemoString$ = vxMemoRead("memofld",80)
 Printer.Print MemoString$

See Also
vxIsMemo
vxMemoEdit
vxReplMemo
vxSetAlias
vxSetAnsi

vxBase Page 188

vxMenuDeclare

Declaration
Declare Sub vxMenuDeclare Lib "vxbase.dll" (ByVal NumItems As

Integer)

Purpose
Allocate memory for a menu structure that will be attached to an

upcoming browse window for the currently selected database.

Parameters
NumItems is the number of vxMenuItem definitions that will

immediately follow this function call.

Returns
Nothing.

Usage
Used only if you wish to define and attach your own menus to a

browse window.

Allocated memory is automatically released when the file is closed
with vxClose or vxCloseAll. vxTableReset also frees menu memory.

Example
 ' Declare and build a user menu
 ' -----------------------------
 Call vxMenuDeclare(19) ' 19 items in the menu

See Also
vxBrowse
vxMenuItem
vxTableReset

vxBase Page 189

vxMenuItem

Declaration
Declare Sub vxMenuItem Lib "vxbase.dll" (ByVal MenuIndex As Integer,

ByVal MenuLev As Integer, ByVal MenuString As String, ByVal MenuType As
Integer)

Purpose
Define a menu item that belongs to the set of items declared by

vxMenuDeclare. The menu so defined by vxMenuDeclare and vxMenuItem will
be attached to an upcoming browse window for the currently selected
database.

Parameters
MenuIndex is a number from 1 to the number of items declared for

this menu by vxMenuDeclare. If the item is defined as a VX_RETURN type,
this number plus 100 and negated is returned to you in the RetVal
parameter as defined in vxBrowse if the user selects this item. For
example, if the item is defined as vxMenuItem(6, 4, "&New",
VX_RETURN), and the user selects it from the browse window, the browse
return will be -106. The return value is negated so that it does not
conflict with record numbers passed back if the user presses the ENTER
key. 100 is added so that it does not conflict with the standard return
values passed back by vxBrowse (e.g., BROWSE_CLOSED is -1 if the system
menu is used to close the browse window). When the browse window is
closed, the record pointer is always positioned at the record that was
highlighted when the close occurred.

MenuLev is a number between zero and 1 less than the number of items
declared for this menu by vxMenuDeclare. It signifies that this menu
item is attached to the sub menu defined with a MenuIndex of this
number. A MenuLev of zero refers to the top level menu attached to
every window. For example, if you wished to have the word "File" appear
on a browse menu with two items ("New" and "Open") beneath it, the menu
would be defined as follows:

Call vxMenuDeclare(3)
Call vxMenuItem(1, 0, "&File", VX_MENUHEAD)
Call vxMenuItem(2, 1, "&New", VX_RETURN)
Call vxMenuItem(3, 1, "&Open", VX_RETURN)

Item 1 ("File") would be attached to menu level 0 and appear on the
main browse window menu bar.

Item 2 ("New") is attached to the submenu defined with menu index 1.
Item 3 ("Open") is also attached to the submenu defined with menu

index 1.

You can attach submenus within submenus by defining VX_MENUHEAD
items inside of a submenu as shown in the example below (reproduced
from VXFORM1 procedure UMenu_Click in the sample application).

MenuString is the text that is to appear on the menu line. If a
separator bar is being defined (MenuType VX_SEPBAR), then a space " "
should be passed. An ampersand placed in front of a character in the
string will make that character the mnemonic for the menu item (i.e.,
it will be underlined in the menu structure).

vxBase Page 190

MenuType is the type of menu item being defined. It can be one of
three different items:

VX_MENUHEAD is a header to a submenu. Its menu index is never
returned from a browse. A complete menu structure may contain up to 64
VX_MENUHEADs. Windows doesn't set a limit to the number of nested menu
levels; however, three levels of menus (the main menu bar and two
levels of popup menus) is the deepest you will most likely want to go
for sanity's sake.

VX_RETURN is a normal, selectable item. If the user selects a
VX_RETURN item, the browse window is closed, the record pointer is
positioned at the highlighted record, and the RetVal parameter passed
to the vxBrowse function is filled with the MenuIndex of the selected
item plus 100 negated.

VX_SEPBAR is a separator bar (a line) between menu items. Items
defined as separator bars must have a MenuString passed as a single
space. A separator bar menu index is never returned from a browse.

Types defined as VX_RETURN or VX_SEPBAR must have MenuLev parameters
that point to a VX_MENUHEAD item or to MenuLev 0 (the browse window top
level menu bar).

VX_MENUHEAD, VX_RETURN, and VX_SEPBAR are all defined as Global
Constants in the vxbase.txt module.

Returns
Nothing.

Usage
Used to define your own menus on browse windows and then take action

according to the values returned.

Example
Sub UMenu_Click ()
 ' this proc shows how to set up user defined
 ' menus on a browse window and also how to
 ' define the browse window initial position
 ' --

 ' Open aircraft types file
 ' ------------------------
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 If AirtypesDbf = FALSE Then
 MsgBox "Error Opening airtypes.dbf. Aborting."
 Exit Sub
 End If
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 If AirtypesNtx = FALSE Then
 MsgBox "Error Opening airtypes.ntx. Aborting."
 j% = vxClose()
 Exit Sub
 End If

 ' Declare types table
 ' -------------------
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 2)

vxBase Page 191

 Call vxTableField(1, "Type", "category", VX_FIELD)
 Call vxTableField(2, "Description", "catname", VX_FIELD)

 ' Declare and build a user menu
 ' -----------------------------
 Call vxMenuDeclare(19) ' 19 items in the menu

vxBase Page 192

 ' the menu item params are:
 ' (1) menu index number (from 1 to whatever was declared)
 ' (2) attach this item to submenu number where 0 is the
 ' top level browse menu and any other number must
 ' refer to a menu index that was defined as VX_MENUHEAD
 ' (3) the menu string. An ampersand in front of a character
 ' will make that character the mnemonic. If a VX_SEPBAR
 ' is being defined, pass a space " "
 ' (4) the menu item type as defined in the global module
 ' where VX_MENUHEAD is a submenu header,
 ' VX_SEPBAR is a separator bar, and
 ' VX_RETURN is a returnable item
 '
 ' If any item is selected from the browse that is defined
 ' as VX_RETURN, the RetVal parameter passed to vxBrowse
 ' will contain the value of the menu index number plus 100
 ' and negated (e.g., menu item 6 below will return -106).
 ' The record pointer will be positioned at the record that
 ' was highlighted when the return was made. If the user
 ' presses the ENTER key in the browse, the RetVal will
 ' contain the record number that was highlighted when ENTER
 ' was pressed.

 ' the first menu item will set up a submenu on the
 ' browse table top level menu (Attach to item 0)
 Call vxMenuItem(1, 0, "&File", VX_MENUHEAD)

 Call vxMenuItem(2, 1, "&New", VX_RETURN)
 ' the item above is attached to the submenu defined as item 1

 Call vxMenuItem(3, 1, "&Open", VX_RETURN)
 Call vxMenuItem(4, 1, "&Save", VX_MENUHEAD)
 ' the item above creates another submenu within the File menu

 Call vxMenuItem(5, 4, "&Old", VX_RETURN)
 Call vxMenuItem(6, 4, "&New Name", VX_RETURN)
 ' the items above are under the sub menu defined as item 4)

 Call vxMenuItem(7, 1, " ", VX_SEPBAR)
 Call vxMenuItem(8, 1, "&Print", VX_RETURN)
 Call vxMenuItem(9, 1, " ", VX_SEPBAR)
 Call vxMenuItem(10, 1, "E&xit", VX_RETURN)

 ' now we'll set up another menu on the top level browse menu
 Call vxMenuItem(11, 0, "&Edit", VX_MENUHEAD)

 ' and attach items to menu number 11 below it
 Call vxMenuItem(12, 11, "Undo", VX_RETURN)
 Call vxMenuItem(13, 11, " ", VX_SEPBAR)
 Call vxMenuItem(14, 11, "Cu&t", VX_RETURN)
 Call vxMenuItem(15, 11, "&Copy", VX_RETURN)
 Call vxMenuItem(16, 11, "&Paste", VX_RETURN)
 Call vxMenuItem(17, 11, " ", VX_SEPBAR)
 Call vxMenuItem(18, 11, "Cl&ear", VX_RETURN)
 Call vxMenuItem(19, 11, "&Delete", VX_RETURN)

vxBase Page 193

 ' The proc below will set up an initial position
 ' for the browse window
 ' ---

vxBase Page 194

 Call vxBrowsePos(10, 5, 50, 15)
 ' the coordinates are in familiar character and line
 ' units. The first param is x (characters in from left),
 ' the second param is y (lines down from top), the third
 ' param is the width of the window in characters, and the
 ' last param is the window height in lines

 ' if the user moves or sizes the window, and subsequent
 ' vxBrowse calls are made without an intervening close of the
 ' file, the window will retain its last position and size.

 ' now we set up the browse
 ' ------------------------
 TypeReturn = 0
 VXFORM1.UMenu.Enabled = FALSE

 j% = vxSelectDbf(AirtypesDbf)
 j% = vxSelectNtx(AirtypesNtx)

 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx, TRUE, TRUE,
FALSE, 0, "Aircraft Types", TypeReturn)
 ' Note that the EDIT menu parameter should be FALSE if you
 ' are defining your own menus.

 MsgBox "Value returned from browse was " + Str$(TypeReturn)

 j% = vxClose()
 VXFORM1.UMenu.Enabled = TRUE
End Sub

See Also

vxBrowse
vxMenuDeclare

vxBase Page 195

vxNtxCurrent

Declaration
Declare Function vxNtxCurrent lib "vxbase.dll" () As Integer

Purpose
Get the current index select area.

Parameters
None.

Returns
An integer pointing to the active index for the currently selected

dbf. This integer is the same one returned by vxUseNtx when the file
was opened.

FALSE (zero) is returned if there is no active index or if any other
error occurs (such as no current dbf selected).

Usage
The programmer can let the user pick an active index from a list of

indexes. In this case, you never know exactly what index is the current
selection. If you have to find out, this is the function to use.

Example
 ' put current index name in text box
 ' ----------------------------------
 NtxNameBox.text = RTrim$(vxNtxName(vxNtxCurrent()))

See Also
 vxAreaNtx
 vxNtxExpr
 vxNtxName
 vxSelectNtx
 vxUseNtx

vxBase Page 196

vxNtxDeselect

Declaration
Declare Function vxNtxDeselect Lib "vxbase.dll" () As Integer

Purpose
Temporarily turn off index ordering on the currently selected file.

Parameters
None.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
If or any reason you wish to revert to record number ordering use

this command. Any open indexes attached to the file remain open and
unlocked. As soon as one of the indexes is selected again, index
ordering is resumed.

This function is handy if you are skipping through a file record by
record and changing key values. If index ordering is on, once a field
has been changed that affects the selected index, the next skip will
probably take you to a place you don't want to go. With vxNtxDeselect
you can change fields that affect keys at will, reselect an index, and
then reindex the file without having to close and then reopen all of
the index files.

Example
 If vxNtxDeselect() Then
 ChangeKeyValues
 j% = vxSelectNtx(BuyerNtx)
 j% = vxReindex()
 End If

See Also

vxSelectNtx
vxUseNtx

vxBase Page 197

vxNtxExpr

Declaration
Declare Function vxNtxExpr Lib "vxbase.dll" (ByVal NtxArea As

Integer) As String

Purpose
Extract the index expression for the specified, open index.

Parameters
NtxArea is the select area of an index file returned by vxUseNtx or

vxAreaNtx.

Returns
A Visual Basic string that contains the expression used to create

the specified index.

Usage
Especially useful in creating files at run time that are copies of

existing files and that are to be indexed in the same way.

Example
 If Not vxCopyStruc(BatchName$) Then
 MsgBox "Error in batch file creation"
 j% = vxClose()
 Exit Sub
 Else
 ' now create index same as master file
 ' ------------------------------------
 IndexExpr$ = vxNtxExpr(TrMasterNtx%)
 If Not vxCreateNtx(BatchName$, IndexExpr$) Then
 MsgBox "Error in index creation"
 Kill FileSpec$
 j% = vxClose()
 Exit Sub
 End If
 End If

See Also
vxCreateNtx
vxNtxName
vxUseNtx

vxBase Page 198

vxNtxName

Declaration
Declare Function vxNtxName Lib "vxbase.dll" (ByVal NtxArea As

Integer) As String

Purpose
Extract the name of the specified index file as it was passed to the

vxUseNtx function.

Parameters
NtxArea is the select area of an index file returned by vxUseNtx or

vxAreaNtx.

Returns
A Visual Basic string that contains the name of the file.

Usage
Used to head forms or reports.

Example
 ' display index items
 ' -------------------
 NtxName.text = vxNtxName(BuyerNtx)
 NtxExpr.text = vxNtxExpr(BuyerNtx)

See Also

vxAreaNtx
vxNtxExpr
vxUseNtx

vxBase Page 199

vxNtxRecNo

Declaration
Declare Function vxNtxRecNo lib "vxbase.dll" () As Long

Purpose
Get the ordinal position of the current key in the active index for

the current dbf.

Parameters
None.

Returns
A long integer that describes the ordinal position of the current

dbf record in the active index. FALSE (zero) is returned if an error
occurs. If FALSE, the index pointer MAY be invalid. It is the
programmer's responsibility to trap the error and reposition if
necessary.

Usage
Primarily used to position a vertical scroll thumb when building a

scrollable list of dbf records. The physical position of the record in
the database probably bears little relation to its logical position in
the index.

 NOTE: This number is calculated by moving through the btree in
reverse sequence from the current position until the first index entry
is reached (maintaining a count all the while). After the current
position is ascertained, the index pointer is moved back to the
original position.

If the dbf file contains more than 5,000 records, or if the keys are
inordinately large, this function can consume a great deal of time.

Example
 j% = vxSelectDbf(TestDbf)
 j% = vxGo(vxNumRecs()/2)

 ' display dbf record number
 ' and then ntx record number
 debug.print vxRecNo()
 debug.print vxNtxRecNo()

See Also
 vxRecNo

vxBase Page 200

vxNumRecs

Declaration
Declare Function vxNumRecs Lib "vxbase.dll" () As Long

Purpose
Extract the number of records in the current database file.

Parameters
None.

Returns
A long integer containing the number of records in the file. This

includes logically deleted records.

Usage
Generally used as a FOR loop counter when you wish to process every

record in the file or as a statistic to determine the approximate size
of the file.

Example
 HeadSize& = (vxFieldCount() * 32) + 34
 FilSize& = (vxNumRecs() * vxRecSize()) + HeadSize&
 FileSize.text = Format$(FilSize&, "#,###,###,###")

See Also

vxFieldCount
vxRecSize

vxBase Page 201

vxPack

Declaration
Declare Function vxPack Lib "vxbase.dll" (ByVal Hwnd As Integer) As

Integer

Purpose
Remove all logically deleted records from the file and reindex.

Parameters
Hwnd is the hWnd property of an active Visual Basic Form. This

window acts as parent to a window that displays a meter bar signifying
the progress of the pack visually and in percentage complete.

Returns
TRUE if the operation was successful and FALSE if not. Always

returns FALSE if the file has been opened with vxUseDbfRO. After the
pack is complete, A meter bar will be displayed that charts the
progress of the rebuilding of the indexes. If memos are attached to the
dbf, a third meter bar is displayed that shows you how the memo
compression is coming along.

Meters bars are only displayed if vxSetMeters is TRUE (the default).

Usage
A file maintenance item that packs all files in your application

should be a standard feature of any xBase application.

Please ensure that ALL index files that belong to the dbf being
packed are open.

Once a file has been packed, deleted records are no longer available
for recall.

If a memo file is attached to the file being packed, it is also
packed after the deleted records are removed. A temporary file with the
same name as the .dbf but with an extension of .$$$ is created. Every
record is analyzed for the presence of valid memo block references and,
if any are found, the old memo is copied to the new .$$$ memo file.
Invalid memo blocks (which usually abound in xBase memo files) are not
copied to the new file. At end of file, the old memo file is erased and
the .$$$ file is renamed with the standard memo file .dbt extension.

If there is not enough space on the drive to hold a file of the same
size as the old memo file, the memo file is not packed.

Always use vxAreaDbf to ensure that the file is not open in any
active task before commencing the pack operation.

