Introduction

For those reading this on-line, the table of contents starts on page -3; the index starts
on page 109.

Welcome to the world of TEX on the NeXT machine. If you have used TEX on other
computer systems, you will feel at home with NeXTTEX. If you are a newcomer to TEX,
welcome! You will find the NeXT machine to be a powerful computer on which to learn
TEX and develop your documents.

A few words on how to read and use this manual: There are many tradeoffs to be
considered in designing a TEX package; the approach taken with NeXTTEX was to create
a package which is extremely powerful and highly flexible. Advanced TEX users who are
comfortable with computers will find the NeXTTEX package supports countless options
and is highly configurable; however, all of these options can prove very confusing to the
novice TEX user or to someone unfamiliar with the basics of Unix workstations. For these
users NeXTTEX assumes default values which, in a standard installation, make its use
straightforward.

This manual details virtually every aspect of NeXTTEX (for those expert enough to
make use of them) but for the beginner, it is sufficient (and probably preferable) to start
by reading only Chapters 1, 2 and 4 (a list of additional references is supplied in Appendix
A, and Appendix G gives a glossary of commonly used terms). As you learn more about
both TEX and the NeXTTEX package it should prove worthwhile to return to those aspects
of the manual which deal with the more advanced options. Thus, keep the manual around
and refer to it often.

This document does not attempt to teach either TEX or METAFONT. For that, you
should pick up one of the books listed in Appendix A of this manual. The languages
these programs use is identical to any other implementation of TEX or METAFONT, by
necessity; nothing has been omitted. Of course, the multitasking operating system and
graphic capabilities of the NeXT machine can make typography much more enjoyable than
it is on other machines.

We want to hear from you! Positive comments inspire further work on the product,
and negative comments indicate a direction to proceed. If you have any difficulty getting
the package up, let us know! Please write to Radical Eye Software at Box 2081, Stanford,
CA 94309. A technical support BBS is available at (415) 32-RADIO, or we can be reached

as radical.eye on BIX. We also have a technical support conference on BIX, also under

Chapter 1: Introduction 2

the name of radical.eye. Our FAX number is (415) 327-3329. Do not let the complexity of
the package intimidate you; if you can’t get something to work, either we haven’t explained
things correctly, or there is a bug. Before we jump in, a few comments must be made about
conventions used in this manual.

All commands and file names will be set in typewriter type. Commands are separated
from the accompanying text by blank lines, and are preceded by any prompts that are not
typed by the user. For instance, to list the size of the file foo.bar, you would type

nexthost> 1s -1 foo.bar

In this example, ‘nexthost> ’ is the shell prompt (yours may be different), and you would
not type those letters. The word tex refers to the program TEX as it has been ported to the
NeXT machine; the word TEX refers to the more general software package and typesetting
language that runs on a wide variety of machines. Any unfamiliar terms may be looked up
in the glossary in Appendix G.

1. First Run

Before we get into details of the TEX environment on the NeXT machine, we will
process and print a sample document. But first, TEX must be installed on the machine if
it doesn’t already exist.

1.1 Installing TEX

If TeX is not installed on your system, you cannot run it. With the browser, look for
/NextDeveloper/Demos/TeXview.app. If this file does not exist, you need to install TEX.
If it does exist, you can skip the remainder of this section.

You must be superuser to install TgX. Log out of the Workspace and log back in as
root. Run the Installer application (it’s usually hiding in /NextAdmin) and select open
in its menus. With the resulting open panel file browser, find the NeXTTeX. pkg file. This is
normally in /NextCD/Packages on the CD-ROM that 3.0 came on. Select this file.

The Installer will then take over. It will complain that certain files will be overwrit-
ten; this is normal. It will also mention that it has to run some programs to install it; this
is also okay. The entire installation process will take approximately ten minutes and will
require about six megabytes of hard disk space.

Once the Installer completes, you can hide or quit it. You should then log out of the
Workspace and log back in as a normal user; please do not ever run NeXTTEX as superuser
or root.

Chapter 1: Introduction 3

1.2 Running TEX

Now you are ready to run TEX. If you are ambitious and familiar with TEX, you may
choose to prepare a short sample file at this time. For those not familiar with TEX and for
those in a hurry, we have prepared a few sample files. To run TEX over a file, just double-
click on a .tex file in the Workspace browser; the TeXview application will automatically
be launched and will start processing the file.

For example, with your favorite text editor, create a new file called foo.tex that looks
exactly like

This is a sample \TeX\ file!\bye

Make sure you save this file as ASCII and not rtf or any other format. (In the Edit
application, you must select the Format/Text/Make ASCII menu entry to edit in ASCII
mode.)

After saving the file under the name foo.tex, double-click the foo.tex file in the
Workspace browser. TeXview should be launched and a window will appear displaying
something like

- tex -v "foo"

This is CTeX, NeXT Version 3.141 (preloaded format=plain 92.3.21)
(foo.tex [1])

Output written on foo.dvi (1 page, 248 bytes).

Transcript written on foo.log.

After that appears, a larger window will appear with a preview of your output.

If you are ambitious, you might try figuring out how to work the TEXview program at
this point, using what you know about gadgets and menus. Otherwise, you can exit the
program by selecting the quit option in the menu.

1.3 Printing a Document

If you have a printer attached to your NeXT machine or network, you can easily print
your sample file. Simply select the Print menu option of TEXview, select any desired
options, and hit the Print button. After a second or two your document should come out
of the printer. If it doesn’t, inform the system administrator. If you are maintaining the
system yourself, don’t fret; more information is given later on installation and support.

Chapter 1: Introduction 4

2. What Is New for 3.0?7

The 3.0 release of NeXTTEX has many improvements over the 2.0 release. TEX, dvips,
TEXview, and many other parts of the system have been substantially revised. More details
on all of these changes are given later in this manual.

2.1 Changes to TEX

TEX now supports character remapping, so that the character encoding of the NeXT
computer can be mapped to whatever encoding is appropriate for the TEX fonts being
used. This is supported through a file called tex.remap which is searched for in the current
directory, the user’s home directory, and then /usr/lib/tex.

Many array dimensions inside of TEX and METAFONT and various other programs
have been increased; the hyphenation trie specifically has been made larger for support of
multiple simultaneous foreign languages.

While this isn’t a new feature, the use of %& formatname on the first line of your main
TEX source file is an even better idea now that TEXview can invoke TEX directly. If you do
not use this convention, TEX will not know what format to load.

2.2 Changes Shared Between TpXview and Dvips

Many features have been added to both TEXview and dvips; this is a list of the new
features they share. Much more documentation is given in the chapter on dvips.

Included epsf images can be scaled such that their aspect ratio is distorted; simply give
both a horizontal and vertical size (with \epsfxsize and \epsfysize) and the graphic will
be scaled to fit.

Included PostScript graphics may be clipped to their bounding box by giving the
command \epsfclipon; note that this may cause some graphics to get ‘shaved’ if they give
a bounding box that is incorrect.

Included graphics file names that start with a back-tick (¢) are interpreted instead as
commands to run, and the actual data will be taken from stdout.

A new MAKETEXPK environment variable is supported.

There is now color support! Color in imported graphics was always supported, but
now you can set the color for your TeX text, rules, and equations as well.

Chapter 1: Introduction 5

MS-DOS-style .pfb files are now supported; they are converted to ASCII in the output
PostScript file. (Note that such files can not, of course, be distributed, since they contain
copyrighted font code. This is not true if public domain fonts are used instead.)

The configuration file option ‘p+’ has been added, meaning ‘add these additional fonts
to the resident font list’. This is in addition to the old ‘p’ option, which gave a file name
that completely replaced the resident font list.

The memory required by resident PostScript fonts has been dramatically reduced.

PostScript fonts can now be reencoded both at the PostScript and the virtual font
level.

The desired paper size can be specified in the TEX source file; both dvips and TEXview
will recognize these commands and attempt to comply with them.

2.3 Changes to Dvips

The following new features have been added to dvips since Release 2.0. These are the
extensions that apply only to dvips and afm2tfm; more information can be found in the
chapter on dvips.

Horizontal and vertical offsets can be specified in the configuration file.

)

Sequential page numbers can be specified by preceding the number with ‘=".

Paper size specials are now supported, as is paper size information in the configuration
file that can be used to map requested paper sizes to available paper sizes. This is especially
important for typesetters where wasted film can be expensive.

There is built-in command line help; just type dvips at a command line for a list of
the options.

The ability to limit the number of pages in a section, and to put each section into a
separate file, has been added. This makes it trivial to separate a 500 page book into sections
of 20 pages for the Linotronic.

Crop marks can now be printed.
The desired page size can also be specified on the command line.

A new -E option will attempt to create an encapsulated PostScript file. This only
works for documents in which you’ve selected one page. The calculated bounding box just
takes into account rules and characters drawn on the page; no graphics are currently taken
into account.

Chapter 1: Introduction 6

The afm2tfm program now prints out the entry in psfonts.map that should be added.

The dvips program now looks for a %%VMUsage comment and uses it; otherwise it
approximates the amount of printer VM required by an included header or epsf file by the
total size of the file.

A new -b option provides facilities for color separation, n-up printing, or poster print-
ing.

Ligatures have now been turned off in all fixed-spaced fonts. Bad kern pairs in AFM
files are now a warning rather than an error.

Accent ligatures in PostScript fonts have been removed.

2.4 Changes to TEXview

The following new features have been added to TEXview since Release 2.0. There is
some sketchy documentation in the Hints panel; more documentation is in a later chapter
of this manual.

There is now a Hints panel with some commonly-overlooked features of TeXview men-
tioned.

Graphics can be ‘mocked’; if the hide graphics option is selected in Preferences, then
gray boxes will be drawn instead of included graphics. This is for speed when the included
graphics are very complex or use inefficient PostScript.

A console window has been added; this displays the results of any runs of dvips or
METAFONT needed by TEXview. It automatically pops to front if a command takes longer
than a few seconds, so the user no longer wonders why TEXview isn’t responsive.

A ‘tex’ window has been added; this displays runs of TpX. Yes, now you can invoke

TEX from within TEXview!

The arrow keys can now be ‘qualified’ with shift and alternate to reduce the amount
of scroll. In addition, the left and right arrow keys move the document around on the page
when they are so qualified.

Services support has been added. The initially available services are ‘open this file’
(takes a file name, returns nothing), ‘reTEX the current file’ (takes a file name but ignores
it, just reTEX’ing the current file [this is because the current file might be a subfile—say,
Chapter 2; better just to reTEX what you TEX’ed before] and returns nothing), ‘reload dvi
file’ (takes a file name, again ignoring it, and returns nothing; this is useful if you run TEX
from within emacs, for instance), and ‘TEX eqn to EPS’ that takes ASCII, runs TEX and

Chapter 1: Introduction 7

dvips -E on it and returns a PostScript clip. These services can be extended through the
use of the TeXview.service file.

The TEXview window has a new, simpler look; the buttons have been moved to a
separate command window. This way, those that want lots of big buttons can have them,
and those that like a sparse, elegant interface can have that.

The page number field is now automatically enabled when a — or any digit is pressed.
To go to a particular page, just make sure the main TEXview window is the key window
and type in the page number followed by a return. (It’s not enabled all the time because
we want simple keystrokes to be interpreted as command keystrokes when possible to save
some pinkies out there.)

FAX ‘printing’ should now work! (This was a tough one.)
You can now scroll the page around by click-dragging.

You can measure distances by clicking on the page; in the command window, the
current click location and the distance from the last click location will be displayed. You
can also change the units that these distances are displayed in.

The size, position, and exposure status (whether the window is visible or not) is now
saved in the defaults database for the main window, the TEX window, the console window,
and the command window. You must select ‘Save Preferences’ on the Preferences panel for
this to take place.

TEXview now can open files with extensions of .dvi and .tex.

TEXview now responds to environment variables set in ~/.cshrc. This is done by
system()’ing a csh and reading the output from printenv and using that to augment any
environment variables that live in the Workspace environment. When, oh when, will the
Workspace get an environment?

No bitmapped fonts will be generated at resolutions below 69 dots per inch.

Many, many other features and changes to the user interface. Play and enjoy!

Chapter 1: Introduction 8

2.5 Incompatible Changes
The following incompatible changes have been made to NeXTTEX since Release 2.0.

You cannot mix and match old and new versions of TEXview and dvips. They use
many of the same header files, and these header files have changed from 2.0 to 3.0.

PostScript fonts now use new, shorter (and perhaps less convenient) names; this was
done in the interests of compatibility. See /usr/lib/tex/inputs/dvips.tex for more
information.

TEXview no longer accepts file names on the command line; use the shell command
open instead.

The t configuration file option (for paper size) is no longer supported. This is better
done with the new paper size support.

2.6 Other Changes

The following additional changes have been made to NeXTTEX since Release 2.0. In
addition to the changes given below, many, many bugs, big and small, have been squashed.

Landscape mode is now rotated 180 degrees to fit the Preview conventions. (Note that
the landscape special, while still supported, should be done now with a papersize special.)

The PostScript accent fixes have been added to psfonts.sty; note that these may
change depending on how the PostScript fonts are reencoded.

In path list expansion, any % substitutions are done on a per path element basis, rather
than on the entire path list. Thus, before the path .:/myfonts/%d/%n.%dpk would always
‘succeed’ by opening the current directory as a pk file (and then it would blow up with an
illegal command in the pk file); with the current release, this path list will work as you’d
expect.

2.7 Known Problems

The following are known problems in NeXTTEX. They will be corrected in a future
release.

You can’t include epsf graphics that have an underscore in their name if you are also
using a macro package that makes the underscore an active character. Few macro packages
do this; when they do, simply rename your graphic file.

Chapter 1: Introduction 9

3. What is TEX?

TEX is a typesetting language and system developed by Professor Donald Knuth of
Stanford University over the period 1977 to 1990. It was designed to be used in typesetting
books and manuscripts, especially those containing much mathematics. The current version
of the language has been stable since 1982, and is currently in use at thousands of computer
installations all over the world.

The input to TEX is somewhat free format; it is emphatically not a WYSIWYG (what
you see is what you get, often rephrased as what you see is all you get) system. The source
can be created with any typical text editor, and for the most part spacing and line breaks
in the input are ignored. Interspersed with the text are various typesetting commands that
might, for instance, change fonts or skip to the next page. TEX is programmable with
parameterized macros and user variables of a number of types, allowing the creation of
macro packages that extend the power of TEX or make it more accessible.

TEX is not the solution to all the world’s ills. As a document preparation system,
it has three major deficiencies. First, it does not directly support graphics. You can use
horizontal and vertical rules, and do some limited graphics using a variety of methods:
LaTgX supports some graphics operations, and PostScript printer drivers allow inclusion of
PostScript graphics. Secondly, TEX does not easily do complicated page layout, as might be
required for newspapers, for instance. And finally, TEX does not allow interactive editing
and viewing of the document as it is being developed.

All of these are design decisions; TEX was never intended to address any of these
concerns. What TEX does, however, TEX does well. It supports a huge library of fonts, and
additional fonts can be purchased from a number of companies. It supports full kerning and
ligatures in its fonts. It has no equal when typesetting complicated mathematical formulas
and displays. Its hyphenation algorithm is among the best in typesetting systems, and its
line- and page-breaking algorithms are nothing short of incredible.

TEX is a complicated system, because typesetting is not a simple task. It is easy to
generate quality documents without knowing much about TEX, but as your experience and
requirements grow, you will find that TEX has the power, programmability and expandabil-
ity to handle your most demanding needs.

One of the primary objectives of Knuth in writing TEX was computer and printer
independence; the output you display on your NeXT screen should appear (within the
resolution limits of the device) exactly the same as the output on the professional typesetting
equipment of Addison-Wesley, for instance. The same source should work and generate
identical output on all computer installations that run TEX.

To illustrate TEX, the processing of our sample foo.tex above is going to be examined,
and each file used by TEX in the creation of the document will be explained. Another simple
example of a TEX file is story.tex, from page 24 of The TgXbook,. Note that all source
files for TEX should have the extension .tex.

Chapter 1: Introduction 10

Some of the commands used in foo.tex are not a part of primitive TEX; primitive
TEX is very primitive indeed. Therefore, TRX by default loads a set of macros called ‘plain
TEX’ into memory. Rather than load these macros in as TEX source (which it could), it
instead loads them in a pre-digested form called a ‘format file’, with the extension .fmt.
This plain.fmt file contains essentially a memory image of TEX after all of the macros in

plain TEX are loaded.

Primitive TEX does not know any characteristics of any fonts, either. Therefore, a
number of font metric files with the extension .tfm were loaded while the plain.fmt file
was created. These files contain information about individual characters in the font and
the font as a whole, such as the height, width, and depth of each character, what ligatures
the font contains, and what kerning is necessary between which characters. There is one
of these files for each font accessible to TEX, and they contain only information about the
fonts that is independent of the output device.

As TEX was processing foo.tex, it created two files, one with the extension .log and
one with the extension .dvi. The log file contains essentially a listing of the run as it was
seen from the terminal, including any error messages that were displayed. This file is useful
if an error message was too long and scrolled off the display, for instance; various switches
can also be turned on inside TEX to display more information about what is happening
during the typesetting process. The main output file of TEX is the device-independent file,
with the extension .dvi. This file contains a description of the final document, including
the location and font of each character used. The units used in this file are not based on
any particular device, and the actual characters themselves are not described. It is up to
another program, the ‘driver’; to interpret this .dvi file, look up the appropriate raster or
outline representations of the individual characters, and create the final document.

The TEXview program is one such program. It ‘drives’ the NeXT screen, loading font
raster information from a collection of packed, or .pk, files. There is one of these files
for each font at each size, since the raster description of a character is by its very nature
dependent on the resolution of the output device.

The METAFONT program is used to generate these packed font files at the appropriate
resolutions from source descriptions. Normally, with NeXTTEX, you do not even need to be
aware that METAFONT exists, except that sometimes TpXview or dvips will pause while
they invoke METAFONT to generate a font. The Computer Modern fonts are the standard
set of fonts used with TEX; the use of PostScript fonts is becoming more and more common.

This was intended to be a simple description of TEX. For more information, please
refer to The TgXbook by Donald Knuth and LaTgX User’s Guide and Reference Manual
by Leslie Lamport, both published by Addison-Wesley Publishing Company and available
in most college bookstores.

Chapter 1: Introduction 11

4. Acknowledgements

I would like to acknowledge Dr. Thomas Marchioro II, who showered me with sugges-
tions, comments, support, coffee, code; without his help, the package would not be anywhere
near as nice. If you can get this man to test your product, do so. Thanks, Tom!

Many other people were a great help. John Loyola did an excellent job of proofing
this manual; any errors I'm sure I added after he finished. Susan Skulina, who will be my
wife when you read this, put up with many lost weekends and evenings as I labored to add
the ‘last touch’. Janet Coursey went well over and above the call of duty in helping me
with equipment problems, software problems, and just in general being the most incredible
support person I have ever met; NeXT does not and cannot pay her enough for the job
that she does. Dmitri Linde made some very useful suggestions and improvements, some
of which I thought were extremely difficult; here is a man with a future. There are many,
many other contributors who showered me with dozens of megabytes of mail messages, files
that failed in one way or the other, suggestions, code, support, questions, and all sorts of
other communications; please forgive me for not mentioning you all by name.

12

Using TEX

At this point you have TEX installed and have compiled some simple documents. It is
time to get down and dirty with the details of TEX on the NeXT machine. In this chapter, we
cover the special features of NeXTTEX that make it stand out above other implementations.
We describe how to use different format files, including the supplied LaTgX, SITEX, and
your own local format files.

The distributed version of TEX is 3.141, which supports virtual fonts, multiple hyphen-
ation tables, and a full eight-bit character set. In addition, the version of TEX is compiled
with a very large memory size, allowing large macro packages, complex pages, and a large
set of fonts to be used.

Information on using PostScript fonts and graphics is given in a later chapter on dvips.

Normally you do not interact directly with the TEX program itself; TpXview will call
it for you and display the results. Nonetheless, it is often useful to invoke tex or initex
yourself from a shell window; indeed, this is currently the only way to create a format file.

1. Exiting TEX

To exit the tex program at any prompt, simply hit control-D. TEX will respond with
‘emergency exit’. If you are not at a prompt, hit control-C; this will interrupt TEX and
should give you a prompt to which you can type control-D.

2. TEX Format Files

TEX for the NeXT machine is supplied as many different executables. Among these are
latex, slitex, virtex, and tex. If these four files are examined closely, it will be noted
that they are actually all the same file, but under four distinct names. The Unix operating
system provides ‘links’ that allow files to have multiple names. The only difference between
tex and latex is the format file they load.

The program TEX has only about 300 control sequences built in. These control se-
quences are very primitive and thus quite difficult to use. Therefore, before processing a

Chapter 2: Using TEX 13

document, TEX loads in by default a macro package containing definitions that allow the
document to be described at a higher level.

Parsing and processing the large amount of source in a typical macro package takes a
long time. To eliminate this delay, the program initex can be used to create a ‘format file’
that contains essentially a memory image of TEX after all of the macros have been loaded.
This format file loads relatively quickly, since it needs only to be copied into memory.

Thus, the executable for tex looks at the name under which it was invoked. It then
loads a format file with the same name. Thus, invoking tex loads the tex.fmt file, which
is linked to the plain.fmt file, which contains the default set of macros for plain TEX.
Invoking latex, which is the exact same executable as tex, loads the latex.fmt file, which
is linked to the 1plain.fmt file, which contains the set of macros for LaTEX.

With this scheme it is easy to install a new format file and have it be loaded trans-
parently. Let us say we have a local format file called glib.fmt, and we wish to create a
command glibtex that will invoke a TEX that automatically loads glib.fmt. The following
commands suffice.

localhost# cp glib.fmt /usr/lib/tex/macros
localhost# 1n /usr/lib/tex/macros/glib.fmt /usr/lib/tex/macros/glibtex.fmt
localhost# 1ln /usr/bin/tex /usr/bin/glibtex

Of course, you have to be superuser to execute these commands.

2.1 Specifying a Format File on the Command Line

A format file can be specified on the command line. Simply give the name of the format
file you wish to load after an ampersand (&) on the command line. For instance, we can
automatically load 1plain.fmt with the command

localhost> tex \&lplain

Note that with almost all command shells in Unix, the ampersand must be ‘escaped’
(preceded with a backslash) as in the above example.

2.2 Specifying a Format File in a TEX File

It is possible to specify the format file that should be loaded into TEX in your document
file. This will override the format file name derived from the name of the executable under
which TEX is invoked, and makes it easy to compile a given TEX document without trying
to figure out first what format file it requires. To give this information, the first line of the
TEX file should look like (for instance)

%&latex

Chapter 2: Using TgX 14

which would indicate that the latex.fmt file should be loaded before processing the docu-
ment. This specification must appear on the first line of the TEX source, and it must consist
of the two characters %& followed immediately by the name of the format file.

This option is very important; without it, TEXview will not know what format file to
use when it is told to ‘recompile’ or ‘reTEX’ the file.

3. Communicating with TeXview

To help reduce the edit—compile—view cycle with TEX, an option has been added to
NeXTTgX that will automatically give TEXview the name of the current dvi file that TEX
is processing. If you type

localhost> tex -v foo

and TEXview is running, then as soon as the first page of foo has been processed by TgX,
it will automatically appear in the TEXview window. There is no need to wait until TEX
is finished processing the file; as each page is completed by TEX, it becomes available for
viewing from TpXview.

When TgX is automatically invoked from within TgpXview, the -v option is supplied
by default.

If the option is provided as -V, then TEXview will be launched if it is not already.
(Launching TgXview can take several seconds, so be patient.)

The communication is effected with a named pipe called .TeXview Pipe created in the
user’s home directory.

4. Invoking Unix Commands from TgEX

In rare instances it might be desirable to execute a Unix command from TEX at a
certain point in your document. For instance, this document sorts its index by executing
such a command immediately before the index is typeset. NeXTTEX allows you to do this
with output (write) stream number 18. For instance, the command (in TEX)

\immediate\write18{1ls}

will cause the 1s command to be executed at this point in the document. The output from
the command will go to the current TEX window, and no output will actually be generated
in the document. If you wish to include some output in your file, you can redirect the
output to a file and input that file into your document, as in

Chapter 2: Using TEX 15

\immediate\writel8{date >datefile.tmp}
This document was typeset on \input datefile.tmp .

Note the space after the file name; this is to indicate to TEX the end of the file name. This
particular example is much more easily accomplished with built-in TEX commands. Finally,
the file name must have an extension (a portion of the file name following a period); if TEX
sees a file name with no extension, it automatically appends a .tex to the filename.

Note that the \immediate prefix is necessary, otherwise TEX will delay the command
until that particular page is flushed from TEX’s memory, which is usually not what is desired.

Use of this extended feature of NeXTTEX will render your document less portable to
other computer systems, since few have this particular extension. However, on other sys-
tems, the offending command will simply cause the command to be written to the terminal
rather than executed.

5. IniTEX

The IniTEX program is used to create format files for use with TEX. To recreate the
plain format file, for instance, simply type

localhost> initex plain \\dump

and after a lot of grinding you should have a brand new format file (named plain.fmt) in
your current directory.

To load your own macro package on top of plain, all you need do is tell initex to
load the regular plain format file before processing your macros:

localhost> initex \&plain mymacros \\dump
This is CTeX, NeXT Version 3.141 (INITEX)
(mymacros.tex)

Beginning to dump on file mymacros.fmt

Now you should copy this format file to the /usr/1ib/tex/formats directory. It can be
loaded by any of the methods listed in this chapter, such as by

localhost> tex \&mymacros bar

Chapter 2: Using TEX 16

6. NeXT Environment Variables

There are several files TEX must look for when processing a document; these include
format files, font metric files, and auxiliary input files. Since people might choose to move
these files from their default places, or to use their own personal versions of the files, TEX
reads several environment variables and uses them to search for these files. This section
describes environment variables in general and lists the ones that are used by TEX.

