TEGL Windows Toolkit ITI
Release 1.10
Programmer's Reference Guide

Copyright (C) 1990, TEGL Systems Corporation
All rights reserved

TEGL Systems Corporation

Suite 780, 789 West Pender Street
Vancouver, British Columbia
Canada V6C 1H2

TEGL Windows Toolkit II
LICENSE AGREEMENT

TEGL software products are protected under both Canada copyright
law and international treaty provisions.

You have the non-exclusive right to use the enclosed software under the
following terms and conditions.

You may use this software on a single machine, for both personal and
business use; and may make copies of the software solely for backup
purposes. Other than this you agree to use this software "like a book",
meaning the software may be used by any number of people and may be moved
from one computer to another so long as there is no possibility of it being
used by more than one person at one time.

Programs that you write and compile using the TEGL Windows Toolkit may be
used, given away, or sold without additional license or fees as long as
all copies of such programs bear a copyright notice. By "copyright notice"
we mean either your own copyright notice or if you prefer, the following
statement, "Created using TEGL Windows Toolkit, copyright (C) 1989, 1990,
TEGL Systems Corporation. All rights reserved".

Included on the TEGL Windows Toolkit diskettes are a number of support
files that contain encoded hardware and font information used by the
standard graphic unit. These files are proprietary to TEGL. You may use
these files with the programs you create with the TEGL Windows Toolkit for
your own personal or business use. To the extent the programs you write
and compile using the TEGL Windows Toolkit make use of these support files,
you may distribute in combination with such programs, provided you do not
use, give away, or sell these support files separately, and all copies of
your programs bear a copyright notice.

The Complete Games Toolkit diskettes provide a demonstration on how to use
the various features of the TEGL Windows Toolkit. They are intended for
educational purposes only. TEGL grants you the right to edit or modify
these game programs for your own use but you may not give away, sell,
repackage, loan, or redistribute them as part of any program, in executable
object or source code form. You may, however, incorporate miscellaneous
sample program routines into your programs, as long as the resulting
programs do no substantially duplicate all or part of a game program in
appearance or functionality and all copies of all such programs bear a
copyright notice.

Limited Warranty:
With respect to the physical diskette and physical documentation enclosed

herein TEGL warrants same to be free of defects and materials and
workmanship for a period of one year from the date of purchase.

TEGL will replace defective Software or documentation upon notice within
the warranty period of defects. Remedy for breach of this warranty shall
be limited to replacement and shall not encompass any other damages,
including, without limitation, loss or business profits, business
interruption, pecuniary loss, and special incidental, consequential, or
other similar claims. This limited warranty is void if failure of the
Software has resulted from accident, abuse, or misapplication. Any
replacement Software will be warranted for the remainder of the original
warrantly period.

TEGL specifically disclaims all other warranties, express, implied, or
statutory, including but not limited to implied warranties of
merchantability and fitness for a particular purpose with respect to the
Software and documentation. In no event shall TEGL be liable for any loss
of business profit or any other commercial damage including but not limited
to special, incidental, consequential, or other damages.

Table of Contents

TABLE OF CONTENTS

SPECIAL NOTE for documentation on disk.............o ... 13
Acknowledgement s . i v v it ittt it it ettt et et e e ettt 14
Chapter 1 — IntroduUcCtion.iiii it intienteeeeeeeeeeaeeenas 15
Why Program with TEGL WindoOWS e v vt eeteeeeeeeeeeeeenns 15
The Components of TEGL Windows Toolkit.............c..... 16
What's On youUr disKksS..i ittt ittt teeeeeeeeeeeeeennens 16
Installing TEGL On yOUTY SYStEM. .. i ittt enteneeeeeeeeeeenns 18
Development System RecommendationsS........cuoieeeeeeeeeenns 19
Compiling with Turbo C. ..ttt ittt ittt ettt eneeeeans 19
Compiling with Quick C. .t vi ittt ittt ittt ee it teeeeaeans 19
How to use this Reference Manual..........iiiiiiinnnnnnn 19
LGl SUPEr ViSO e i ittt ittt et ettt eeeeeeoesoeeseeseeseens 19
Program Framework. ... ittt it ittt ittt tneeeeeeeeseenenens 20
Frames OF WinAOWS 2. v i i i i ittt ot oneesonneeseneenennesenness 21
How to Contact TEGL Systems Corporation............eeee.. 21
Chapter 2 — TEGL EaASV ettt eeeeeeeeeeeeeeeeeoensosneneeens 23
What TEGL Windows Toolkit can do........iiiiiiineennn.. 23
Event-Driven Code. ...ttt ittt ittt tteteananeanens 23
Attaching your Function to an Event...........iiiieeeeenan 24
= (LS 25
£ 0 1 25
A Minimum TEGL PrOgramM. « e eeeeeeeeeeneeeesoeseeseeseenas 26
Adding Menus (Top Down DeSign) ¢ . vi it ententeeeeeeeeeeenan 27
Adding your First Event......iieii it ententeeeeeeeeeeenns 28