Multiuser Considerations
The dbf and its indexes are locked for the duration of the

operation.

vxBase Page 202

Example
 ' removes logically deleted records
 ' and reindexes
 ' --

 ' make sure file isn't open
 ' -------------------------
 j% = vxAreaDbf("\vb\vxbtest\airtypes.dbf")
 If j% = FALSE Then
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 j% = vxPack(VXFORM1.hWnd)
 j% = vxClose()
 End If

See Also
vxAreaDbf
vxCopy
vxDeleteRec
vxSetMeters

vxBase Page 203

vxPrinterDefault

Declaration
Declare Function vxPrinterDefault lib "vxbase.dll" () As String

Purpose
Retrieve the Windows default printer string in a format suitable

for setting the default printer with vxPrinterSelect.

Parameters
None.

Returns
A Visual Basic String (or ASCIIZ string if vxSetString is 1) that

contains a string that may be used by vxPrinterSelect to set the
default Windows printer.

The format of the string returned is
PRINTER NAME,DRIVER,PORT:

Usage
Used to display the current default printer, and to re-set the

default printer if it is changed with vxPrinterSelect.

Example
 ' display the default printer
 ' ---------------------------
 PrinterBox.Text = vxPrinterDefault()

See Also
 vxPrinterEnum
 vxPrinterSelect
 vxSetupPrinter

vxBase Page 204

vxPrinterEnum

Declaration
Declare Function vxPrinterEnum lib "vxbase.dll" (ByVal PIndex As

Integer) As String

Purpose
Enumerate printers as defined in the WIN.INI file and retrieve a

string suitable for setting the default printer with vxPrinterSelect.

Parameters
PIndex is an index number of the printer you wish to enumerate.

Returns
A Visual Basic String (or ASCIIZ string if vxSetString is 1) that

contains a string that may be used by vxPrinterSelect to set the
default Windows printer.

The format of the string returned is
PRINTER NAME,DRIVER,PORT:

If a single space is returned, there are no more printers to be
found.

Usage
Would normally be used in a loop to enumerate the printers into a

list box so the user could select the printer he wished to make
current.

Example
' --
' the following is taken from the sample app VYFORM1
'
' VYFORM1 contains:
' 1. a listbox named PrinterList
' 2. a button to set the default named SelectButton
' 3. an Exit button named ExitButton
' 4. a text box named PrinterBox to display the
' selected printer
' all of the code for VYFORM1 is shown below
' --

' ------------------------------------
' unload form when exit button clicked
' ------------------------------------
Sub ExitButton_Click ()
 Unload VYFORM1
End Sub

' ---------------------------------------
' when form is loaded, enumerate printers
' and put in list box
' ---------------------------------------
Sub Form_Load ()

 ' display the default printer

vxBase Page 205

 ' ---------------------------
 PrinterBox.Text = vxPrinterDefault()

 j% = 1 ' the printer index
 PrinterOk% = TRUE
 Do
 PrinterName$ = vxPrinterEnum(j%)

vxBase Page 206

 ' all printers enumerated when vxPrinterEnum
 ' returns a single space
 ' --
 If PrinterName$ = " " Then
 PrinterOk% = FALSE
 Else
 PrinterList.AddItem PrinterName$
 j% = j% + 1
 End If
 Loop Until Not PrinterOk%
End Sub

' --------------------
' make the form pretty
' --------------------
Sub Form_Paint ()
 Call vxFormFrame(VYFORM1.hWnd)
 Call vxCtlStyle(PrinterBox, VX_RECESS)
 Call vxCtlStyle(PrinterList, VX_RAISE)
End Sub

' --
' if user resizes form, get rid of old frame
' --
Sub Form_Resize ()
 VYFORM1.Refresh
End Sub

' ----------------------------------
' if user double clicks a selection,
' emulate select button press
' ----------------------------------
Sub PrinterList_DblClick ()
 SelectButton_Click
End Sub

' ----------------------------------
' if user selects a printer, display
' it in PrinterBox and also set the
' default printer
' -----------------------------------
Sub SelectButton_Click ()
 PrinterBox.Text = PrinterList.Text

 ' change the default printer
 ' --------------------------
 If vxPrinterSelect((PrinterBox.Text)) Then
 MsgBox "Default printer changed!"
 Else
 MsgBox "Error in Printer Name"
 End If
End Sub

See Also
 vxPrinterDefault
 vxPrinterSelect

vxBase Page 207

 vxSetupPrinter

vxBase Page 208

vxPrinterSelect

Declaration
Declare Function vxPrinterSelect lib "vxbase.dll" (ByVal PrinterName

As String) As Integer

Purpose
Select a new Windows default printer.

Parameters
PrinterName is a structured string used to set the default printer.

It is of the form
PRINTERNAME,DRIVERNAME,PORT:

For example,
EPSON LQ-500,EPSON24,LPT1:

A structured string that may be used to select a printer may be
obtained with function vxPrinterEnum.

Returns
TRUE if a new printer has been correctly selected (or if the select

string matches the current default printer already). FALSE is returned
if the string does not match any printer that vxBase enumerates
internally from the [devices] section of the WIN.INI file.

Usage
Allow the user to select a new printer without the need to bring up

the Windows Control Panel.
The printer select string would normally be obtained from the user

through a list box built with the vxPrinterEnum function.

Example
See the example in vxPrinterEnum for a complete routine that lets

the user select a new printer.

See Also
 vxPrinterDefault
 vxPrinterEnum
 vxSetupPrinter

vxBase Page 209

vxRecall

Declaration
Declare Function vxRecall Lib "vxbase.dll" () As Integer

Purpose
Remove the deleted flag from the current record.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. Always

returns FALSE if the file has been opened with vxUseDbfRO.

Usage
Undelete a record that was perhaps mistakenly deleted.

Example
 If vxDeleted() Then
 j% = MsgBox("Record deleted. Recall?", 52)

 If j% = 6 Then
 If vxRecall() Then
 UpdateRec
 End If
 End If
 End If

See Also

vxCopy
vxDeleted
vxDeleteRec
vxPack

vxBase Page 210

vxRecNo

Declaration
Declare Function vxRecNo Lib "vxbase.dll" () As Long

Purpose
Extract the physical record number of the current record.

Parameters
None.

Returns
A long integer that contains the current record number.

Usage
Normally used to save a record number, unlock the record, perform

some operation on the data from that record that has perhaps been
stored in form controls, and then go back to that record and update it.

vxRecNo MUST be used in this fashion when editing a memo.

Example
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

See Also

vxGo
vxMemoEdit
vxSkip

vxBase Page 211

vxRecord

Declaration
Declare Function vxRecord Lib "vxbase.dll" (RecStruct As Any) As

Integer

Purpose
Copy the contents of the record buffer to a data structure or fixed

length string.

Parameters
RecStruct is a defined record structure or a predimensioned fixed

string.

Returns
TRUE if the copy was successful. Otherwise, it is FALSE. A FALSE

condition can occur if there is no selected database or if the current
record number is invalid (e.g., skip past end of file).

Usage
Use to fill a record structure defined in the global module or to

fill a fixed string variable with the complete contents of the record
buffer. If you are defining a fixed string to hold the result of
vxRecord, ensure that it is long enough to hold the entire record
(including the deletion flag field).

vxRecord MUST be used to extract the contents of a character field
that has a length exceeding 255.

All xBase data is saved on disk in character format. Numeric fields
are saved as right justified numbers. Date fields are stored as
CCYYMMDD. Memo fields are ten digit numbers that refer to the relative
block number of the memo in the .DBT file. The first character in the
record is a delete flag ('*' if deleted, blank if not).

If you use the vxRecord function, you are responsible for using the
native language data conversion functions to convert numbers and dates
to formats that the language can understand. Alternatively, you could
define a record structure, fill it with the vxRecord function, and use
only those elements that are defined as Character fields. vxBase
functions such as vxDouble and vxDateFormat could still be used to
convert the xBase ASCII data to numbers and dates. For a complete
example of vxRecord usage, see the VXFORM8 code in the sample
application.

Records extracted with vxRecord may be replaced with vxReplRecord.

vxRecord may also be used to extract data for languages other than
Visual Basic. For example, Realizer users could define a string and
pass the address of that string to the vxRecord function.

EXTERNAL "vxbase.dll" FUNC vxRecord(POINTER) As INTEGER

RString = String$(50, 0)
j = vxRecord(RString)

vxBase Page 212

Field elements can then be extracted with the MID$ function.

If languages other than Visual Basic are used, remember to use the
vxSetString(1) function as the first call to vxBase in your program.
This will ensure that a pointer to a standard ASCIIZ string is passed
from all vxBase functions that return strings instead of creating
Visual Basic variable length strings.

If you wish to use a string instead of a typedef in Visual Basic,
call the function as follows:

Buff$ = String$(512,0) ' string long enough to hold record
j% = vxRecord(ByVal Buff$)

Example
' Record structure is defined in the global module
' --

' --
' define types file record structure for
' use in vxform8 and the vxRecord function
' --
Type CatRec
 cDelFlag As String * 1
 Category As String * 3
 CatName As String * 35
End Type
' note that every xbase record structure MUST begin
' with a single character deletion flag
' ---

' CODE in VXFORM8 module
' use vxRecord instead of vxField to display
' character fields
' --
Sub Form8Display ()
 Dim Crec As CatRec

 If Not vxEof Then
 If vxRecord(Crec) Then
 CatBox.text = Crec.Category
 CatNameBox.text = Crec.CatName
 Else
 CatBox.text = ""
 CatNameBox.text = ""
 End If
 End If
End Sub

See Also
vxField
vxFieldTrim
vxReplRecord
vxSetString

vxBase Page 213

vxRecSize

Declaration
Declare Function vxRecSize Lib "vxbase.dll" () As Integer

Purpose
Extract the size of the record in the currently selected database.

Parameters
None.

Returns
An integer containing the record size.

Usage
Generally used as a statistic to determine the approximate size of

the file.

Example
 HeadSize& = (vxFieldCount() * 32) + 34
 FilSize& = (vxNumRecs() * vxRecSize()) + HeadSize&
 FileSize.text = Format$(FilSize&, "#,###,###,###")

See Also
vxFieldCount
vxNumRecs

vxBase Page 214

vxReindex

Declaration
Declare Function vxReindex Lib "vxbase.dll" () As Integer

Purpose
Recreate existing open index files.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. Always

returns FALSE if the file has been opened with vxUseDbfRO.

Usage
Index files are among the most volatile files in an xBase

application. They are constantly being reorganized and parts of them
are being rewritten every time we get significant changes or record
movement in large files. For this reason they are also easily
corrupted, especially by forces beyond our control (such as power
failures, static discharges, etc.).

If records don't appear in a skip procedure or a vxBrowse table that
you KNOW are there, the index is probably corrupted. You can use the
vxTestNtx function to test the integrity of an index. Always set up a
file maintenance utility that either packs the files (which
automatically reindexes them as well) or simply reindexes.

Ensure that all index files belonging to the current database are
open.

Always use vxAreaDbf to ensure that the file is not open in any
active task.

If vxSetMeters is TRUE (the default), a meter bar window is
presented that charts the progress of the reindex routine for each
index file being recreated.

Always close the file after a reindex to ensure that all buffers are
flushed to disk.

Multiuser Considerations
The dbf and its indexes are locked for the duration of the

operation.

Example
 j% = vxAreaDbf("\vb\vxbtest\airtypes.dbf")
 If j% = FALSE Then
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 If Not vxReindex() Then
 MsgBox "Reindex unsuccesssful. Dbf corrupted."
 End If
 j% = vxClose()
 End If

vxBase Page 215

See Also

vxAreaDbf
vxPack
vxSetMeters
vxTestNtx

vxBase Page 216

vxReplDate

Declaration
Declare Sub vxReplDate Lib "vxbase.dll" (ByVal FieldName As String,

ByVal DateString As String)

Purpose
Replace an xBase date field with a Visual Basic string formatted as

per specifications below.

Parameters
FieldName is either a string variable or a literal string that

contains a valid date field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

DateString is a string representation of a date in the format dd-
mmm-yyyy.

Returns
Nothing.

Usage
Change a date field in the database. A Visual Basic serial date must

be formatted with the command Format$(SerialDate, "dd-mmm-yyyy") before
it is passed to vxBase.

All xBase data is stored in string format within the record. The
date could also be formatted with Format$(SerialDate, "yyyymmdd") and
replaced within the record with the vxReplString command. xBase dates
are stored as "yyyymmdd" internally.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' set up date strings in preparation for replace
 ' --
 RDate$ = Format$(Now, "dd-mmm-yyyy")
 If CustReturn = BROWSE_ADD Then
 CDate$ = Format$(Now, "dd-mmm-yyyy")
 Else
 CDate$ = vxDateFormat("a_cdate")
 End If

 ' Data passed. Put it away
 ' ------------------------
 CursorWait
 If CustReturn = BROWSE_ADD Then
 j% = vxAppendBlank()

vxBase Page 217

 End If

 Call vxReplString("a_code", (CustCode.text))
 Call vxReplString("a_name", (CustName.text))
 Call vxReplDate("a_cdate", CDate$)
 Call vxReplDate("a_rdate", RDate$)
 j% = vxWrite()
 j% = vxUnlock()

Example 2
 ' using vxReplString to replace date fields
 ' with ambiguous vxDateString formatted dates
 ' (see also vxReplDateString)
 ' ---
 EstDueDate.Text = vxDateString("est_due", VX_AMERICAN)
 ...
 ...
 ' Replace due date that is formatted as mm/dd/yy
 ' --
 DateStr$ = String$(9,0)
 EvStr$ = "DTOS(CTOD(" + (EstDueDate.Text) + "))"
 vxEvalString(EvStr$, DateStr$)
 vxReplString("est_due", DateStr$)

See Also

vxDateFormat
vxDateString
vxReplDateString
vxReplString
vxSetAlias
vxWrite

vxBase Page 218

vxReplDateString

Declaration
Declare Sub vxReplDateString lib "vxbase.dll" (ByVal FieldName As

String, ByVal DateString As String)

Purpose
Replace an xBase date field with a string formatted according to

country specific conventions. The default format is "mm/dd/yy"
(VX_AMERICAN).

Parameters
FieldName is either a string variable or a literal string that

contains a valid date field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

DateString is a string representation of a date in the format
defined by vxSetDate (default VX_AMERICAN mm/dd/yy). This is the same
date style used to control data entry with vxCtlFortmat and used by
vxDateString as a return value.

Returns
Nothing. If the database, date, or field name is invalid, no

replacement occurs.

Usage
Use to replace date fields that have been entered and verified under

the control of vxCtlFormat.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 Sub Form_Load ()
 MasterDbf = vxUseDbf("myfile.dbf")
 vxSetAlias("master", MasterDbf)
 vxSetDate(VX_AMERICAN)
 DateBox.Text = vxDateString("datefld", VX_AMERICAN)
 End Sub

 Sub DateBox_GotFocus ()
 j% = vxCtlFormat(8, VX_DATE, 0)
 End Sub

 Sub SaveButton_Click ()
 Call vxReplDateString("datefld", (DateBox.Text))
 j% = vxWrite()
 j% = vxWriteHdr()
 End Sub

See Also
vxCtlFormat
vxDateFormat
vxDateString
vxDbfDate

vxBase Page 219

vxReplDate
vxSetAlias
vxSetDate

vxBase Page 220

vxReplDouble

Declaration
Declare Sub vxReplDouble Lib "vxbase.dll" (ByVal FieldName As

String, DblAmount As Double)

Purpose
Replace an xBase numeric field with a Visual Basic double value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that
points to any open database.

DblAmount is a Visual Basic double value.

Returns
Nothing.

Usage
Any numeric field that contains decimal positions should be replaced

with this command.

All xBase data is stored in string format within the record. The
number could also be formatted with Format$(DoubleAmt, "#####0.00") (or
whatever data picture applies) and replaced within the record with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' replace numeric values
 ' ----------------------
 Call vxReplDouble("c_price", Val((AirPrice.text)))

 ' Vis Basic Val() function always returns a double
 ' value but is forced into the type of the assigned
 ' variable if is is other than a double
 ' ---
 NumVal% = Val((AirTTSN.text))
 Call vxReplInteger("c_ttsn", NumVal%)

 NumVal& = Val((AirSMOH.text))
 Call vxReplLong("c_smoh", NumVal&)

 j% = vxWrite() ' locks and writes
 j% = vxUnlock() ' unlocks

vxBase Page 221

See Also
vxDouble
vxReplString
vxSetAlias
vxWrite

vxBase Page 222

vxReplInteger

Declaration
Declare Sub vxReplInteger Lib "vxbase.dll" (ByVal FieldName As

String, IntAmount As Integer)

Purpose
Replace an xBase numeric field with a Visual Basic integer value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that
points to any open database.

IntAmount is a Visual Basic integer value.

Returns
Nothing.