The rest of this section assumes you are using the csh command shell or some other
compatible shell. If you are using another shell, refer to documentation on that shell for how
to set and display environment variables. Do not get these environment variables confused
with shell variables; under csh, the latter are accessed by set and are usually lower case,
while environment variables are almost always upper case.

An environment variable consists of two strings of characters: a name, and some con-
tents. The setenv command can be used to change these environment variables. For
instance, to set the environment variable a to b, you would type the command

localhost> setenv a b

To list the current environment variables, the command setenv without parameters works;
type it now to verify that the above command worked. To delete an environment variable,
use unsetenv.

Environment variables are local to each shell; setting an environment variable in one
window does not affect the environment variables in another window. This can often lead
to confusing, different results in different windows. For this and other reasons, environment
variables are usually set in the shell initialization file; for csh, this file is named .cshrc in
your home directory.

Most environment variables are paths. A path is a colon-separated list of directories
to search for certain files. For instance, when TEX needs to load a format file, it searches
the directory . (the current directory), followed by the directory /usr/lib/tex/formats,
according to the paths listed below.

TEX examines the following environment variables. If they are not set, TEX uses the
given default.

TEXFORMATS (.:/usr/lib/tex/formats) This is where TEX searches for format files.

TEXINPUTS (.:/usr/lib/tex/inputs) This is where TEX searches for input files. Input
files also include any PostScript graphics that might be included in the document and
any style files that may be used.

TEXFONTS (.:/LocalLibrary/Fonts/TeXFonts/tfm:/usr/lib/tex/fonts/tfm) This
path is used when TEX is looking for tfm files.

Chapter 2: Using TgX 17
TEXPOOL (.:/usr/lib/tex) This path is used by initex to find the tex.pool file.

TEXEDIT (/usr/ucb/vi +%d %s) This environment variable describes the command to
execute if the E response is given to a TEX error prompt. All occurences of %d are
replaced by the line number at which the error occurred, and all occurrences of %s are
replaced by the name of the file in which the error occurred. If you prefer Edit for
your editor, set this command to ‘/usr/bin/openfile %s:%d .

7. The New Font Selection Scheme

The new font selection scheme, also called NFSS, will work fine with NeXTTEX. It is
not distributed because it has not yet stabilized but such support is planned for the future.

8. International Character Sets

In addition to the normal 95-character ASCII character set, the NeXT computer sup-
ports about 124 additional characters accessible from the keyboard. Most of these charac-
ters are for international language support. The most important of these characters are the
accented letters and a few additional characters such as A and .

TEX also supports many of these characters. There are two ways TEX can support
these characters: through special macros and accents (as is most commonly done, and must
be done with versions of TEX prior to 3.0) and with the new 3.0 eight-bit support and
remapping. We shall address each of these in turn.

Note that many editors and standard Unix programs do not support eight-bit charac-
ters; the extended character set can give fits to standard Unix shells and tools. Experiment
with various editors and tools to determine which work and which don’t, and then use the
ones that work if you need to use the extended characters.

8.1 Poor Man’s Extended Characters

The easiest way to get the NeXT extended characters to work is to include the file
next.tex at the top of your file with a line like

\input next

(for plain TEX) or with the addition of next as a document style option in LaTgX:

\documentstyle [next]{article}

The included file can be moved along with the TEX documents for maximum portability.
What this file does is make many of the upper eight-bit characters ‘active’, meaning that

Chapter 2: Using TEX 18

they directly invoke a macro that typesets what is requested. For instance, the NeXT
character set has at character position 214 the character 4. This can be typed on the
standard English keyboard in most editors with alternate-‘e’ followed by ‘a’; some editors
do not support these characters. To typeset this character with TEX, we want to use the
sequence \’a. So next.tex (and next.sty) just make character position 214 active and
equal to a macro whose body is \’a.

Most of the extended characters on the NeXT are supported this way; these include
(theunbreakablespace)AAAAAAQEEEEIIIINOOOOOUUUUY,u><+
@i£/f§” “ifl—tt- 19,7 gt /"7 m2s 3 412 2ad4a

daceéeéei E{i*1InLOE°060606euuu1lUyltgeBy

The characters that are not supported in this fashion are capital eth, capital thorn,
cents, yen, currency, registered, all guillemot characters, per thousand, ogonek, thorn, and
eth. This is because TEX has no standard support for these characters in its fonts.

The advantage of this approach is that it works with the existing software and fonts,
both PostScript and Computer Modern (for the most part.) The disadvantages, however,
is that these characters are not treated as just simple characters; this is true of all accent
constructions in TEX, anyway. Hyphenation of works containing these extended characters
will not work, and these extended characters cannot be used in file names, font names, or
macro names.

8.2 Extended Characters Done the Right Way

The TEX community is hard at work at fixing this deficiency. The computer software
is all in place to support it; various people and groups are working on replacements for the
Computer Modern bitmapped fonts and new macro packages, hyphenation patterns, and
other necessary parts to fully support these extended characters.

The NeXTTEX software has been designed to support these standards when they be-
come available. The primary problem is the different eight-bit character sets adopted by
various parts. The NeXT computer has one character set for the keyboard. TEX internally
uses another. Various bitmapped fonts use a third, and PostScript fonts can use any of a
number of character sets. Somehow the characters the user types need to be translated to
the corresponding character internally for TEX, and then that TEX character code needs to
be converted to something appropriate for the font in use.

This is all explained in more detail in a later chapter. For now, we shall limit ourselves
to discussing how the characters that the user types can be remapped to different character
codes internally for TEX.

This support is provided through a file called tex.remap, which is searched for in the
current directory, the user’s home directory, and then /usr/1lib/tex. This file is a list of
lines, each of the following form:

Chapter 2: Using TEX 19

ext: ntint int ...

where ezt is the external character code (1 through 255) and the ints represent the inter-
nal code for that (and the successive) external characters. Thus, to remap character 128
(externally) to 200 and 129 to 211, a line such as

128: 200 211

would do. If you use such remapping, be sure to run initex to create new format files; this
will allow TEX to display as well as use these characters.

We have provided an example mapping file in /usr/lib/tex/src/misc/tex.remap
that maps from the standard NeXT encoding to the Extended TEX encoding that is expected
to become the standard for TEX. More details on remapping are given later in the manual.

20

Printing TpX Documents

This chapter is documentation on the dvips driver program that generates PostScript
from TEX documents. Note that this documentation is general, shared among all imple-
mentations of TEX that use dvips, and thus some of it may seem inappropriate. On almost
all other systems, dvips is invoked via a command shell; on the NeXT, dvips is most
often invoked automatically by the Print menu item in TpXview. This chapter is relevant,
however, for details on graphics inclusion, on font naming, and on the extra options you
can specify for dvips in the TEXview print panel.

Note that many the dvips options that you want on by default can be specified in a
file named .dvipsrc in your home directory.

The dvips program converts a TEX dvi file into a PostScript file for printing or distri-
bution. Seldom has such a seemingly easy programming task required so much effort.

1. Why Use dvips?

The dvips program has a number of features that set it apart from other PostScript
drivers for TEX. This rather long section describes the advantages of using dvips, and may
be skipped if you are just interested in learning how to use the program. Installation is
covered in section 14 near the end of this document.

The dvips driver generates excellent, standard PostScript, that can be included in other
documents as figures or printed through a variety of spoolers. The generated PostScript
requires very little printer memory, so very complex documents with a lot of fonts can easily
be printed even on PostScript printers without much memory, such as the original Apple
LaserWriter. The PostScript output is also compact, requiring less disk space to store and
making it feasible as a transfer format.

Even those documents that are too complex to print in their entirety on a particular
printer can be printed, since dvips will automatically split such documents into pieces,
reclaiming the printer memory between each piece.

The dvips program supports graphics in a natural way, allowing PostScript graphics
to be included and automatically scaled and positioned in a variety of ways.

Chapter 3: Printing TEX Documents 21

Printers with resolutions other than 300 dpi are also supported, even if they have
a different resolution in the horizontal and vertical directions. High resolution output is
supported for typesetters, including an option that compresses the bitmapped fonts so that
typesetter virtual memory is not exhausted. This option also significantly reduces the size
of the PostScript file and decoding in the printer is very fast.

Missing fonts can be automatically generated if METAFONT exists on the system, or
fonts can be converted from gf to pk format on demand. If a font cannot be generated, a
scaled version of the same font at a different size can be used instead, although dvips will
complain loudly about the poor @sthetics of the resulting output.

Users will appreciate features such as collated copies and support for tpic, psfig,
emtex, and METAPOST; system administrators will love the support for multiple printers,
each with their own configuration file, and the ability to pipe the output directly to a
program such as lpr. Support for MS-DOS and VMS in addition to UNIX is provided in
the standard distribution, and porting to other systems is easy.

One of the most important features is the support of virtual fonts, which add an entirely
new level of flexibility to TEX. Virtual fonts are used to give dvips its excellent PostScript
font support, handling all the font remapping in a natural, portable, elegant, and extensible
way. The dvips driver even comes with its own afm2tfm program that creates the necessary
virtual fonts and TEX font metric files automatically from the Adobe font metric files.

Source is provided and freely distributable, so adding a site-specific feature is possible.
Adding such features is made easier by the highly modular structure of the program.

There is really no reason to use another driver, and the more people use dvips, the less
time will be spent fighting with PostScript and the more time will be available to create
beautiful documents. So if you don’t use dvips on your system, get it today.

2. Using dvips
To use dvips, simply type

localhost> dvips foo

where foo.dvi is the output of TEX that you want to print. If dvips has been installed
correctly, the document should come out of your default printer.

If you use fonts that have not been used on your system before, they may be auto-
matically generated; this process can take a few minutes. The next time that document is
printed, these fonts will already exist, so printing will go much faster.

Many options are available; they are described in a later section. For a brief summary
of available options, just type

Chapter 3: Printing TEX Documents 22

localhost> dvips

3. Paper Size and Landscape Mode

Most TEX documents at a particular site are designed to use the standard paper size
(for example, letter size in the United States or A4 in Europe.) The dvips program defaults
to these paper sizes and can be customized for the defaults at each site or on each printer.

But many documents are designed for other paper sizes. For instance, you may want
to design a document that has the long edge of the paper horizontal. This can be useful
when typesetting booklets, brochures, complex tables, or many other documents. This type
of paper orientation is called landscape orientation (the ‘normal’ orientation is portrait).
Alternatively, a document might be designed for ledger or A3 paper.

Since the intended paper size is a document design decision, and not a decision that
is made at printing time, such information should be given in the TEX file and not on the
dvips command line. For this reason, dvips supports a papersize special. It is hoped that
this special will become standard over time for TEX previewers and other printer drivers.

The format of the papersize special is

\special{papersize=8.5in,11in}
where the dimensions given above are for a standard letter sheet. The first dimension
given is the horizontal size of the page, and the second is the vertical size. The dimensions
supported are the same as for TEX; namely, in (inches), cm (centimeters), mm (millimeters),
pt (points), sp (scaled points), bp (big points, the same as the default PostScript unit), pc
(picas), dd (didot points), and cc (ciceros).

For a landscape document, the papersize comment would be given as

\special{papersize=11in,8.5in}

An alternate specification of landscape is to have a special of the form

\special{landscape}

This is supported for backward compatibility, but it is hoped that eventually the papersize
comment will dominate.

Of course, using such a command only informs dvips of the desired paper size; you
must still adjust the hsize and vsize in your TEX document to actually use the full page.

The papersize special must occur somewhere on the first page of the document.

Chapter 3: Printing TEX Documents 23

4. Including PostScript Graphics

Scaling and including PostScript graphics is a breeze—if the PostScript file is correctly
formed. Even if it is not, however, the file can usually be accommodated with just a little
more work. The most important feature of a good PostScript file—from the standpoint of
including it in another document—is an accurate bounding box comment.

4.1 The Bounding Box Comment

Every well-formed PostScript file has a comment describing where on the page the
graphic is located, and how big that graphic is. This information is given in terms of the
lower left and upper right corners of a box just enclosing the graphic, and is thus referred
to as a bounding box. These coordinates are given in PostScript units (there are precisely
72 PostScript units to the inch) with respect to the lower left corner of the sheet of paper.

To see if a PostScript file has a bounding box comment, just look at the first few lines
of the file. (PostScript is standard ASCII, so you can use any text editor to do this.) If
within the first few dozen lines there is a line of the form

%%BoundingBox: 0 1 2 3

(with any numbers), chances are very good that the file is Encapsulated PostScript and will
work easily with dvips. If the file contains instead a line like

%/%BoundingBox: (atend)

the file is still probably Encapsulated PostScript, but the bounding box (that dvips needs
to position the graphic) is at the end of the file and should be moved to the position of the
line above. This can be done with that same text editor, or with a simple Perl script.

If the document lacks a bounding box altogether, one can easily be added. Simply
print the file. Now, take a ruler, and make the following measurements. All measurements
should be in PostScript units, so measure it in inches and multiply by 72. Alternatively, the
bbfig program distributed with dvips in the contrib directory can be used to automate
this process.

From the left edge of the paper to the leftmost mark on the paper is llx, the first
number. From the bottom edge of the paper to the bottommost mark on the paper is [y,
the second number. From the left edge of the paper to the rightmost mark on the paper is
urz, the third number. The fourth and final number, ury, is the distance from the bottom
of the page to the uppermost mark on the paper.

Now, add a comment of the following form as the second line of the document. (The
first line should already be a line starting with the two characters ‘%!’; if it is not, the file
probably isn’t PostScript.)

Chapter 3: Printing TEX Documents 24

%/hBoundingBox: llx lly urx ury

Or, if you don’t want to modify the file, you can simply write these numbers down in a
convenient place and use them when you import the graphic.

If the document does not have such a bounding box, or if the bounding box is given
at the end of the document, please complain to the authors of the software package that
generated the file; without such a line, including PostScript graphics can be tedious.

4.2 Using the EPSF Macros

Now you are ready to include the graphic into a TEX file. Simply add to the top of
your TEX file a line like

\input epsf

(or, if your document is in LaTgX or SIi'TEX, add the epsf style option, as was done to the
following line).

\documentstyle[12pt,epsf]l{article}

This only needs to be done once, no matter how many figures you plan to include. Now, at
the point you want to include the file, enter a line such as

\epsffile{foo.ps}

If you are using LaTgX or SIHTEX, you may need to add a \leavevmode command imme-
diately before the \epsffile command to get certain environments to work correctly. If
your file did not (or does not currently) have a bounding box comment, you should supply
those numbers you wrote down as in the following example:

\epsffile[100 100 500 500]{foo.ps}

(in the same order they would have been in a normal bounding box comment). Now, save
your changes and run TEX and dvips; the output should have your graphic positioned at
precisely the point you indicated, with the proper amount of space reserved.

The effect of the \epsffile macro is to typeset the figure as a TEX \vbox at the point
of the page that the command is executed. By default, the graphic will have its ‘natural’
width (namely, the width of its bounding box). The TEX box will have depth zero and a
‘natural’ height. The graphic will be scaled by any dvi magnification in effect at the time.

Any PostScript graphics included by any method in this document (except bop-hook
and its ilk) are scaled by the current dvi magnification. For graphics included with

Chapter 3: Printing TEX Documents 25

\epsffile where the size is given in TEX dimensions, this scaling will produce the cor-
rect, or expected, results. For compatibility with old PostScript drivers, it is possible to
turn this scaling off with the following TEX command:

\special{! /magscale false def}

Use of this command is not recommended because it will make the \epsffile graphics the
wrong size if global magnification is used in a dvi document, and it will cause any PostScript
graphics to appear improperly scaled and out of position if a dvi to dvi program is used
to scale or otherwise modify the document.

You can enlarge or reduce the figure by putting

\epsfxsize=<dimen>

right before the call to \epsffile. Then the width of the TEX box will be <dimen> and
its height will be scaled proportionately. Alternatively you can force the vertical size to a
particular size with

\epsfysize=<dimen>

in which case the height will be set and the width will be scaled proportionally. If you set
both, the aspect ratio of the included graphic will be distorted but both size specifications
will be honored.

By default, clipping is disabled for included EPSF images. This is because clipping to
the bounding box dimensions often cuts off a small portion of the figure, due to slightly
inaccurate bounding box arguments. The problem might be subtle; lines around the bound-
ary of the image might be half their intended width, or the tops or bottoms of some text
annotations might be sliced off. If you want to turn clipping on, just use the command

\epsfclipon

and to turn clipping back off, use

\epsfclipoff

A more general facility for sizing is available by defining the \epsfsize macro. You
can redefine this macro to do almost anything. This TEX macro is passed two parameters by
\epsffile. The first parameter is the natural horizontal size of the PostScript graphic, and
the second parameter is the natural vertical size. This macro is responsible for returning
the desired horizontal size of the graph (the same as assigning \epsfxsize above).

In the definitions given below, only the body is given; it should be inserted in

\def\epsfsize#1#2{body?}

Chapter 3: Printing TEX Documents 26

Some common definitions are:

\epsfxsize This definition (the default) enables the default features listed above, by setting
\epsfxsize to the same value it had before the macro was called.

Opt This definition forces natural sizes for all graphics by setting the width to zero, which
turns on horizontal scaling.

#1 This forces natural sizes too, by returning the first parameter only (the natural width)
and setting the width to it.

\hsize This forces all graphics to be scaled so they are as wide as the current horizontal
size. (In LaTgX, use \textwidth instead of \hsize.)

0.5#1 This scales all figures to half of their natural size.

\ifdim#1>\hsize\hsize\else#1\fi This keeps graphics at their natural size, unless the
width would be wider than the current \hsize, in which case the graphic is scaled
down to \hsize.

If you want TEX to report the size of the figure as a message on your terminal when it
processes each figure, give the command

\epsfverbosetrue

4.3 Header Files

Often in order to get a particular graphic file to work, a certain header file might
need to be sent first. Sometimes this is even desirable, since the size of the header macros
can dominate the size of certain PostScript graphics files. The dvips program provides
support for this with the header= special command. For instance, to ensure that foo.ps
gets downloaded as part of the header material, the following command should be added

to the TEX file:
\special{header=foo.ps}
The dictionary stack will be at the userdict level when these header files are included.

For these and all other header files (including the headers required by dvips itself and
any downloaded fonts), the printer VM budget is debited by some value. If the header file
has, in its first 1024 bytes, a line of the form

%hVMusage: min mazx

Chapter 3: Printing TEX Documents 27

then the maximum value is used. If it doesn’t, then the total size of the header file in bytes
is used as an approximation of the memory requirements.

4.4 Literal PostScript

For simple graphics, or just for experimentation, literal PostScript graphics can be
included. Simply use a special command that starts with a double quote (). For instance,
the following (simple) graphic:

was created by typing:

\vbox to 100bp{\vss % a bp is the same as a PostScript unit
\special{" newpath O O moveto 100 100 lineto 394 0 lineto
closepath gsave 0.8 setgray fill grestore strokel}}

(Note that you are responsible for leaving space for such literal graphics.) Literal graphics
are discouraged because of their nonportability.

4.5 Literal Headers

Similarly, you can define your own macros for use in such literal graphics through the
use of literal macros. Literal macros are defined just like literal graphics, only you begin
the special with an exclamation point instead of a double quote. These literal macros are
included as part of the header material in a special dictionary called SDict. This dictionary
is the first one on the PostScript dictionary stack when any PostScript graphic is included,
whether by literal inclusion or through the \epsffile macros.

4.6 Other Graphics Support

There are other ways to include graphics with dvips. One is to use an existing package,
such as emtex, psfig, tpic, or METAPQOST, all supported by dvips.

Other facilities are available for historical reasons, but their use is discouraged, in hope
that some ‘sane’ form of PostScript inclusion shall become standard. Note that the main
advantage of the \epsffile macros is that they can be adapted for whatever form of special

Chapter 3: Printing TEX Documents 28

eventually becomes standard, and thus only minor modifications to that one file need to be
made, rather than revising an entire library of TEX documents.

Most of these specials use a flexible key and value scheme:

\special{psfile=filename.ps[key=value] *}

This will download the PostScript file called filename.ps such that the current point will
be the origin of the PostScript coordinate system. The optional key/value assignments
allow you to specify transformations on the PostScript.

The possible keys are:

hoffset The horizontal offset (default 0)

voffset The vertical offset (default 0)

hsize The horizontal clipping size (default 612)
vsize The vertical clipping size (default 792)
hscale The horizontal scaling factor (default 100)
vscale The vertical scaling factor (default 100)
angle The rotation (default 0)

clip Enable clipping to the bounding box

The dimension parameters are all given in PostScript units. The hscale and vscale
are given in non-dimensioned percentage units, and the rotation value is specified in degrees.
Thus

\special{psfile=foo.ps hoffset=72 hscale=90 vscale=90}

will shift the graphics produced by file foo.ps right by one inch and will draw it at 0.9
times normal size. Offsets are given relative to the point of the special command, and are
unaffected by scaling or rotation. Rotation is counterclockwise about the origin. The order
of operations is to rotate the figure, scale it, then offset it.

For compatibility with older PostScript drivers, it is possible to change the units that
hscale and vscale are given in. This can be done by redefining @scaleunit in SDict by
a TEX command such as

\special{! /@scaleunit 1 def}

The @scaleunit variable, which is by default 100, is what hscale and vscale are divided
by to yield an absolute scale factor.

All of the methods for including graphics we have described so far enclose the graphic
in a PostScript save/restore pair, guaranteeing that the figure will have no effect on the rest
of the document. Another type of special command allows literal PostScript instructions
to be inserted without enclosing them in this protective shield; users of this feature are
supposed to understand what they are doing (and they shouldn’t change the PostScript

Chapter 3: Printing TEX Documents 29

graphics state unless they are willing to take the consequences). This command can take
many forms, because it has had a tortuous history; any of the following will work:

\special{ps: text}
\special{ps: : text}
\special{ps:: [begin] text}
\special{ps:: [end] text}

(with longer forms taking precedence over shorter forms, when they are used). Note that
ps:: and ps:: [end] do not do any positioning, so they can be used to continue PostScript
literals started with ps: or ps::[begin]. There is also the command

\special{ps: plotfile filename}

which will copy the commands from filename verbatim into the output (but omitting lines
that begin with %). An example of the proper use of literal specials can be found in the
file rotate.tex which makes it easy to typeset text turned 90 degrees.

To finish off this section, the following examples are presented without explanation:

\def\rotninety{\special{ps:currentpoint currentpoint translate 90
rotate neg exch neg exch translate}}\font\huge=cmbx10 at 14.4truept
\setbox0=\hbox toOpt{\huge A\hss}\vskipl6truept\centerline{\copy0
\special{ps:gsave}\rotninety\copyO\rotninety\copyO\rotninety
\boxO\special{ps:grestore}}\vskipl6truept

7

\vbox to 2truein{\special{ps:gsave 0.3 setgray}\hrule height 2in
width\hsize\vskip-2in\special{ps:grestore}\font\big=cminch\big
\vss\special{ps:gsave 1 setgray}\vbox to Opt{\vskip2pt
\line{\hss\hskip4pt NEAT\hss}\vss}\special{ps:0 setgray}’
\hbox{\raise2pt\line{\hss NEAT\hss}\special{ps:grestore}}\vss}

|_)

L.

L

Chapter 3: Printing TEX Documents 30

Some caveats are in order when using the above forms. Make sure that each gsave on
a page is matched with a grestore on the same page. Do not use save or restore. Use of
these macros can interact with the PostScript generated by dvips if care is not taken; try
to understand what the above macros are doing before writing your own. The \rotninety
macro especially has a useful trick that appears again and again.

4.7 Dynamic Creation of PostScript Graphics Files

PostScript is an excellent page description language—but it does tend to be rather
verbose. Compressing PostScript graphics files can often reduce them by more than a
factor of five. For this reason, if the filename parameter to one of the graphics inclusion
techniques starts with a backtick (), the filename is instead interpreted as a command to
execute that will send the actual file to standard output. Thus,

\special{psfile="‘zcat foo.ps.Z"}

will include the uncompressed version of foo.ps. Since such a command is not accessible
to TEX, if you use this facility with the EPSF macros, you need to supply the bounding box
parameter yourself, as in

\epsffile[72 72 540 720]{"‘zcat screendump.ps.Z"}

to include screendump.ps. Of course, the commands to be executed can be anything,
including using a file conversion utility such as tek2ps or whatever is appropriate.

This extension is not portable to other dvi2ps programs. Yet.

5. Using PostScript Fonts

Thanks to Donald E. Knuth, the dvips driver now supports PostScript fonts through
the virtual font capability. PostScript fonts are (or should be) accompanied by a font metric
file such as Times-Roman.afm, which describes characteristics of a font called Times-Roman.
To use such fonts with TEX, we need tfm files that contain similar information. These can
be generated from afm files by running the program afm2tfm, supplied with dvips. This
program also creates virtual fonts with which you can use normal plain TEX conventions.

Note that non-resident downloaded PostScript fonts tend to use a great deal of printer
virtual memory. PostScript printers typically have between 130,000 and 400,000 bytes of
available virtual memory; each downloaded font will require approximately 30,000 bytes
of that. For many applications, bitmapped fonts work much better, even at typesetter
resolutions (with the -Z option.)

Even resident PostScript fonts can take a fair amount of memory, but less with this
release of dvips than previously. Also, bitmapped fonts tend to image faster than PostScript
fonts.

Chapter 3: Printing TEX Documents 31

5.1 The afm2tfm Program

The afm2tfm program can convert an Adobe afm file into a ‘raw’ TEX tfm file with the
command

localhost> afm2tfm Times-Roman rptmr

(You should run this from in a directory where Times-Roman.afm resides.) The output
file rptmr.tfm is ‘raw’ because it does no character remapping; it simply converts the
character information on a one-to-one basis to TEX characters with the same code. The
name rptmr stands for Resident PostScript Times Roman; section 6 below explains more
about a proposed scheme for font names.

In the following examples, we will use the font Times-Roman to illustrate the conver-
sion process. For the standard 35 LaserWriter fonts, however, it is highly recommended
that you use the supplied tfm and vf files that come with dvips (usually in a file called
dvipslib.tar.Z), as these files contain some additional changes that make them work
better with TEX than they otherwise would.