Usage
Any numeric field that contains decimal positions should not be

replaced with this command. A Visual Basic integer is a whole number
with a range of -32,768 to 32,767. If the possible value of your field
will exceed this, use vxReplLong or vxReplDouble.

All xBase data is stored in string format within the record. The
number could also be formatted with Format$(IntegerAmt, "####0") (or
whatever data picture applies) and replaced within the record with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' replace numeric values
 ' ----------------------
 Call vxReplDouble("c_price", Val((AirPrice.text)))

 ' Vis Basic Val() function always returns a double
 ' value but is forced into the type of the assigned
 ' variable if is is other than a double
 ' ---
 NumVal% = Val((AirTTSN.text))
 Call vxReplInteger("c_ttsn", NumVal%)

 NumVal& = Val((AirSMOH.text))
 Call vxReplLong("c_smoh", NumVal&)

 j% = vxWrite() ' locks and writes

vxBase Page 223

 j% = vxUnlock() ' unlocks

See Also
vxInteger
vxReplString
vxSetAlias
vxWrite

vxBase Page 224

vxReplLogical

Declaration
Declare Sub vxReplLogical Lib "vxbase.dll" (ByVal FieldName As

String, ByVal BoolVal As Integer)

Purpose
Replace an xBase logical field with "T" or "F" depending on a

Boolean value.

Parameters
FieldName is either a string variable or a literal string that

contains the name of a valid logical type field in the current
database. FieldName may be qualified with a valid alias name that
points to any open database.

BoolVal is either FALSE (zero) or NOT FALSE (not zero). If FALSE,
the field will be replaced with "F". If NOT FALSE, the field will be
replaced with "T". Any non-zero value will result in a replacement of
"T".

Returns
Nothing.

Usage
Primarily used to replace logical fields depending on the value in

Visual Basic check boxes or radio buttons (checked = 1, unchecked = 0).

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is used that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' Replace logical fields
 ' ----------------------
 Call vxReplLogical("LogField1", (CheckBox1.Value))
 Call vxReplLogical("LogField2", (CheckBox2.Value))
 ' Note check box value is placed inside parentheses
 ' to extract the value
 ' ---

See Also
vxSetAlias
vxTrue

vxBase Page 225

vxReplLong

Declaration
Declare Sub vxReplLong Lib "vxbase.dll" (ByVal FieldName As String,

LongInt As Long)

Purpose
Replace an xBase numeric field with a Visual Basic long integer

value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that
points to any open database.

LongInt is a Visual Basic long integer value.

Returns
Nothing.

Usage
An xbase numeric field that contains decimal positions should not

be replaced with this command.

A Visual Basic long integer is a whole number that has a range of
-2,147,483,648 to 2,147,483,647. If the possible value of your field
will exceed this, use vxReplDouble.

All xBase data is stored in string format within the record. The
number could also be formatted with Format$(LongInt, "######0") (or
whatever data picture applies) and replaced within the record with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' replace numeric values
 ' ----------------------
 Call vxReplDouble("c_price", Val((AirPrice.text)))

 ' Vis Basic Val() function always returns a double
 ' value but is forced into the type of the assigned
 ' variable if is is other than a double
 ' ---
 NumVal% = Val((AirTTSN.text))
 Call vxReplInteger("c_ttsn", NumVal%)

 NumVal& = Val((AirSMOH.text))

vxBase Page 226

 Call vxReplLong("c_smoh", NumVal&)

 j% = vxWrite() ' locks and writes
 j% = vxUnlock() ' unlocks

vxBase Page 227

See Also
vxLong
vxReplString
vxSetAlias
vxWrite

vxBase Page 228

vxReplMemo

Declaration
Declare Function vxReplMemo Lib "vxbase.dll" (ByVal FieldName As

String, MemoString As String) As Integer

Purpose
Replace a memo with a Visual Basic String.

Parameters
FieldName is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

MemoString is a Visual Basic string. The memo string is usually read
into a text box with vxMemoRead. The user can then edit the string and
it can be replaced with vxReplMemo.

Returns
TRUE if the operation was successful; otherwise, FALSE. This is the

only vxRepl command that is declared as a function and that returns a
value. The memo string replaces a memo in an associated .dbt file
rather than a simple record buffer replacement. Always returns FALSE if
the associated dbf has been opened as Read Only with vxUseDbfRO.

Usage
Only use if you are gathering memo data in a Visual Basic text box

(instead of using vxMemoEdit - which is much more powerful).

If vxSetAnsi(FALSE), the string is converted to the OEM character
set before it is written to the memo file.

Example
 Dim MemoString As String
 MemoString = MemoBox.text
 j% = vxGo(RecNum&)
 If Not vxReplMemo("vxmemo", MemoString) Then
 MsgBox "Error writing memo"
 End If
 j% = vxUnlock
 j% = vxClose()

See Also
vxIsMemo
vxMemoEdit
vxMemoRead
vxSetAlias

vxBase Page 229

vxReplRecord

Declaration
Declare Sub vxReplRecord lib "vxbase.dll" (RecStruct As Any)

Purpose
Replace the contents of the internal vxBase record buffer for the

currently selected dbf with a Visual Basic record structure or string.

Parameters
RecStruct is a defined record structure or a string containing a

complete database record.

Returns
Nothing. If the current dbf is invalid, no replacement occurs.

Usage
This function is ignored if the file has been opened as Read Only

with vxUseDbfRO.

If using type definitions to describe records and to retrieve their
contents (with vxRecord), this function may be used to replace the
contents of the record buffer.

All xBase records are kept on disk as fixed length strings
containing ASCII data.

WARNING: No data validation of any kind is performed by
vxReplRecord. If using this function, all validation must be performed
by the programmer before the buffer is passed to vxReplRecord. Always
remember that all data is in ASCII format and that the first byte in an
xBase record is the deletion flag byte.

Example
 ' Record defined in Global Module
 ' --
 ' define types file record structure for
 ' use in vxform8 and the vxRecord and
 ' vxReplRecord functions
 ' --
 Type CatRec
 cDelFlag As String * 1
 Category As String * 3
 CatName As String * 35
 End Type
 ' note that every xbase record structure MUST begin
 ' with a single character deletion flag
 ' ---

vxBase Page 230

Sub ChangeDeleted ()
 Dim Crec As CatRec

 If vxDeleted() Then
 If vxRecord(Crec) Then
 CatBox.Text = Crec.Category
 CatNameBox.Text = Crec.CatName

 ' we may also replace an entire
 ' record by pointing at a defined
 ' record or string containing the record
 ' --------------------------------------
 Crec.Category = "zzz" ' if deleted, change key to hi values
 Call vxReplRecord(Crec)
 j% = vxWrite()
 j% = vxWriteHdr()
 StatBox.Text = "Key changed"
 Else
 CatBox.Text = ""
 CatNameBox.Text = ""
 EvalBox.Text = ""
 End If
 End If

End Sub

See Also
vxField
vxFieldTrim
vxRecord

vxBase Page 231

vxReplString

Declaration
Declare Sub vxChar Lib "vxbase.dll" (ByVal FieldName As String,

ByVal FieldString As String)

Purpose
Replace any xBase field with a Visual Basic string.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

FieldString is a string representation of the data.

Returns
Nothing.

Usage
Normally used to replace the contents of character fields.

All xBase data is stored in string format within the record. You may
use any Visual Basic data conversion functions that result in a string
to convert data before passing it to vxBase for replacement with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' set up date strings in preparation for replace
 ' --
 RDate$ = Format$(Now, "dd-mmm-yyyy")
 If CustReturn = BROWSE_ADD Then
 CDate$ = Format$(Now, "dd-mmm-yyyy")
 Else
 CDate$ = vxDateFormat("a_cdate")
 End If

 ' Data passed. Put it away
 ' ------------------------
 CursorWait
 If CustReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 End If

 Call vxReplString("a_code", (CustCode.text))
 Call vxReplString("a_name", (CustName.text))

vxBase Page 232

 Call vxReplDate("a_cdate", CDate$)
 Call vxReplDate("a_rdate", RDate$)
 j% = vxWrite()
 j% = vxUnlock

vxBase Page 233

See Also
vxField
vxSetAlias
vxWrite

vxBase Page 234

vxSeek

Declaration
Declare Function vxSeek Lib "vxbase.dll" (ByVal SearchKey As String)

As Integer

Purpose
Find and read the record whose index key matches the defined value.

Parameters
SearchKey is a literal string or string variable that contains the

key value you are searching for.

Returns
TRUE if the record was found and FALSE if not.

Usage
This function is a real vxBase workhorse. Most file maintenance

functions revolve around whether a particular record has a matching key
or not.

If the vxExact flag is set off (the default value), vxSeek will find
records with partial key matches. For example, to position the file to
the first record whose key field begins with the letter "A", use
vxSeek("A"). If there are no records that start with the letter "A", we
will get a FALSE return. If the search key value is not as long as the
actual key field or expression, TRUE will be returned on a partial key
match only if vxExactOff is true (either by explicitly issuing a
vxExactOff command or by never issuing a vxExactOn).

If vxExactOn has been issued, the search key must exactly match the
key field in length and content before a TRUE is returned.

If the key was found, vxFound will return true any time after the
seek (and before the next seek).

If the return is FALSE, the record pointer is undefined, the record
buffer contents are also undefined, and vxEof will return TRUE.

If a filter has been set with vxFilter, and the only record that
satisifes the seek does not satisfy the filter, the return will be
FALSE. If vxExact is OFF, and a partial key is found that satisfies
both the seek and the filter, the result will be TRUE.

Multiuser considerations
If vxSetLocks(TRUE), and if vxSeek finds a record, and that record

is locked, it will wait (forever) for the record to be released before
returning. This is as it should be because if we allow the user to
abort a seek with the standard vxBase Retry? query when a locked record
is required, the function would have to return a FALSE value. The
programmer then couldn't be sure whether the record really wasn't found
or if the user aborted because of a lock.

If a record is successfully found, that record is locked if
vxSetLocks is TRUE (the default).

vxSetLocks(FALSE) will allow a locked record to be read by another
workstation.

vxBase Page 235

vxBase Page 236

Example
Sub TypeSave_Click ()

 ' verify something in the field
 ' -----------------------------
 SeekKey$ = TypeCode.text
 If EmptyString(SeekKey$) Then
 MsgBox "Field cannot be empty"
 TypeCode.SetFocus
 j% = vxUnlock()
 Exit Sub
 End If

 ' verify unique key if adding
 ' ---------------------------
 If TypeReturn = BROWSE_ADD Then

 If vxSeek(SeekKey$) Then
 MsgBox "Duplicate Key on Add"
 TypeCode.SetFocus
 j% = vxUnlock()
 Exit Sub
 End If
 End If

 ' Data passed. Put it away
 ' ------------------------
 CursorWait
 If TypeReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 End If

 ' notice the brackets around the control property
 ' below which gets at the data contained therein
 ' --
 Call vxReplString("category", (TypeCode.text))
 Call vxReplString("catname", (TypeDesc.text))
 j% = vxWrite()

 ' Update status box
 ' -----------------
 If TypeReturn = BROWSE_ADD Then
 TypeStatus.text = "Record " + LTrim$(Str$(vxRecNo())) + " added"
 Else
 TypeStatus.text = "Record " + LTrim$(Str$(vxRecNo())) + " saved"
 End If

 ' Update Button Status
 ' --------------------
 TypeSave.Enabled = TRUE
 TypeCancel.Enabled = TRUE
 TypeAdd.Enabled = TRUE
 TypeDelete.Enabled = TRUE
 TypeReturn = BROWSE_EDIT
 j% = vxUnlock() ' ensure database unlocked
 CursorArrow

vxBase Page 237

End Sub

vxBase Page 238

See Also
vxDescend
vxExactOff
vxExactOn
vxFound
vxLocate
vxLocateAgain
vxSeekSoft
vxSetLocks

vxBase Page 239

vxSeekFast

Declaration
Declare Function vxSeekFast Lib "vxbase.dll" (ByVal SearchKey As

String) As Integer

Purpose
Perform significantly faster seeks in a known read-only environment.

Parameters
SearchKey is a literal string or string variable that contains the

key value you are looking for.

Returns
TRUE if the key was found and FALSE if not.

Usage
Use to fill grids, arrays, etc. from a file that you are only going

to be reading. vxUseDbfRO MUST be used to open the database. If the
file is not opened with vxUseDbfRO, vxSeekFast always returns FALSE.
Should only be used in loops where no user interaction is involved.

WARNING!
vxSeekFast performs little error trapping. It is the programmer's

responsibility to know the database environment when using vxSeekFast.

The following internal vxBase checks are disabled when using
vxSeekFast:
 (1) current database selection is assumed to be correct.
 (2) correct index is assumed to be selected and current.
 (3) there is no checking for changed dbf or ntx buffers (therefore
 if any changed buffers exist, they are not written and will
 be LOST. Open the file cleanly as read only and perhaps Lock it
 to stop any other users from updating it while it is in use).
 (4) No locking on the index is performed while reading.
 (5) filters are NOT respected.
 (6) vxExact status is NOT respected.
 (7) vxFound is NOT set.
 (8) vxEof is NOT necessarily TRUE if a seek is unsuccessful (unlike
 vxSeek).
 (9) If a seek is NOT successful, the contents of the record buffer
 are undefined.
 (10) Relations set with vxSetRelations are NOT respected by
 vxSeekFast.
 (11) File and record locks placed by other users are NOT respected.

vxBase Page 240

Example
 ' seek speed test
 ' ---------------
 j% = vxUseDbfRO("\ab2\abacus\sam\cluser.dbf")
 j% = vxUseNtx("\ab2\abacus\sam\cluser1.ntx")
 j% = vxTop()
 Key$ = "ABCDEFGHIJKLMNOPRSTUVWXYZ"
 Debug.Print Time$

 ' following loop does 3000 seeks
 For k% = 1 To 120
 For m% = 1 To 25
 ky$ = Mid$(Key$, m%, 1)
 If Not vxSeekFast(ky$) Then
 MsgBox "Seek failed"
 End If
 Next
 Next
 Debug.Print Time$
 j% = vxCloseAll()

See Also
 vxDescend
 vxSeek
 vxSeekSoft
 vxSetLocks

vxBase Page 241

vxSeekSoft

Declaration
Declare Function vxSeekSoft Lib "vxbase.dll" (ByVal SearchKey As

String) As Integer

Purpose
Find a record whose key field matches or partially matches the

defined search string. If the key is not found, position the record
pointer to the next highest key value.

Parameters
SearchKey is a literal string or string variable that contains the

key value you are searching for.

Returns
TRUE if a record is read into the buffer. The search key may or may

not match the key field depending on the type of find. If no record is
found, either partially matched, matched, or the record after, then
FALSE is returned.

Usage
vxSeekSoft differs from vxSeek in that a TRUE condition is returned

even if the key is not matched and there is a record with a key greater
than the search key in the file.

The following conditions apply:
(1) if partial or exact match, vxSeekSoft returns TRUE, vxFound

returns TRUE and vxEof returns FALSE.
(2) if not matched, and the record pointer is positioned to the

record with a key higher than the search key, vxSeekSoft returns TRUE,
vxFound returns FALSE, and vxEof returns FALSE.

(3) if there is no record with a higher key value, vxSeekSoft
returns FALSE, vxFound returns FALSE, and vxEof returns TRUE.

This command is especially useful for delimiting a subset of records
within a large database. Filters are inherently slow, and an internal
routine such as that shown in the example could speed up processing
enormously, given a file with a large number of records. There are
other ways to accomplish the same result, of course, but this is one of
them.

vxExactOn has no effect on vxSeekSoft.

Multiuser Considerations
If a record is found, it is locked if vxSetLocks is TRUE (the

default).

Example
 ' finds the range of records in this
 ' file that all have "ABC" as the first
 ' part of the key
 ' --------------------------------------
 SrchKey$ = "ABC"

 ' find the first record

vxBase Page 242

 ' ---------------------
 If Not vxSeek(SrchKey$) Then
 Exit Sub
 Else
 StartRec& = vxRecNo()

vxBase Page 243

 ' make the last character in the key 1 binary number
 ' greater than the actual key and do a soft seek
 ' --
 SoftKey$ = Mid$(SrchKey$,1,2) +
 Chr$(Asc(Mid$(SrchKey$,3,1)) + 1)
 j% = vxSeekSoft(SoftKey$)

 ' As long as vxEof is false, we hit something
 ' ---
 If Not vxEof() Then
 vxSkip(-1) ' back up one rec to last ABC
 EndRec& = vxRecNo()
 Else
 EndRec& = StartRec&
 End If
 ' now process the range
 ' ---------------------
 RangeProc
 End If

See Also

vxDescend
vxLocate
vxLocateAgain
vxSeek
vxSetLocks

vxBase Page 244

vxSelectDbf

Declaration
Declare Function vxSelectDbf Lib "vxbase.dll" (ByVal DbfArea As

Integer) As Integer

Purpose
Make the open database identified by the passed area handle the

current database.

Parameters
DbfArea is a valid area handle returned from vxUseDbf when the file

was opened or by vxAreaDbf.

Returns
The select area of the previously selected database or zero (0) if

there was no previously selected database. If the DbfArea parameter is
invalid, subsequent operations will be undefined (like in CRASH).

Usage
Almost every vxBase function works on the selected database only.

There is only ONE selected database at any given time, even though many
dbf files may be open. Whenever you want to work on a different
database, you must select it first.

Each database opened (with vxUseDbf) or selected (with vxSelectDbf)
while a Visual Basic form is active is automatically attached to that
window. If the user has a number of windows open, and switches between
them at will, any vxBase commands that reference a database will
automatically select the correct database. To use this automation
effectively, you MUST:

(1) select the database as the first command in the FORM_LOAD
procedure.

(2) select the database as the first command in the FORM_PAINT
procedure.

(3) use vxWindowDereg in the FORM_UNLOAD procedure.

Each of these requirements is discussed in detail in the
MultiTasking and MultiUser Considerations section.

Example
 OldDbf% = vxSelectDbf(AirtypesDbf)
 CurrRec& = vxRecNo()
 If OldDbf% > 0 Then
 j% = vxSelectDbf(OldDbf%)
 End If

See Also
vxAreaDbf
vxAreaNtx
vxDbfCurrent
vxSelectNtx
vxUseDbf
vxUseDbfRO
vxUseNtx
vxWindowDereg

vxBase Page 245

vxSelectNtx

Declaration
Declare Function vxSelectNtx Lib "vxbase.dll" (ByVal NtxArea As

Integer) As Integer

Purpose
Make the open index file identified by the passed area handle the

current index for use with the current database.

Parameters
NtxArea is a valid area handle returned by vxUseNtx when the file

was opened or by vxAreaNtx.

Returns
The select area of the previously selected index for the current

database, or zero (0) if there was no previously selected index. If the
NtxArea parameter is invalid, subsequent operations will be undefined
(like in CRASH).

Usage
Whenever an index is opened, it is automatically attached to the

current database and selected. The last index opened is therefore the
one selected for use. If there is more than one index open, the
sequencing may be changed by selecting the new index with this command.

If another database has been selected, and then the dbf that this
index belongs to is reselected, it is not necessary to also reselect
the index. The index in use will remain the same until another is
selected.

Example
 AirbuyerDbf = vxUseDbf("airbuyer.dbf")
 Airbuy1Ntx = vxUseNtx("airbuy1.ntx")
 Airbuy2Ntx = vxUseNtx("airbuy2.ntx")

 ' the current sequence is in airbuy2 order
 ' --
 DisplayBuyer

 ' change the sequence
 ' -------------------
 j% = vxSelectNtx(Airbuy1Ntx)
 DisplayBuyer

 ' now select record number order
 ' ------------------------------
 j% = vxNtxDeselect()
 DisplayBuyer

 ' and then put it back the way it was
 ' -----------------------------------
 j% = vxSelectNtx(Airbuy2Ntx)

See Also
vxAreaNtx

vxBase Page 246

vxNtxCurrent
vxNtxDeselect
vxSelectDbf
vxUseNtx

vxBase Page 247

vxSetAlias

Declaration
Declare Function vxSetAlias lib "vxbase.dll" (ByVal AliasName As

String, ByVal DbfArea As Integer) As Integer

Purpose
Create an alias name for a dbf area in order to qualify field names

used in vxBase database functions. If a fieldname is qualified with an
alias, the database the alias refers to does not have to be the
currently selected dbf.

Parameters
AliasName is a string up to 8 characters long that is used as a

field qualifier.

DbfArea is the database select area returned by vxUseDbf when the
file is opened. This select area is automatically selected whenever a
field name that is qualified with an alias is passed to a vxBase
function.

Returns
TRUE if the alias name was set up in the array of alias names.
FALSE if the operation was not successful. FALSE is returned for the

following reasons:
 (1) DbfArea does not refer to an open database.
 (2) AliasName length is zero or greater than 8.
 (3) AliasName has already been defined with a different DbfArea.
 (4) Maximum number of alias names already defined (96 for all
 concurrent vxBase tasks).

Usage
It is recommended that all vxBase functions that take a field name

as a parameter use alias names to qualify the field. In a multitasking
(or multiwindow) environment, reference to a qualified field name will
ALWAYS ensure that the correct database is selected no matter what the
task or window.

Qualified field names allow the use of multiple databases in the
program without requiring a vxSelectDbf prior to accessing the fields
from a dbf that is already open.

Field qualifiers are essential if you use vxSetRelations to combine
two or more databases into one comprehensive table.

Alias names may be used with the following vxBase functions:
vxChar vxFieldSize vxReplReplDate vxReplString
vxCtlLength vxFieldTrim vxReplDate vxSum
vxDateFormat vxFieldType vxReplDateString vxTrue
vxDateString vxIinteger vxReplDouble
vxDecimals vxIsMemo vxReplInteger
vxDouble vxLong vxReplLogical
vxEmpty vxMemoEdit vxReplLong
vxField vxMemoRead vxReplMemo

Alias names are NOT used to define join expressions (in vxJoin) or

vxBase Page 248

Browse columns with vxTableField. Browse columns that display data
joined with vxSetRelation are defined with vxTableFieldExt (for
Extended functionality) rather than vxTableField. In vxTableFieldExt
the columnar fields or expressions are qualified by passing the actual
dbf area to the function rather than by using an alias name. This
allows the use of xBase expressions when defining columns whose data
resides in the child files of a vxSetRelation.

xBase style alias names and alias names set with the vxSetAlias
function are supported within a vxBase xBase expression. The alias
names used must be set with vxSetAlias. File alias names are separated
from the field reference by "->" (classical xBase syntax) within an
xBase expression string. When alias names are used within vxBase
functions that refer to field names, a period delimiter is used instead
(to conform to Visual Basic syntax).
 For example,
 If Not vxEval("master->country = 'Canada'") Then
 MsgBox "Country does not exist"
 Else
 Country$ = vxField("master.country")
 End If

An alias name construct within a vxBase function call is of the form
"Alias.FieldName". A period delimiter is used between the alias and the
field name.

Example
Sub Form_Load ()
 ' vxSetRelations and vxSetAlias Example
 ' -------------------------------------
 ' We will skip through the Airbuyer file
 ' which has a many to one relationship with
 ' both the aircust.dbf file and the airtypes.dbf
 ' file.

 ' open child files first
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 Aircust1Ntx = vxUseNtx("\vb\vxbtest\aircust1.ntx")

 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")

 ' open parent file (has many records)
 AirbuyerDbf = vxUseDbf("\vb\vxbtest\airbuyer.dbf")
 Airbuy1Ntx = vxUseNtx("\vb\vxbtest\airbuy1.ntx")

 ' define alias names so we can use field
 ' qualifiers when extracting data
 ' --------------------------------------
 j% = vxSetAlias("buyer", AirbuyerDbf)
 j% = vxSetAlias("customer", AircustDbf)
 j% = vxSetAlias("type", AirtypesDbf)

 ' define relationship to current selection
 ' the 1st param defines the file we are setting

vxBase Page 249

 ' up the relationship to (the child file)
 ' and the second param tells vxbase how to
 ' construct a key to be used on the current
 ' index in use by the child file
 ' ---
 ErrCode% = FALSE

vxBase Page 250

 ' parent file must be the current selection
 ' when defining the relationship
 If Not vxSetRelation(AircustDbf, "b_code") Then
 MsgBox "1st relation failed"
 ErrCode% = TRUE
 Else
 If Not vxSetRelation(AirtypesDbf, "b_cat") Then
 MsgBox "2nd relation failed"
 ErrCode% = TRUE
 End If
 End If

 If ErrCode% Then
 Unload VYFORM0
 Else
 ' now when we issue vxTop(), the two related
 ' file pointers will move to match the values
 ' in the parent file key fields
 j% = vxTop()
 End If
 VYForm0Display
End Sub

' display procedure uses alias names to extract
' data rather than selecting each database
' ---
Sub VYForm0Display ()
 If Not vxEof() Then
 Bcode.text = vxField("buyer.b_code")
 Bcat.text = vxField("buyer.b_cat")
 Aname.text = vxField("customer.a_name")
 Catname.text = vxField("type.catname")
 Else
 Bcode.text = ""
 Bcat.text = ""
 Aname.text = ""
 Catname.text = ""
 End If
End Sub

See Also
vxSetRelation
and all the field functions listed above

vxBase Page 251

vxSetAnsi

Declaration
Declare Sub vxSetAnsi lib "vxbase.dll" (ByVal OnOrOff As Integer)

Purpose
vxSetAnsi(FALSE) properly handles databases that were created with a

DOS based application (such as Clipper). These databases are OEM
databases. Characters with diacritical marks in the high end of the OEM
character collating sequence are NOT the same as the ANSI characters.
It is necessary for vxBase to translate the characters to ANSI (both
Windows and vxBase native mode) before they can be used in a vxBase
application. They also must be translated back again when they are
written.

Parameters
OnOrOff is either TRUE or FALSE. TRUE is the default value.

If TRUE, all data records and index entries are assumed to be in the
ANSI character set. No translation takes place.

If FALSE, data records are converted to ANSI from OEM after being
read from the file. All internal vxBase operations then take place on
the ANSI data. If a record is written, it is converted back to the OEM
character set before being written to disk.

If FALSE, index key entries are NOT converted to ANSI. Instead,
requests to seek result in the key being translated to OEM before the
seek takes place. Similarly, as the index is updated, keys are
translated back to OEM before insertion or updating.

All translation between character sets takes place in the background
and are transparent to the user.

Returns
Nothing.

Usage
vxSetAnsi would be set to FALSE if you were working with a database

that was created with a DOS based application and whose data contains
characters from the high end of the character table (i.e., those
characters with diacritical marks common to languages other than
English).

It should also be set to FALSE if the database with the diacritical
characters is going to be used by DOS based applications (e.g., running
a Clipper program on a network concurrently with a vxBase program).

The default value of vxSetAnsi is TRUE (no translation takes place).
If the database was created and is maintained by vxBase (or DataWorks)
and is only going to be used by Windows applications, vxSetAnsi should
be TRUE.

If using databases with different native character sets, vxSetAnsi
may be used to toggle translation on and off (as long as the current
database has no relations set up to databases with a different native

vxBase Page 252

character set).

THIS IS A SYSTEM WIDE FUNCTION THAT APPLIES TO ALL CONCURENT VXBASE
TASKS!

vxBase Page 253

Example
 Sub Form_Load ()
 Call vxInit
 Call vxCtlGraySet
 Call vxCtlGraySet
 Call vxSetLanguage(VX_GERMAN)
 Call vxSetLocks(FALSE)
 Call vxSetString(0)
 j% = vxCloseAll()

 ' using OEM databases
 ' -------------------
 Call vxSetAnsi(FALSE)

 ' create descending collating sequence table
 ' --
 i% = 255
 For j% = 1 To 256
 CharMap(j%) = i%
 i% = i% - 1
 Next j%
 Call vxCollate(CharMap(1))

 ' turn off table usage until required
 ' -----------------------------------
 Call vxSetCollate(FALSE)

 End Sub

See Also
 vxCollate
 vxSetCollate

vxBase Page 254

vxSetCollate

Declaration
Declare Sub vxSetCollate lib "vxbase.dll" (ByVal OnOrOff As Integer)

Purpose
Toggle the use of a defined collating sequence table.

Parameters
OnOrOff is either TRUE or FALSE. When a collating sequence table is

defined with vxCollate, the value is set to TRUE (its default value is
FALSE).

Returns

Nothing.

Usage
Turn an alternate collating sequence table on or off. If no table

has been defined with vxCollate, this function has no effect.

You can build a special collating sequence table that only applies
to a given index and then turn that table on or off depending on
whether the index is in use or not.

THIS IS A SYSTEM WIDE FUNCTION THAT APPLIES TO ALL CONCURENT VXBASE
TASKS!

Example
 Sub Form_Load ()
 Call vxInit
 Call vxCtlGraySet
 Call vxCtlGraySet
 Call vxSetLanguage(VX_GERMAN)
 Call vxSetLocks(FALSE)
 Call vxSetString(0)
 j% = vxCloseAll()

 ' using OEM databases
 ' -------------------
 Call vxSetAnsi(FALSE)

 ' create descending collating sequence table
 ' --
 i% = 255
 For j% = 1 To 256
 CharMap(j%) = i%
 i% = i% - 1
 Next j%
 Call vxCollate(CharMap(1))

 ' turn off table usage until required
 ' -----------------------------------
 Call vxSetCollate(FALSE)

vxBase Page 255

 End Sub

See Also
 vxCollate
 vxSetAnsi

vxBase Page 256

vxSetDate

Declaration
Declare Sub vxDateString Lib "vxbase.dll" (ByVal DateType As

Integer)

Purpose
Set the date display format to be used by xBase date functions

(CTOD(), DATE(), and DTOC()) and also by vxBrowse columnar displays of
dates and as an input edit mask when editing fields from a browse
window.

Parameters
DateType is a country identifier as defined in vxbase.txt. It is one

of the following:
VX_AMERICAN format mm/dd/yy
VX_ANSI format yy.mm.dd
VX_BRITISH format dd/mm/yy
VX_FRENCH format dd/mm/yy
VX_GERMAN format dd.mm.yy
VX_ITALIAN format dd-mm-yy
VX_SPANISH format dd-mm-yy

Returns
Nothing.

Usage
This function is provided to conform with international date

conventions. The default value is VX_AMERICAN (MM/DD/YY).

The date convention set with vxSetDate is a SYSTEM wide function.
All vxBase concurrent tasks use the same date format once this
procedure is called. The call should be issued in your initialization
procedure.

Warning: If you have used the international section of the WIN.INI
file to set Windows dates to a format other than American, beware that
the Visual Basic Date$ Function always returns a string in the format
"mm-dd-yyyy" and the Visual Basic DateValue Function expects a date in
the format defined in the WIN.INI international section. The twain
shall not meet. If they do, Visual Basic returns with an "Illegal
Function Call" error. If you have set the date to, for example, British
format (dd-mmm-yyyy), use code as in the sample below to handle today's
date and forget about the Date$ Function:

XDate$ = Format$(Now, "dd-mmm-yyyy")
DaysOnFile% = DateValue(XDate$) - DateValue(DateCreate$)) + 1

Example
Call vxSetDate(VX_BRITISH)

See Also

vxCtlFormat
vxDateFormat
vxDateString
vxReplDateString

vxBase Page 257

vxSetErrorCaption
vxSetLanguage

vxBase Page 258

vxSetErrorCaption

Declaration
Declare Sub vxSetErrorCaption Lib "vxbase.dll" (ByVal CaptionString

As String)

Purpose
Change the caption presented on vxBase error message boxes to

whatever the user desires. The default value is "vxBase Error".

Parameters
CaptionString is the new string that will be displayed as the

caption in every vxBase error message box. Note that this is a SYSTEM
wide command which affects every active vxBase task.

Returns
Nothing.

Usage
Should be issued in the FORM_LOAD procedure of your startup form.

Example
 Call vxSetErrorCaption("Real Estate System Error")

See Also
vxSetDate
vxSetLanguage

vxBase Page 259

vxSetErrorMethod

Declaration
Declare Sub vxSetErrorMethod lib "vxbase.dll" (VBorVX As Integer)

Purpose
Activate or deactivate the alternate vxBase error method.

Parameters
VBorVX set to TRUE turns on the alternate error method. FALSE sets

the error reporting method to the vxBase default (run time errors are
reported via message boxes).

If VBorVX (the alternate error method) is TRUE, vxBase internal
errors MUST be trapped with vxErrorTest.

Returns
Nothing.

Usage
Note: This is a GLOBAL vxBase variable. If TRUE, all error reporting

will be set to the alternate method, and vice versa.

See vxErrorTest for details on using the alternate error method.

Example
 ' test alternate error method
 ' ---------------------------
 Call vxSetErrorMethod(TRUE)
 jj% = vxUseNtx("\vb\vxbtest\testerr.ntx")
 If vxErrorTest(vxError) Then
 ProcessError
 End If
 Call vxSetErrorMethod(FALSE)

See Also
vxErrorTest

vxBase Page 260

vxSetHandles

Declaration
Declare Function vxSetHandles Lib "vxbase.dll" (ByVal NumHandles As

Integer) As Integer

Purpose
Change the number of file handles available to a task. By default,

the Windows maximum number of file handles available to a task is 20
(15 useable).