PostScript fonts have a different encoding scheme from that of plain TEX. Although
both schemes are based on ASCII, special characters such as ligatures and accents are
handled quite differently. Therefore we obtain best results by using a ‘virtual font’ interface,
which makes TEX act as if the PostScript font had a standard TEX encoding. Such a virtual
font can be obtained, for example, by the command

localhost> afm2tfm Times-Roman -v ptmr rptmr

This produces two outputs, namely the ‘virtual property list’ file ptmr.vpl, and the TEX
font metric file rptmr.tfm. The latter file describes an ‘actual font” on which the virtual
font is based.

To use the font in TEX, you should first run

localhost> vptovf ptmr.vpl ptmr.vf ptmr.tfm

and then install the virtual font file ptmr.vf in the virtual font directory (by default,
/usr/lib/tex/fonts/vf) and install ptmr.tfm and rptmr.tfm in the directory for TEX
font metrics (by default, /usr/lib/tex/fonts/tfm). (This probably has already been done
for you for the most common PostScript fonts.) You can also make more complex virtual
fonts by editing ptmr.vpl before running vptovf; such editing might add the uppercase
Greek characters in the standard TEX positions, for instance. Once this has been done,
you're all set. You can use code like this in TEX henceforth:

\font\myfont=ptmr at 10pt
\myfont Hello, I am being typeset in Times-Roman.

Chapter 3: Printing TEX Documents 32

Note that there are two fonts, one actual (‘rptmr’, which is analogous to a raw piece
of hardware) and one virtual (‘ptmr’, which has typesetting know-how added). You could
also say

\font\TR=rptmr at 10pt

and typeset directly with that, but then you would have no ligatures or kerning, and you
would have to use Adobe character positions for special letters like . The virtual font called
ptmr not only has ligatures and kerning, and most of the standard accent conventions of
TEX, it also has a few additional features not present in the Computer Modern fonts. For
example, it includes all the Adobe characters (such as the Polish ogonek and the French
guillemots). The only things you lose from ordinary TEX text fonts are the dotless j (which
can be hacked into the VPL file with literal PostScript specials if you have the patience) and
uppercase Greek letters (which just don’t exist unless you buy them separately). Experts
may refer to Donald E. Knuth article in TUGboat v. 11, no. 1, Apr. 1990, pp. 13-23.
“Virtual Fonts: More Fun for Grand Wizards.”

When dvips goes to use a font, it first checks to see if it is one of the fonts listed in a
file called psfonts.map. If it is mentioned in that file, then it is assumed that the font is
a resident PostScript font and can be found with the PostScript findfont operator. This
file resides by default in /usr/1lib/tex/ps, and consists of a single font per line. Note that
only the raw PostScript font names should be listed in this file; the vf fonts should not
be, since they are automatically mapped to the raw PostScript fonts by the virtual font
machinery. The supplied psfonts.map file defines the most common PostScript fonts.

As much as possible, the PostScript fonts follow plain TEX conventions for accents.
The two exceptions to this are the Hungarian umlaut (which is at position 0x7D in cmr10,
but position 0xCD in ptmr) and the dot accent (at positions 0x5F and 0xC7, respectively).
In order to use these accents with PostScript fonts or in math mode when \textfontO is a
PostScript font, you will need to use the following definitions. Note that these definitions
will not work with normal TEX fonts for the relevant accents; note also that these definitions
are already part of the distributed psfonts.sty. In addition, the \AA that is used to typeset
the A character must be modified as shown.

\def\H#1{{\accent"CD #1}}\def\.#1{{\accent"C7 #1}}

\def\dot{\mathaccent"70C7 }

\newdimen\aadimen

\def\AA{\leavevmode\setbox0O\hbox{h}\aadimen\htO
\advance\aadimen-lex\setbox0\hbox{A}\rlap{\raise.67\aadimen
\hbox to \wdO{\hss\char’27\hss}}A}

These PostScript fonts can be scaled to any size. Go wild! Note, however, that using
PostScript fonts does use up a great deal of the printer’s virtual memory and it does take
time. You may find downloading the Computer Modern bitmapped fonts to be faster than
using the built-in PostScript fonts.

Chapter 3: Printing TEX Documents 33

5.2 Changing a Font’s Encoding

The afm2tfm program also allows you to specify a different encoding for a PostScript
font. This should only be done by wizards. This can be done at two levels.

You can specify a different output encoding with -o. This only applies when you are
building a virtual font, and it tells afm2tfm to attempt to remap the font to match the
output encoding as closely as possible. In such an output encoding, you can also specify
ligature pairs and kerning information that will be used in addition to the information in
the afm file. This will be the most common re-encoding required, since the only thing that
changes is the vf file (and its associated tfm file) and since most everything you would want
to do can be done with this method.

You can also specify a different PostScript encoding with -p. This option affects the
generation of both the raw tfm file and the virtual vf and tfm files, and it also requires
that the encoding file be available to be downloaded as part of every PostScript document
produced that uses this font. But this is the only way to access characters in a PostScript
font that are neither encoded in the afm file nor built from other characters (constructed
characters.) For instance, Times-Roman contains the extra characters registered and
thorn (among others) that can only be accessed through such a PostScript reencoding. Any
ligature or kern information specified in the PostScript encoding is ignored by afm2tfm.

The format of the encoding files is simple—it is precisely the same format that is used
to define an encoding vector in PostScript! For this reason, the same file can be used as a
PostScript or TEX encoding file for afm2tfm as well as downloaded to the printer as part of
a document that uses a reencoded font.

The specific format that afm2tfm accepts is one of the following form:

% comments are mostly ignored; more on this later

/MyEncoding [/Alpha /Beta /Gamma /Delta ...
/A /B ... /Z % exactly 256 entries, each with a / at the front
/wfooaccent /xfooaccent /yfooaccent /zfooaccent] def

Comments, which start with a percent sign and continue until the end of the current
line, are mostly ignored. The first ‘word’ of the file must start with a forward slash (a
PostScript literal name) and is used as the name of the encoding. The next word must be
an open bracket. Following that must be precisely 256 character names; use /.notdef for
any that you do not want to define. Finally, there must be a close bracket. The final token
is usually def, but this is not enforced. Note that all names are case sensitive.

Any ligature or kern information is given in the comments. As each comment is en-
countered, it is examined. If the first word after the percent sign is LIGKERN, exactly, then
the entire rest of the line is parsed for ligature and kern information. This ligature and
kern information is given in groups of words, each group of which must be terminated by a
semicolon (with a space before and after it, unless it occurs on the end of a line.)

Chapter 3: Printing TEX Documents 34

In these LIGKERN statements, three types of information may be specified. These three
types are ligature pairs, kerns to remove or ignore, and the character value of this font’s
boundary character. Which of the types the particular set of words corresponds to is
automatically determined by the allowable syntax.

Throughout the LIGKERN section, the boundary character is specified as | |. To set the
boundary character value, a command such as || = 39 ; must be used.

To indicate a kern to remove, give the names of the two characters (without the leading
slash) separated by {}, as in one {} one ;. This is similar to the way you might use {}
in a TEX file to turn off ligatures or kerns at a particular location. Either or both of the
character names can be given as *, which is a wild card matching any character; thus, all
kerns can be removed with * {} * ;.

To specify a ligature, specify the names of the pair of characters, followed by the
ligature ‘operation’ (as in METAFONT), followed by the replacing character name. Either
(but not both) of the first two characters can be | | to indicate a word boundary. Normally
the ‘operation’ is =: meaning that both characters are removed and replaced by the third
character, but by adding | characters on either side of the =:, you can specify which of the
two leading characters to retain. In addition, by suffixing the ligature operation with one
or two > signs, you can indicate that the ligature scanning operation should skip that many
characters before proceeding. This works just like in METAFONT. A typical ligature might
be specified with ff i =: ffi ;. A more convoluted ligature is one one |=:|>> exclam
; which indicates that every pair of adjacent 1’s should be separated by an exclamation
point, and then two of the resulting characters should be skipped over before continuing
searching for ligatures and kerns. You cannot give more >’s in an ligature operation as you
did |, so there are a total of eight possible ligature operations:

=1 =0 == =00> =] I=0 > =0
The default set of ligatures and kerns built in to afm2tfm can be specified with:

% LIGKERN space 1 =: lslash ; space L =: Lslash ;

% LIGKERN question quoteleft =: questiondown ;

% LIGKERN exclam quoteleft =: exclamdown ;

% LIGKERN hyphen hyphen =: endash ; endash hyphen =: emdash ;
% LIGKERN quoteleft quoteleft =: quotedblleft ;

% LIGKERN quoteright quoteright =: quotedblright ;

% LIGKERN space {} * ; * {} space ; zero {} * ; * {} zero ;

% LIGKERN one {} * ; * {} one ; two {} * ; *x {} two ;

% LIGKERN three {} * ; * {} three ; four {} * ; * {} four ;

% LIGKERN five {} * ; * {3} five ; six {} * ; *x {} six ;

% LIGKERN seven {} * ; x {} seven ; eight {} * ; * {} eight ;
% LIGKERN nine {} * ; * {} nine ;

Chapter 3: Printing TEX Documents 35

5.3 Special Effects

Special effects are also obtainable, with commands such as

localhost> afm2tfm Times-Roman -s .167 -v ptmro rptmro

which create ptmro.vpl and rptmro.tfm. To use this, proceed as above but put the line

rptmro Times-Roman ".167 SlantFont"

into psfonts.map. Then rptmro (our name for an obliqued Times) will act as if it were a
resident font, although it is actually constructed from Times-Roman by PostScript hackery.
(This oblique version of Times-Roman is obtained by slanting everything 1/6 to the right.)
Similarly, you can get an expanded font by

localhost> afm2tfm Times-Roman -e 1.2 -v ptmrre rptmrre

and by recording the pseudo-resident font

rptmrre Times-Roman "1.2 ExtendFont"
in psfonts.map.

You can also create a small caps font with a command such as

localhost> afm2tfm Times-Roman -V ptmrc rptmr

This is done strictly with a virtual font, however. In addition, the font on which the small
caps font is based (in this case rptmr may already be created and installed, in which case
no additional psfonts.map entry is needed. In any case, you must give the appropriate
name of the font that is not small caps as the base name (last parameter) to afm2tfm. For
instance, if you create a slanted small caps font, you must give the base name of the raw
slanted font as that last parameter, not the base name of the unslanted font.

By default, the -V option uses a font scaled to 80% for lower case. If you specify the
-c option, you can change this scaling.

If you change the PostScript encoding of a font, you must specify the input file as
a header file, as well as give a reencoding command. For instance, let us say we are
using Times-Roman reencoded according to the encoding MyEncoding (stored in the file
myenc.enc) as rptmrx. In this case, our psfonts.map entry would look like

rptmrx Times-Roman "MyEncoding ReEncodeFont" <myenc.enc

The afm2tfm program prints out the precise line you need to add to psfonts.map to
use that font, assuming the font is resident in the printer; if the font is not resident, you

Chapter 3: Printing TEX Documents 36

must add the header command to download the font yourself. Note that each identical line
only needs to be specified once in the psfonts.map file, even though many different fonts
(small caps variants, or ones with different output encodings) may be based on it.

The command line switches to afm2tfm are:

-e ratio All characters are stretched horizontally by the stated ratio; if it is less than 1.0,
you get a condensed font.

-c scale If this option is given when creating a small caps font (with -V), then the scaling
for the ‘lower’ case will be changed from the default 0.8 to the fraction given here.

-0 This option forces all character designations in the resultant vpl file be given as octal
values; this is useful for symbol or other special-purpose fonts where character names
such as ‘A’ have no meaning.

-p file This specifies a file to use for the PostScript encoding of the font. Note that this
file must also be mentioned as a header file for the font in psfonts.map, and that
ligature and kern information in this file is ignored.

-s slant All characters are slanted to the right by the stated slant; if it is negative, the
letters slope to the left (or they might be upright if you start with an italic font).

-t file This specifies a file to use for the target TEX encoding of the font. Ligature and
kern information may also be specified in this file; the file is not needed once the v
file has been created.

=T file This option specifies that file is to be used for both the PostScript and target TEX
encodings of the font.

-v file Generate a virtual property list vpl file as well as a tfm file.

-V file Same as -v, but the virtual font generated is a small caps font obtained by scaling
uppercase letters by 0.8 to typeset lowercase. This font handles accented letters and
retains proper kerning.

5.4 Non-Resident PostScript Fonts

If you want to use a non-printer-resident PostScript font for which you have a pfb or
pfa file (an Adobe Type 1 font program), you can make it act like a resident font by putting
a ‘<’ sign and the name of the pfb or pfa file just after the font name in the psfonts.map
file entry. For example,

rpstrn Stonelnformal <StonelInformal.pfb

Chapter 3: Printing TEX Documents 37

will cause dvips to include StoneInformal.pfb in your document as if it were a header
file, whenever the pseudo-resident font Stonelnformal is used in a document. Similarly, you
can generate transformed fonts and include lines like

rpstrc StoneInformal <StoneInformal.pfb ".8 ExtendFont"

in psfonts.map, in which case StoneInformal.pfb will be loaded whenever Stonelnformal-
Condensed is used. (Each header file is loaded at most once per PostScript file. The pfb
files should be installed in the dvips header directory [usually /usr/1ib/tex/ps| with the
other header files.)

If you are using a pfb file that has different PostScript encodings, you would need to
multiple header files for that font in psfonts.map. If, for instance, StoneInformal was
both non-resident and you wanted to reencode it in PostScript with MyEncoding stored in
myenc.enc, a line such as

rpstrnx Stonelnformal "MyEncoding ReEncodeFont" <myenc.enc <StoneInformal.pfb

When using such files, dvips is smart enough to unpack the standard binary pfb format
into ASCII so there is no need to perform this conversion yourself. In addition, it will scan
the font to determine its memory usage, as it would for any header file.

5.5 Font Aliases

Some systems don’t handle files with long names well—MS-DOS is a notable example.
For this reason, dvips will accept an alias for such fonts. Such an alias should be the
first word in the psfonts.map line. For instance, if we wanted the name rptmr to be used
for the raw Times-Roman since our computer can’t handle long names or, alternatively, we
want to follow the standard naming conventions, we would use the following line in our
psfonts.map file:

rptmr Times—-Roman
The tfm file must have the name rptmr. tfm.

The distribution file adobe contains a list of the short names that should be used for
most Adobe fonts currently available. Please reference this file when installing a new font
and use the standard name.

The parsing of the psfonts.map file should be explained to eliminate all confusion.
If a line is empty or begins with a space, asterisk, semicolon, or hash mark, it is ignored.
Each remaining line is separated into words, where words are separated by spaces or tabs.
If a word begins with a double quote, it extends until the next double quote or the end of
the line. If a word starts with a less than character, it is treated as a font header file (or
a downloaded PostScript font). There can be more than one such header for a given font.
If a word starts with a double quote, it is a special instruction for generating that font.

Chapter 3: Printing TEX Documents 38

Otherwise it is a name. The first such name is always the name TEX uses for the font and
is also the name of the raw tfm file. If there is another name word, that name is used as
the PostScript name; if there is only one name word, it is used for both the TEX name and
the PostScript name.

Note that dvips no longer registers the full PostScript name if an alias is given, so the
single line

rptmr Times-Roman

would only allow dvips to find the rptmr font and not the Times-Roman font.

6. Font Naming Conventions

This section of the manual has been written by Karl Berry and specifies a standard for
naming fonts for TEX. This standard has been adopted in dvips, and it is recommended
that it be followed where possible.

As more typeface families become available for use with TEX, the need for a consistent,
rational naming scheme for the font filenames concomitantly grows. Some (electronic)
discussion has gone into the following proposal; 1 felt it was appropriate now to bring
it before a wider community. In some respects, it follows and simplifies Mittelbach and
Schépt’s article in TUGboat, volume 11, number 2 (June 1990).

Here are some facts about fonts that went into the hopper when creating this proposal:

e TEX runs on virtually all computers, under almost as many operating systems, all
with their own idea of how files should be named. Any proposal regarding filenames,
therefore, must cater to the lowest common denominator. That seems to be eight
characters in length, not counting any extension, and with case being insignificant.
Characters other than letters and numerals are probably unusable.

e Most typefaces are offered by several vendors. The version offered by vendor A is not
compatible with that of vendor B.

e Typefaces typically come in different weights (hairline to extra heavy), different expan-
sions (ultra condensed to wide), and an open-ended range of variants (italic, sans serif,
typewriter, shadow, ...). No accepted standards exist for any of these qualities, nor
are any standards ever likely to gain acceptance.

e The Computer Modern typeface family preserves traditional typesetting practice in at
least one important respect: different sizes of the same font are not scaled linearly.
This is in contrast to most commercial fonts available.

Here is how I propose to divide up the eight characters:

Chapter 3: Printing TEX Documents 39

FTTWVEDD
where

e F represents the foundry that produced the font, and is omitted if there isn’t one.

TT represents the typeface name.
e W represents the weight.
e V represents the variant, and is omitted if both it and the expansion are “normal”.

e E represents the expansion, and is omitted if it is “normal”.

DD represents the design size, and is omitted if the font is linearly scaled from a single
tfm file.

See the section on virtual fonts (towards the end) for an exception to the above.

The weight, variant, and expansion are probably all best taken from the original source
of the typeface, instead of trying to relate them to some external standard.

Before giving the lists of abbreviations, let me point out two problems, to neither of
which T have a good solution. 1) Assuming that only the English letters are used, two
letters is enough for only 676 typeface families (even assuming we want to use all possible
combinations, which is doubtful). There are many more than 676 typeface families in the

world. 2) Fonts with design sizes over 100 pt are not common, but neither are they unheard
of.

On to the specifics of the lists. If you adopt this proposal at your own installation, and
find that you have fonts with some property I missed, please write to me (see the end of the
article for various addresses), so I can update the lists. You can get the most up-to-date
version of these lists electronically, by anonymous ftp from the host ftp.cs.umb.edu. I will
also send them to you by electronic mail, if necessary.

I give the letters in lowercase, which is preferred on systems where case is significant.
Most lists are in alphabetical order by the abbreviations.

Chapter 3: Printing TEX Documents 40

6.1 Foundry

This is the current list of foundries.

Autologic

Bitstream

Agfa-Compugraphic

Free Software Foundation (g for GNU)
Bigelow & Holmes (with apologies to Chuck)
International Typeface Corporation

Adobe (p for PostScript)

reserved for use with virtual fonts; see below
Sun

nw K9 K B0m® o o P

6.2 Typeface Families

The list of typefaces is:

ad Adobe Garamond go Goudy Oldstyle
ag Avant Garde gs Gill Sans

ao Antique Olive jo Joanna

at American Typewriter lc Lucida

bb Bembo 1t Lutetia

bd Bodoni nc New Century Schoolbook
bg Benguiat op Optima

bk Bookman pl Palatino

bl Balloon pp Perpetua

bv Baskerville rw Rockwell

bw Broadway st Stone

cb Cooper Black sy Symbol

cl Cloister tm Times

cr Courier un Univers

cn Century uy University

cs Century Schoolbook zc Zapf Chancery
hv Helvetica zd Zapf Dingbats

gm Garamond

6.3 Weight

This is a list of the possible weights, roughly in order from lightest to heaviest.

Chapter 3: Printing TEX Documents 41

a hairline d demi
t thin s semi
i extra light b bold
1 light X extra bold
k book h heavy
r regular c black
m medium u ultra
6.4 Variants
The variants are:
a alternate n informal
b bright o oblique (i.e., slanted)
c small caps r normal (roman or sans)
e engraved s sans serif
g grooved (as in the IBM logo) t typewriter
h shadow u unslanted italic
i (text) italic x expert
1 outline

If the variant is r, and the expansion is also normal, both the variant and the expansion
are omitted. When the normal version of the typeface is sans serif (e.g., Helvetica), r
should be used, not s. Use s only when the typeface family has both serif and sans serif
variants. The “alternate” variant (a) is used by some Adobe fonts that have spiffy swashes
and additional ligatures. The “expert” variant (x) is also used by some Adobe fonts with
oldstyle figures and small caps.

Some fonts have multiple variants; Stone Informal Italic, for example. The only rea-
sonable approach to these is to list all the letters for all the variants, choosing one to end
with that is not also an expansion letter. Of course, it is possible that the name will become
too long if you do this, but ... well, I'm open to suggestions. It’s also possible the name
will be ambiguous, if some new letter is used for expansions in the future. You can avoid
this problem by adding the expansion r (if it doesn’t make the name too long), and never
using r for the last variant.

6.5 Expansion

This is a list of the possible expansions, in order from narrowest to widest.

o extra condensed x extended (by hand)

¢ condensed (by hand) e expanded (automatic)
n narrow (automatic) w wide

r regular, normal, medium (usually omitted)

Chapter 3: Printing TEX Documents 42

Expansion of fonts is sometimes done automatically (as in PostScript scale), and some-
times done by humans. I chose ‘narrow’ and ‘expanded’ to imply the former, and ‘condensed’
and ‘extended’ to imply the latter, as I believe this reflects common usage.

6.6 Naming Virtual Fonts

In concert with releasing TEX 3.0 and METAFONT 2.0, Don Knuth wrote two new
utility programs: VFtoVP and VPtoVF, which convert to and from “virtual” fonts. Virtual
fonts provide a general interface between the writers of TEX macros and font suppliers. In
general, therefore, it is impossible to come up with a general scheme for naming virtual
fonts, since each virtual font is an individual creation, possibly bringing together many
unrelated fonts.

Nevertheless, one common case is to use virtual fonts to map TEX’s default accent and
other character code conventions onto a vendor-supplied font. For example, dvips does
this for fonts given in the PostScript “standard encoding”. In this case, each font consists
of a “virtual” tfm file, which is what TEX uses, a “raw” tfm file, which corresponds to the
actual device font, and a vf file, which describes the relationship between the two.

This adds another dimension to the space of font names, namely, “virtualness” (or
rather, “rawness”, since it is the virtual tfm files that the users want to see). But we have
already used up all eight characters in the font names.

The best solution I have been able to think of is this: prepend r to the raw tfm files; the
virtual tfm files should be named with the usual foundry prefix. For example, the virtual
Times-Roman tfm file is named ptmr, as usual; the raw Times-Roman tfm file is named
rptmr. To prevent intolerable confusion, I promise never to give a foundry the letter r.

This scheme will work only as long as the virtualized fonts do not have design sizes; if
they do, another foundry letter will have to be allocated, it seems to me.

A pox upon the houses of those who decided on fixed-length filenames!

6.7 Examples

In closing, I will give two examples. First, the fonts in the Univers typeface family
were assigned numbers by its designer, Adrien Frutiger. (You can see the scheme on, for
example, page 29 of The Art of Typo.icon.ography, by Martin Solomon.) Naturally, we
want to give them names.

unl
unli
unlrc
unlic
unlro
unmrx
unm
unmi
unmrc
unmic

45 (light)

46 (light italic)

47 (light condensed)

48 (light condensed italic)

49 (light extra condensed)

53 (medium extended)

55 (medium)

56 (medium italic)

57 (medium condensed)

58 (medium condensed italic)

Chapter 3: Printing TEX Documents 43

unmro
undrx
und
undi
undrc
undic
unbrx
unb
unbi
unxrx

medium extra condensed)
demibold extended)
demibold)

demibold italic)

demibold condensed)
demibold condensed italic)
bold extended)

bold)

bold italic)

83 (extra bold extended)

59 (
63 (
65 (
66 (
67 (
68 (
73 (
75 (
76 (
(

Second, here are names for the standard PostScript fonts and their variants: Fonts
marked by an asterisk do not require using virtual fonts; the raw fonts can be used directly
because no remapping is necessary; every character is encoded.

pagk
pagkc
pagko
pagd
pagdo
pbkd
pbkdi
pbkl
pbkli
pbklc
pcrb
pcrbo
pcrro
pcrr
phvb
phvbo
phvro
phvr
phvrc
phvbrn
phvbon
phvron
phvrrn
pncb
pncbi

AvantGarde-Book
AvantGarde-Book (Small Caps)
AvantGarde-BookOblique
AvantGarde-Demi
AvantGarde-DemiOblique
Bookman-Demi
Bookman-Demiltalic
Bookman-Light
Bookman-LightItalic
Bookman-Light (Small Caps)
Courier-Bold
Courier-BoldOblique
Courier-Oblique

Courier

Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Oblique

Helvetica

Helvetica (Small Caps)
Helvetica-Narrow-Bold
Helvetica-Narrow-BoldOblique
Helvetica-Narrow-Oblique
Helvetica-Narrow
NewCenturySchlbk-Bold
NewCenturySchlbk-BoldItalic

pncri
pncr
pncrc
pplb
pplbi
pplbu
pplrrn
pplrre

pplri
pplr
pplro
pplru
pplrc
psyr
psyro
ptmb
ptmbi
ptmrrn
ptmrre
ptmri
ptmro
ptmr
ptmrc
pzcmi
pzdr

NewCenturySchlbk-Italic
NewCenturySchlbk
NewCenturySchlbk (Small Caps)
Palatino-Bold
Palatino-BoldItalic
Palatino-Bold Unslanted
Palatino-Narrow
Palatino-Expanded
Palatino-Italic

Palatino
Palatino-Oblique
Palatino-Unslanted
Palatino (Small Caps)
Symbol*
Symbol-Oblique*
Times-Bold
Times-BoldItalic
Times-Narrow
Times-Expanded
Times-Italic
Times-Oblique
Times-Roman
Times-Roman (Small Caps)
ZapfChancery-MediumlItalic
ZapfDingbats*

Please contact Karl Berry if you have any comments or additions. Karl can be reached
at karl@cs.umb.edu, or at 135 Center Hill Road, Plymouth, MA 02360.

Chapter 3: Printing TEX Documents 44

7. Command Line Options

The dvips driver has a plethora of command line options. Reading through this section
will give a good idea of the capabilities of the driver.