Parameters
NumHandles is the number of file handles you wish to allocate to the

task.

Returns
An integer that specifies the number of handles actually available

to the application.

Usage
If you are going to have more than 15 files open simultaneously

(DBF, NTX, DBT) in a vxBase application, then you must increase the
number of handles using this function.

The call to vxSetHandles should be in your initialization sequence.

SHARE.EXE must be loaded at the workstation.

Example
If vxSetHandles(32) < 32 Then
 MsgBox "Not enough handles available"
 End
End If

See Also

vxUseDbf
vxUseNtx

vxBase Page 261

vxSetLanguage

Declaration
Declare Sub vxSetLanguage Lib "vxbase.dll" (ByVal LangType As

Integer)

Purpose
Change the language in which vxBase displays Browse menus, memo

menus, dialog boxes, and error messages. The default is VX_ENGLISH.

Parameters
LangType is one of the following:
 VX_ENGLISH defined as Global Const VX_ENGLISH = 0 (default).
 VX_FRENCH defined as Global Const VX_FRENCH = 3.
 VX_GERMAN defined as Global Const VX_GERMAN = 4.

 VX_ITALIAN defined as Global Const VX_ITALIAN = 5.
 VX_SPANISH defined as Global Const VX_SPANISH = 7.

Returns
Nothing.

Usage
Any call to vxSetLanguage sets a system wide global constant. All

tasks currently running vxBase will switch languages. Future tasks will
display menus, dialog boxes, and error messages in the language last
selected by vxSetLanguage.

Example
 Sub Form_Load()
 vxInit
 vxCtlGraySet
 Call vxSetLanguage(VX_FRENCH)
 End Sub

See Also
vxSetDate
vxSetErrorCaption

vxBase Page 262

vxSetLocks

Declaration
Declare Sub vxSetLocks Lib "vxbase.dll" (ByVal OnOrOff As Integer)

Purpose
Change the record locking mechanism used by all vxBase tasks.

Parameters
OnOrOff is either TRUE or FALSE. The default value is TRUE, which

means that every operation that results in a record being read into the
vxBase record buffer also locks that record (e.g., vxGo, vxSkip,
vxSkip, etc). Traditionally, records in a multiuser system are not
locked unless a specific record locking function is called. This is
what happens if you set OnOrOff to FALSE.

If FALSE, vxBase locking is 100% compatible with Clipper style
record locking protocols.

Returns
Nothing.

Usage
Call vxSetLocks in your initialization routine.

This call results in a system wide lock protocol setting. Every one
of your vxBase applications must use the same locking mechanism. If you
decide on FALSE, call this function in your init routine in every
vxBase function you write.

You should also set OnOrOff to FALSE when you are testing your
application in Visual Basic Design Mode (and remove the command if you
really want the default locking mechanism when you create your .EXE).
This will ensure that any locks that normally would be in place are not
there if your program fails to run to completion and you wish to try it
again in the same session. See Visual Basic and VXLOAD.EXE for more
information.

Example
 Sub Form_Load()
 vxInit
 vxCtlGraySet
 Call vxSetLanguage(VX_FRENCH)
 Call vxSetLocks(FALSE)
 End Sub

See Also
vxBottom
vxBrowse
vxCopy
vxGo
vxIsRecLocked
vxLockDbf
vxLocked
vxLockRecord
vxSeek

vxBase Page 263

vxSeekSoft
vxSkip
vxTop
vxUnlock

vxBase Page 264

vxSetMeters

Declaration
Declare Sub vxSetMeters lib "vxbase.dll" (ByVal OnOrOff As Integer)

Purpose
Set analog meter bars on or off for vxReindex, vxPack, and

vxTestNtx.

Parameters
OnOrOff passed as TRUE will turn meter bars on, which allows the

user to gauge the progress of the functions listed above. TRUE is the
default value.

 If OnOrOff is passed as FALSE, meter bars will NOT be displayed. It
is the programmer's responsibilty to display an hourglass or otherwise
inform the user that something is going on when one of the functions
that use meter bars is called with vxSetMeters(FALSE).

Returns
Nothing.

Usage
Use to stop meter bar windows from appearing - especially in very

small files. They come and go so quickly in small files that they may
disconcert the user (because they can't even be read).

This is a system wide setting that applies to all vxBase concurrent
tasks. If setting FALSE, it is good practice to set the value back to
TRUE when the operation is complete.

Example
 Call vxSetMeters(FALSE) ' set meter bar off
 j% = vxAreaDbf("\vb\vxbtest\airtypes.dbf")
 If j% > 0 Then
 MsgBox "airtypes in use!"
 Else
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 j% = vxPack(VXFORM1.hWnd)
 j% = vxClose()
 End If
 Call vxSetMeters(TRUE) ' set meter bars back on

See Also
vxPack
vxReindex
vxTestNtx

vxBase Page 265

vxSetRelation

Declaration
Declare Function vxSetRelation Lib "vxbase.dll" (ByVal ToDbfArea As

Integer, ByVal KeyConstruct As String) As Integer

Purpose
Define a relationship between a parent file and a child file based

on a key that may be constructed from parent data into an index
controlled by the child file.

Parameters
ToDbfArea is the database select area of the child file returned

from vxUseDbf when the file was opened.

Note: to clear relations set up to child files without closing
the parent, ToDbfArea may be passed as a zero.

KeyConstruct is an xBase expression (which may be as simple as a
field name) that tells vxBase how to construct a key into the child
file index. The maximum length of the KeyConstruct string is 511
characters. KeyConstruct MUST evaluate as a character string.

Whenever a record pointer is moved in the parent file, a key into
the child file index is constructed and a seek is performed into the
child file. An exact match or a partial match moves the record pointer
in the child file. If the key is not found, the child file record
buffer is cleared, the record pointer is positioned to the last record
+ 1, and vxEof() on the child returns TRUE.

If the child has any relations defined and there was no match, all
record buffers in the relational cascade will be cleared and pointers
moved as above.

If clearing a set of relationships (i.e., ToDbfArea is passed as
zero), pass this parameter as 0& (NULL long integer).

Returns
TRUE if the relationship was properly set up. FALSE for any of the

following reasons:
 (1) no database selected
 (2) ToDbfArea is the current selection
 (3) there are already 8 relations set up for this file
 (4) ToDbfArea is not open
 (5) not enough memory
 (6) unable to evaluate KeyConstruct
 (7) KeyConstruct does not evaluate as a character string.

 Numeric and date indexes are not supported by vxBase.
 Indexes on numeric and date fields may be created
 by using the xBase STR() and DTOS() functions to
 convert numbers and dates to character strings. The
 same functions may be used in KeyConstruct to build
 keys into the child file.

Usage

vxBase Page 266

The parent file must have a many to one or one to one relationship
to the child file.

The parent file must be the current selection when vxSetRelation is
invoked.

The child file must be open and have an index selected.

Up to eight relations per select area may be defined. Cascading
relationships are supported; cyclical relations are not. You may not
relate a database either directly or indirectly to itself. vxBase traps
direct relationships. Indirect relationships are not trapped and if
defined will result in a system hang (an infinite loop will be entered
because the record reading routine is recursive).

Example
Sub BuyBrowse_Click ()
 ' example of using vxSetRelation
 ' and vxTableFieldExt to produce
 ' a browse table with fields from
 ' multiple databases included on each row
 ' ---------------------------------------

 ' open child files first
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 Aircust1Ntx = vxUseNtx("\vb\vxbtest\aircust1.ntx")

 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")

 ' open parent file (has many records)
 AirbuyerDbf = vxUseDbf("\vb\vxbtest\airbuyer.dbf")
 Airbuy1Ntx = vxUseNtx("\vb\vxbtest\airbuy1.ntx")

 ' define alias names so we can use field
 ' qualifiers when extracting data
 ' --------------------------------------
 j% = vxSetAlias("buyer", AirbuyerDbf)
 j% = vxSetAlias("customer", AircustDbf)
 j% = vxSetAlias("type", AirtypesDbf)

 ' define relationship to current selection
 ' the 1st param defines the file we setting
 ' up the relationship to (the child file)
 ' and the second param tells vxbase how to
 ' construct a key to be used on the current
 ' index in use on the child file
 ' ---
 ErrCode% = FALSE
 If Not vxSetRelation(AircustDbf, "b_code") Then
 MsgBox "1st relation failed"
 ErrCode% = TRUE
 Else
 If Not vxSetRelation(AirtypesDbf, "b_cat") Then
 MsgBox "2nd relation failed"
 ErrCode% = TRUE

vxBase Page 267

 End If
 End If

 If ErrCode% Then
 j% = vxCloseAll()
 Exit Sub
 Else
 ' now when we issue vxTop(), the two related
 ' file pointers will move to match the values
 ' in the parent file key fields
 j% = vxTop()
 End If

vxBase Page 268

 ' define the browse table with the extended
 ' vxTableFieldExt function
 ' --
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 6)
 Call vxTableFieldExt(1, "Cust", "b_code", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(2, "Name", "a_name", VX_FIELD, 0, AircustDbf)
 Call vxTableFieldExt(3, "Cat", "b_cat", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(4, "Description", "catname", VX_FIELD, 0,
 AirtypesDbf)
 Call vxTableFieldExt(5, "Low", "b_low", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(6, "High", "b_high", VX_FIELD, 0, AirbuyerDbf)

 BuyerReturn = 0
 BuyerRec = vxRecNo()

 ' Execute the browse routine (onscreen editor ON)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirbuyerDbf, Airbuy1Ntx, TRUE, FALSE,
 FALSE, BuyerRec, "Buyer Records", BuyerReturn)

 j% = vxCloseAll()
End Sub

See Also
vxSetAlias
vxTableFieldExt

vxBase Page 269

vxSetString

Declaration
"C"
void FAR PASCAL vxSetString(int);

"Realizer"
EXTERNAL "vxbase.dll" PROC vxSetString(INTEGER)

"Visual Basic"
Declare Sub vxSetString Lib "vxbase.dll" (ByVal StrType As Integer)

Purpose
Set the string type returned by all vxBase string functions to

ASCIIZ or to Visual Basic variable string types.

Parameters
If StrType is 0 (zero), the strings returned will be Visual Basic

Strings. This is the default value and need not be called if you are
writing your vxBase application in Visual Basic.

If StrType is 1, then all vxBase functions that return strings will
return a pointer to an ASCIIZ string instead of a Visual Basic string.

Returns
Nothing.

Usage
Used to set the string type so that vxBase may be used with

languages other than Visual Basic. A call to this function should
always be the first call to vxBase from within your application.

WARNING: This function sets a GLOBAL vxBase flag. Visual Basic
applications written with vxBase will not run concurrently with
applications written in other languages if vxSetString(1) is called.
Visual Basic applications will terminate with a "Bad DLL Calling
Convention" message.

If the string type is changed to ASCIIZ with vxSetString(1), all
vxBase functions return a pointer to a global string variable contained
within vxBase. The returned pointer will always be the same. If a
vxBase string function is called immediately after another string
function, the contents of the string buffer from the previous function
will be overwritten. Always COPY the result of a string function to a
variable local to your program.

See Also
vxRecord
vxReplRecord

vxBase Page 270

vxSetupPrinter

Declaration
Declare Sub vxSetupPrinter Lib "vxbase.dll" (ByVal Hwnd As Integer)

Purpose
Access standard Windows printer setup dialog.

Parameters
Hwnd is the hWnd property of an active Visual Basic form. This

window acts as parent to the printer select dialog box. It must be
enabled.

Returns
Nothing.

Usage
Especially useful for setting form lengths or changing printers (if

you have more than one printer port) from within your vxBase
application. The user doesn't have to go to the Windows control panel
to change printer configuration.

It is not possible to activate another printer with this function if
you have more than one printer defined for the same port. See
vxPrinterEnum and vxPrinterSelect to change the default printer.

Note: The vxSetupPrinter list box always highlights the current
default printer.

Example
 ' PrSetup is a menu item or a button
 ' ----------------------------------
 Sub PrSetup_Click ()
 Call vxSetupPrinter(VXFORM1.hWnd)
 End Sub

See Also
vxPrinterDefault
vxPrinterEnum
vxPrinterSelect

vxBase Page 271

vxSkip

Declaration
Declare Function vxSkip Lib "vxbase.dll" (ByVal NumRecs As Long) As

Integer

Purpose
Skip forwards or backwards the specified number of records.

Parameters
NumRecs is the number of records to skip. If negative, the skip is

backwards. If positive, the skip is forwards.

Returns
TRUE if successful and FALSE if not.

Usage
Always used to control record by record processing. If an index is

selected, the skip follows the index sequence, otherwise record number
sequence is employed.

If a filter is active, vxSkip skips by records that don't pass the
filter.

Always use vxEof and vxBof to test whether the end of file has been
reached (when skipping forwards) or the beginning of file has been
reached (when skipping backwards). Note that if vxEof is true, it will
be necessary to position the record to the last record in the file with
vxBottom if you wish to have a valid record in the buffer. If vxBof is
TRUE, then the record buffer will contain the first record in the file.

Multiuser Considerations
If the skip was successful, the record is locked if vxSetLocks is

TRUE.

Example
 ' skip forward one record
 ' -----------------------
 Do
 If Not vxSkip(1) Then

 ' if skip error, exit
 ' -------------------
 MsgBox "Error on Skip Next. Try Reindex."
 Exit Sub
 End If

 If vxEof() Then Exit Do
 Loop Until Not vxDeleted()

 ' test for end of file
 ' --------------------
 If vxEof() Then
 Beep
 TypeStatus.text = "End of File!"
 j% = vxBottom()

vxBase Page 272

 Else
 TypeStatus.text = "Skipped to record " +
 LTrim$(Str$(vxRecNo()))
 End If

vxBase Page 273

See Also
vxBof
vxEof
vxGo
vxSeek
vxSeekSoft
vxSetLocks

vxBase Page 274

vxSum

Declaration
Declare Sub vxSum Lib "vxbase.dll" (ByVal FieldName As String,

DblAmount As Double)

Purpose
Sum the contents of a numeric field for all records that satisfy the

filter condition (if any).

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that
points to any open database.

DblAmount is a pre-dimensioned Visual Basic double variable that
will hold the result of the procedure.

Returns
No explicit return. The sum is stored in the variable sent in the

call to the procedure.

Usage
Extract the sum of the defined field. May be used with a filter to

limit the sum to a subset of records in the database.

After the operation has completed, the record pointer is restored to
its condition prior to the call.

Multiuser Considerations
The database is locked for the duration of the operation.

Example
 Dim CalifTotal As Double

 ' this routine adds up the amounts owing by customers
 ' in California
 ' ---
 Call vxFilter("(.NOT. deleted()) .AND. (state = 'CA')")
 CalifTotal = 0
 j% = vxTop()
 Call vxSum("amtowing", CalifTotal)
 TotalBox.text = Format$(CalifTotal, "#######0.00")
 vxFilterReset

See Also

vxFilter
vxSetAlias

vxBase Page 275

vxTableDeclare

Declaration
Declare Sub vxTableDeclare Lib "vxbase.dll" (ByVal ColorRef As Long,

BofExpr As Any, EofExpr As Any, ByVal Scope As Integer, ByVal Quick As
Integer, ByVal Columns As Integer)

Purpose
Set up a custom table for use by the vxBrowse function. The

vxTableDeclare command must be followed by vxTableField commands (as
many as specified in the Columns parameter) to define the browse table
columns.

Parameters
ColorRef is the color to be used for the browse table column heads.

There are three Global constants defined in vxbase.txt which may be
used with 3d style browse tables: VX_RED, VX_BLUE, and VX_GRAY.
VX_WHITE may also be used if the browse table will be displayed in flat
style (see vxBrowseSetup).

BofExpr is an xBase expression controlling beginning of file logic
(in addition to vxBof() - which is automatic). BofExpr is defined As
Any because in most cases it will be passed as NULL (i.e., ByVal 0&).
This parameter is especially useful in limiting the browse table to a
subset of the records contained in the file being browsed. For example,
suppose you had an accounts receivable subledger with a file key that
was composed of two fields, CustCode + InvoiceNo. Now suppose you wish
to limit the display to only those subledger records that belonged to
customer "ABCDEF". You could either set a filter (which is not very
efficient - especially if its a big file -in that a user pressing a
page up key when he is at the first record in the file may have to wait
a few minutes before vxBase satisfied itself that there were no records
above that met the filter) or you can define a BofExpr as "CustCode <
'ABCDEF'". If a BofExpr is defined, every record must pass the BofExpr
test. Now when our user is at the first record in the subset and
presses the page up key, vxBrowse will skip back one record and test
the BofExpr. If it fails, vxBrowse goes back to where it was and beeps.
The artificial beginning of file set in this manner is evaluated and
acted upon virtually instantaneously. A filter would skip backwards
until it reached the real beginning of file before determining that
there was nothing left to display. Notice that it is not necessary to
add the phrase " .OR. BOF()" to the xBase expression because vxBrowse
always evaluates the actual BOF() in addition to BofExpr.