Many of the parameterless options listed here can be turned off by immediately suffixing
the option with a zero (0); for instance, to turn off page reversal if it is turned on by default,
use -r0. The options that can be turned off in this way are a, £, k, i, m, q, r, s, E, F, K, M,
N, U, and Z.

This is a handy summary of the options; it is printed out when you run dvips with no
arguments.

Usage: dvips [options] filename[.dvi]
ax Conserve memory, not time y # Multiply by dvi magnification
b # Page copies, for posters e.g. A Print only odd (TeX) pages

c # Uncollated copies B Print only even (TeX) pages
d # Debugging C # Collated copies

e # Maxdrift value D # Resolution

f* Run as filter Ex Try to create EPSF

h f Add header file F*x Send control-D at end

i* Separate file per section K* Pull comments from inclusions
kx Print crop marks M* Don’t make fonts

1 # Last page N* No structured comments

m* Manual feed 0 c Set/change paper offset

n # Maximum number of pages P s Load config.$s

o f Output file R Run securely

p # First page S # Max section size in pages
g* Run quietly T ¢ Specify desired page size
r* Reverse order of pages Ux Disable string param trick
s* Enclose output in save/restore X # Horizontal resolution

t s Paper format Y # Vertical resolution

x # Override dvi magnification Zx Compress bitmap fonts

= number f = file s = string * = suffix, ‘0’ to turn off
c = comma-separated dimension pair (e.g., 3.2in,-32.1cm)

-a: Conserve memory by making three passes over the dvi file instead of two and only
loading those characters actually used. Generally only useful on machines with a
very limited amount of memory, like some PCs.

-b num: Generate num copies of each page, but duplicating the page body rather than
using the #numcopies option. This can be useful in conjunction with a header file
setting \bop-hook to do color separations or other neat tricks.

-c num: Generate num copies of every page, by using PostScript’s #copies feature. Default
is 1. (For collated copies, see the -C option below.)

Chapter 3: Printing TEX Documents 45

-d num: Set the debug flags. This is intended only for emergencies or for unusual fact-
finding expeditions; it will work only if dvips has been compiled with the DEBUG
option. The source file debug.h indicates what the values of num can be, or see
section 15 of this manual. Use a value of —1 for maximum output.

-e num: Make sure that each character is placed at most this many pixels from its ‘true’
resolution-independent position on the page. The default value of this parameter is
resolution dependent (it is the number of entries in the list [100, 200, 300, 400, 500,
600, 800, 1000, 1200, 1600, 2000, 2400, 2800, 3200, .. .| that are less than or equal to
the resolution in dots per inch). Allowing individual characters to ‘drift’ from their
correctly rounded positions by a few pixels, while regaining the true position at the
beginning of each new word, improves the spacing of letters in words.

-f: Run as a filter. Read the dvi file from standard input and write the PostScript to
standard output. The standard input must be seekable, so it cannot be a pipe. If
you must use a pipe, write a shell script that copies the pipe output to a temporary
file and then points dvips at this file. This option also disables the automatic reading
of the PRINTER environment variable, and turns off the automatic sending of control
D if it was turned on with the -F option or in the configuration file; use -F after this
option if you want both.

-h name: Prepend file name as an additional header file. (However, if the name is simply
‘=7, suppress all header files from the output.) This header file gets added to the
PostScript userdict.

-i: Make each section be a separate file. Under certain circumstances, dvips will split
the document up into ‘sections’ to be processed independently; this is most often
done for memory reasons. Using this option tells dvips to place each section into
a separate file; the new file names are created replacing the suffix of the supplied
output file name by a three-digit sequence number. This option is most often used
in conjunction with the -S option which sets the maximum section length in pages.
For instance, some phototypesetters cannot print more than ten or so consecutive
pages before running out of steam; these options can be used to automatically split
a book into ten-page sections, each to its own file.

-k: Print crop marks. This option increases the paper size (which should be specified, either
with a paper size special or with the =T option) by a half inch in each dimension. It
translates each page by a quarter inch and draws cross-style crop marks. It is mostly
useful with typesetters that can set the page size automatically.

-1 num: The last page printed will be the first one numbered num. Default is the last
page in the document. If the num is prefixed by an equals sign, then it (and any
argument to the -p option) is treated as a sequence number, rather than a value to
compare with \countO values. Thus, using -1 =9 will end with the ninth page of
the document, no matter what the pages are actually numbered.

-m: Specify manual feed for printer.

Chapter 3: Printing TEX Documents 46

-n num: At most num pages will be printed. Default is 100000.

-o name: The output will be sent to file name. If no file name is given, the default name is

file.ps where the dvi file was called file.dvi; if this option isn’t given, any default in
the configuration file is used. If the first character of the supplied output file name is
an exclamation mark, then the remainder will be used as an argument to popen; thus,
specifying !1pr as the output file will automatically queue the file for printing. This
option also disables the automatic reading of the PRINTER environment variable, and
turns off the automatic sending of control D if it was turned on with the -F option
or in the configuration file; use -F after this option if you want both.

-p num: The first page printed will be the first one numbered num. Default is the first

R

page in the document. If the num is prefixed by an equals sign, then it (and any
argument to the -1 option) is treated as a sequence number, rather than a value to
compare with \countO values. Thus, using -p =3 will start with the third page of
the document, no matter what the pages are actually numbered. Another form of
page selection is available by using -pp followed by a comma-separated list of pages
or page-ranges, where the page ranges are colon-separated pairs of numbers. Thus,
you can print pages 3—10, 21, and 73-92 with the option -pp 3:10,21,73:92.

Run in quiet mode. Don’t chatter about pages converted, etc.; report nothing but

errors to standard error.

: Stack pages in reverse order. Normally, page 1 will be printed first.

: Causes the entire global output to be enclosed in a save/restore pair. This causes the

file to not be truly conformant, and is thus not recommended, but is useful if you
are driving the printer directly and don’t care too much about the portability of the
output.

papertype: This sets the paper type to papertype. The papertype should be defined in

one of the configuration files, along with the appropriate code to select it. See the
documentation for @ in the configuration file option descriptions. You can also specify
-t landscape, which rotates a document by 90 degrees. To rotate a document whose
size is not letter, you can use the -t option twice, once for the page size, and once
for landscape. The upper left corner of each page in the dvi file is placed one inch
from the left and one inch from the top. Use of this option is highly dependent on
the configuration file. Note that executing the letter or a4 or other PostScript
operators cause the document to be nonconforming and can cause it not to print on
certain printers, so the default paper size should not execute such an operator if at
all possible.

-x num: Set the magnification ratio to num/1000. Overrides the magnification specified

in the dvi file. Must be between 10 and 100000. It is recommended that you use
standard magstep values (1095, 1200, 1440, 1728, 2074, 2488, 2986, and so on) to
help reduce the total number of PK files generated.

Chapter 3: Printing TEX Documents 47

-A: This option prints only the odd pages. This option uses the TEX page numbering rather
than the sequence page numbers.

-B: This option prints only the even pages. This option uses the TEX page numbering rather
than the sequence page numbers.

-C num: Create num copies, but collated (by replicating the data in the PostScript file).
Slower than the -c option, but easier on the hands, and faster than resubmitting the
same PostScript file multiple times.

-D num: Set the resolution in dpi (dots per inch) to num. This affects the choice of
bitmap fonts that are loaded and also the positioning of letters in resident PostScript
fonts. Must be between 10 and 10000. This affects both the horizontal and vertical
resolution. If a high resolution (something greater than 400 dpi, say) is selected, the
-Z flag should probably also be used.

-E: Makes dvips attempt to generate an EPSF file with a tight bounding box. This only
works on one-page files, and it only looks at marks made by characters and rules, not
by any included graphics. In addition, it gets the glyph metrics from the tfm file, so
characters that lie outside their enclosing tfm box may confuse it. In addition, the
bounding box might be a bit too loose if the character glyph has significant left or
right side bearings. Nonetheless, this option works well for creating small EPSF files
for equations or tables or the like. (Note, of course, that dvips output is resolution
dependent and thus does not make very good EPSF files, especially if the images are
to be scaled; use these EPSF files with a great deal of care.)

-F: Causes Control-D (ASCII code 4) to be appended as the very last character of the
PostScript file. This is useful when dvips is driving the printer directly instead of
working through a spooler, as is common on extremely small systems. Otherwise, it
is not recommended.

-K: This option causes comments in included PostScript graphics, font files, and headers to
be removed. This is sometimes necessary to get around bugs in spoolers or PostScript
post-processing programs. Specifically, the %%Page comments, when left in, often
cause difficulties. Use of this flag can cause some included graphics to fail, since the
PostScript header macros from some software packages read portions of the input
stream line by line, searching for a particular comment. This option has been turned
on by default because PostScript previewers and spoolers still have problems with
the structuring conventions.

-M: Turns off the automatic font generation facility. If any fonts are missing, commands to
generate the fonts are appended to the file missfont.log in the current directory;
this file can then be executed and deleted to create the missing fonts.

-N: Turns off structured comments; this might be necessary on some systems that try to
interpret PostScript comments in weird ways, or on some PostScript printers. Old
versions of TranScript in particular cannot handle modern Encapsulated PostScript.

Chapter 3: Printing TEX Documents 48

-0 offset: Move the origin by a certain amount. The offset is a comma-separated pair of
dimensions, such as .1in,-.3cn (in the same syntax used in the papersize special).
The origin of the page is shifted from the default position (of one inch down, one
inch to the right from the upper left corner of the paper) by this amount.

-P printername: Sets up the output for the appropriate printer. This is implemented
by reading in config.printername, which can then set the output pipe (as in,
o !lpr -Pprintername) as well as the font paths and any other defaults for that
printer only. It is recommended that all standard defaults go in the one master con-
fig.ps file and only things that vary printer to printer go in the config. printername
files. Note that config.ps is read before config.printername. In addition, an-
other file called ~/.dvipsrc is searched for immediately after config.ps; this file
is intended for user defaults. If no -P command is given, the environment variable
PRINTER is checked. If that variable exists, and a corresponding configuration file
exists, that configuration file is read in.

-S num: Set the maximum number of pages in each ‘section’. This option is most commonly
used with the -i option; see that documentation above for more information.

-T offset: Set the paper size to the given pair of dimensions. This option takes its
arguments in the same style as -0. It overrides any paper size special in the dvi file.

-U: Disable a PostScript virtual memory saving optimization that stores the character metric
information in the same string that is used to store the bitmap information. This is
only necessary when driving the Xerox 4045 PostScript interpreter. It is caused by
a bug in that interpreter that results in ‘garbage’ on the bottom of each character.
Not recommended unless you must drive this printer.

-X num: Set the horizontal resolution in dots per inch to num.
-Y num: Set the vertical resolution in dots per inch to num.

-Z: Causes bitmapped fonts to be compressed before they are downloaded, thereby reducing
the size of the PostScript font-downloading information. Especially useful at high
resolutions or when very large fonts are used. Will slow down printing somewhat,
especially on early 68000-based PostScript printers.

Chapter 3: Printing TEX Documents 49

8. Configuration File Searching

The dvips program has a system of loading configuration files such that certain pa-
rameters can be set globally across the system, others can be set on a per-printer basis,
and yet others can be set by the user. When dvips starts up, first the global config.ps
file is searched for and loaded. This file is looked for along the path for configuration files,
which is by default .:/usr/lib/tex/ps. After this master configuration file is loaded, a
file by the name of .dvipsrc is loaded from the current user’s home directory, if such a file
exists. This file is loaded in exactly the same way as the global configuration file, and it
can override any options set in the global file.

Then the command line is read and parsed. If the -P option is encountered, at that
point in the command line a configuration file for that printer is read in. Thus, the printer
configuration file can override anything in the global or user configuration file, and it can
also override anything seen in the command line up to the point that the -P option was
encountered.

After the command line has been completely scanned, if there was no -P option selected,
and also the -o and -f command line options were not used, a PRINTER environment variable
is searched for. If this variable exists, and a configuration file for the printer mentioned in
it exists, this configuration file is loaded last of all.

Note that because the printer-specific configuration files are read after the user’s con-
figuration file, the user’s .dvipsrc cannot override things in the printer configuration files.
On the other hand, the configuration path usually includes the current directory, and can
be set to include the user’s home directory (or any other directory of the user), so the user
can always provide personalized printer-specific configuration files that will be found before
the system global ones.

If your printer uses a different resolution than 300 dpi, make sure that you have given a
METAFONT mode as well as a resolution in the printer configuration file. Also make sure that
METAFONT knows about the mode, by entering it into your local mode_def file (typically
waits.mf; amiga.mf on the Amiga, next.mf on the NeXT) and recreating the plain.base
file for METAFONT, including the mode_def file. (Another good mode definition file is
modes.mf by Karl Berry, which is available from ftp.cs.umb.edu in pub/tex/modes.mf.)
The most common problem in generating fonts with METAFONT is that this file with the
mode definitions is not included when creating the plain.base file.

9. Configuration File Options

Most of the configuration file options are similar to the command line options, but
there are a few new ones.

Again, many may be turned off by suffixing the letter with a zero (0). These options
are a, f, q, r, I, K, N, U, and Z.

Chapter 3: Printing TEX Documents 50

Within a configuration file, any empty line or line starting with a space, asterisk, equal
sign, or a pound sign is ignored.

@ name hsize vsize: This option is used to set the paper size defaults and options for the
particular printer this configuration file describes. There are three formats for this
option. If the option is specified on a line by itself, with no parameters, it instructs
dvips to discard all other paper size information (possibly from another configuration
file) and start fresh. If three parameters are given, as above, with the first parameter
being a name and the second and third being a dimension (as in 8.5in or 3.2cc, just
like in the papersize special), then the option is interpreted as starting a new paper
size description, where name is the name and hsize and vsize describe the horizontal
and vertical size of the sheet of paper, respectively. If both hsize and wvsize are equal
to zero (although you must still specify units!) then any page size will match it. If the
@ character is immediately followed by a + sign, then the remainder of the line (after
skipping any leading blanks) is treated as PostScript code to send to the printer to
select that particular paper size. After all that, if the first character of the line is an
exclamation point, then the line is put in the initial comments section of the final
output file; else, it is put in the setup section of the output file. For instance, a
subset of the paper size information supplied in the default config.ps looks like

@ letterSize 8.5in 11in

@ letter 8.5in 11in

Q@+ %/%BeginPaperSize: Letter
@+ letter

@+ %%EndPaperSize

@ legal 8.5in 14in

@+ ! Y%DocumentPaperSizes: Legal
@+ %/%BeginPaperSize: Legal
0+ legal

@+ %%EndPaperSize

Note that you can even include structured comments in the configuration file! When
dvips has a paper format name given on the command line, it looks for a match by
the name; when it has a papersize special, it looks for a match by dimensions. The
first match found (in the order the paper size information is found in the configuration
file) is used. If nothing matches, a warning is printed and the first paper size given
is used, so the first paper size should always be the default. The dimensions must
match within a quarter of an inch. Landscape mode for all of the paper sizes are
automatically supported. If your printer has a command to set a special paper size,
then give dimensions of 0in 0in; the PostScript code that sets the paper size can
refer to the dimensions the user requested as \hsize and \vsize; these will be macros
defined in the PostScript that return the requested size in default PostScript units.
Note that virtually all of the PostScript commands you use here are device dependent
and degrade the portability of the file; that is why the default first paper size entry
should not send any PostScript commands down (although a structured comment
or two would be okay). Also, some printers want BeginPaperSize comments and
paper size setting commands; others (such as the NeXT) want PaperSize comments
and they will handle setting the paper size. There is no solution I could find that

Chapter 3: Printing TEX Documents 51

works for both (except maybe specifying both). See the supplied config.ps file for
a more realistic example.

a: Conserve memory by making three passes over the dvi file instead of two and only
loading those characters actually used. Generally only useful on machines with a
very limited amount of memory, like some PCs.

b num: Generate num copies of each page, but duplicating the page body rather than using
PostScript’s #copies. This can be useful in conjunction with a header file setting
\bop-hook to do color separations or other neat tricks.

e num: Set the maximum drift parameter to num dots (pixels) as explained above.
f: Run as a filter by default.
h name: Add name as a PostScript header file to be downloaded at the beginning.

i num: Make each section be a separate file, and set the maximum number of pages in a
given file to num. Under certain circumstances, dvips will split the document into
‘sections’ to be processed independently; this is most often done for memory reasons.
Using this option tells dvips to place each section into a separate file; the new file
names are created by replacing the suffix of the supplied output file name with a
three-digit sequence number. This is essentially a combination of the command line
options -i and -8; see the documentation for these options for more information.

m num: The value num is the virtual memory available for fonts and strings in the printer.
Default is 180000. This value must be accurate if memory conservation and document
splitting is to work correctly. To determine this value, send the following file to the
printer:

%! Hey, we’re PostScript
/Times-Roman findfont 30 scalefont setfont 144 432 moveto
vmstatus exch sub 40 string cvs show pop showpage

Note that the number returned by this file is the total memory free; it is often a good
idea to tell dvips that the printer has somewhat less memory. This is because many
programs download permanent macros that can reduce the memory in the printer.
In general, a memory size of about 300000 is plenty, since dvips can automatically
split a document if required. It is unfortunate that PostScript printers with much
less virtual memory still exist. Some systems or printers can dynamically increase
the memory available to a PostScript interpreter, in which case this file might return
a ridiculously low number; the NeXT computer is such a machine. For these systems,
a value of one million works well.

o name: The default output file is set to name. As above, it can be a pipe. Useful in printer-
specific configuration files to redirect the output to a particular printer queue.

Chapter 3: Printing TEX Documents 52

p name: The file to examine for PostScript font aliases is name. It defaults to psfonts.map.
This option allows different printers to use different resident fonts. If the name starts
with a ‘+’ character, then the rest of the name (after any leading spaces) is used as
an additional map file; thus, it is possible to have local map files pointed to by local
configuration files that append to the global map file.

q: Run in quiet mode by default.
r: Reverse the order of pages by default.

s: Enclose the entire document in a global save/restore pair by default. Not recommended,
but useful in some environments; this breaks the conformance of the document to
the Adobe PostScript structuring conventions.

D num: Set the vertical and horizontal resolution to num dots per inch. Useful in printer-
specific configuration files.

E command: Execute the system command listed, for example as a UNIX shell command.
Execution takes place immediately, while the configuration file is being read. This
option can be used to insert the current date into a header file, for instance, as
explained at the end of section 13. Possibly dangerous; in many installations it may
be disabled, in which case a warning message will be printed if the option is used.

H path: The (colon-separated) path to search for PostScript header files is path.
I: Ignore the PRINTER environment variable.

K: Filter comments out of included PostScript files; see the description above for more
information.

M mode: Set mode as the METAFONT mode to be used when generating fonts. This is passed
along to MakeTeXPK and overrides mode derivation from the base resolution.

N: Disable PostScript comments by default.

0 offset: Move the origin by a certain amount. The offset is a comma-separated pair
of dimensions, such as .1in,-.3cm (in the same syntax as used in the papersize
special). The origin of the page is shifted from the default position (of one inch
down, one inch to the right from the upper left corner of the paper) by this amount.

P path: The (colon-separated) path to search for bitmap pk font files is path. The TEXPKS
environment variable will override this. If a % character is found in path, the following
substitutions will be made, and then a search will be made for the resulting filenames.
A %f is replaced by the font name. A %Db is replaced by the output device horizontal
resolution dots per inch. A %d is replaced by the font size in dots per inch. A %p is
replaced by the font family; this is always pk. A %m is replaced by the font mode; this

Chapter 3: Printing TEX Documents 53

is the mode given in the M option. Note that, for each path element, if it contains
a percent sign, you must give the full file name, including path, rather than just
the directory name; a path element such as /fonts/%b will try to open /fonts/300
when looking for cmr10.329pk, for instance, and this may not be what is intended;
/fonts/%b/%t .%dpk is needed. If a path element does not contain a percent sign,
there is no need to specify the entire file name (because you can’t, unless you list all
possible specific font names!).

R num num ...: Sets up a list of default resolutions to search for pk fonts, if the requested
size is not available. The output will then scale the font found using PostScript
scaling to the requested size. Note that the resultant output will be ugly, and thus
a warning is issued. To turn this off, use a line with just the R and no numbers.

S path: The path to search for special illustrations (Encapsulated PostScript files or psfiles)
is path. The TEXINPUTS environment variable will override this.

T path: The path to search for the tfm files is path. The TEXFONTS environment variable
will override this. This path is used for resident fonts and fonts that can’t otherwise
be found. It’s usually best to make it identical to the path used by TEX.

U: Turns off a memory-saving optimization; this is necessary for the Xerox 4045 printer, but
not recommended otherwise. See the description above for more information.

V path: The path to search for virtual font vf files is path. This may be device-dependent
if you use virtual fonts to simulate actual fonts on different devices.

W string: Sends string to stderr, if a parameter is given; otherwise it cancels another previous
message. This is useful in the default configuration file if you want to require the user
to specify a printer, for instance, or if you want to notify the user that the resultant
output has special characteristics.

X num: Set the horizontal resolution to num dots per inch.
Y num: Set the vertical resolution to num dots per inch.

Z: Compress all downloaded fonts by default, as above.

Chapter 3: Printing TEX Documents 54

10. Automatic Font Generation

One major problem with TEX and the Computer Modern fonts is the huge amount
of disk space a full set of high resolution fonts can take. The dvips program solves this
problem by creating fonts on demand, so only those fonts that are actually used are stored
on disk. At a typical site, less than one-fifth of the full set of Computer Modern fonts are
used over a long period, so this saves a great deal of disk space.

Furthermore, the addition of dynamic font generation allows fonts to be used at any
size, including typesetter resolutions and extremely huge banner sizes. Nothing special
needs to be done; the fonts will be automatically created and installed as needed.

The downside is that it does take a certain amount of time to create a new font if it
has never been used before. But once a font is created, it will exist on disk, and the next
time that document is printed it will print very quickly.

It is the MakeTeXPK shell script that is responsible for making these fonts. The
MakeTeXPK script supplied invokes METAFONT to create the font and then copies the resul-
tant pk file to a world-writable font cache area.

MakeTeXPK can be customized to do other things to get the font. For instance, if you
are installing dvips to replace (or run alongside) an existing PostScript driver, and that
driver demands gf fonts, you can easily modify MakeTeXPK to invoke gftopk to convert the
gf files to pk files for dvips. This provides the same space savings listed above.

Because dvips (and thus MakeTeXPK) is run by a wide variety of users, there must be
a system-wide place to put the cached font files. In order for everyone to be able to supply
fonts, the directory must be world writable. If your system administrator considers this a
security hole, MakeTeXPK can write to /tmp/pk or some such directory, and periodically the
cached fonts can be moved to a more general system area. Note that the cache directory
must exist on the pk file search path in order for MakeTeXPK to work.

11. Path Interpretation

The dvips program needs to read a wide variety of files from a large set of directories.
It uses a set of paths to do this. The actual paths are listed in the next section; this section
describes how the paths are interpreted.

All path variables are names of directories (path elements), separated by colons. Each
path element can be either the literal name of a directory or one of the ~ forms common
under UNIX. If a path element is a single tilde, it is replaced by the contents of the environ-
ment variable HOME, which is normally set to the user’s home directory. If the path element
is a tilde followed by anything, the part after the tilde is interpreted as a user name, and his
home directory is fetched from the system password file and used as the real path element.

Chapter 3: Printing TEX Documents 55

Where environment variables can override paths, an additional path element form is
allowed. If a path element is the empty string, it is replaced with the system defaults.
Thus, to search the user’s home directory, followed by the system default paths, assuming
the current shell is csh, the following command would be used:

setenv TEXINPUTS ~:

This is a path of two elements. The first is the user’s home directory. The second path
element is the empty string, indicating that the system defaults should be searched.

The ‘system defaults’ as defined here means the strings set in the Makefile before
compilation, rather than any defaults set in config.ps or printer-specific configuration
files. This is to prevent path blowup, where more and more directories are added to the
path by each level of configuration file.

12. Environment Variables

The dvips program reads a certain set of environment variables to configure its op-
eration. The path variables are read after all configuration files are read, so they override
values in the configuration files. (The TEXCONFIG variable, of course, is read before the
configuration files.) The rest are read as needed.

Note that all defaults supplied here are just as supplied in the provided Makefile; they
will almost certainly have been changed during installation at your particular site.

HOME (no default) This environment variable is automatically set by the shell and is used
to replace any occurrences of ~ in a path.

MAKETEXPK (MakeTeXPK %n %d %b %m) This environment variable sets the command to
be executed to create a missing font. A %n is replaced by the base name of the font
to be created (such as cmr10); a %d is replaced by the resultant horizontal resolution
of the font; a %b is replaced by the horizontal resolution at which dvips is currently
generating output, and any %m is replaced by a string that METAFONT can use as
the right hand side of an assignment to mag to create the desired font at the proper
resolution. If a mode for METAFONT is set in a configuration file, that is automatically
appended to the command before execution. Note that these substitutions are different
than the ones performed on PK paths.

DVIPSHEADERS (.:/usr/lib/tex/ps) This environment variable determines where to
search for header files such as tex.pro, font files, arguments to the ~h option, and such
files.

PRINTER (no default) This environment variable is read to determine which default printer
configuration file to read in. Note that it is the responsibility of the configuration file
to send output to the proper print queue, if such functionality is desired.

Chapter 3: Printing TEX Documents 56

TEXFONTS (/Locallibrary/Fonts/TeXFonts/tfm:/usr/lib/tex/fonts/tfm) This is
where tfm files are searched for. A tfm file only needs to be loaded if the font is a
resident (PostScript) font or if for some reason no pk file could be found.

TEXPKS (/Locallibrary/Fonts/TeXFonts/pk:/usr/lib/tex/fonts/pk) This environ-
ment variable is a path on which to search for pk fonts. Certain substitutions are
performed if a percent sign is found anywhere in the path. See the description of the
P configuration file option for more information.

TEXINPUTS (.:..:/usr/lib/tex/inputs) This environment variable is used to find
PostScript figures when they are included.