EofExpr is an xBase expression controlling end of file logic (in
addition to vxEof() - which is automatic). It is normally used in
conjunction with BofExpr to limit the vxBrowse display to a subset of
records in the file. In the example shown above, EofExpr would be
"CustCode > 'ABCDEF'". Now when the user hits the page down key, the
first record that has a CustCode greater than "ABCDEF" would
effectively stop the display, just as the BofExpr does when moving in
the opposite direction. Notice that it is not necessary to add the
phrase " .OR. EOF()" to the xBase expression because vxBrowse always
evaluates the actual EOF() in addition to EofExpr. If the scope of the
display is every record in the file, you would pass a NULL value (i.e.,
ByVal 0&).

vxBase Page 276

Scope is an integer that effectively controls the action vxBrowse
takes when the user presses the Home or End keys (or uses the vertical
scroll bar thumb to position the file to the top or bottom).

Always use 0 (zero) when the scope you are interested in is every
record in the file, or when every record in the file has a unique
single element key. If you wish to limit the scope to a subset of
records as in the discussion of BofExpr and EofExpr above, then set
Scope to the length of the key prefix that is common to the subset. In
the example above, the subledger key is composed of two elements -
CustCode + InvoiceNo. There are probably many records in the file with
the same CustCode but different InvoiceNos and we only want to look at
the ones with CustCode = "ABCDEF". This is the common prefix in every
key we are interested in; therefore, the Scope parameter is set to 6
(the length of the common part of the key).

When a Scope other than zero is passed to vxBrowse via the
vxTableDeclare command, vxBrowse reacts to a Home request by issuing a
vxSeek to the file with a value in the searchkey that is equal to the
current key for the length specified by Scope. This will position the
record pointer to the first record in our subset (because we get a
partial match). When the user requests a positioning to End, the
partial key is extracted from the current record ("ABCDEF") and a
binary 1 is added to the last character (which makes it a "G"). A
vxSeekSoft is then issued which positions the record pointer to the
record immediately following our defined subset and vxBrowse then skips
back one record and, voila , we are at the end of our subset. Slick!
Sure beats filters.

Quick is an integer that specifies the character position of the key
vxBrowse uses to construct Quick keys. A zero will turn quick key off
(and we don't want to do that on indexed files). If the key to be used
for the quick search starts at the first character position of the
current index expression, use 1 (which will be most of the time). If we
are interested in only a subset of records (as in the example above),
then the unique part of the key - InvoiceNo - is what the user should
enter to find the record he is looking for. If we defined the quick key
as 1 in this case, and the user wanted to find InvoiceNo "1001", then
he would have to enter "ABCDEF1" just to position the file to the first
invoice that started with a "1". When all of the records in our subset
have a common prefix, we use the length of that prefix plus one (in
this case 7) to tell vxBrowse that the first 6 positions are always the
same so it automatically prepends them to the entered quick key. We
don't even have to display the CustCode field in our table and we can
find any invoice we want that belongs to this customer by actually
entering the invoice number.

Columns is an integer that specifies how many columns our table will
have. This number determines the amount of memory to allocate to hold
our table definition and it also indicates that this many vxTableField
commands will immediately follow. We need 1 vxTableField command for
every number passed in this parameter.

Returns
Nothing.

Usage

vxBase Page 277

Some of the concepts discussed above in relation to limiting your
displays to a subset of records without having to set a filter may seem
confusing at first, but a little study of the example shown below and
its effect in the sample program will add clarity to the situation.

When scoping a browse display, the only thing you MUST do is
position the record pointer to the first record in the group and then
pass that record number to the vxBrowse proc (the StartRec& parameter).
See the Scoped Complex Example below.

Declared tables attached to a database are also used by vxBrowse if
this file happens to be the object of a relational Join.

 vxTableDeclare, vxTableField, vxJoin, and vxBrowse provide you with
a browse object that is unparalleled in the xBase world.

vxBase Page 278

NOTE: if your table will contain expressions dependent on the value
in fields residing in the current database, you MUST position the
record pointer to a valid record with vxTop, vxGo, etc. BEFORE
declaring the table and its fields and expressions. vxTableField
validates expressions by parsing and executing them to see if they
return a valid result.

Simple Example
' Open aircraft types file
' ------------------------
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 If AirtypesDbf = FALSE Then
 MsgBox "Error Opening airtypes.dbf. Aborting."
 Exit Sub
 End If
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 If AirtypesNtx = FALSE Then
 MsgBox "Error Opening airtypes.ntx. Aborting."
 j% = vxClose()
 Exit Sub
 End If

' Declare types table to get nice headings
' (TableDeclare works on currently selected DBF)
' --
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 2)
 Call vxTableField(1, "Type", "category", VX_FIELD)
 Call vxTableField(2, "Description", "catname", VX_FIELD)

 ' Open a browse table with full editing capabilities
 ' --
 TypeReturn = 0 ' declared as GLOBAL so VXFORM2 can
 ' interrogate

 ' The menu Form VXFORM1 must be visible because we need a
 ' parent for our browse
 ' ---
 If Not VXFORM1.Visible Then VXFORM1.Show

 ' Execute the browse routine (using table declared above)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx,
 TRUE, TRUE, TRUE, 0, "Aircraft Types",
 TypeReturn)

Scoped Complex Example
Sub BuyRecs_Click ()

 ' Close states file to free some handles
 ' --------------------------------------
 j% = vxSelectDbf(AirstateDbf)
 j% = vxClose() ' also does vxTableReset

 ' open airtypes file and buyer file
 ' ---------------------------------
 TypesOpen

vxBase Page 279

 BuyerOpen

 j% = vxSelectDbf(AirbuyerDbf)
 j% = vxSelectNtx(Airbuy1Ntx)
 CustKey = CustCode.text

vxBase Page 280

 ' Set up browse table limited to buyer records
 ' that match the CustKey. We do this by sending
 ' the vxTableDeclare proc a beginning of
 ' file expression and an end of file expression.
 ' ---
 BofExpr$ = "b_code < '" + CustKey + "'"
 EofExpr$ = "b_code > '" + CustKey + "'"

 Call vxTableDeclare(VX_RED, ByVal BofExpr$, ByVal
 EofExpr$, 6, 7, 4)

 ' The vxBrowse object now knows to limit the
 ' records in the table to those that have b_code
 ' values equal to CustKey. We also scope the records
 ' with the "6" following the EofExpr and set the quick
 ' key index to "7". An explanation follows:
 '
 ' The key we are going to use to browse this file is
 ' b_code + b_cat, whose elements are 6 long and 3 long
 ' respectively. Every record we are interested in has
 ' the same b_code (i.e., they all belong to the same
 ' customer). Setting the scope index to 6 determines
 ' the action to be taken when the HOME or END keys
 ' are depressed. The normal value is 0, which takes
 ' you to the first and last logical records in the
 ' file when HOME or END is hit. If other than
 ' zero, then the HOME key will result in a softseek
 ' on the file to the current key for the length
 ' specified by the scope index. The END key will
 ' softseek to the current key plus 1 and then skip
 ' back one record to position the record pointer to
 ' the last record in the group.
 '
 ' The quick index is set to 7, which is the first
 ' position of the aircraft type code in the key. We
 ' aren't even going to display the b_code for the
 ' buyer records. Setting the quick index to 7 means
 ' that the common part of the key for the group of
 ' records we are interested in (the first 6 which form
 ' the customer code), will be prepended to the
 ' quick keys entered at the keyboard before a seek
 ' is done on the file. Makes sense, huh?

 ' When scoping a file in this fashion, the only thing you
 ' MUST do is position the record pointer to the first
 ' record in the group and then pass that record number
 ' to the vxBrowse proc (the StartRec& parameter).

 Call vxTableField(1, "Type", "b_cat", VX_FIELD)
 Call vxTableField(2, "Description", "b_desc", VX_FIELD)
 Call vxTableField(3, "Low", "b_low", VX_FIELD)
 Call vxTableField(4, "High", "b_high", VX_FIELD)

 ' Because we are interested in only a subset of the
 ' possible records in the buyer file, we have to
 ' determine ourselves whether there are any records in

vxBase Page 281

 ' the file that match the group. If not, we ask the user
 ' if he wants to add a record. vxBrowse normally does
 ' this, but the file must be empty before it asks the
 ' question and sets the return value accordingly.
 ' --

vxBase Page 282

 BuyerRec = 0 ' global var
 If vxSeek(CustKey) Then
 BuyerRec = vxRecNo() ' set for browse start rec
 VXFORM3.Hide
 BrowseBuyers
 Else
 j% = MsgBox("No buyer records. Add?", 52)
 If j% = 6 Then
 VXFORM3.Hide
 BuyerReturn = BROWSE_ADD
 VXFORM4.Show
 Else
 j% = vxClose()
 StatesOpen
 j% = vxSelectDbf(AircustDbf)
 End If
 End If
End Sub

See Also

vxBrowse
vxBrowseSetup
vxCtlBrowse
vxCtlBrowseMsg
vxJoin
vxTableField
vxTableFieldExt
vxTableReset

vxBase Page 283

vxTableField

Declaration
Declare Sub vxTableField Lib "vxbase.dll" (ByVal ColIndex As

Integer, ByVal ColHead As String, ByVal ColExpr As String, ByVal
ColType As Integer)

Purpose
Define the contents of table columns declared by vxTableDeclare for

use with vxBrowse.

Parameters
ColIndex is the sequence number of the column from left to right.

The first index number is 1 (NOT ZERO).

ColHead is a string representing the column header. The width of the
column is calculated by using the greater of the width of the column
head and the data represented by the field or expression.

ColExpr is a string defining the data to be displayed. It may be as
simple as a field name (not a memo) or a complex xBase expression.
Alias field qualifiers are NOT allowed in ColExpr. If defining a browse
window with relations set up (via vxSetRelation), use vxTableFieldExt
to define column expressions that refer to a child dbf.

Arithmetic operations may be performed on groups of fields with the
appropriate expression (e.g., "Current + PastDue"). Conditional IIF
expressions are also allowed. For example, the expression
"IIF(DTOC(RecdDate) = ' / / ', 'No Date ', DTOC(RecdDate))" would
display "No Date " if the field was empty or the actual date if it was
not empty. Notice in this example that both the true and false results
of the IIF expression are character strings and that they both would
result in displays that are 8 characters long. Any xBase expression
resulting in a character, numeric, or date data type is allowed.
Expressions that return logical results or that reference memo fields
are not allowed.

NOTE: If the result of an xBase expression is numeric, it must be
passed enclosed in the STR() function. This enables vxBrowse to set the
column width properly (e.g., STR(CurrAmt+PastDue,11,2)).

ColType defines the type of ColExpr to vxBrowse. Use one of the
Global constants VX_FIELD or VX_EXPR defined in vxbase.txt to tell
vxBrowse that the data being defined is simply a field or an xBase
expression. This speeds processing somewhat because simple fields do
not have to go through an evaluation and pseudo compilation.

Returns
Nothing.

Usage
The number of field definitions following the vxTableDeclare

statement must conform to the number sent to vxBase in the
vxTableDeclare Columns parameter.

If soliciting an XBase expression from the user for use in

vxBase Page 284

vxTableField, always test the expression with vxEval before passing it
as a parameter in this function.

If onscreen editing is allowed in your vxBrowse table that will use
these field definitions, remember that data resulting from an
expression (ColType = VX_EXPR) may not be edited in this fashion. You
can use this to your advantage by defining columns you do not want the
user to edit as VX_EXPR.

 Tables declared and then used as a resultant Join window may not have
any fields edited onscreen. This is an obvious point because joined
relational windows are not explicitly called by a vxBrowse statement
anyway.

NOTE: The record buffer must be filled with a valid record from the
database that the expression applies to BEFORE vxTableField is called.
The database must be open and selected.

The TRIM() Function
If you wish to use the xBase TRIM() function in your table display,

the resultant expression length MUST be fixed. For example, suppose
your database has fields for LastName and FirstName. Instead of
displaying SMITH and JOHN in two separate columns. you wish to display
them in one column as "SMITH, JOHN".

The following is ILLEGAL:

vxTableField(6,"Name","TRIM(LastName)+', '+TRIM(FirstName)",VX_EXPR)

This would result in variable length column widths because every
first and last name would result in a different number of characters.
Use the SUBSTR() function to properly define a fixed column width while
still using TRIM() to concatenate two variable length items:

vxTableField(6,"Name","SUBSTR((TRIM(LastName)+', ' + TRIM(FirstName)
+ SPACE(25)),1,25)",VX_EXPR)

Ensure that there are enough spaces included after the last TRIMmed
element to always result in a length at least as long as the length
parameter of the SUBSTR() function (in this case, 25).

Example
 SEE THE EXAMPLES IN vxTableDeclare
 ON THE PREVIOUS PAGE.

See Also
vxBrowse
vxBrowseSetup
vxCtlBrowse
vxCtlBrowseMsg
vxEval
vxJoin
vxTableDeclare
vxTableFieldExt
vxTableReset

vxBase Page 285

vxTableFieldExt

Declaration
Declare Sub vxTableFieldExt Lib "vxbase.dll" (ByVal ColIndex As

Integer, ByVal ColHead As String, ByVal ColExpr As String, ByVal
ColType as Integer, ByVal ColWidth As Integer, ByVal DbfArea As
Integer)

Purpose
Define the contents of table columns declared by vxTableDeclare for

use with vxBrowse. vxTableFieldExt provides the same functionality as
vxTableField and extended functionality with the addition of the
ColWidth and DbfArea parameters. vxTableFieldExt MUST be used if
defining a browse table that includes data from child files whose
relationship to the parent file has been defined by vxSetRelation.

Parameters
Parameters ColIndex through ColType are as defined in the

documentation for vxTableField.

ColWidth allows the programmer to explicitly specify the width of a
vxBrowse column in number of characters. Passing a zero width results
in vxBrowse using the default calculated width. Numeric fields
displayed with the STR() xBase function use the length as defined in
the STR() function (i.e., specifying a width via the ColWidth parameter
is the same as passing a zero width - the default is used instead).

If the width passed through ColWidth is insufficient to display the
column header, ColWidth is again ignored.

Note that the data displayed in the column will NOT be truncated if
the column is not wide enough. This parameter is provided mainly for
the purpose of fine tuning your browse displays to match the type of
data being displayed.

DbfArea is the database select area returned from vxUseDbf when the
file is opened. This parameter may be the select area of the parent
file or of any child files defined as possessing a relationship to the
parent
through vxSetRelation.

Returns
Nothing.

Usage
Must always be used if defining a browse table that contains

relational data.

Alias field qualifiers are NOT allowed in ColExpr. The expression or
field is instead qualified through the DbfArea parameter.

See the vxTableField documentation for a thorough discussion of
usage.

vxBase Page 286

Example
 ' define the browse table with the extended
 ' vxTableFieldExt function
 ' --
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 6)
 Call vxTableFieldExt(1, "Cust", "b_code", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(2, "Name", "a_name", VX_FIELD, 0, AircustDbf)
 Call vxTableFieldExt(3, "Cat", "b_cat", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(4, "Description", "catname", VX_FIELD, 0,
 AirtypesDbf)
 Call vxTableFieldExt(5, "Low", "b_low", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(6, "High", "b_high", VX_FIELD, 0, AirbuyerDbf)

 BuyerReturn = 0
 BuyerRec = vxRecNo()

 ' Execute the browse routine (onscreen editor ON)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirbuyerDbf, Airbuy1Ntx, TRUE, FALSE,
 FALSE, BuyerRec, "Buyer Records", BuyerReturn)

 j% = vxCloseAll()

See Also
vxBrowse
vxBrowseSetup
vxCtlBrowse
vxCtlBrowseMsg
vxEval
vxJoin
vxTableDeclare
vxTableField
vxTableReset

vxBase Page 287

vxTableReset

Declaration
Declare Sub vxTableReset Lib "vxbase.dll" ()

Purpose
Remove a table definition attached to the current vxBase descriptor

block and free the associated memory.

Parameters
None.

Returns
Nothing.

Usage
This statement is only necessary if you wish to leave the file open

and perhaps define a different table somewhere else in your program. If
the file is closed with vxClose or vxCloseAll, the allocated memory is
freed automatically.