TEXCONFIG (. :/usr/lib/tex/ps) This environment variable sets the directories to search
for configuration files, including the system-wide one. Using this single environment
variable and the appropriate configuration files, it is possible to set up the program for
any environment. (The other path environment variables can thus be redundant.)

VFFONTS (.:/usr/lib/tex/fonts/vf) This environment variable sets where dvips looks
for virtual fonts. A correct virtual font path is essential if PostScript fonts are to be
used.

13. Other Bells And Whistles

For special effects, if any of the macros bop-hook, eop-hook, start-hook, or end-hook
are defined in the PostScript userdict, they will be executed at the beginning of a page,
end of a page, start of the document, and end of a document, respectively. When these
macros are executed, the default PostScript coordinate system and origin is in effect. Such
macros can be defined in headers added by the -h option or the header= special, and might
be useful for writing, for instance, DRAFT across the entire page, or, with the aid of a
shell script, dating the document. These macros are executed outside of the save/restore
context of the individual pages, so it is possible for them to accumulate information, but
if a document must be divided into sections because of memory constraints, such added
information will be lost across section breaks.

The two arguments to bop-hook are the TEX page number and the sequence number
of the page in the file; the first page gets zero, the second one, etc. The arguments to
start-hook are hsize, vsize, mag, hdpi, vdpi, and the name of the dvi input file. The
procedures must leave these parameters on the stack. The other hooks are not (currently)
given parameters, although this may change in the future.

As an example of what can be done, the following special will write a light DRAFT
across each page in the document:

\special{!userdict begin /bop-hook{gsave 200 30 translate
65 rotate /Times-Roman findfont 216 scalefont setfont
0 0 moveto 0.7 setgray (DRAFT) show grestore}def end}

Chapter 3: Printing TEX Documents 57
Note that using bop-hook or eop-hook in any way that preserves information across
pages will break compliance with the Adobe document structuring conventions, so if you

use any such tricks, it is recommended that you also use the -N option to turn off structured
comments.

Several of the above tricks can be used nicely together, and it is not necessary that a
‘printer configuration file’ be used only to set printer defaults. For instance, you might have
a file config.dated that contains just the two lines

E echo /bop-hook \{save /Times-Roman findfont 7 scalefont setfont \

72 756 moveto \(‘date‘\) show restore\} def >.date
h .date

(with no newline following setfont); then the command-line option -Pdated to dvips will
print current date and time on the top of each page of output. Note that multiple =P options
can be used.

14. MS-DOS
The MS-DOS version of dvips differs from UNIX in the following ways.
e Path separators are ; not :.
e Directory separators are \ not /.
e The user’s initialization file is dvips.ini not .dvipsrc.
e Pipes to printers are not supported. Output must go to a file.

e MakeTeXPk is a batch file. Since MS-DOS has insufficient memory to run both dvips
and METAFONT at the same time, this batch file will typically write out a set of

commands for running METAFONT later. The maketexp.bat supplied writes out an
nf job file for emTEX.

e dvidrv from emTEX can be used to automatically make fonts as follows:

dvidrv dvips file.dvi

dvidrv sets an option -pj=mfjobfile for dvips, where mfjobfile is the name of a
temporary mf job file. If there are missing fonts, dvips will write this mfjob file and
then ask:

Exit to make missing fonts now (y/n)?

Chapter 3: Printing TEX Documents 58

If you answer yes, dvips exits with errorlevel 8 which tells dvidrv to call mfjob to
make the fonts, and then to call dvips again. For this to work, dvidrv, dvips, mf job
and mf must be located in the PATH, and the environment variables for mf job and mf
set correctly. A font mode must be set with the 'M’ option in config.ps. If the -pj
option is set, dvips will not call MakeTeXPk.bat.

e Limited emTEX specials. The following ones are supported:

\special{em:message xxx}

\special{em:point n}

\special{em:1line alhlv|p],b[h|vIp] [,width]}
\special{em:1linewidth width}
\special{em:moveto}

\special{em:lineto}

\special{em:graph xxx[,width[,height]]}

The line cut parameters [h|v|p] of the \special{em:1line ...} command are ig-
nored. Lines are ended with a rounded cap. A maximum of 1613 different point
numbers are permitted on each page. The \special{em:graph xxx} supports PCX,
MSP1, MSP2 and BMP files. The graph file may be scaled by giving an optional width
and height (expressed in the same way as TEX dimensions). An example:

\special{em:graph scrdump.pcx,100mm,75mm}

The program dvips can use emTEX font libraries created with the emTEX fontlib /2
option. If a px1 font is found within a font library, dvips will complain, and then ignore
the px1 font.

The font library names and directory names can be specified with this configuration
file option.

L path: The list of £1i font libraries to search for bitmap pk font files is path. Fonts are
sought first in these libraries and then as single files. Font libraries can be created
with emTEX’s fontlib; the usual extension is £1i. Directories as well as file names
can be entered here, the files will be searched for in all these directories. A directory
name must have trailing directory separator (/ for UNIX, \ for MS-DOS).

15. Installation

If dvips has not already been installed on your system, the following steps are all that
are needed.

First update the Makefile—in particular, the paths. Everything concerning dvips
can be adjusted in the Makefile. Make sure you set key parameters such as the default
resolution, and make sure that the path given for packed pixel files is correct.

Chapter 3: Printing TEX Documents 59

Next, check the file name definitions in MakeTeXPK. If you don’t have METAFONT
installed, you cannot use MakeTeXPK to automatically generate the fonts; you can, however,
modify it to generate pk fonts from gf fonts if you don’t have a full set of pk fonts but do
have a set of gf fonts. If you don’t have that, you should probably not install MakeTeXPK
at all; this will disable automatic font generation.

Now, check the configuration parameters in config.ps. You should also update the
default resolution here. This file is the system-wide configuration file that will be automat-
ically installed. If you are unsure how much memory your PostScript printer has, print the
following file:

%! Hey, we’re PostScript
/Times-Roman findfont 30 scalefont setfont 144 432 moveto
vmstatus exch sub 40 string cvs show pop showpage

Note that the number returned by this file is the total memory free; it is often a good idea
to tell dvips that the printer has somewhat less memory. This is because many programs
download permanent macros that can reduce the memory in the printer. In general, a
memory size of about 300000 is plenty, since dvips can automatically split a document if
required. It is unfortunate that PostScript printers with much less virtual memory still exist.
Some systems or printers can dynamically increase the memory available to a PostScript
interpreter; for these systems, a value of one million works well.

Next, run make. Everything should compile smoothly. You may need to adjust the
compiler options in the Makefile if something goes amiss.

Once everything is compiled, run make install. After this is done, you may want to
create a configuration file for each PostScript printer at your site.

If the font caching is considered a security hole, make the ‘cache’ directory be something
like /tmp/pks, and cron a job to move the good pk files into the real directory. Or simply
disable this feature by not installing MakeTeXPK.

Don’t forget to install the new vf files and tfm files. Note that the tfm files distributed
with earlier (pre-5.471) versions of dvips, and all versions of other PostScript drivers, are
different.

A test program called test.tex is provided, so you can easily check that the most
important parts of dvips have been installed properly.

Chapter 3: Printing TEX Documents 60

16. Diagnosing Problems

You’ve gone through all the trouble of installing dvips, carefully read all the instruc-
tions in this manual, and still can’t get something to work. This is all too common, and
is usually caused by some broken PostScript application out there. The following sections
provide some helpful hints if you find yourself in such a situation.

In all cases, you should attempt to find the smallest file that causes the problem. This
will not only make debugging easier, it will also reduce the number of possible interactions
among different parts of the system.

16.1 Debug Options

The -d flag to dvips is very useful for helping to track down certain errors. The
parameter to this flag is an integer that tells what errors are currently being tracked. To
track a certain class of debug messages, simply provide the appropriate number given below;
if you wish to track multiple classes, sum the numbers of the classes you wish to track. The
classes are:

1 specials

2 paths

4 fonts

8 pages

6 Theaders
32 font compression
64 files

128 memory

16.2 No Output At All

If you are not getting any output at all, even from the simplest one-character file (for
instance, \ \bye), then something is very wrong. Practically any file sent to a PostScript
laser printer should generate some output, at the very least a page detailing what error
occurred, if any. Talk to your system administrator about downloading a PostScript error
handler. (Adobe distributes a good one called ehandler.ps.)

It is possible, especially if you are using non-Adobe PostScript, that your PostScript
interpreter is broken. Even then it should generate an error message. I've tried to work
around as many bugs as possible in common non-Adobe PostScript interpreters, but I'm
sure I've missed a few.

If dvips gives any strange error messages, or compilation on your machine generated
a lot of warnings, perhaps the dvips program itself is broken. Carefully check the types in
dvips.h and the declarations in the Makefile, and try using the debug options to determine
where the error occurred.

Chapter 3: Printing TEX Documents 61

It is possible your spooler is broken and is misinterpreting the structured comments.
Try the -N flag to turn off structured comments and see what happens.

16.3 Output Too Small or Inverted

If some documents come out inverted or too small, your spooler is not supplying an
end of job indicator at the end of each file. (This happens a lot on small machines that
don’t have spoolers.) You can force dvips to do this with the -F flag, but note that this
generates files with a binary character (control-D) in them. You can also try using the -s
flag to enclose the entire job in a save/restore pair.

16.4 Error Messages From Printer

If your printer returns error messages, the error message gives very good information
on what might be going wrong. One of the most common error messages is bop undefined.
This is caused by old versions of Transcript and other spoolers that do not properly parse
the setup section of the PostScript. To fix this, turn off structured comments with the -N
option, but make sure you get your spooling software updated. You might also try turning
off comments on included files with the -K option; many spoolers cannot deal with nested
documents.

Another error message is VM exhausted. (Some printers indicate this error by locking
up; others quietly reset.) This is caused by telling dvips that the printer has more memory
than it actually does, and then printing a complicated document. To fix this, try lowering
the parameter to m in the configuration file; use the debug option to make sure you adjust
the correct file.

Other errors may indicate that the graphics you are trying to include don’t nest properly
in other PostScript documents, or any of a number of other possibilities. Try the output on
a QMS PS-810 or other Adobe PostScript printer; it might be a problem with the printer
itself.

16.5 400 DPI Is Used Instead Of 300 DPI

This common error is caused by not editing the config.ps file to reflect the correct
resolution for your site. You can use the debug flags (-d64) to see what files are actually
being read.

16.6 Long Documents Fail To Print

This is usually caused by incorrectly specifying the amount of memory the printer has
in config.ps; see the description above.

Chapter 3: Printing TEX Documents 62

16.7 Including Graphics Fails

The reasons why graphics inclusions fail are too numerous to mention. The most com-
mon problem is an incorrect bounding box; read the section on bounding boxes and check
your PostScript file. Complain very loudly to whoever wrote the software that generated
the file if the bounding box is indeed incorrect.

Another possible problem is that the figure you are trying to include does not nest
properly; there are certain rules PostScript applications should follow when generating
files to be included. The dvips program includes work-arounds for such errors in Adobe
Illustrator and other programs, but there are certainly applications that haven’t been tested.

One possible thing to try is the =K flag, to strip the comments from an included figure.
This might be necessary if the PostScript spooling software does not read the structuring
comments correctly. Use of this flag will break graphics from some applications, though,
since some applications read the PostScript file from the input stream looking for a particular
comment.

Any application which generates graphics output containing raw binary (not hex) will
probably fail with dvips.

16.8 Can’t Find Font Files

If dvips complains that it cannot find certain font files, it is possible that the paths
haven’t been set up correctly for your system. Use the debug flags to determine precisely
what fonts are being looked for and make sure these match where the fonts are located on
your system.

16.9 Can’t Generate Fonts

This happens a lot if either MakeTeXPK hasn’t been properly edited and installed, or
if the local installation of METAFONT isn’t correct. If MakeTeXPK isn’t properly edited or
isn’t installed, an error such as MakeTeXPK not found will be printed on the console. The
fix is to talk to the person who installed dvips and have them fix this.

If METAFONT isn’t found when MakeTeXPK is running, make sure it is installed on your
system. The person who installed TEX should be able to install METAFONT easily.

If METAFONT runs but generates fonts that are too large (and prints out the name of
each character as well as just a character number), then your METAFONT base file proba-
bly hasn’t been made properly. To make a proper plain.base, assuming the local mode
definitions are contained in local.mf (on the NeXT, next.mf; on the Amiga, amiga.mf),
type the following command (assuming csh under UNIX):

localhost> inimf "plain; input local; dump"

Chapter 3: Printing TEX Documents 63

Now, copy the plain.base file from the current directory to where the base files are stored
on your system.

Note that a preloaded cmbase.base should never be used when creating fonts, and a
program such as cmmf should never exist on the system. The macros defined in cmbase
will break fonts that do not use cmbase; such fonts include the LaTEX fonts. Loading the
cmbase macros when they are needed is done automatically and takes less than a second—
an insignificant fraction of the total run time of METAFONT for a font, especially when the
possibility of generating incorrect fonts is taken into account. If you create the LaTEX font
circlel0, for instance, with the cmbase macros loaded, the characters will have incorrect
widths.

17. Using Color with dvips

This new feature of dvips is somewhat experimental so your experiences and comments
are welcome. Initially added by Jim Hafner, IBM Research, hafner@almaden.ibm.com, the
color support has gone through many changes by Tomas Rokicki. Besides the changes to the
source code itself, there are additional TEX macro files: colordvi.tex and blackdvi.tex.
There are also .sty versions of these files that can be used with LaTgX and other similar
macro packages. This feature adds one-pass multi-color printing of TEX documents on any
color PostScript device.

In this section we describe the use of color from the document preparer’s point of view
and then add some simple instructions on installation for the system administrator.

17.1 The Macro Files

All the color macro commands are defined in colordvi.tex (or colordvi.sty). To
access these macros simply add to the top of your TEX file the command

\input colordvi

or, if your document uses style files like LaTgX, add the colordvi style option as in

\documentstyle[12pt,colordvi] {article}

There are basically two kinds of color macros, ones for local color changes to, say, a few
words or even one symbol and one for global color changes. Note that all the color names
use a mixed case scheme. There are 68 predefined colors, with names taken primarily from
the Crayola crayon box of 64 colors, and one pair of macros for the user to set his own
color pattern. More on this extra feature later. You can browse the file colordvi.tex for
a list of the predefined colors. The comments in this file also show a rough correspondence
between the crayon names and PANTONEs.

A local color command is in the form

Chapter 3: Printing TEX Documents 64

\ColorName{this will print in color}

Here ColorName is the name of a predefined color. As this example shows, this type of
command takes one argument which is the text that is to print in the selected color. This can
be used for nested color changes since it restores the original color state when it completes.
For example, suppose you were writing in green and want to switch temporarily to red,
then blue, back to red and restore green. Here is one way that you can do this:

This text is green but here we are \Red{switching to red,
\Blue{nesting blue}, recovering the red} and back to
original green.

In principle there is no limit to the nesting level, but it is not advisable to nest too deep
lest you lose track of the color history.

The global color command has the form

\textColorName

This macro takes no arguments and immediately changes the default color from that point
on to the specified color. This of course can be overriden globally by another such command
or locally by local color commands. For example, expanding on the example above, we might
have

\textGreen

This text is green but here we are \Red{switching to red,
\Blue{nesting blue}, recovering the red} and back to
original green.

\textCyan

The text from here on will be cyan unless

\Yellow{locally changed to yellow}. Now we are back to cyan.

The color commands will even work in math mode and across math mode boundaries.
This means that if you have a color before going into math mode, the mathematics will
be set in that color as well. More importantly however, in alignment environments like
\halign, tabular or eqnarray, local color commands cannot extend beyond the alignment
characters.

Because local color commands respect only some environment and delimiter changes
besides their own, care must be taken in setting their scope. It is best not to have then
stretch too far.

At the present time there are no macros for color environments in LaTEX which might
have a larger range. This is primarily to keep the TEX and LaTgX use compatible.

Chapter 3: Printing TEX Documents 65

17.2 User Definable Colors

There are two ways for the user to specify colors not already defined. For local changes,
there is the command \Color which takes two arguments. The first argument is a quadruple
of numbers between zero and one and specifies the intensity of cyan, magenta, yellow and
black (CMYK) in that order. The second argument is the text that should appear in the
given color. For example, suppose you want the words “this color is pretty” to appear in
a color which is 50% cyan, 85% magenta, 40% yellow and 20% black. You would use the
command

\Color{.5 .85 .4 .2}{this color is pretty}

For global color changes, there is a command \textColor which takes one argument,
the CMYK quadruple of relative color intensities. For example, if you want the default
color to be as above, then the command

\textColor{.5 .85 .4 .2}
The text from now on will be this pretty color

will do the trick.

Making a global color change in the midst of nested local colors is highly discouraged.
Consequently, dvips will give you warning message and do its best to recover by discarding
the current color history.

17.3 Subtleties in Using Color

These color macros are defined by use of specialized \special keywords. As such, they
are put in the .dvi file only as explicit message strings to the driver. The (unpleasant)
result is that certain unprotected regions of the text can have unwanted color side effects.
For example, if a color region is split by TEX across a page boundary, then the footers of
the current page (e.g., the page number) and the headers of the next page can inherit that
color. To avoid this effect globally, users should make sure that these special regions of the
text are defined with their own local color commands. For example in TEX, to protect the
header and footer, use

\headline{\Black{My Header}}
\footline{\Black{\hss\tenrm\folio\hss}}

This warning also applies to figures and other insertions, so be careful!

Of course, in LaTgX, this is much more difficult to do because of the complexity of the
macros that control these regions. This is unfortunate, but is somehow inevitable because
TEX and LaTEX were not written with color in mind.

Chapter 3: Printing TEX Documents 66

Even when writing your own macros, much care must be taken. The color macros that
‘colorize’ a portion of the text work by prefixing the text with a special command to turn
the color on and postfixing it with a different special command to restore the original color.
It is often useful to insure that TEX is in horizontal mode before the first special command
is issued; this can be done by prefixing the color command with \leavevmode.

17.4 Printing in Black/White, after Colorizing

If you have a TEX or LaTEX document written with color macros and you want to print
it in black and white there are two options. On all (good) PostScript devices, printing a color
file will print in corresponding grey-levels. This is useful since in this way you can get a rough
idea of where the colors are changing without using expensive color printing devices. The
second option is to replace the call to input colordvi.tex with blackdvi.tex (and similarly
for the .sty files). So in the above example, replacing the word colordvi with blackdvi
suffices. This file defines the color macros as no-ops, and so will produce normal black /white
printing. By this simple mechanism, the user can switch to all black/white printing without
having to ferret out the color commands. Also, some device drivers, particularly non-
PostScript ones like screen previewers, will simply ignore the color commands and so print
in normal black/white. Hopefully, in the future screen previewers for color displays will be
compatible with some form of color support.

17.5 Configuring dvips for Color Devices

To configure dvips for a particular color device you need to fine tune the color param-
eters to match your device’s color rendition. To do this, you will need a PANTONE chart
for your device. The header file color.lpro shows a (rough) correspondence between the
Crayola crayon names and the PANTONE numbers and also defines default CMYK values
for each of the colors. Note that these colors must be defined in CMYK terms and not
RGB as dvips outputs PostScript color commands in CMYK. This header file also defines
(if they are not known to the interpreter) the PostScript commands setcmykcolor and
currentcmykcolor in terms of a RGB equivalent so if your device only understands RGB,
there should be no problem.

The parameters set in this file were determined by comparing the PANTONE chart of a
Tektronics PHASER printer with the actual Crayola Crayons. Because these were defined
for a particular device, the actual color rendition on your device may be very different.
There are two ways to adjust this. One is to use the PANTONE chart for your device
to rewrite color.lpro prior to compilation and installation. A better alternative, which
supports multiple devices, is to add a header file option in the configuration file for each
device that defines, in userdict, the color parameters for those colors that need redefining.

For example, if you need to change the parameters defining Goldenrod (approxi-
mately PANTONE 109) for your device mycolordev, do the following. In the PANTONE
chart for your device, find the CMYK values for PANTONE 109. Let’s say they are
{ 0 0.10 0.75 0.03 }. Then create a header file named mycolordev.pro with the com-
mands

Chapter 3: Printing TEX Documents 67

userdict begin
/Goldenrod { 0 0.10 0.75 0.03 setcmykcolor} bind def

Finally, in config.mycolordev add the line

h mycolordev.pro

This will then define Goldenrod in your device’s CMYK values in userdict which is checked
before defining it in TeXdict by color.pro.

This mechanism, together with additions to colordvi.tex and blackdvi.tex (and
the .sty files), can also be used to predefine other colors for your users.

17.6 Protecting Regions From Spurious Colors

Because color is defined via TEX’s \special command, it cannot be sensitive to the
output routine or certain regions of the page like the header and footer. Consequently,
these regions need to be protected from spurious color changes (particularly when local
colors spread across page breaks).

Users need to be aware of the possibility of certain regions getting unwanted or unpre-
dicted colors. Headers and footers are most worrisome so style designers who want to use
color should keep this in mind.

One particular region of text that gets spurious color effects is labels in list environ-
ments. For instance, because of the way list items are defined in standard LaTgX, the bullet
for items that start with a different color also gets drawn in that color.

To give the user a simple mechanism to solve this problem (and other unforeseen effects
of this type) one other special macro is automatically defined. This macro is called \glob-
alColor. It is actually a local color macro and so takes a single argument. But the color
effect it produces is always the same as that set by the last \textColor or \textColorName
command. In effect, when a \textColorName command is called, \globalColor gets a
new definition equivalent to the local \ColorName macro. For example, when the default is
black, \globalColor=\Black and when \textGreen appears, \globalColor=\Green. This
special macro can then be used to protect sensitive regions of the text.

For example, in LaTgX files, one might make sure that the header and footers have
\globalColor wrapping their contents. In this way, they will inherit the current active
root (unnested) color state.

Chapter 3: Printing TEX Documents 68

17.7 Color Support Details

To support color, dvips recognizes a certain set of specials. These specials all start
with the keyword color or the keyword background.

We will describe background first, since it is the simplest. The background keyword
must be followed by a color specification. That color specification is used as a fill color for
the background. The last background special on a page is the one that gets issued, and it
gets issued at the very beginning of the page, before any text or specials are sent. (This
is possible because the prescan phase of dvips notices all of the color specials so that the
appropriate information can be written out during the second phase.)

Ahh, but what is a color specification? It is one of three things. First, it might be
a PostScript procedure as defined in a PostScript header file. The color.pro file defines
64 of these, including Maroon. This PostScript procedure must set the current color to be
some value; in this case, Maroon is defined as 0 0.87 0.68 0.32 setcmykcolor.

The second possibility is the name of a color model (initially, one of rgb, hsb, cmyk,
or gray) followed by the appropriate number of parameters. When dvips encounters such
a macro, it sends out the parameters first, followed by the string created by prefixing
TeXcolor to the color model. Thus, the color specification rgb 0.3 0.4 0.5 would gener-
ate the PostScript code 0.3 0.4 0.5 TeXrgbcolor. Note that the case of zero arguments
is disallowed, as that is handled by the single keyword case above (where no changes to the
name are made before it is sent to the PostScript file.)

The third and final type of color specification is a double quote followed by any sequence
of PostScript. The double quote is stripped from the output. For instance, the color specifi-
cation "AggiePattern setpattern will set the ‘color’ to the Aggie logo pattern (assuming
such exists.)

So those are the three types of color specifications. The same type of specifications
are used by both the background special and the color special. The color special itself
has three forms. The first is just color followed by a color specification. In this case,
the current global color is set to that color; the color stack must be empty when such a
command is executed.

The second form is color push followed by a color specification. This saves the current
color on the color stack and sets the color to be that given by the color specification. This
is the most common way to set a color.

The final version of the color special is just color pop, with no color specification;
this says to pop the color last pushed on the color stack from the color stack and set the
current color to be that color.

The dvips program correctly handles these color specials across pages, even when the
pages are repeated or reversed.

Chapter 3: Printing TEX Documents 69

These color specials can be used for things such as patterns or screens as well as simple
colors. However, note that in the PostScript, only one ‘color specification’ can be active at
a time. For instance, at the beginning of a page, only the bottommost entry on the color
stack is sent; also, when a color is ‘popped’, all that is done is that the color specification
from the previous stack entry is sent. No gsave or grestore is used. This means that you
cannot easily mix usage of the color specials for screens and colors, just one or the other.
This may be addressed in the future by adding support for different ‘categories’ of color-like
state.

70

Using TpXview

It is the TEXview program that really makes NeXTTEX shine, and it is the capabilities
of the NeXT machine that allow TEXview to work so well. The PostScript-based windowing
system makes it easy to preview your document—complete with all the PostScript graphics
as they will appear on paper—quickly and painlessly. Unix multitasking and a windowing
environment make it possible to view your document as you edit and run TEX, without ever
having to exit any of the programs.

1. Basic Operation

There are three ways to start up TgpXview. The first is to just double-click on the
application icon in the Browser or on the dock. After a few seconds, the program will be
launched.

Alternatively, you can use the NeXT open command. This unique command examines
the suffix of the given file and automatically invokes the appropriate application to display
the file. With the open command, there is no need to remember the names of all the various
applications required to view files—you simply ‘open’ each file. TEXview responds to open
for files with the extensions .dvi or .tex.

If you prefer an iconic approach, you can simply double-click on a tex or dvi file, and
TEXview will automatically be launched and display that file. If you want tex files to be
opened by an editor rather than by TEXview, you can do this with the Inspector tool in the
Workspace browser after selecting any file with the extension .tex.

The third way is useful if you want to run TEX within another environment, such as
emacs; simply use the -V option to TEX when you process a file, and TpXview will be
launched and accept the file that TEX is currently working on.

Whenever TpXview opens a tex or dvi file, it switches its current directory to the
directory that file resides in. This makes it easy for TEXview to find the appropriate graphics
and other necessary files, without having to constantly change environment variables.

The entire functionality of TEXview is available through the various buttons and menu
options, so feel free to browse through the program now, trying things out. The remainder
of this document gives details on certain operations and various defaults you can set and

Chapter 4: Using TEXview 71

use. It is recommended that you launch TEXview now and try out the controls as they are

described.

One thing to remember about TEXview is that it takes longer to start up than it does
to display a page or go to a different file. It is usually smarter to ‘hide’ the program than
it is to quit it, since when you need it next it will be available and probably have all of the
fonts loaded and ready to go. For example, the time required to launch and load a short
sample file at one installation was measured at nine seconds, while the time to display a
new file from an already launched TpXview was under a second. The more fonts that are
used in a document, the greater this disparity is. So try to get in the habit of using ‘hide’
rather than ‘quit’. This is true of other NeXT applications as well.

All of the details on including PostScript graphics and fonts are given in the chapter
on dvips.

2. Windows

The TpXview program uses a variety of windows. At various times you may want to
use only one or a few of these windows; you can independently close or open any of them.
They each have very different characteristics.

2.1 The Preview Window

The main window is the preview window itself; this is the large window with scrollbars
on the left side and bottom. It is the window that displays what the printed pages will look
like.

In addition to the scrollers that are used to move around on the page, the Preview
window also contains a zoom button that can be clicked to select the zoomed or unzoomed
resolution. More details on the zoom resolutions will be given later. In addition, it also
contains a page number field that can be edited. To go to a particular page number, just
type that number and hit carriage return.

The page itself can be click-dragged with the mouse; this is a way to change the visible
region of the displayed sheet without using the scroll bars.

When this window is the key window, menu items can be selected by hitting just the
corresponding key, without pressing the command qualifier. For instance, to re-run TEX
on the current document, you can just hit ‘t’ rather than command-‘t’. This makes use of
TEXview a little easier on the small fingers of the hand. In addition, a number of additional
keystroke commands are supported. The four arrow keys can be used to move around on
the page and from page to page. Normally, the up and down arrow keys move the page
one screenful up or down, and the left and right arrow keys move back and forward a page,
respectively. The arrow keys can be ‘qualified” with shift and alternate to reduce the amount

Chapter 4: Using TEXview 72

of scroll. In addition, the left and right arrow keys move the window around on the page
when they are so qualified.

The space key also advances to the next page, and the backspace and delete key go
back a single page.

The following table lists the most commonly used keyboard commands in TpXview:

Keyboard Shortcuts
F First page
N Next page
B Previous page
L Last page
up arrow Up
down arrow Down
right arrow Next page
left arrow Previous page
space Section forward
delete Section backward
V] Zoom
u Unzoom
t ReTEX
1 ReLaTgX
s ReSlHTEX
R Re-Open
o Open new file
c Close file
h Hide
Q Quit

You can measure distances on the preview window by clicking on the page. The position
at which you clicked and the distance from the most recent click is displayed on the command
window; see the command window for some more details.

The preview window can be brought to front with command-shift-P. It remains vis-
ible when the application is not active, and its size and position are considered part of
Preferences. It can become the key window.

2.2 The TEX Window

TEXview uses the TEX window to display the results of a run of TEX or LaTgX. This
window provides a scrollable text object containing the terminal session of the run. You
can type characters into the window in response to queries much like you would when you
run TEX from a terminal or shell. In particular, to interrupt TEX, you can type control-C.
Note that the window must be activated before it will accept keystrokes.

Chapter 4: Using TEXview 73

As TEX runs and processes pages, they will become available for viewing in the main
preview window.

Note that it is nice to use a line of the form

W& formatname

when using TpXview, so it knows what format to use when automatically running TEX. For
plain TEX, the formatname should be plain or just tex; for LaTgX it should be 1plain or
latex, and for SIiTEX it should be splain or slitex. For your own custom format files, it
should be the name of the format file in /usr/1ib/tex/formats and also the name of the
executable under which TEX is run.

The TEX window can be brought to front with command-shift-T. This window disap-
pears when the application is not active and its size, position, and visibility are considered
part of Preferences. It can become the key window.

2.3 The Console Window

For printing and faxing, TEXview uses the dvips program. When TEXview needs a font
at a size that is not currently available, it runs METAFONT. The results of these commands
are displayed in the console window. As long as the command in the console window is still
executing, TEXview will not respond to other commands.

The console window can be brought to the front with command-shift-C. This window
disappears when the application is not active and its size, position, and visibility are con-
sidered part of Preferences. It can become the key window, even though it does not accept
keystrokes.

2.4 The Command Window

Some people like the clean and elegant preview window, along with menus and keyboard
shortcuts, for their operation of TEXview. Others prefer a more helpful interface with
buttons for various operations. The TpXview command window provides this functionality.
In addition, some seldom-needed operations can be performed from the command window.

The command window contains buttons for the operations first page, last page, next
page, and previous page. It also has buttons to open a new file, re-open the current file, and
run TEX with the current (last-used, default) format, TEX with the plain macros, LaTEX,
TEX with a custom format specified on the Preferences panel, or BibTEX on the current
file. Selecting one of Plain, LaTeX, or Custom makes that the current default format.

The command window also includes the zoom resolution popup that displays the cur-
rent resolution at which the sheet is being displayed, as well as allowing the selection of a
new resolution for the current (zoom or unzoom) mode.

Chapter 4: Using TEXview 74

The position at which a user clicks on the sheet is displayed in the command window,
and there is a button that can be clicked to change the units that the measurements are
given in.

The command window can be brought to the front with command-shift-X. This win-
dow remains visible when the application is not active, and its position and visibility are
considered part of Preferences. It cannot become the key window. This makes it possible
to put the command window somewhere convenient on the screen while you are working in
your editor, and then with a single keystroke on the command window, re-run TEX on your
file and bring the TEXview window to the front. This can also be done with the services
menu, which we will discuss later.

2.5 The Preferences Window

The Preferences window contains a few controls for setting some options in TEXview.
In addition, by bringing up the Preferences window and selecting ‘Save’, the entire config-
uration of TEXview is saved and made the default for future sessions. This configuration
includes the size, location, and visibility of many of the TEpXview windows, the current
zoom and unzoom resolutions, the current default and custom format files for TEX, and
much more.

If you do not select the Save button on the Preferences window, no Preferences will
be saved. This means that after selecting a new zoom resolution, or after moving the TEX
window, if you want the changes to persist to the next session, you must select the Save
buttons on the Preferences window.

The Preferences window allows you to set the sheet size to be assumed when displaying
a dvi page. By default, this is set to a standard 8.5 by 11 sheet, with the TEX origin one
inch from the top and left hand corner of the page. If you are using different paper, you
can easily edit the values in the Preferences panel. Normally the information in this panel
should be set from a papersize special within the TEX document itself; see the chapter on
dvips for more information on this.

A technique that is sometimes useful is to edit the sheet size in TEXview to eliminate
the displayed margins. For instance, if I am writing a paper with one inch margins on all
sides, I will often tell TEXview that I really have a sheet of paper that is only 7 by 9.5, with
the origin at one quarter inch from the left and the top. This effectively trims three quarters
of an inch from all four margins when TEXview is displaying it, so I can more effectively
use the scrollers. Doing this has no effect on printing the document or on the dvi file that
is generated.

Another item on the preferences window selects whether to use MakeTeXPK to generate
a missing font when it is needed by TEXview, or to scale an existing font. The default is
to scale existing fonts. Using automatic font generation slows down TEXview significantly,
since generating a missing font can take up to two minutes of delay during which the
program does not respond to any user actions.

Chapter 4: Using TEXview 75

If a bitmap font is scaled, the display on the screen will be somewhat ugly. To help
solve this, the name of the desired font is written to the file

/Locallibrary/Fonts/TeXFonts/pk/NeededFonts

If this file is executed, all fonts that needed to be scaled will be generated, so the next time
that file is viewed, the screen representation will look much better. It is often useful to cron
a job to execute and delete this batch file each night. If this is done, make sure that the
batch job is run as a normal user and not superuser, since anyone can append commands
to this file.

In addition, the Preferences window contains a button specifying whether included
graphics should be displayed (for accurate presentation) or ‘hidden’ with a gray box (for
quicker display.) Only for the most complicated graphics is it necessary to choose this
button, because the NeXT displays PostScript extremely quickly.

The Preferences window also includes text fields that allow you to specify the default
format file to use when re-TEX’ing a file and the ‘custom’ format to use when the Custom
button or the Custom menu item is selected.

This window disappears when the application is not active, and it is never visible when
TEXview is launched.

2.6 Other Windows

TEXview also includes a simple window with some suggestions on how to use the
program.

There is also an info window that contains the version number of the application.
Please let us know the version number of TEXview if you report a bug.

These windows disappear when the application is not active, and they are never visible

when TEXview is launched.

3. Zoom and Unzoom Resolutions

TEX generally uses bitmapped fonts rendered by METAFONT. Rendering these fonts is
slow, and the bitmaps take up precious disk space. To help make TEXview run faster, and
to reduce the amount of disk space required by the program, TEXview makes it easy for the
user to select two common sizes to view documents at.

The command window includes a popup that allows you to select one of a dozen or
so resolutions at which to view the document; they range from 69 to 400. The number
is in dots per inch, where per inch here means per inch of the document, not per inch of

Chapter 4: Using TEXview 76

the screen. (This latter is somewhat fixed.) The larger number you select, the larger your
document will be magnified. Selecting either 300 or 400 can cause your document to take
several seconds to render due to the amount of memory required.

Just this last control suffices to select any of a number of resolutions. But using it is
awkward; you have to click the mouse, make a selection, and release the mouse. In addition,
each time a new resolution is selected for a particular document, fonts need to be loaded
and perhaps scaled; this takes time and memory. The zoom button at the bottom of the
TEXview window solves both of these problems.

Typically, TEXview is used to display and scroll through a document at a single resolu-
tion. Occasionally, when more detail is desired, this view is ‘zoomed’ to a higher resolution,
so more detail can be seen. So, two resolutions are commonly used.

The zoom button switches between two stored resolutions, each of which can be changed
with the popup button. By selecting two resolutions at which you wish to work, and using
the zoom button rather than the popup to select them, you limit the number of fonts that
need to be loaded and scaled and the amount of memory that TpXview uses, thus yielding
faster operation of the program.

Note that there is no real difference between ‘zoom’ and ‘unzoom’; there is no require-
ment that the ‘zoom’ resolution be higher than the ‘unzoom’ resolution. Each can be set
arbitrarily.

Let us say that you want to set your zoom resolution to 144 dots per inch and your
unzoom resolution to 69. You would first make sure that the Zoom button at the bottom
of the main Preview window is not checked. Then, you would bring up the Command
window with command-shift-X (or with the Windows/Command menu item). You would use
the popup button to select 69. Then, after waiting for TEXview to re-render the page, you
would click the Zoom button, so that it is set. Then, going back to the Command window,
you would use the popup button to select 144. After letting the page be rendered again,
you would go to the Preferences panel with the Info/Preferences menu option and select
Save Preferences to make sure the changes persisted to the next TEXview session. Now,
in normal usage, you would only need to click the Zoom button on and off; you would not
need to use the popup button on the Command window.

4. Menu Options

TEXview comes with a wide variety of menu operations. It follows most NeXT con-
ventions, so little needs to be said about them. In this section, we discuss some of the
limitations of the options, and how the use of the menu items differs from convention.

Most menu options and subitems have keyboard shortcuts. These are displayed on the
menu itself as a single letter at the end of the menu item, and they are executed by holding
down one of the command keys and pressing the appropriate letter. The keyboard shortcuts
that are upper case require you to hold down both one of the command keys and one of the

Chapter 4: Using TpXview 77

shift keys on the keyboard. If the preview window is active, the keyboard shortcuts can be
accessed without holding down the command key.

The Document submenu only contains two entries: Open and Reopen. Note that
TEXview can only display one file at a time in its single window, so selecting Open will
close the file currently being displayed. A future version may be able to display multiple
files. The Reopen entry will open the current file again, in case the disk file has changed.

The Edit and Font submenus only apply to the Command, TgX, and Hints windows;
you cannot cut, copy, or paste to the main preview window. This is because TEX is a
command-oriented system that compiles an ASCII file into a document; figuring out the
relevant changes to make to the original input file in order to implement the cut or paste is
an extremely difficult operation.

The Compile menu lists the commands that are performed in the TEX window when
that menu item is chosen. The string %s is replaced by the current file name, with no
extension. The string %L is replaced by the default, or last, format file name. The string %C
is replaced by the custom format file name. (Note that the plain format is actually called
tex, since the command name of the TEX program and the format file it loads have the
same base name.) Choosing just TgX uses the most recent, or default format; choosing one
of the others makes that the current default format.

5. Printing from TpXview

Printing from TEXview is similar to printing from other NeXT applications. The print
panel brought up by the Print menu option is the same as used with other applications,
except that a few more controls are added. Printing itself is done through the dvips program
rather than more typical NeXT methods. This is required to properly handle TEX bitmap
fonts and to generate reasonably small output PostScript files.

The additional controls include ones to set collated copies, reversed output and com-
pressed fonts. Please refer to the previous chapter for information on these. Note that
‘reversed output’ just means that dvips reverses the order of the pages; because the NeXT
printer prints face-up, the last page of the document must be printed first. If you don’t
select ‘reverse’; then the spooler does this reversal. The dvips program can do this reversal
much more quickly than the spooler can, since it just needs to generate the pages in reverse
order. In either case, the printed output will come out with the first page on top.

You can also select a custom resolution. This is useful for generating typesetter output
to a file, for instance. Simply select the Custom resolution button and enter your desired
resolution in the gadget.

The Wait on dvips button selects whether to wait until dvips completes before con-
tinuing TEXview operation, or to just let dvips run in the background.

The Preview button on the print panel does nothing, since TEXview is itself a previewer.

Chapter 4: Using TEXview 78

6. Services

NeXTTEX offers services to other applications. These services are available whenever
the active application has data of the correct type to send. The services can be accessed
through the Services/TeXview menu of an application, and are only active when they are
not ‘ghosted’. The services are not available to those applications that do not make the
correct types available, or accept the correct types back. It is possible to change the services
that TpXview accepts; we will discuss that after we describe the services that TEXview offers
as shipped.

6.1 Predefined Services

TEXview as distributed offers seven services. They are TeX (plain), LaTeX, S1iTeX,
TeX (custom), ReTeX, Reopen dvi, and TeX EQ->.EPS. We will describe each in turn.

The first four require a file name (NXFilenamePboardType) as its argument and returns
nothing. Most editors (including Edit) support this file type; it is typically the current file
being edited. These services passe the current file name to TEXview to be opened. If the
file has an extension of .tex, it is TEX’ed and then displayed. Otherwise, it is taken as the
name of a .dvi file and directly displayed. With this Service, you can, with a single menu
selection, send the name of the current file to TEXview for viewing. In addition, the current
TEX format is set as specified, either plain, latex, slitex, or the current TEXview custom
format.

Most NeXT applications do not enable services that neither take nor return data types,
so each service must either take or return some data. With TEX, most editing of non-trivial
documents takes place in a sub-file. For instance, in a dissertation, editing is normally
done in the individual chapter files, while it is the top-level dissertation file that we want
TEX’ed. For this reason, the Reopen dvi and ReTeX commands take but ignore data of
type NXFilenamePboardType. They simply re-process the current file being displayed by
TEXview, in the latter case, using the most recent format specified.

The Reopen dvi command just reopens the dvi file. It is useful if you are running
TEX from within some other application, such as emacs. The ReTeX command, on the other
hand, re-runs TEX from within TEXview and displays the result as it becomes available. If
you use this service, it is important that you also adopt the %& convention for specifying the
appropriate format file for TEX to use, or else that you have already chosen the appropriate
format type by selecting one of the first four services.

These six services provide the most common functions needed in the typical edit-
compile-view loop. Typically, the first time you process a file, you will use one of the first
four commands to open the file and select the appropriate format. From then on, you will
use either ReTeX (to run TEX from within TEXview) or Reopen dvi (if you have run TEX
through a different application) to view the changed file.

Chapter 4: Using TEXview 79

Another service, TeX EQ->.EPS, takes as input data some ASCII clip, of type NXAs-
ciiPboardType, and treats it as a TEX equation to be typeset. It runs TEX and dvips -E
over the data, and responds with a PostScript clip of type NXPostScriptPboardType. For
instance, bring up Edit. Within Edit, type the following line (exactly):

$$\sum_{i=0}"\infty {x"i\over i!}=e"x$$

Now select the entire line with the mouse, and cut it, and then paste it twice. Now select one
of the instances with the mouse, and then choose the menu entry Services/TeXview/TeX
EQ->.EPS. After a few seconds, perhaps a little longer, the equation should appear in the
Edit window! It will not be very readable, because TEX uses bitmapped fonts, but then
select Print from within Edit and the output should look fine.

The equations will look much better—indeed, very good—if you use PostScript versions
of the CM fonts, such as the ones available from Blue Sky Research. Their phone number is
(503) 222-9571. These fonts are commercial and are not terribly cheap, but for many uses
they are very, very nice.

6.2 User-Defined Services

It is possible to extend the service support in TEXview with your own services. For
instance, if your editor does not support the NXFilenamePboardType but does support
commands that neither send nor return data, you can add support for such a service.

Start with the file TeXview.service in /usr/lib/tex/source/misc. Make a copy of
this file. This entire file looks (in part) like:

Message: serverReopen

Port: TeXview

Send Type: NXFilenamePboardType
Menu Item: TeXview/Reopen dvi
KeyEquivalent: R

Message: serverCommand

Port: TeXview

User Data: Send Type: NXFilenamePboardType
Menu Item: TeXview/ReTeX

Message: serverMakeEquation

Port: TeXview

Send Type: NXAsciiPboardType
Return Type: NXPostScriptPboardType
Menu Item: TeXview/TeX EQ->.EPS
ActivateProvider: NO
DeactivateRequestor: NO

Chapter 4: Using TEXview 80

Note how it defines the four services we described above. Simply copy the TeXview/ReTeX
service to the end of the file and delete the Send Type line. Also change the menu item
name (perhaps to TeXview/ReTeX2). Save this new file as TeXview.service in the directory
/Locallibrary/Services (you may have to create this directory if it doesn’t already exist.)

Now exit TpXview if it is running, and re-launch it. You should see an additional
service entry in the Services/TeXview menu while in your editor. That’s all it takes! (You
will also probably have to deselect and then reselect the Services menu entry in your editor.)

7. PostScript Graphics and Fonts

Including PostScript graphics and using PostScript fonts works exactly as described
in the previous chapter on dvips; please refer there for details. Note that TEXview does
not handle the bop-hook, eop-hook, start-hook and end-hook extensions. In addition,
any header files loaded are loaded once, permanently, so any effects will take place for all
subsequently loaded dvi files. Since header files typically only define macros, rather than
executing anything, this should seldom cause difficulty. When it does, it is necessary to exit
TEXview and start it up again to return to a clean state.

8. Defaults Variables

The NeXT machine has a powerful system for setting and viewing application defaults.
These variables are set automatically by the Preferences window in TpXview, but the system
is also accessible from the dread and dwrite commands; please refer to NeXT documenta-
tion on these programs. The variables recognized and used by TEXview, their defaults, and
an explanation of each follow.

commandposition (none) This variable holds the default window position and activation
status of the command window.

compressed (false) This variable sets whether compressed fonts are used by default in
printing through dvips; it has no effect on TEXview itself.

consoleposition (none) This variable holds the default window position, size, and
activation status of the console window.

customdpi (1270) This variable sets the value of the default custom resolution, if custom
resolution is selected. The default value is a common value used when driving certain
Linotronic typesetters.

customformat (amstex) This variable holds the default ‘custom’ format file name for TEX.
This format is chosen when you select the custom command button or the Custom
menu item; it can be changed in the Preferences window.

Chapter 4: Using TEXview 81

defaultfont (none) This variable holds the default font for the TEX and console windows.
defaultformat (tex) This variable holds the default format file name for TEX.

debug (0) This variable should be seldom used. If set, it should be set to a value from 0 to
9, with a higher number yielding more detailed debugging information. The debugging

information is written to standard output, so make sure you invoke TEXview from a
shell.

generatefonts (false) This variable controls whether to generate fonts with MakeTeXPK,
or to scale other bitmapped fonts to fit.

hmarg (1) This variable is the horizontal offset of TEX’s origin point on a sheet of paper,
in inches.

hsize (8.5) This variable sets the horizontal size of the default TEXview sheet, in inches.

mocked (false) This variable determines whether included PostScript graphics are ren-
dered or ‘faked’ with a gray box.

paranoia (0) This variable holds the current paranoia level. If it is equal to 1, then the
TEXview console is not used, and the browser’s console window is used instead. This
might prevent TEXview from hanging in some circumstances.

reversed (true) Determines whether dvips should be told to reverse the pages when
printing. If dvips doesn’t do it, the spooler will, and dvips can do it faster. Reversing
the order of the pages is necessary because the NeXT printer stacks the output face

up.

sync (true) If this flag is true, then TEXview will wait for dvips to complete before
returning to the user from the print panel; otherwise, the dvips process is spawned
and executed concurrently with TEXview.

texposition (none) This variable holds the default window position, size, and activation
status of the TEX window.

unzoomres (91.287102) This variable sets the default unzoom resolution for TEXview.
Only certain magic values are acceptable; use TEXview to change this rather than
dwrite.

vmarg (1) This variable is the vertical offset of TEX’s origin point on a sheet of paper, in
inches.

vsize (11) This variable sets the vertical size of the default TEXview sheet, in inches.

Chapter 4: Using TEXview 82

windowposition (none) This variable holds the default window position and size of the
main preview window.

zoomres (120) This variable sets the default zoom resolution for TEXview. Only certain
magic values are acceptable; use TEXview to change this rather than dwrite.

9. Environment Variables

TEXview uses some of the same environment variables as dvips, and they are inter-
preted in the same way, so refer to the previous chapter for more information.

These environment variables must be set in your .cshrc file in your home directory,
since this is the only file that TEXview examines for environment variables. Even if you
use a different shell, make sure you update this file for csh if you want TEXview to find the
appropriate files. Also, when TEXview runs TEX, it runs it under a csh so it is important
for TEX as well.

HOME (no default) This environment variable is automatically set by the shell and is used
to replace any occurrences of ~ in a path.

MAKETEXPK (MakeTeXPK %n %d %b %m) This environment variable sets the command to
be executed to create a missing font. A %n is replaced by the base name of the font
to be created (such as cmr10); a %d is replaced by the resultant horizontal resolution
of the font; a %b is replaced by the horizontal resolution at which dvips is currently
generating output, and any %m is replaced by a string that METAFONT can use as
the right hand side of an assignment to mag to create the desired font at the proper
resolution. If a mode for METAFONT is set in a configuration file, that is automatically
appended to the command before execution.

TEXCONFIG (. :/usr/lib/tex/ps) This environment variable sets the directories to search
for configuration files, including the system-wide one. Using this single environment
variable and the appropriate configuration files, it is possible to set up the program for
any environment. (The other path environment variables can thus be redundant.)

TEXFONTS (.:/LocallLibrary/Fonts/TeXFonts/tfm:/usr/lib/tex/fonts/tfm) This is
where tfm files are searched for. A tfm file only needs to be loaded if the font is a
resident (PostScript) font or if for some reason no pk file could be found.

TEXINPUTS (.:..:/usr/lib/tex/inputs) This environment variable is used to find
PostScript figures when they are included.

TEXPKS (.:/Locallibrary/Fonts/TeXFonts/pk:/usr/lib/tex/fonts/pk) This environ-
ment variable is a path to search for pk fonts on. Certain substitutions are performed
if a percent sign is found anywhere in the path; see above for a description of the
substitutions performed.

Chapter 4: Using TEXview 83

VFFONTS (.:/usr/lib/tex/fonts/vf) This environment variable sets where dvips looks
for virtual fonts. A correct virtual font path is essential if PostScript fonts are to be
used.

84

Additional Utilities

This chapter gives some brief instructions for various utilities supplied with NeXTTEX.
Many of these utilities are mentioned in other chapters; some are not. This chapter does
not include descriptions of some of the programs more extensively described in the other
chapters.

The utilities are listed in alphabetical order. For more information on various file
formats or more extensive documentation on any of these programs, write Radical Eye
Software. (If every program included were fully documented, it would take an entire row of
a bookshelf to hold the documentation.)

1. dvitype

This utility converts a TEX dvi file to a human-readable (and usually very verbose)
form. Usage is

localhost> dvitype foo.dvi

The program will engage you in a dialog concerning various options, such as the assumed
device resolution and how verbose the output should be. The actual output itself is always
written to a file called dvitype.out, and it may well be extremely large, so make sure you
have space for it. In verbose mode, the output is often more than 40 times larger than the
dvi file.

2. gftodvi

This program makes proof sheets for fonts, assuming that a gf file was created with
proof mode on. Documentation is given in The METAFONTbook, Appendix H.

To create proofs, you must have a gray font at the appropriate resolution. Note that
gray fonts are not device independent; the tfm file for a gray font varies depending on the
device that is to be driven. Thus, typically you will create gray.tfm and gray.pk for the
particular device you wish to drive. Since gftodvi uses the tfm file to create its dvi file,
you cannot run gftodvi until you have the gray font built.

Chapter 5: Additional Utilities 85

As an example, to build a gray font for a standard 300 dpi device, you would create a
file with the single line

input grayf
and then you would run the commands
localhost> mf "\\mode:=imagen; input gray"

localhost> cp gray.tfm /usr/lib/tex/fonts/tfm
localhost> gftopk gray.300gf /usr/lib/tex/fonts/pk-cache/gray.300pk

to create the gray font. (For a 180 dpi device, for instance, you would substitute NEC and
180 for imagen and 300 above.) Then, as an example of a simple proof sheet, type

localhost> mf cmril0

and let it run. (The default is proof mode.) This will take a while and create a very large
gf file, but with full proof marks. If you only want an example, you can interrupt it after a
few characters; the gf file it will write will be well-formed if incomplete. Now, run gftodvi
with

localhost> gftodvi cmr10.2602gf

and let that grind for a while. (The dvi file will be even larger than the gf file.) Now,
print the file. You will probably want to print no more than a couple of pages if you are
just looking; an entire 128 character font is a pretty hefty stack of paper. (Previewing it
will not work since the gray font is device dependent.)