Example
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 2)
 Call vxTableField(1, "Type", "category", VX_FIELD)
 Call vxTableField(2, "Description", "catname", VX_FIELD)
 TypeReturn = 0 ' declared as GLOBAL so VXFORM2 can
 ' interrogate
 If Not VXFORM1.Visible Then VXFORM1.Show

 ' Execute the browse routine (using table declared above)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx,
 TRUE, TRUE, TRUE, 0, "Aircraft Types",
 TypeReturn)
 vxTableReset

See Also

vxClose
vxCloseAll
vxJoinReset
vxMenuDeclare
vxMenuItem
vxTableDeclare

vxBase Page 288

vxTestNtx

Declaration
Declare Function vxTestNtx "vxbase.dll" (ByVal NtxArea As Integer)

As Integer

Purpose
Test the integrity of the defined index.

Parameters
NtxArea is a valid area handle returned by vxUseNtx when the file

was opened.

Returns
TRUE if the index passes all tests. Index integrity is most often

compromised by the programmer failing to open the index when an update
to the dbf file is made that should affect the index in question. FALSE
is returned for any of the following reasons:

(1) no index key for an existing dbf record (most common cause).
(2) index key collating sequence is incorrect.
(3) an index key was built from an index expression that no longer

matches the expression contained in the index header.
(4) more than one index entry for the same record.
(5) no dbf record for an existing index key.
(6) memory allocation error due to too many records in the database.
(7) index or dbf could not be locked.

Usage
Usually used in a file maintenance function. If the index does not

pass, it should be reindexed (or the file should be packed).

Always reselect the dbf following a call to this function.

Note that if a record is appended and not yet written after its
fields are filled when this function is called, vxTestNtx will return
FALSE. It is good practice to only call this function on a database
that has just been opened.

A meter bar window is presented to the user during the operation so
the user can gauge the testing progress if vxSetMeters is TRUE (the
default).

Multiuser Considerations
The index file and its corresponding dbf are locked for the duration

of the operation.

Example
 If NOT vxTestNtx(NtxArea1) Then
 If Not vxReindex() Then
 MsgBox "Reindex unsuccessful!"
 End If
 End If
 j% = vxSelectDbf(DbfArea)

See Also

vxBase Page 289

vxPack
vxReindex
vxSetMeters

vxBase Page 290

vxTop

Declaration
Declare Function vxTop Lib "vxbase.dll" () As Integer

Purpose
Position the record pointer to the first record in the current

database. If an index is active, this is the first logical record. If
there is no index active, the first physical record is retrieved.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. If the file

is empty, FALSE will be returned. FALSE will also be returned if the
record is locked and the user chose not to retry the operation.

Usage
After opening a file (both dbf and ntx), vxTop is called internally

by vxBase to position the record pointer to the first record in the
file. When a dbf is opened, this is the first physical record. When an
ntx file is opened, this is the first logical record.

If a filter is active, vxTop will attempt to find the first record
in the file that satisfies the filter.

Multiuser Considerations
A successful vxTop locks the record if vxSetLocks is TRUE.

Example
 ' test for beginning of file
 ' --------------------------
 If vxBof() Then
 Beep
 TypeStatus.text = "Beginning of File!"
 j% = vxTop()
 Else
 TypeStatus.text = "Skipped to record " +
 LTrim$(Str$(vxRecNo()))
 End If

See Also

vxBottom
vxSetLocks

vxBase Page 291

vxTrue

Declaration
Declare Function vxTrue Lib "vxbase.dll" (ByVal FieldName As String)

As Integer

Purpose
Determine whether a logical field in the current database contains a

true or false value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid logical field name from the currently selected
database. FieldName may be qualified with a valid alias name that
points to any open database.

Returns
TRUE if the field contains an xBase logical true value (t, T, y, Y)

or FALSE if not (either f, F, n, N, or blank).

Usage
Logical fields can easily be used to set form check boxes or radio

buttons.

Example
 ' Return from logical field interrogation
 ' vxTrue() is -1 (TRUE) or 0 (FALSE).
 ' By using the unary negation operator
 ' we will transform any -1 values to the
 ' checkbox value 1, which means "selected"
 ' --
 CustBuyer.Value = -vxTrue("a_buyer")
 CustSeller.Value = -vxTrue("a_seller")

See Also
vxField
vxReplLogical
vxSetAlias

vxBase Page 292

vxUnlock

Declaration
Declare Function vxUnlock Lib "vxbase.dll" () As Integer

Purpose
Remove all locks on the currently selected database, including file,

record, and index locks.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
If vxSetLocks is TRUE, all vxBase record positioning functions

automatically lock the record after it has been read into the record
buffer. In a multiuser situation, you should get the record, transfer
the fields you wish to use to form controls, and then unlock the record
to make it and the file available to other users. See the Multiuser
Considerations section in this manual for methods that ensure proper
record maintenance in a multiuser environment.

If vxSetLocks is FALSE, you should explicitly lock a record
immediately prior to updating it and writing it. You should then use
vxUnlock to remove the record lock after the write.

Example
 ' vxSetLocks is TRUE
 ' ------------------
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If

vxBase Page 293

 j% = vxUnlock()
 End If

vxBase Page 294

See Also
vxIsRecLocked
vxLockDbf
vxLocked
vxLockRecord
vxSetLocks

vxBase Page 295

vxUseDbf

Declaration
Declare Function vxUseDbf Lib "vxbase.dll" (ByVal DbfName As String)

As Integer

Purpose
Open a database file for reading and writing.

Parameters
DbfName is a either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxUseDbf defaults to ".dbf".

Returns
FALSE if the open attempt was not successful. Otherwise, an integer

is returned between 1 and 24 that defines the select area handle to the
file to be used in all subsequent vxBase operations. If the same file
has a vxUseDbf command issued more than once without closing, the same
integer is returned. If an attempt is made to open a vxUseDbf file with
vxUseDbfRO without closing the the first instance, the file will not be
read only. Only one instance of an open file can be active at a given
time. vxUseDbf opens a file for Read/Write access. If the current user
has read only access rights, use vxUseDbfRO to open the file. No
updating may be performed on a read only file of course.

Usage
The file is opened, selected, and registered with the vxBase Task-

Window manager. The select area handle should be retained in a GLOBAL
integer for use with that file throughout your application. Use
variable names that describe the file.

The first time the file is opened, the result should be tested to
ensure that a valid file exists where you think it should be.

After a file is opened, the record pointer is positioned to the
first record in the file.

See the discussion under "Multitasking and Multiuser Considerations"
for more information on how vxBase controls databases attached to
multiple windows.

Example
 ' open aircraft file
 ' ------------------
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 End
 End If
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

See Also
vxAreaDbf
vxAreaNtx

vxBase Page 296

vxSelectDbf
vxSetHandles
vxUseDbfRO
vxUseNtx

vxBase Page 297

vxUseDbfRO

Declaration
Declare Function vxUseDbfRO Lib "vxbase.dll" (ByVal DbfName As

String) As Integer

Purpose
Open a database file in Read Only mode.

Parameters
DbfName is a either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxUseDbfRO defaults to ".dbf".

Returns
FALSE if the open attempt was not successful. Otherwise, an integer

is returned between 1 and 24 that defines the select area handle to the
file to be used in all subsequent vxBase operations. If the same file
has a vxUseDbf or vxUseDbfRO command issued more than once without
closing, the same integer is returned. The attributes in effect are
those of the first successful open. Only one instance of an open file
can be active at a given time in a given task. vxUseDbf opens a file
for Read/Write access. If the current user has read only access rights,
use vxUseDbfRO to open the file. No updating may be performed on a read
only file of course.

Usage
The file is opened, selected, and registered with the vxBase Task-

Window manager. The select area handle should be retained in a GLOBAL
integer for use with that file throughout your application. Use
variable names that describe the file.

The first time the file is opened, the result should be tested to
ensure that a valid file exists where you think it should be.

After a file is opened, the record pointer is positioned to the
first record in the file.

See the discussion under "Multitasking and Multiuser Considerations"
for more information on how vxBase controls databases attached to
multiple windows.

Any auxiliary files opened that are attached to a database opened
Read Only are also opened Read Only (i.e., index and memo files). No
updates are allowed on the database, the indexes, or the memo files.
Memos may be edited and exported to ASCII files.

The actual file attributes do not necessarily have to be read only
to use this function. If you open a dbf with this function, all write
functions are disabled whether the DOS file attributes (or Network
rights or flags) are read only or not.

If the file flags are read only, then vxUseDbf will fail where this
function will succeed.

vxBase Page 298

Example
 ' open aircraft file
 ' ------------------
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 AircraftDbf = vxUseDbfRO("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE then

 MsgBox "Error Opening aircraft.dbf. Aborting."
 End
 Else
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")
 Call DisplayOnly
 Exit Sub
 End If
 End If
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")
 Call UpdateRoutine

See Also
vxAreaDbf
vxAreaNtx
vxSelectDbf
vxSetHandles
vxUseDbf
vxUseNtx

vxBase Page 299

vxUseNtx

Declaration
Declare Function vxUseNtx Lib "vxbase.dll" (ByVal NtxName As String)

As Integer

Purpose
Open an index file and attach it to the currently selected database.

Parameters
NtxName is a either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxUseNtx defaults to ".ntx".

Returns
FALSE if the file could not be opened. If the open is successful, an

index area handle is returned that should be retained for all
subsequent operations using this index file.

Usage
The defined index file must belong to the database that is currently

selected. The last opened index file becomes the selected index until
changed with vxSelectNtx or vxNtxDeselect.

The select area handle should be retained in a GLOBAL integer for
use with that file throughout your application. Use variable names that
describe the file.

A successful open positions the record pointer to the first record
(pointed to by the first index entry in this file) in the database.
Filters and relations are respected.

Example
' open aircraft file
' ------------------
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 End
 End If
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

See Also
vxAreaNtx
vxNtxDeselect
vxSelectNtx
vxSetHandles
vxTestNtx

vxBase Page 300

vxWindowDereg

Declaration
Declare Sub vxWindowDereg Lib "vxbase.dll" (ByVal Hwnd As Integer)

Purpose
Deregister a database select area from the vxBase Task-Window

manager and also release vxCtlFormat memory (if any).

Parameters
Hwnd is the hWnd property of the Visual Basic form that you are

deregistering.

Returns
Nothing.

Usage
The vxBase Task-Window manager can keep track of up to 96 task-

window-select area combinations. vxWindowDereg is used to ensure that
all references to this database in this window are removed when the
form is closed. Always issue this command in your FORM_UNLOAD procedure
after closing any databases. It will ensure that the Task manager does
not overflow.

See the discussion under "Multitasking and Multiuser Considerations"
for more information.

vxBase can also keep format information for up to 256 active text
boxes. If vxCtlFormat is used for this purpose, vxWindowDereg must
always be called in the Form Unload procedure to release format memory
and to clear references to active text boxes for re-use.

Example
 If CustReturn <> BROWSE_USER Then
 j% = vxSelectDbf(vxClientDbf)
 j% = vxClose()
 j% = vxSelectDbf(vxStateDbf)
 j% = vxClose()
 vxWindowDereg (VXFORM3.hWnd)
 VXFORM1.OpenVx.Enabled = TRUE
 VXFORM1.PackFiles.Enabled = TRUE
 VXFORM1.TestMEmo.Enabled = TRUE
 End If

See Also
vxCtlFormat
vxSelectDbf

vxBase Page 301

vxWrite

Declaration
Declare Function vxWrite Lib "vxbase.dll" () As Integer

Purpose
Write the contents of the current record buffer to disk.

Parameters
None.

Returns
TRUE if the operation was successful or FALSE if not. Always returns

FALSE if the associated dbf has been opened as Read Only with
vxUseDbfRO.

Usage
Record fields are changed with the vxReplxxx functions. These

changes occur internally in a record memory buffer. The contents of
that buffer are written out whenever another record operation occurs
(such as vxGo, vxSkip, vxTop, etc.) or when the file is closed.

vxWrite explicitly writes the record as soon as the replacements are
complete. In a multiuser environment, always use vxWrite to write the
record contents as soon as possible after changes have been made, and
then unlock the file to make the record available to other users.

Warning: DO NOT use this function as an all purpose buffer clearing
function. If the record pointer is in an undefined state, a blank
record will be appended to your database.

Example
 If CustReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 Else
 vxGo(SaveRec&)
 End If

 Call vxReplString("a_code", (CustCode.text))
 Call vxReplString("a_name", (CustName.text))
 Call vxReplDate("a_cdate", CDate$)
 Call vxReplDate("a_rdate", RDate$)
 j% = vxWrite()
 j% = vxUnlock()

vxBase Page 302

vxWriteHdr

Declaration
Declare Function vxWriteHdr Lib "vxbase.dll" () As Integer

Purpose
Explicitly write XBase header information.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
vxBase only updates the XBase file header information when the file

is closed. This information includes a date and time stamp, and the
number of records in the database.

If you are using a concurrent third party XBase file management
program to monitor the results of your vxBase application, it will
probably not recognize the addition of records to the database because
it relies on the header record count to determine the database extent.

Use vxWriteHdr after every record update or addition to make vxBase
100% compatible with other XBase file programs.

Example
 ' vxSetLocks is TRUE
 ' ------------------
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()

vxBase Page 303

 j% = vxWriteHdr()
 End If

See Also
vxWrite

vxBase Page 304

vxZap

Declaration
Declare Function vxZap Lib "vxbase.dll" () As Integer

Purpose
Physically delete all of the records in the file.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. Always

returns FALSE if the associated dbf has been opened as Read Only with
vxUseDbfRO.

Usage
Would normally be used to delete the contents of a permanent batch

file after the batch records have been appended to a master file.

Ensure that all index files associated with the file are open. The
file is reindexed after the vxZap (i.e., the index files are cleaned
out as well).

Multiuser Considerations
The file and all of its index files are locked for the duration of

the operation.

Example
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom("Transbat.dbf")
 j% = vxClose() ' close master file

 ' reopen transaction batch because the From
 ' file is closed by vxAppendFrom
 ' --
 TransDbf% = vxUseDbf("Transbat.dbf")
 TransNtx% = vxUseNtx("Transbat.ntx")
 j% = vxDbfSelect(TransDbf%)
 j% = vxZap() ' clear the batch

See Also

vxDeleteRange
vxPack

vxBase Page 305

Error Messages

150 Arithmetic overflow
Numeric field not long enough to hold the result of an xBase

arithmetic expression.

200 Unable to evaluate expression.
One or more errors found in xBase expression string. Unable to
continue.

230 Logical values ynYNtfTF only allowed.
vxBrowse onscreen edit of logical field. Characters shown above are

the only ones allowed.

290 Cannot access specified print driver.
Error occurred in vxSetupPrinter dialog. The print driver selected

cannot be found.

302 Close active join links before closing this window.
Windows created with the JOIN browse menu item must be closed before

the main window.

305 Active browse tables. vxCloseAll illegal.
All active browse tables for this task must be closed before the

files may be closed.

340 Create database error
Either a DOS error (e.g., out of disk space) or an error in the

field structure passed to the vxCreateDbf function.

420 Dialog box in use!
An attempt has been made to activate a dialog box that is currently

in use (perhaps by another task). vxBase dialog boxes may be used by
only one task at a time.

501 Cannot edit result of expression.
Attempt made to onscreen edit a vxBrowse column that is the result

of an xBase expression rather than a field.

502 Cannot edit memo with onscreen editor
Attempt made to onscreen edit a memo field displayed with vxBrowse.

Use vxMemoEdit or vxMemoRead/vxReplMemo instead.

504 Field Edit not allowed on joined windows.
vxBrowse onscreen edit of fields only allowed on the parent window

originating the first join link.

505 Only one active field edit allowed.
Finish the first onscreen edit before proceeding to another.

530 Error in Printer setup.
An error occurred in accessing the selected Windows print driver

during vxSetupPrinter.

550 Expression length error
vxBase could not evaluate an expression because the return length is

vxBase Page 306

zero.

555 Expression too long
xBase expression length is limited to 127 characters.

560 Expression type check error
Mismatched data type within xBase expression. Comparisons require

same data type on either side of the relational operator. Functions
require set data type (e.g., SUBSTR() takes a character value).

600 File creation error
DOS could not create the file. Either disk space problem or network

security violation or not enough handles allocated with vxSetHandles.

605 File name or path invalid.
Import memo file function failed because the entered file could not

be found.

610 File lock error
DOS could not lock the requested record bytes.

620 File open error
File may not exist or not enough handles allocated with vxSetHandles

or a network security violation.

625 File positioning error
DOS could not position its read/write pointer to a valid location in

the file. Record number may be larger than the number of records in the
file.