3. gftopk
The gftopk program converts a gf file to a pk file. Usage is

localhost> gftopk cmr10.300gf cmr10.300pk

for example. If the aspect ratio is not exactly 1, a warning will be printed; this is perfectly
normal and nothing to worry about.

Chapter 5: Additional Utilities 86
4. gftype

This program converts a gf file to a human-readable representation, and checks the gf
file in the process. Usage is

localhost> gftype cmrl10.300gf

You can add a -i switch before the file name to print out the pixel images of each character,
and a -m switch to turn on gf format mnemonics.

5. mft

The mft program converts a METAFONT source that obeys certain conventions into
a nice TEX file for printing. This allows very nice pretty-printing of METAFONT source.
Usage is

localhost> mft foo.mf

6. patgen

This program takes a list of hyphenated words and generates hyphenation patterns for
use by TEX. Usage is

localhost> patgen dictfile patfile outfile

7. pktogf

This program converts a pk file to a gf file, essentially undoing the compression of
gftopk. No information is lost in either direction, although the files will be different because
of embedded comments. The usage is

localhost> pktogf cmr10.300pk cmr10.300gf

In general, this program will very seldom be needed.

8. pktype
This program prints out a pk file in a human-readable form. It is used by

localhost> pktype cmr10.300pk

The output is written to the screen or can be redirected into a file.

Chapter 5: Additional Utilities 87

9. pltotf

This program takes an ASCII version of a tfm file and compiles the tfm file. Usage is

localhost> pltotf cmrl0.pk cmrl0.tfm

The format is a simple Lisp-like language, except that the indentation level at which paren-
theses are found is expected to be consistent. For an example pl file, run

localhost> tftopl cmrl0.tfm cmri0.pl

10. tftopl

This program converts a TEX font metric, or tfm, file, to a property list, or pl, file.
This and companion pltotf are useful to change the kern data in a font or to do other
tricks. Usage is

localhost> tftopl cmrl0.tfm cmri0.pl

11. vftovp

This program is much like tftopl, but it turns a virtual font file (vf) into a virtual
property list file (vpl). It must read not only the vf file but also the corresponding tfm
file, so run it with

localhost> vftovp foo.vf foo.tfm foo.vpl

12. vptovf

This program takes a given vpl file and converts it to the binary vf and tfm files.
Usage is

localhost> vptovf foo.vpl foo.vf foo.tfm

88

Using PostScript Fonts

This chapter gives some more information on using PostScript fonts with the NeXT in
TEX. The information in the chapter on dvips was specific to dvips; this chapter will be
specific to the NeXT.

There are many advantages of PostScript fonts. They scale quickly and easily compared
to METAFONT fonts. They are very portable. There is a wide variety of styles available.
They are a publishing standard. There are disadvantages as well. They can be larger and
slower than bitmapped fonts. They do not always have all of the characters that TEX wants.
They are less standard in the TEX community than METAFONT fonts. And when something
goes wrong, it can be very difficult to determine what the problem is.

PostScript fonts can be installed for use with just NeXT TgEX, or for general use by the
NeXT software, or for both. One does not imply the other; if you have installed a font on
the NeXT, there are additional steps you must perform to get it to work with NeXT TgX;
conversely, if you have installed a font for use with NeXT TgX, you may not have done
everything necessary to get it to work for other applications on the NeXT.

This chapter will first describe font files in general. Then, it will present the require-
ments for installing a font on the NeXT for use by various application software. Then, we
will consider the installation requirements for use of the font with NeXT TgpX. Finally, we
will present three case studies of installing PostScript fonts on the NeXT for use with TEX.

I recommend you read the entire chapter, even if a section may not apply to your
particular situation.

1. Font Files

PostScript fonts are generally supplied in two files—a font program (often with the
extension .pfb or .pfa, or, with no extension) and font metrics (with the extension .afm
or .pfm.) The first file is loaded by the PostScript interpreter and contains the actual
instructions for rendering the fonts on a character by character basis; the second file contains
information on character widths, heights, depths, the character set encoding, and various
other information that is needed by the application that wants to use the font.

Chapter 6: Using PostScript Fonts 89

The font program can have several different characteristics. First, it can be either a
Type 1 or a Type 3 font (and even other types are possible.) A Type 1 font has full hinting
and will usually look much better at resolutions below about 1000 dpi than the equivalent
unhinted Type 3 font; on the other hand, a Type 1 font can only use a very narrow subset of
the PostScript language, whereas a Type 3 font can use the full language. For the purposes
of installation, there is no difference between a Type 1 and a Type 3 font.

Secondly, a font can be encrypted or not. If it is, the font will be mostly binary or
hexadecimal data. If it isn’t, the font might still be mostly binary or hexadecimal data, but
it is often plain PostScript text. In any case, whether a font is encrypted or not does not
matter for installation.

Third, a font can be stored in ASCII format (often with the extension .pfa), or it can
be stored in compact binary format (often with the extension .pfb). In general, fonts for
Unix come in ASCII and fonts for MS-DOS and other platforms come in binary. The NeXT
can only work with ASCII fonts; NeXT TgEX, on the other hand, can handle either ASCII
fonts or MS-DOS style binary fonts. (Macintosh fonts may or may not work, depending on
how the resource fork is mapped into the flat file format of Unix.)

To tell whether a font is in binary or ASCII format, just examine the first byte. If the
first byte has the value 128, then it is a binary font file; otherwise, it is probably an ASCII
file. (This is the method dvips and TXview use to determine whether the font is binary
or not.) Another way is to simply type file followed by the font file name; if ‘data’ is
returned, then the font is probably binary; if ‘shell commands’ or ‘ASCII text’ is returned,
then the file is probably ASCII.

If you plan to install the font for the NeXT, and the font program as you get it is
in a binary format, you must convert it to ASCII form before you can use it for NeXT
software other than TEX. The program undos is supplied (in both binary and source form)
in the directory /usr/lib/tex/src/misc; to convert the binary font program Foo.pfb to
the ASCII font program Foo.pfa, just type

localhost> /usr/lib/tex/src/misc/undos <Foo.pfb >Foo.pfa
Now, simply use the Foo.pfa file on the NeXT.

The font file must not contain non-ASCII characters, such as control-D or control-
Z. If your font doesn’t appear to work, check the ASCII font program file (especially the
beginning and end) for these and other control characters. If you find such characters,
complain loudly to your font vendor; they have no business in a PostScript file of any sort,
especially a font file.

Another potential problem is that the font file is one that has an ‘exitserver’ command
in it to permanently download the font to the printer. This is not necessary and will
probably cause the font to fail. (Note that many fonts may actually have the command in
the font, but not execute it, so mere presence of the word ‘exitserver’ in the font file does
not necessarily mean that the font has this problem.)

Chapter 6: Using PostScript Fonts 90

Note that ASCII font files tend to be about twice as large as binary font files, so a
moderate collection of PostScript fonts can take a lot of disk space. It is to be hoped that
the NeXT will soon support the binary format so this space can be reclaimed.

The font metric files can be either .afm files (an ASCII format), or . pfm files (a binary
format common for MS-DOS programs), or both. Both NeXT TgX and the NeXT in general
require .afm files, and no program to convert .pfm files to .afm files is supplied. If you only
received a .pfm file, contact your font vendor for the .afm file.

2. Installing Fonts for the NeXT

Unfortunately, installing new PostScript fonts on the NeXT is still not an entirely
foolproof operation. This section of the manual may not be entirely accurate, and it certainly
does not cover every case.

In order for the NeXT to use a font, it must be able to find an afm file and it must be
able to find a font program with the same name as the actual font. These two files must
reside in a special directory with the name of the font followed by .font. For instance, the
Times-Roman font is stored in the directory Times-Roman.font, which contains the files
Times-Roman.afm (the font metric information) and Times-Roman, the font ‘binary’.

These font directories (here, we refer to the actual disk directories, such as Times-
Roman.font) must be located in one of /NextLibrary/Fonts, /LocalLibrary/Fonts, or
“/Library/Fonts. You might browse these directories to see what fonts you currently have
in your system.

In addition to these directories, the NeXT also uses some ‘hidden’ files to keep track of
these fonts. These files are called .fontlist, .afmcache, and .fontdirectory. Normally,
the NeXT will maintain these files itself; if it fails, or the fonts don’t appear in font panels,
see the man page for buildafmdir. And if it doesn’t work, contact NeXT for information.

3. Installing Fonts for NeXT TEX

To install fonts for NeXT TgX, simply follow the instructions given in the chapter on
dvips. Please read that chapter for more information; in general, the information in that
chapter is assumed in the following discussion.

You will need an .afm file for the font. You will need to determine a name that TEX
can use to access the font; for standard Adobe fonts, this can be done with the auxiliary
file adobe in /usr/lib/tex/src/dvips. You will then run afm2tfm over the .afm file to
generate a .vpl and a raw .tfm file. You will run vptovf over the .vpl file to generate
a .vf and virtual .tfm file. You will then install the two .tfm files and single .vf file
into /usr/lib/tex/fonts/tfm and /usr/lib/tex/fonts/vf, respectively. Finally, you
will add a line to the file psfonts.map in /usr/1lib/tex/ps to indicate the correspondence

Chapter 6: Using PostScript Fonts 91

between the actual font name, the file the font can be found in, and the PostScript font
name.

This procedure will need to be altered for some common cases. We describe a few of
them with the following paragraphs.

The line that is added to psfonts.map will not need to contain information about
where the font file can be found if the font is installed for automatic use by NeXT TgX;
in this case, the generated PostScript files will not contain the relevant font program, and
the NeXT PostScript spooler will automatically load the font as needed. (This is as though
the font were ‘resident’ in the ‘printer’; if the PostScript interpreter can find the font on
its own, the font can be considered ‘resident’.) For instance, if we installed the font Hobo
(which has a recommended TEX name of phbr, and a raw name of rphbr) for general use
on the NeXT, the corresponding entry in psfonts.map would simply consist of

rphbr Hobo

If, on the other hand, the font is installed for use only with NeXT TgX and not for the
other NeXT applications, then the line added to psfonts.map must include a < character
followed by the full path name of the font. In this case, if we put the Hobo font program in
/usr/1lib/tex/ps, then the appropriate line in psfonts.map would be

rphbr Hobo </usr/lib/tex/ps/Hobo

In this case, each time a file that used this font was printed, the font file would be included
with the PostScript job; it would be the responsibility of dvips and Tview to find and
download the file, since the NeXT PostScript interpreter would not know where to find it.
(This corresponds to a font not being resident in a printer.)

If you plan to export PostScript files generated by NeXT TgEX to other PostScript
devices, you should consider carefully whether dvips should include the font in the final
PostScript file or not. If the font is included, then the distributed file contains a copyrighted
font program; thus, the document file should not be distributed, since it might be possible
to extract the font program and thus ‘steal’ the font. On the other hand, if the font is not
included, and it is either not available on the other PostScript device, or the PostScript
printing software is not smart enough to download the required font, then the file might
not print. Read your font licensing agreement carefully and consider your needs.

It is often useful to have a separate configuration file for dvips that can be used
when generating files for distribution. The standard config.ps file can be set up for every
use on the NeXT, and a separate config.dist can be set up for generating distributable
PostScript. This config.dist might contain a line like p psfonts.dist If dvips is invoked
now with the -P dist option, then the config.dist configuration file would be loaded.
The p option in this configuration file would tell dvips to load psfonts.dist instead of
psfonts.map; this psfonts.dist can have the file as ‘resident’ or not in a different fashion
than the default file.

Chapter 6: Using PostScript Fonts 92

If the font is one of the standard 35 built in to the LaserWriter, then you will not
need to run afm2tfm or vptovf, nor will you need to edit psfonts.map, because NeXT
TEX is already set up for those fonts. (Simply examine the existing psfonts.map from
/usr/1lib/tex/ps to determine whether a given font is one of the standard 35 or not.) The
premade .tfm and .vf files for these fonts are supplied, and the psfonts.map file already
contains entries for these fonts. You may need to edit psfonts.map if you do not install the
fonts for general usage by other NeXT applications, so that NeXT TEX can find the font
file.

If you are installing PostScript versions of standard TgX fonts, that are compatible with
the standard .tfm widths of the fonts, then you do not want to run afm2tfm or vptovf;
you simply want to add entries to psfonts.map after installing the fonts somewhere that
either dvips or the NeXT PostScript interpreter can find them.

4. Case Study: Palatino-Roman

Our first case study is the installation of Palatino-Roman from an MS-DOS distribution
of the Adobe Plus Pack (assuming that you traded in your PC for a NeXT). This font is
one of the ‘standard 35’. We can determine that by typing the command

localhost> grep Palatino-Roman /usr/lib/tex/ps/psfonts.map

and we notice that it is already mentioned. (Were it not, grep would complete without
printing anything.) First, we make a directory to install the files into.

localhost> mkdir PlusPack ; cd PlusPack

Then, one by one, we take the floppy disks that the Plus Pack came on and insert them
into the floppy drive and copy the contents to the current directory. The actual label of
the floppy might vary (it will appear in the Workspace window); if the actual name is
unlabeled, the following command will copy the contents:

localhost> cp -rp /unlabeled/* .

After each copy completes, eject the disk and insert the next one. (If you have problems
because the disk label has a strange name, format an unlabeled DOS disk, then use a PC
to copy the contents from the original disk onto the unlabeled disk.)

Once this completes, you will have a lot of files with very strange names (such as
zd______. pfb) in your directory. The ones with the extension .pfb are the font programs;
the ones with the extension .afm are the .afm files; the others are not needed.

We want to install the Palatino-Roman font; which one of the files contains that font?
In this case, a file called install.cfg. This file just happens to contain a list with the
correspondence between the short disk names and the longer PostScript font names. There

Chapter 6: Using PostScript Fonts 93

should be some such list somewhere with the fonts; if there is not, you can examine the
tops of the .pfb files, carefully, looking for the name of the font contained in that file. It
should be on the first line; you might have to run undos over the file to turn it into ASCII
before you can do this. In this case, the command

localhost> grep Palatino-Roman install.cfg

tells us that the .pfb and .afm files we want have the name POR_____. Since the NeXT
translates uppercase DOS file names to lowercase, we actually want por

Since this font is a binary file (from the .pfb extension), we need to run undos over it.
We also need to create an appropriate Palatino-Roman font directory. Note that it is very
important that we spell Palatino-Roman correctly in all of the commands we type; even
the case is important.

First, we shall install it for general use by the NeXT. We type the commands

localhost> cp /usr/lib/tex/src/misc/undos .

localhost> mkdir Palatino-Roman.font

localhost> undos <por_______. pfb >Palatino-Roman.font/Palatino-Roman
localhost> cp por_______. afm Palatino-Roman.afm

localhost> cp Palatino-Roman.afm Palatino-Roman.font

Note that we kept a copy of Palatino-Roman.afm in the current directory. This was
not necessary; it would only be necessary if we wanted to run afm2tfm to create a new .tfm
or .vpl file. Since this is one of the standard 35 fonts, that will not be necessary; NeXT
TEX is already configured to handle them.

Now, let’s install the font in the appropriate directory. The font must be installed in
one of /NextLibrary/Fonts, /Locallibrary/Fonts, or ~/Library/Fonts. We will make
it available to everyone on the machine by installing it in /LocalLibrary/Fonts. First, we
must become superuser, and then we install the directory.

localhost> su

Password:

localhost# cp -rp Palatino-Roman.font /Locallibrary/Fonts
localhost# cd /Locallibrary/Fonts

localhost# rm -f .afmcache .fontlist .fontdirectory

Now, we type control-D to exit superuser status. The font should be available for general
NeXT applications, and we should be able to use it in NeXT TgX. First, we determine what
it is called under NeXT TgX; we do this with

localhost> grep Palatino-Roman /usr/lib/tex/src/dvips/adobe

and we find that the corresponding (virtual, not raw) name is pplr. So, we test it by
printing a simple font table:

Chapter 6: Using PostScript Fonts 94

localhost> tex testfont

This is CTeX, NeXT Version 3.141
(/usr/lib/tex/inputs/testfont.tex
Name of the font to test =

We now type pplr, and later, when requested, type \sample\bye, and then print with
dvips:

Name of the font to test = pplr

Now type a test command (\help for help):)

*x\sample\bye

(11 [2]

Output written on testfont.dvi (2 pages, 11776 bytes).
Transcript written on testfont.log.

localhost> dvips testfont

This is dvips 5.489 Copyright 1986, 1992 Radical Eye Software
> TeX output 1992.07.05:2309° -> !lpr

<tex.pro><texps.pro>. [1] [2]

Out of the printer should come a nice table of the font with a paragraph testing some of
the ligatures, kerns, and accents. Congratulations; you can now use the font!

As you can see, installing them all can be a royal pain, mostly because of the process
of converting a MS-DOS style font into a NeXT font directory and putting it in the correct
place. But it is possible. Indeed, starting with install.cfg, it is not difficult to put
together a batch file that does almost all of the work for you.

5. Case Study: CooperBlack

Now let’s go through the same process, only with CooperBlack, which is not a font in
the standard 35. We assume that we begin with the CooperBlack.afm and CooperBlack
file (already in ASCII format). We follow essentially the same process, only we also add in
steps to run afm2tfm and vptovf, edit the psfonts.map file, and install the .tfm and .vf
files.

Chapter 6: Using PostScript Fonts

localhost> mkdir temp

localhost> cp CooperBlack CooperBlack.afm temp
localhost> cd temp

localhost> mkdir CooperBlack.font

localhost> cp CooperBlack CooperBlack.afm CooperBlack.font
localhost> grep CooperBlack /usr/lib/tex/src/dvips/adobe
CooperBlack pcbr

CooperBlack-Italic pcbri

localhost> afm2tfm CooperBlack.afm -v pcbr.vpl rpcbr.tfm
rpcbr CooperBlack

localhost> vptovf pcbr.vpl pcbr.vf pcbr.tfm

This is VPtoVF, C Version 1.3

’015 ’016 ’017 ’020 ’022 ’023 ’024 ’025

’326 ’327 ’330 ’343 ’350 ’3563 ’370.

I had to round some heights by 16.5000000 units.

I had to round some depths by 3.0000000 units.
localhost> su

Password:

localhost# ex /usr/lib/tex/ps/psfonts.map
"/usr/lib/tex/ps/psfonts.map" 85 lines, 3088 characters
:$a

pcbr CooperBlack

W

"/usr/lib/tex/ps/psfonts.map" 86 lines, 3105 characters
‘q

localhost# cp pcbr.tfm rpcbr.tfm /usr/lib/tex/fonts/tfm
localhost# cp pcbr.vf /usr/lib/tex/fonts/vf

localhost# cp -rp CooperBlack.font /Locallibrary/Fonts
localhost# cd /LocalLibrary/Fonts

localhost# rm -f .afmcache .fontlist .fontdirectory

95

Note how we determined the appropriate TEX name from the adobe file. If we did not want
to install this font for general NeXT use, we would have omitted the steps creating and
copying the CooperBlack.font file, and instead done something like (immediately after

copying the .vf and .tfm files):

localhost# cp CooperBlack /usr/lib/tex/ps

In addition, the line we added to psfonts.map would have looked like

pcbr CooperBlack </usr/lib/tex/ps/CooperBlack

Finally, if the font was in binary .pfb format, we would have had to run undos over it.

Chapter 6: Using PostScript Fonts 96

6. Case Study: Blue Sky Research CM Fonts

Our final example is to convert and use the Blue Sky Research Computer Modern
PostScript fonts. These are commercial fonts available from Blue Sky Research; their phone
number is (503) 222-9571. These fonts work very well, especially when you are creating
EPSF files from TEX (of, for instance, equations) for pasting into other applications; the
resulting files scale much better than normal METAFONT bitmapped fonts. The only prob-
lem is that the resultant files only print correctly at sites that have the Computer Modern
PostScript fonts.

In this case, we want to install the fonts so they can be used by other applications
on the NeXT. Even though other applications will not normally want to use them, making
them loadable in this fashion will make their operation with TEX EPSF files much faster,
and it will make the EPSF files much smaller.

We also want to add entries to psfonts.map. But since there are so many additional
entries, and since we may not always want to make use of the PostScript versions of the
fonts, we will place the mappings in a separate psfonts file and modify config.ps to load
this mapping file in addition.

Our process shall start with the two-disk set available for MS-DOS platforms. Just
as with the Plus Pack example above, we copy the full contents of the floppies into a new
directory. Follow the procedure given above.

Because there are so many fonts, we will install them with a ‘batch’ shell command.
This shell command is supplied as /usr/lib/tex/src/misc/fixcm.

We have the following steps. First, we must copy the undos and fixcm executables
into our local directory. We assume that you have already made a temporary directory,
changed the current directory to the new one, and copied the files in.

localhost> cp /usr/lib/tex/src/misc/fixcm .
localhost> cp /usr/lib/tex/src/misc/undos .

Then, the fixcm program runs a loop over the set of fonts. Here is the fixcm program
itself:

#!/bin/csh

rm -f psfonts.cm

foreach i (*.pfb)

set n=‘basename $i .pfb°

set u=‘basename $i .pfb | tr a-z A-Z¢
mkdir $u.font

cp $n.afm $u.font/$u.afm

undos <$n.pfb >$u.font/$u

echo $n $u >>psfonts.cm

end

Chapter 6: Using PostScript Fonts 97

This shell script first removes any psfonts.cm file that might already exist. Then, for each
.pfb file it finds in the current directory, it first sets the shell variable n to be the base
name of the font, without the extension. Next, using tr, it coverts the name to uppercase
and stores the result in the shell variable u; this is necessary because the PostScript font
names of these fonts are full uppercase where the normal TEX name is lower case.

Then, it makes the appropriate .font directory, and copies the .afm file into it. It
then runs undos over the .pfb file and stores the result under the appropriate name in
the .font directory. Then, it adds a line to psfonts.cm indicating the appropriate name

mapping.

This shell script can be invoked by simply typing fixcm; you should not be superuser
when executing it. After fixcm has completed, type the following commands:

localhost> su

Password:

localhost# cp -rp *.font /LocallLibrary/Fonts
localhost# cp psfonts.cm /usr/lib/tex/ps

localhost# cd /LocalLibrary/Fonts

localhost# rm -f .afmcache .fontlist .fontdirectory
localhost# cd /usr/lib/tex/ps

localhost# ex config.ps

"config.ps" 66 lines, 1141 characters

:$a

p+ psfonts.cm

W
"config.ps" 67 lines, 1155 characters
:q

The addition to config.ps says to add the contents of psfonts.cm to the list of PostScript
fonts that are available; the + character means to add the list, rather than replacing the
current list.

Now, get out of superuser mode. If TpXview is running, quit it. Test the results by
running Edit, typing the equation $$-b\pm\sqrt{b~2-4ac}\over 2a$$ into a window, se-
lecting it, and selecting the menu entry Service/TeXview/TeX EQ->EPS. If what appears is
recognizably the quadratic equation, congratulations! Installation worked. If what appears
has large gaps in the characters, major portions of some characters missing, or dropped let-
ters or generally is unrecognizable, well, you’re still using bitmapped fonts. When printed,
the two results should be the same.

98

Additional Reading

This manual does not intend in any way to be an exhaustive introduction to the world
of TEX and METAFONT. The following books provide a much more complete reference to
the world of TEX. Most of the following books were also typeset with TEX, so they provide
an excellent example of what is possible.

The TpXbook by Donald E. Knuth, Addison-Wesley, 1984. Also published as Volume A of
Computers and Typesetting, this is the major manual to the TEX system and is a
must-have for anyone using TEX. It is both a tutorial and a reference manual, and
even contains a few jokes. ISBN 0-201-13448-9

LaTgX: A Document Preparation System by Leslie Lamport, Addison-Wesley, 1986. This
book describes use of the LaTpX and SliTEX macro packages, and is a less painful
introduction to the world of TEX. ISBN 0-201-15790-X

The METAFONTbook by Donald E. Knuth, Addison-Wesley, 1986. Also published as Volume
C of Computers and Typesetting, this is the major manual to the METAFONT system.
ISBN 0-201-13444-6

Computers and Typesetting, Volume B: TgX: The Program by Donald E. Knuth, Addison-
Wesley, 1986. This volume ¢s TEX. It is a full listing of the original WEB source code,
complete with beautiful formatting, an index, table of contents, and introduction.
For those who really want to know how TEX works. ISBN 0-201-13437-3

Computers and Typesetting, Volume D: METAFONT: The Program by Donald E. Knuth,
Addison-Wesley, 1986. This volume is analogous to Volume B, only for METAFONT.
ISBN 0-201-13438-1

Computers and Typesetting, Volume E: Computer Modern Typefaces by Donald E. Knuth,
Addison-Wesley, 1986. This volume describes those beautiful computer modern type-
faces in excruciating detail. For those who intend to design their own typefaces, this
book is absolutely necessary.

The Joy of TEX by M. D. Spivak, Ph.D., Addison-Wesley, 1986. This volume is an excellent
introduction to TEX, using the AMSTEX macro package. ISBN 0-8218-2999-8

Appendix A: Additional Reading 99

Graphic Design for the FElectronic Age by Jan V. White, Watson-Guptill Publications,
1988. This book is on graphic design in general, and makes no references to TEX;
nonetheless, it is full of good, practical information on typography and page design.

TEX for the Impatient by Paul W. Abrahams with Karl Berry and Kathryn A. Hargreaves,
Addison-Wesley, 1990. An excellent beginners book on TEX, this book is laid out to
be useful to the seasoned user of TEX, as well. ISBN 0-201-51375-7

LaTgX for Scientists and Engineers by David J. Buerger, McGraw-Hill, 1990. Intended
to be an introductory text with examples for professionals who must cope with

complex equations, this book supplies much information that was lost or muddled in
the LaTgX book.

A Permuted Index for TEX and LaTgX by Bill Cheswick, AT&T Computing Science Techni-
cal Report, . This document, free for the asking, lists all TEX and LaTEX commands
and permutes the listing so you can easily find the ones you need. The request ad-
dress is:

Comp. Sci. Tech. Reports
AT&T Bell Laboratories
Room 2C-579

600 Mountain Avenue
Murray Hill, NJ 07974
(908) 582-2918

Courtney Kmosko

PostScript Language Tutorial And Cookbook by Adobe Systems Incorporated, Addison-
Wesley, 1986. An introduction to the PostScript language for users. If you have a
PostScript printer, this and the next book should be right next to it. Using raw
PostScript is easier than you’d think. ISBN 0-201-10189-0

PostScript Language Reference Manual by Adobe Systems Incorporated, Addison-Wesley,
1990. This is the main reference defining the PostScript language. If you are serious
about using PostScript, it is a must-have. ISBN 0-201-18127-4

TEX by Topic, A TgXnician’s Reference by Victor Eijkhout, Addison-Wesley, 1992. This
book provides a more in-depth description of TEX, and presents much detailed in-
formation in a different organization than the TEXbook. I guarantee you will learn
something when you read this book. ISBN 0-201-56882-9

TEX by Example, A Beginner’s Guide by Arvind Borde, Harcourt Brace Jovanovich, Pub-
lishers, 1992. This book provides excellent examples of TEX side by side with the
actual TEX code used to create that page, in fully commented detail. It is a joy to
read. ISBN 0-12-117650-9

A Beginner’s Book of TgX by R. Seroul and S. Levy, Springer-Verlag, . This book is a fairly
streamlined introduction to plain TEX that also contains lots of little hints and tricks

Appendix A: Additional Reading 100

for moderate to advanced users. The index doubles as a glossary/quick reference to
plain TpX commands. ISBN 0-387-97562-4

101

Building on NeXTTEX

NeXTTEX is a complete package in itself, with a myriad of options and capabilities.
But many additional packages are available that can extend the capabilities or ease of use
of NeXTTEX. This appendix lists just a few of these.

1. AUC TgX

AUC TgX is an Emacs lisp mode for editing, processing, previewing, and sending to
dvips of TEX and LaTgX files. It was written by Kresten Krab Thorup, Dept. of Math
and Computer Science, University of Aalborg, Aalborg, Denmark, krab@iesd.auc.dk and
is maintained by auc-tex mgr@iesd.auc.dk.

It is available for ftp from iesd.auc.dk and several places in the United States. AUC
TEX consists of a series of emacs-lisp files, which allow one to run plain TEX or LaTgX
directly from Gnu-emacs, with command completion, and a large number of shortcuts.

AUC-TeX is available by anonymous ftp to iesd.auc.dk as /pub/emacs-lisp/auc-
tex-X.x.tar.Z, (where X.x specifies the release version). Also, it should be available at
major TEX and Elisp archives around the world. In case you don’t have access to anonymous
ftp, you can get it by electronic mail requests to auc-tex mgr@iesd.auc.dk.

AUC TgX automatically indents your source. It has a special outline feature, which
can greatly help you ‘getting the overview’ of a document.

Apart from these special features, AUC TEX provides an large range of handy Emacs
macros, which in several different ways can help you write your LaTeX documents fast and
painless.

All features of AUC TEX are documented using the GNU Emacs online documentation
system. That is, documentation for any command is just a key click away!

AUC TgX is written entirely in Emacs-Lisp, and hence you can easily add new features
for your own needs. It was not made as part of any particular employment or project (apart
from the AUC TgX project itself). AUC TgX is distributed under the ‘GNU Emacs General

Public License’ and may therefore almost freely be copied and redistributed.

Appendix B: Building on NeXTTEX 102

2. Blue Sky Research PostScript Fonts

Blue Sky Research (534 Southwest Third Avenue, Portland, Oregon) sells PostScript
type-1 versions many METAFONT fonts. Use of these fonts eliminates the piles of pk fonts
that clutter up your machine (although they do take up a fair amount of space themselves.)
They also allow TEX to generate resolution-independent clip-art. Since generating fonts by
PostScript font scaling is often much faster than generating fonts by METAFONT, new sizes
of the fonts can be available much more rapidly, and previewing in TEXview is thus initially
sped up.

3. InstantTpX

This program instantly previews your files as you edit the TEX source. A few seconds
after you type a key, the new output appears in TEXview. This is very useful for writing
equations, macros, adjusting the spaces and sizes in your file, and almost everything else
that you can do with TEX. This feature works well even on multiple-page documents because
of the speed of the NeXT.

If TEX notices an error in your file, you can press a key and InstantTEX will go to the
line which contains the error. This considerably simplifies editing your text.

You can TEX your file in any format you wish, directly from Edit, just by pressing a
key. The format of you TgX files can be determined automatically.

There is an online reference card which helps you write Greek letters, operators, re-
lations, and other TEX symbols. There are more than 20 various options to suit your
preferences.

InstantTRX is available from Instant Technology, 744 Mayfield Avenue, Stanford CA
94305. You can send electronic mail to dmitri@StarConn.com. A demo version of In-
stantTEX and the latest information is available on the public archive nova.cc.purdue.edu.

4. TEXmenu

With TEXmenu you can start plain TEX, LaTgX, SHTEX, AmsTEX or TEX with any
custom format, edit your TEX files with Edit, start BibTEpX, Makelndex and make, manage

your TEX projects and files, automatically determine the format of you TEX files, and check
spelling, all with the click of a button.

The author of TEXmenu, Harald Schlangmann, made it available for free on the public
archive nova.cc.purdue.edu.

103

Font Magnification

This appendix contains some basic information on font magnification with the supplied
Computer Modern fonts.

TEX defines seven standard magnifications; these are called magsteps. The macros and
corresponding magnification ratios are:

\magstepO 1.000
\magstephalf 1.095
\magstepl 1.200
\magstep2 1.440
\magstep3 1.728
\magstep4 2.074
\magstepb 2.488

You will note that magstep n is equivalent to a magnification of 1.2". To make a
document use a specific magnification for each of its fonts and other dimensions, simply
place a command such as

\magnification=\magstepl

Try it on one of your documents, and see the difference. All dimensions specified without
a true prefix (as in the standard baselineskip, for instance) will be magnified; those
specified in true sizes, such as hsize and vsize, will not be changed.

If you just need a larger font for headers or something, you can define such a font with
a command like

\font\bigbold=cmbx10 scaled \magstepl

Now you can use the bigbold font just as you might use the it font. If you use a scaled
font in a document that also has a magnification statement, you must multiply the two
factors (or add the magsteps) to determine which font will actually be used. For instance, if
you have a document with magnification equal to magstep half, and you load a font scaled
magstep half, the actual font will be loaded at a size of magstep 1. But if you try to load

Appendix F: Font Magnification 104

a font scaled magstep 1, the font the driver will require is one at magstep 1.5, which is not
supplied by default.

Such fonts can (and will) be automatically generated by dvips, but if completely
arbitrary magnifications are used, the font cache will soon become cluttered with many
fonts that are never used. In addition, other TEX systems without the automatic font
generation capability will often not have these fonts, so your documents will lose their
portability. When at all possible, try to use standard magstep values.

The scaled parameter (and the magnification parameter) is in thousandths. Thus, if
you type to TEX,

\message{\magstepl}

TEX will display ‘1200\relax’. (You can type to TEX ‘\show\magstep’ to understand
why.) So, if I want to use a magstep 2 font (that’s a magnification of 1.44) on a document
magnified at magstep half (that’s 1.095), I would scale it at 1000*(1.44/1.095), or 1315, as
in:

\font\bigbold=cmbx10 scaled 1315

There are also different point sizes of the same font. For instance, the standard roman
font cmr10 is supplied in point sizes of 5, 6, 7, 8, 9, 10, 12, and 17 points. It is usually
better to use these point sizes than magnified versions of ten points, because the fonts are
designed for unmagnified use. But most people probably won’t be able to tell the difference.

There are some cases, such as logos and the like, where you want to write a macro
which refers to a font at a specific size, independent of the magnification of the document
which encloses it. In this case, you can define a font as in

\font\bigbold=cmbx10 at 14.4 truept

This will define cmbx10 at a magnification of magstep 2, no matter what the magnifi-
cation of the document.

How does all of this relate to the names of the pk files? Actually, it’s quite simple. The
font cmr12, for instance, for a 180 dot per inch dot matrix printer, at magstep 3, is named
cmr12.311pk. The 311 can be calculated by multiplying 180 by 1.23, and rounding to the
nearest integer.

105

Glossary

The TEX world has its own set of jargon, acronyms and technical terms. The NeXT
and Unix world is not free from them either. This section contains the definitions of some
of the more obscure terms used in this manual.

.afm file This is an ASCII file containing information on the sizes of characters, ligatures,
kerns, and the font encoding of a particular PostScript font. It is used by afm2tfm
to generate the files TEX needs to use PostScript fonts.

desktop metaphor A paradigm of user interface where files are represented as icons,
programs as windows, and the user ‘executes’ commands by selecting, dragging, and
pointing with the mouse. For instance, to delete a file using the desktop metaphor,
you would click on the icon you want to delete, and drag the icon over to the black
hole or trashcan, and let go of the select button.

dither To turn a color or multi-level picture into a bilevel picture, or to reduce the number
of color or grey levels in a picture. There are a large number of ways to do this;
pfilt provides some of the most effective.

double click T'wo rapid presses of the select button; this is the way an icon is activated in
the NeXT machine. If the icon represents a program, the program is run; if the icon
represents a directory, the directory is opened and a window showing the contents
of the directory is displayed.

driver A program that takes a TEX device-independent (or .dvi) file and interprets it,
loading the rasters for the fonts as necessary, and sends the required commands to a
particular printer or other output device to produce the document described.

.dvi file A device-independent file is the output of the TEX program; it contains a descrip-
tion of the typeset document in a compact form that is resolution and output device
independent.

environment variables Global variables that the user can set and which are accessible to
programs in the machine. An environment variable can be used to set some option
or convey some information to a program; for instance, they might be used to tell
TEX where to find font files in a user-configured system.

Appendix G: Glossary 106

.fmt file A format file is a compact form of a set of TEX macros that is loaded in every time
TEX is run to make those macros available. The fmt file is created by iniTgX and
consists of essentially a memory image of TEX after the macros have been loaded. The
default fmt file is called plain TEX; LaTEX uses another format file called 1plain.fmt.
The format files must reside in the /usr/1ib/tex/formats directory.

font A collection of printing characters of one style or size; for instance, cmr10 is Computer
Modern Roman at 10 points. The word font is used to refer to both a particular
style, independent of size, and a particular style at each individual size. NeXTTEX
is currently supplied with the standard 102 TEX fonts; many different sizes of these
fonts are distributed for the previewer.

.gf file A generic file containing raster information for a particular font at a particular
resolution; the same information in the packed or .pk font files.

icon Some graphics imagery that represents a file, program, device, or directory. These can
be activated or opened by double-clicking on them with the mouse.

iniTEX The iniTEX program is a larger version of TEX that takes more memory to run; its
purpose is to create format files from a set of macros.

kerning The addition or removal of spaces between characters due to their shape. For
instance, in the word ‘AVAILABLE’, the ‘A’ and ‘V’ are moved closer together;
compare this with ‘AVAILABLE’, with the kerning turned off. TEX handles kerning
automatically.

LaTEX A macro package intended to both make TEX easier to use and more powerful,
LaTgX was written by Leslie Lamport.

ligature A ligature is the combination of two or more characters into one character. For
instance, the ‘f” and ‘i’ in ‘file’ is a ligature; compare this with ‘file’, using separate
characters instead. TEX handles ligatures automatically; no special characters need
be typed.

.log file A file that contains all of the terminal output during a run of TEX or METAFONT;
it is created automatically along with the device-independent file or font files for
later perusal of any errors. It serves no purpose other than user enlightenment, so it
can be safely deleted at any time.

menu button The right mouse button. This is called a menu button because pressing it
displays the menus for the currently active window on the screen title bar. To select
a particular menu item, you hold the menu button down, move the mouse to the
menu name and then to one of the items that will appear, and then release the menu
button.

Appendix G: Glossary 107

.pk file A packed file containing raster information for a particular font at a particular
resolution in a compressed format. TEX does not use these files at all, but the
preview program and any other drivers require them at certain resolutions.

plain format A basic macro package that contains several hundred predefined macros;
TEX loads these in at the start of each job unless another format file is specified.

pool file TEX has over 25000 characters worth of error and other messages. Rather than
place these in the executable image, they are put into a special tex.pool file that
iniTEX reads and places in every format file.

raster A graphics image stored as actual pixels rather than an analytical description. For
instance, the TEX packed files contain the raster, or pixel by pixel representation,
of each character in a particular font. Raster graphics are by their very nature
resolution dependent; analytical graphics are not.

resolution In raster graphics, the resolution refers to the number of dots (or pixels) per
unit measure, usually per inch. For instance, a dot matrix printer might print at a
resolution of 72 dots per inch, a laser printer at 300 dots per inch, and a typesetting
machine at 1270 dots per inch.

select button The left mouse button; used to select gadgets or icons. Gadgets are selected
by moving the pointer over the gadget and hitting the select button. Icons are
selected the same way, but are activated by hitting the select button twice rapidly.
The select button can be used to drag windows around, or to resize them, by selecting
the proper gadget and holding the select button down while moving the mouse.

SIiTEX A macro package written to create slides; part of the standard LaTgX distribution
by Leslie Lamport.

.sty file An auxiliary file read in by LaTgX that describes the layout of a particular
document style; rep10.sty describes a ten-point version of the report style. These
must reside in the /usr/1ib/tex/inputs directory when running LaTEX.

.tfm file A font metric file containing resolution-independent information about a particular
font, such as character sizes and ligature and kerning information. TgX reads these
files when you declare a new font; they must reside in the /usr/lib/tex/fonts
directory.

.vf file A virtual font file contains a binary description of a font that is composed of other
fonts. For instance, PostScript fonts are supported by NeXTTEX through the use of
these virtual fonts, which do the character set recoding and other transformations

required by TEX.

.vpl file This file contains an ASCII representation of the data in a .vf file; it can be
converted to a .vf file with vptovf and back with vftovp.

Appendix G: Glossary 108

window A window is a rectangular section of a screen that a program uses for user inter-
action. Several windows may all reside on one screen, and can overlap each other
arbitrarily.

Index

A

a3 46

ad 46

Abrahams, Paul W. 99
accents 17, 31

Adams, Ansel 8

address 1

adobe 93

Adobe font metric files 88, 105
Adobe Type Manager 92
afm 30, 88

afm2tfm 6, 21, 30
afmcache 90

aspect ratio 4

AUC TgX 101

automatic font generation 21

B

back-tick 4

BBS 1

beautiful 11

Berry, Karl 99
betrothed 11
bibliography 98
BIX 1

Blue Sky Research 79, 96, 102
bop-hook 24, 56, 80
Borde, Arvind 99
bounding box 23
Bowie, David 4
break 12

Buerger, David J. 99
bugs 8
buildafmdir 90

109

C

changes 4

Cheswick, Bill 99
click dragging 71
clipping 4

color 4

command keys 71
commandposition 80
compressed 80
compression 48
Computer Modern 103
config.ps 48,49, 91
console 6, 73
consoleposition 80
control-D 47
CooperBlack 94
copies 44, 47
Coursey, Janet 11
crop marks 5
customdpi 80
customformat 80

D

dancing 11

debug 45, 81
defaultfont 81
defaultformat 81
desktop 105
directory 70
dither 105

dvi file 10, 70, 105
dvips 20, 77
DVIPSHEADERS 55
dvipsrc 20

dvitype 84

E

Edit 17

editor 9, 17

FEijkhout, Victor 99
emergency exit 12

emtex 21

Encapsulated PostScript 5
encoding 5, 17

end-hook 56, 80
environment variables 7, 16, 70, 105
EOF 47

eop-hook 56, 80

epsf macros 24
epsfsize 25

epsfxsize 25

exit 12

exitserver 89

expanded fonts 36
extension 15

F

FAX 2,7

filter 45, 51

fixcm 96

f1i 58

font metric file 10, 107
fontdirectory 90
fontlist 90
foo.tex 9

format file 4, 10, 12, 13, 16, 73, 106, 107

G

generatefonts 81
generic font file 106
gftodvi 84
gftopk 85

gftype 86
glossary 105
graphics 4, 23

gray fonts 84

Appendix I: Index 110

H

Hargreaves, Kathryn A. 99
header 26, 45, 51, 52

help 5, 6

hmarg 81

HOME 54, 55, 82

hsize 81

I

icon 106

initex 15, 17

installation 2, 58, 90
Installer 2

InstantTRX 102

international character sets 17
interrupt 12

K

kerning 32, 106
keyboard shortcuts 76
Knuth, Donald E. 9, 30, 98

L

Lamport, Leslie 10, 98
landscape 8, 22, 46
leavevmode 24
ledger 46

legal 46

letter 46

Levy, S. 99

ligature 6, 31, 32, 106
Linde, Dmitri 11, 102
links 12

literal PostScript 27
log file 10, 106
Loyola, John 11

M

magnification 24, 46, 103
magscale 25

magstep 103
MAKETEXPK 4, 52, 54, 55, 59, 81, 82
manual feed 45
Marchioro, Thomas 11
maxdrift 45, 51
measurement 7
memory 9, 20, 32, 51
menu button 106
METAFONT 10, 49, 52
METAPOST 21

mf .pool 107

mft 86

misfeatures 8

mocked 6, 81

mode 46

mode_def 49
MS-DOS 21, 37, 57

N

NeededFonts 75

new font selection scheme 17
next.tex 17
NextCD/Packages 2

NFSS 17

O

obsolete 27
open 70
output 46, 51

P

packed font file 10, 107
pages 7, 45, 46
Palatino-Roman 92
paper size 5

paper type b5, 8, 46
paranoia 81

patgen 86

path list substitutions 8
pfa 88

pfb 5, 36, 88

pfm 88

pk 52, 53, 56, 82

Appendix I: Index 111

pktogf &6

pktype 86

plain 12

plain.base 49

pltotf 87

portrait 22

posters 6

PostScript 20

PostScript fonts 8, 30, 80, 88
PostScript graphics 23, 80
Preferences 7, 74

PRINTER 55

printing 3, 20, 77

problems 8

proof sheets 84

psfig 21

psfile 28

psfonts.map 5, 32, 35-37, 91
psfonts.sty 8

Q

quiet 46, 52

R

Radical Eye Software 1, 84

resolution 21, 47, 48, 52, 53, 77, 80-82
reverse 46, 52, 81

reversed 81

rulers 7

S

scaleunit 28
scaling 4
Schlangmann, Harald 102
Shict 27, 28
sectioning 5
select button 107
Seroul, R. 99
services 6, 78
setenv 16

sexy 11

Skulina, Susan 11
slanted fonts 36

Appendix I: Index 112

Spivak, Michael 98 Unix commands 14

Stanford University 9 unzoom 76

start-hook 56, 80 unzoomres 81

stop 12

structured comments 47

style file 107 V

support 1

sync 81 vi 53, 90, 92
VFFONTS 56, 83
vitovp 87

T virtual fonts 31, 53, 90, 107

virtual memory, PostScript 6

TEXmenu 102 virtual property list file 107

tex.pool 17, 107 vmarg &1

tex.remap 4, 18 VMS 21

TEXCONFIG 56, 82 vpl 90

TEXEDIT 17 vptovf 87

TEXFONTS 16, 53, 56, 82 vsize 81

TEXFORMATS 16

TEXINPUTS 16, 53, 56, 82

TEXPKS 52, 56, 82 b@

TEXPOOL 17

texposition 81 White, Jan 99

TeXview.service 78,79 wife 11

TeXview Pipe 14 window 108

tfm 16, 30, 37, 56, 82, 92 windowposition 82

tftopl 87 windows 71

Thorup, Kresten Krab 101 Workspace 2, 3, 70

tpic 21 WYSIWYG 9

U Z
undos 89, 96 zoom 76

UNIX 21, 54 zoomres 82

Appendix I: Index 113

NeXTTEX

An Implementation of TEX
for the NeXT Computer

Version 3.141
1 August 1992

(/

Copyright (© 1986, 1987, 1988, 1989, 1990, 1991, 1992 Radical Eye Software
All Rights Reserved

This document describes the NeXTTEX software.

Manual Copyright

Copyright (©) 1986, 1987, 1988, 1989, 1990, 1991, 1992 by Radical Eye Software. All rights
are reserved.

Disclaimer

Radical Eye Software makes no representation or warranty with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for any
particular purpose. Radical Eye Software reserves the right to revise this document and the
enclosed software without obligation of Radical Eye Software to notify any person of such
revision.

Trademarks

TEX is a trademark of The American Mathematical Society. NeXT is a trademark of
NeXT Incorporated. Unix is a trademark of Bell Laboratories. IBM is a trademark of
International Business Machines. HP and LaserJet are trademarks of Hewlett-Packard
Incorporated. PostScript is a trademark of Adobe Incorporated. Dr. Pepper is a trademark
of the Dr. Pepper Company. Linotronic is a trademark of the Linotype Company.

Table Of Contents iii

Table of Contents

Chapter 1: Introduction .1
1. First Run2
1.1 Installing TEX .2
1.2 Running TEX .3
1.3 Printing a Document . .3
2. What Is New for 3.07 .4
2.1 Changes to TEX . .4
2.2 Changes Shared Between TEXVleW and DleS .4
2.3 Changes to Dvips .5
2.4 Changes to TEXview . . 6
2.5 Incompatible Changes .8
2.6 Other Changes . 8
2.7 Known Problems . 8
3. What is TEX? . .9
4. Acknowledgements 11
Chapter 2: Using TEXo o o012
1. Exiting TEX« Lo e s 12
2. TEX Format Files P 7
2.1 Specifying a Format Flle on the Command Llne e
2.2 Specifying a Format File in a TEX File 13
3. Communicating with TeXview 14
4. Invoking Unix Commands from TgX 14
5. IniTEX . . . P Xt
6. NeXT Env1r0nment Varlables O X
7. The New Font Selection Scheme 17
8. International Character Sets O
8.1 Poor Man’s Extended Characters S e
8.2 Extended Characters Done the Right Way O £ <
Chapter 3: Printing TEX Documents 20
1. Why Use dvips?o 20
2. Using dvips . . . A
3. Paper Size and Landscape Mode e e e e e 22
4. Including PostScript Graphics 23
4.1 The Bounding Box Comment 23
4.2 Using the EPSF Macros 24
4.3 Header Files 26
4.4 Literal PostScript Lo 27
4.5 Literal Headers . . . L
4.6 Other Graphics Support .. e e 2T
4.7 Dynamic Creation of PostScript Graphlcs Flles .- 0
5. Using PostScript Fonts 30
5.1 The afm2tfm Program 31
5.2 Changing a Font’s Encoding 33

5.3 Special Effects 3

5.4 Non-Resident PostScript Fonts
5.5 Font Aliases .

6. Font Naming Conventions

6.1 Foundry

6.2 Typeface Famlhes

6.3 Weight .

6.4 Variants

6.5 Expansion

6.6 Naming Virtual Fonts
6.7 Examples .

7. Command Line Options . .
8. Configuration File Searching .
9. Configuration File Options .

10.
11.
12.
13.
14.
15.
16.

17.

Automatic Font Generation .

Path Interpretation

Environment Variables . .

Other Bells And Whistles .

MS-DOS

Installation .

Diagnosing Problems .
16.1 Debug Options .
16.2 No Output At All
16.3 Output Too Small or Inverted
16.4 Error Messages From Printer
16.5 400 DPI Is Used Instead Of 300 DPI
16.6 Long Documents Fail To Print
16.7 Including Graphics Fails .
16.8 Can’t Find Font Files
16.9 Can’t Generate Fonts

Using Color with dvips .
17.1 The Macro Files
17.2 User Definable Colors .
17.3 Subtleties in Using Color
17.4 Printing in Black/White, after Colorlzlng
17.5 Configuring dvips for Color Devices .
17.6 Protecting Regions From Spurious Colors
17.7 Color Support Details .

Chapter 4: Using TEXview
1. Basic Operation ..
2. Windows

2.1 The Preview Wlndow
2.2 The TEX Window

2.3 The Console Window
2.4 The Command Window
2.5 The Preferences Window
2.6 Other Windows

3. Zoom and Unzoom Resolutions .
4. Menu Options

Table Of Contents iv

36
37
38
40
40
40
41
41
42
42
44
49
49
o4
54
95
o6
o7
o8
60
60
60
61
61
61
61
62
62
62
63
63
65
65
66
66
67
68

70
70
71
71
72
73
73
74
75
75
76

5. Printing from TEXview
6. Services
6.1 Predefined Serv1ce5
6.2 User-Defined Services
7. PostScript Graphics and Fonts
8. Defaults Variables
9. Environment Variables

Chapter 5: Additional Utilities .
1. dvitype
. gftodvi
. gftopk .
. gftype .
mft .

. patgen
. pktogf .
. pktype
9. pltotf
10. tftopl
11. vitovp
12. vptovf

0 DU W

Chapter 6: Using PostScript Fonts
1. Font Files .

. Installing Fonts for the NeXT

. Installing Fonts for NeXT TEX .

. Case Study: Palatino-Roman .

. Case Study: CooperBlack

S U W N

Appendix A: Additional Reading .
Appendix B: Building on NeXTTEX
1. AUC TgX

2. Blue Sky Research PostScrlpt Fonts .
3. InstantTEX

4. TEXmenu

Appendix F: Font Magnification
Appendix G: Glossary

Appendix I: Index

. Case Study: Blue Sky Research CM Fonts .

Table Of Contents v

7
78
78
79
80
80
82

84
84
84
85
86
86
86
86
86
87
87
87
87

88
88
90
90
92
94
96

98
101
. 101
. 102
. 102
. 102
103
105

109