640 File read error
DOS could not read the file. Either a disk error occurred or there

was a network security violation.

670 File unlock error
DOS could not unlock the requested record bytes. DOS internal error.

680 File write error
DOS could not write to the file. Either a disk problem, out of

space, or a network security violation.

690 Field replace type mismatch
The data type of the replacement data does not match the defined

field type.

694 From file cannot be found
vxAppendFrom could not find the file it is supposed to append data

from.

900 Incomplete expression
xBase expression is incomplete or unsupported.

904 Index close error
DOS could not close the index file. Could be due to an invalid index

select area.

vxBase Page 307

908 Index corrupted
vxBase detected a corrupted index. Use vxReindex to repair.

914 Out of memory in index sort
The file is too large to index with vxBase. Try cutting down the

number of key elements.

918 Internal index invalid key pointer
Destroy the index and try vxReindex.

920 Internal index block size error
Destroy the index and try vxReindex.

922 Internal index node position error
Destroy the index and try vxReindex.

vxBase Page 308

924 Internal index read error
Destroy the index and try vxReindex.

926 Internal index root seek error
Destroy the index and try vxReindex.

928 Internal index skip error
Destroy the index and try vxReindex.

930 Internal index leaf size error
Destroy the index and try vxReindex.

932 Invalid record number. Record not written!
The contents of the record buffer cannot be written to the specified

location because that record does not exist. New records require
vxAppendBlank to create an empty record.

934 File has zero length
DOS directory entry error. File was not closed properly.

935 Invalid column index
vxTableField column index is out of the range specified by

vxTableDeclare.

936 Invalid date
Date passed back to vxBase cannot be translated into an xBase date,

or a date entered into a vxBrowse onscreen edit of a date field or text
box formatted with vxCtlFormat was invalid.

938 Invalid Dbf Area
Attempt was made to access a select area that does not contain a

valid database.

940 Invalid number of delimiters
xBase expression evaluation error. Mismatched parentheses or

quotation marks.

942 Invalid field number
A relative field access cannot be completed because the field number is
greater than vxFieldCount.

944 Invalid field name
The referenced field could not be found in the current select area.

If multiple windows are present on the screen, or multiple select areas
are being used in one form's logic, vxBase may have changed the select
area in response to a user transparent message passed to Visual Basic
from Windows. If the field name is spelled correctly, try inserting an
explicit vxSelectDbf in front of the offending field reference.

946 Invalid Index Area
The index select area passed to a vxBase function is invalid.

948 Invalid record length
Maximum record length is 32666.

952 Invalid memo file name

vxBase Page 309

A .dbt file could not be found that matches the name of the .dbf.

953 Invalid menu index
vxMenuItem index parameter is out of the range specified by

vxMenuDeclare.

954 Invalid menu level
vxMenuItem level param must be greater than or equal to zero.

955 Invalid menu type
vxMenuItem type parameter must be VX_RETURN (0), VX_MENUHEAD (1), or

VX_SEPBAR (2).

956 Invalid number in expression
An xBase expression element contains an invalid number (e.g.,

negative number as index to SUBSTR()) OR there are illegal mixed data
types on either side of an xBase operator (e.g., trying to add a
character field to a date field).

960 Invalid operator
An xBase expression contains an unrecognized operator, or an

operator that does not work on the data types involved (e.g., 5 $
NumField is invalid because the "is contained in" operator only works
on character fields).

964 Incorrect number of parameters
An xBase function was passed the wrong number of parameters (e.g.,

LEFT(FieldName) is invalid because a number must follow the FieldName).

970 Invalid record number on vxGo
The record number is not within the file range (negative or greater

than that returned by vxBottom).

975 Invalid registration number
The shareware license number entered is invalid. Try again or call

to confirm the number issued.

980 Invalid seek. No index open.
vxSeek only allowed on indexed files.

984 Invalid select area
The select area sepcified does not contain a valid database

descriptor block.

990 Invalid date format expression
An xBase expression evaluation could not decipher the date format

contained within the expression.

1000 No records found that match join key.
User message. The record pointer in the vxBrowse master window was

moved to a record that has no matching records in the joined file.
Information only.

1100 Key does not match expression
The key in the index does not match the expression that the index

was built with. If a file structure is modified, and the type of a
field that is an element in a key expression changes, then the index

vxBase Page 310

becomes invalid. Rebuild the index with vxCreateNtx.

1110 Key max length exceeded (100 chars)
The maximum length of a key is 100 characters.

1120 Key must evaluate as a string
vxBase keys must evaluate as strings. Use the STR() function to

convert numeric values to strings, and the DTOS() function to convert
dates to strings.

1290 Maximum submenus exceeded
Only 64 VX_MENUHEAD types are allowed within a single defined menu

structure.

1300 Windows memory allocation error
Windows could not allocate the requested memory. Buy more.

1305 Memory deallocation error
A memory handle has become invalid for some reason. A UAE will

usually occur before we ever get this message (Windows 3.0).

1307 Memo max length (32767) exceeded
The maximum length of a memo is 32767 (signed integer max).

1310 Memo type not supported
Only Clipper or dBase III type memo files are supported by vxBase.

1315 Memo write error
DOS error or network security violation.

1317 Menu structure error
A vxMenuItem level parameter refers to a menu index that is not

defined as VX_MENUHEAD.

1320 String delimiter missing
xBase expression string delimiters are double or single quotes. They

must be matched.

1347 Must declare menu before vxMenuItem
vxMenuDeclare must be used to allocate memory for the upcoming menu

structure defined by a series of vxMenuItem commands.

1350 Must declare table before vxTableField
vxTableDeclare must be issued on the selected database before the

fields in the table can be defined.

1400 Expression must evaluate as Character string.
Key expessions passed to vxCreateNtx must evaluate as character

strings. See error code 1120 above.

1406 Expression must evaluate as logical TRUE or FALSE.
xBase expressions to be used as filters must evaluate as logical

results.

1409 No database currently selected
Field references and file statistical references require an open,

vxBase Page 311

selected database. The file you think is selected may have been
attached to another task (e.g., a print job) or another window in the
same task. Issue another vxSelectDbf immediately following calls to
subroutines that may deselect the database from the current window or
task or immediately following a Print.EndDoc statement.

1412 No browse handles available
Up to eight vxBrowse windows may be open at one time (for all active

tasks).

1415 No index active
Attempt made to perform an index function (e.g., vxReindex) while no

index was active.

1418 No records found that pass filter.
Information only. vxBrowse reports that there are no records that

qualify for display given the current filter.

1420 No matching fields
An attempt was made to vxAppendFrom a file that contains no matching

field names in the currently selected database.

vxBase Page 312

1422 Cannot allocate memory for memo edit
Not enough memory to edit the memo. At least 32767 bytes must be

free.

1424 Edit control out of space.
A memo was read into an edit control (vxMemoEdit) that is not large

enough to hold the memo.

1430 Search string not found.
Information only. A search string entered in the Query Search

vxBrowse menu item could not be found.

1436 Not a memo field!
An attempt was made to pass a field name to a memo function that is

not a memo type.

1442 Not an NTX format index
Invalid index format. NDX and CDX files are not supported in this

version of vxBase.

1448 Not an xBase database
The requested file open was not performed because the database

header was not a dBase III or Clipper type file. dBase II and dBase IV
file formats are not supported.

1450 Number of columns required
vxTableDeclare requires the number of columns that will be contained

in the vxBrowse table.

1454 Numbers only allowed.
Onscreen edit of a numeric field error message if a non-numeric

character was entered.

1500 Out of memory
Self explanatory.

1602 Internal Pack Error
We may have run out of disk space in the pack. The database could be

corrupted.

1620 Parentheses mismatched in expression
Self expanatory.

1630 Sign must be in first position
If a sign is entered into a numeric field with the vxBrowse onscreen

editor or in a vxCtlFormat numeric text box, it must precede the
numeric portion of the field.

1650 Printer error!
Self explanatory.

1900 Record skip error
Should never happen. If it does, the database is probably corrupted.

1950 Too many params in expression
The xBase expression is too complex to evaluate. Simplify and try

vxBase Page 313

again or call for help.

vxBase Page 314

1990 Task closure sequence error.
An attempt has been made to close a vxBase task that controls the

shared memory among all concurrently running vxBase tasks. This task
was the first task among the set of vxBase tasks currently running and
as such it must be the last one to be closed becuase it controls all of
the memory allocted to database functions by vxBase. See vxInit and
vxDeallocate for more information.

2002 Task list overflow!
The vxBase Task manager may contain up to 96 task-window-select area

entries. Use vxWindowDereg in your FORM_UNLOAD procedure to deregister
windows when they are closed.

2004 Too many decimals
vxBrowse onscreen edit of a numeric field or vxCtlFormat numeric

text box found too many decimal points (e.g., 34.56.7).

2010 Too many signs
vxBrowse onscreen edit of a numeric field or vxCtlFormat numeric

text box found too many signs (e.g., -34.56-)

2050 Type mismatch
Attempt to compare apples to oranges in an xBase expression or a

wrong data type was used as a parameter to an xBase function.

2100 Unsupported function in expression
vxBase does support this function. Request its addition via

Compuserve if you absolutely must have it.

2120 User aborted print
Information only. User cancelled print job (either memo print or

vxBrowse print).

vxBase Page 315

Software License Agreement

vxBase is not and never has been public domain software, nor is it
free software.

The software product and user's manual are copyrighted and all
rights are reserved by vxBase (512523 Alberta Ltd.).

Non-licensed users are granted a limited license to use vxBase on a
thirty day trial basis for the purpose of determining whether vxBase is
suitable for their needs. The use of vxBase beyond the thirty day trial
period requires registration and the issuing of a license number. The
use of unlicensed copies of vxBase beyond the thirty day evaluation
period by any person, business, corporation, government agency, or any
other entity is strictly prohibited.

A license permits a user to use vxBase on any single computer, or,
in a LAN environment, one copy may be installed on one server and this
copy may be shared among the workstations connected to the LAN that are
under the same roof as the LAN server.

Licensed users may use the program on different computers, but may
not use the program on more than one computer at the same time.

No one may modify or patch the vxBase files in any way, including
but not limited to decompiling, disassembling, or otherwise reverse
engineering the program.

A limited license is granted to copy and distribute vxBase for the
trial use of others, subject to the above limitations, and to those
below:

(1) vxBase must be copied in unmodified form, complete with the file
containing this license information.

(2) vxBase may not be distributed in licensed form to any person
using an application written in Visual Basic that makes use of the
vxBase function calls. It MUST be distributed as an unlicensed copy
except as noted under Developer Distribution License below.

(3) No fee, charge, or other compensation may be requested or
accepted for distributing vxBase, except as follows:

 (a) operators of electronic bulletin board systems may make vxBase
available for downloading. A time-dependent charge for the use of the
bulletin board is permitted so long as there is no specific charge for
the download of any vxBase files.

 (b) vendors of Shareware may distribute vxBase, subject to the
above conditions, and may charge a disk duplication and handling fee,
not to exceed ten dollars.

Developer Distribution License
A Developer Distribution License may be granted to developers in

consideration of the payment of $295.00 U.S. (less the shareware
registration fee if one has been paid). This license allows the

vxBase Page 316

developer to distribute a special run-time only version of vxbase.dll
to end users for their use with the developer's application. The run-
time version of vxbase.dll plus a printed copy of the vxBase manual
will be forwarded to any developer who pays the Developer Distribution
License fee. The run-time version of vxbase.dll may be distributed in
unlimited quantities by the developer who has been granted such a
license. The run-time version of vxbase.dll is free of all nagware and
has been disabled for use in Visual Basic Design mode.

vxBase Page 317

Limited Warranty

vxBase (512523 Alberta Ltd.) guarantees your satisfaction with this
product for a period of sixty days from the date of original purchase.
If you are dissatisfied with vxBase within that time period, return the
package in saleable condition to Comsoft Inc. for a full refund.

vxBase (512523 Alberta Ltd.) warrants that all disks provided are
free from defects in material and workmanship, assuming normal use, for
a period of sixty days from the date of purchase.

vxBase (512523 Alberta Ltd.) warrants that vxBase will perform in
substantial compliance with the documentation supplied with the
software product. If a significant defect in the product is found, the
Purchaser may return the product for a refund. In no event will such a
refund exceed the purchase price of the product.

The product and all updates are provided on an "as is" basis without
warranty of any kind, express or implied, except as stated above
including, but not limited to the implied warranties of merchantibility
or fitness for a particular purpose. The entire risk as to the
selection, quality, results, and performance of the product is with the
Licensee. Should the product prove defective, then the Licensee (and
not vxBase (512523 Alberta Ltd.) or its dealer) assumes all liability
and expense incurred as a result thereof. Some jurisdictions do not
allow the exclusion of certain implied warranties so in such
jurisdictions, the above exclusion of implied warranties may not apply
to you. The limited warranty gives you specific legal rights. You may
also have other rights which vary from jurisdiction to jurisdiction.

vxBase (512523 Alberta Ltd.) shall have no liability or
responsibility to you or to any other person or entity with respect to
any liability, loss or damage caused or alleged to be caused directly
or indirectly by the product or your use, misuse or inability to use
the product, including but not limited to, any interruption of service,
loss of business, anticipatory or actual profits or consequential
damages resulting from the use, misuse or inability to use the product.

vxBase (512523 Alberta Ltd.) does not warrant that the functions
contained in the product or updates will meet your requirements.

Use of this product for any period of time constitutes your
acceptance of this agreement and subjects you to its contents.

vxBase Page 318

vxBase Ordering Information

You may order vxBase and DataWorks directly from vxBase (512523
Alberta Ltd.) via check, money order, Visa, or Mastercard. You may also
order vxBase and Dataworks from Public (software) Library with your
Mastercard, Visa, AmEx, or Discover card by calling 1-800-242-4PsL
(from overseas: 713-524-6394) or by FAX to 713-524-6398 or by
CompuServe to 71355,470. These numbers are for ordering from PsL only.
vxBase (512523 Alberta Ltd.) can NOT be reached at those numbers.
Shareware disks may be ordered from PsL with item number 7614/3946.
vxBase and DataWorks may also be registered through PsL by quoting item
numbers 10473 for vxBase or 10472 for DataWorks. Shipping will
originate from vxBase (512523 Alberta Ltd.).

For technical support, shipping status, direct licenses, and
developer distribution licenses, contact vxBase (512523 Alberta Ltd.)
at the address, phone, or FAX listed below.

When ordering from vxBase (512523 Alberta Ltd.), please provide the
following information:

(1) Company
(2) Programmer name
(3) Street address
(4) City and State/Province
(5) Country
(6) Zip/Postal Code
(7) Telephone (overseas include country code)
(8) FAX number
(9) if paying by credit card,

credit card type (Visa or Mastercard ONLY)
Credit card number
Expiration date
Signature

(10) Disk preference (3-1/2" or 5-1/4")

Pricing:
vxBase $59.95 U.S.
vxBase Manual $20.00 U.S.

 DataWorks $49.95 U.S.
Developer's Kit* $295.00 U.S.

Air Mail Shipping (No Manual):
U.S./Canada Shipping $10.00 U.S.
Overseas Shipping $15.00 U.S.

Air Mail Shipping (Developer's Kit or vxBase with Manual):
U.S./Canada Shipping $17.00 U.S.
Overseas Shipping $28.00 U.S.

Canadian orders add 7% GST (GST# R133247296)

*The Developer's Kit includes vxBase, vxBase RunTime Unlimited
Distribution, vxBase manual, and Dataworks. If you have already
registered vxBase and/or DataWorks, deduct your registration fee(s)
from $295.00 and include your license number(s).

vxBase Page 319

For Priority Courier Service, substitute the following for
Shipping and Handling:

W/Manual No Manual
Canada and the U.S. $ 37.00 $ 31.00
United Kingdom 70.00 55.00
France 70.00 55.00
Western Europe 77.00 60.00
Australia 88.00 70.00
Pacific Rim 88.00 70.00
Central America 88.00 70.00
Eastern Europe 117.00 95.00
Middle East 117.00 95.00
India & Japan 117.00 95.00
South America 124.00 100.00
Korea 124.00 100.00
Africa/Indian Ocean 134.00 110.00
Mainland Asia 134.00 110.00

Mail, phone, or fax your order to:
vxBase (512523 Alberta Ltd.)
#200, 10310 - 176 Street
Edmonton, Alberta, Canada

T5S 1L3
Phone (403) 489-5994
Fax (403) 486-4335

Purchase orders accepted with prior approval.

Developer's Special Offer
Purchase the vxBase Developer's Kit for just $195.00 (a savings of

$100.00) until October 31, 1992.

vxBase Page 320