P E G L A S Y ¢ e ¢ e e o e o e o e o e oeeeeeeeeesesesesesssssssssssseeesss 30
activebutton. .ot e e e e et 30

T R o 31
S (11 = 31

it frame. oo e e e e e e e e e 32
framefromicon. . @ittt e e e e e e e e 32
frametext .. . it e e e e e e e 33

e MO U S Y e 4 vt vt et et et o e o e oo oeosesesesesesesesesesesess 34

(o LY WY o Y 2 35

Y= Y wi Y 36

= = @ T 36

= = o) 37
OULframet e gy« v i ittt ittt et ettt et ettt et esesenesesesens 38

L B O 38
JUICKETramMe . o i ittt it et et e e e et e e e e 39
restoretext . i ittt e e e e et e 39

L OWE Oy e v e e ettt et ot o et et e o e oo oo sesesesesesesesssnseess 40
selecteasytexXt . ittt ittt e e e e e e e 40
Seteasylont . ittt ittt e e e e e e e 41
Chapter 3 = TCONS .ttt ittt ittt eeeeeeeeeeeeeeeeeeeeessseenens 42
The ICON Editor. ..ttt ittt ettt ettt eeneeeaneeannn 42
The Main Bar MeNU. .« c. ittt ittt et eeneeeeneeeeneneenens 42

217 e w1 o e 42

The Drawing Bar MeNU. . oo e oot eeeeeeeeeeeeeeeeseeseesens 42

ICON Constants. i vttt ittt it it ittt ittt ettt neeneennes 45

Programmer's Reference Guide - 4 - TEGL Windows Toolkit

Table of Contents

PUL P CE sttt ettt e et e e it ettt et et eeteeeeeseaseenaens 45
ICON Assembler FUNCLIONS. ...ttt ittt ittt iieneannnn 46
TCON Utdlities . e u it e it ittt et eeeeeeeeeeeoeeseeseenneas 46

0 1 0 46

0] 1 46

0 1 47

0 1 N 47
ICONS in TEGLIcon MOodUle. ..ttt ii it ittt ettt eenenennnns 47

Chapter 4 — FrameS. . i i eeeeeeeeeeeeeeeeeeeeeeeeeeoseeeenens 49
Creating, Manipulating, and Dropping FrameS.............. 49

COUNLErames . . i v ittt it e i et ettt ettt et eaeean 49

frameexdi st . @ittt i e e e e e e e 49

PUSHIMAgE . ittt it et ettt it ettt ee st e e eeeeeaas 50

2T} i 1= X 51

rotatestackimage. v i vt it ittt i e e et e e 52

rotateunderstackimage. . oo ittt ittt ittt et e 53

dropstackimage. . o vttt ittt e e e e e et e 54

hideimage . .« ittt ittt et ittt e eeeeeeseeeeeseens 56

SNOWIMAGE . vt it e et et et it e it e et et 57

showcoordinatesttt ittt e i et e ittt eie e e 58
Preparing a Frame for Update.....ii ittt iinteneeeeenns 58

prepareforpartialupdate. . ..ttt et e e e e 58

prepareforupdate. . v i it ittt e e e e e e e e e 60

foTe) 11114 I T = il O 61
MOVING @ Frame. v v ot ieteeeeeeeeeeeeeeeeeoesoesesseeseenas 62

frameselectandmove. ittt ittt et et e 63

setautorotate. . it e et e et 64

setmoverestrictions. « vttt ittt e e e e 65

setframemob i lity . e ettt ittt e it et ettt 66

setmoveframecCallProOC . i v v it it ittt e eeeeeeeeeeeeeeeneeens 67

MOVESELACKIMAGE . v v it it ittt et it ettt ettt et e eeeeeaan 68

L@ Y = 1= 70
Low Level Frame FUNCLionsS.ttt ittt ittt eeeneennnn 70

160 o 1 70

s 0 < = 72

linkunderfs. it e e e e e e e 73

createimagebuffer. ..ottt i it e et e e e 74

dropimagebuffer. ...ttt ittt ittt ittt et e e 75

getfsimage . v ittt et et et et ettt e e e e 76

PULESimage. i vttt et et et it e et e e e e e e 76

freeimagebuffer. ...ttt ittt et et et 77

getpartialfrontimage.ttt ittt ittt 78

getfrontimage . .o ittt it et e e e e et e e e 78

X=X £ o B 79

BT < I 1=K O 79

J X=X =@ 1 5 = I 80

setimagecoordinates . i vttt ittt ittt e e e et e e 81

pageoutimagestacKk . c it ittt it i e e e et et et 81

UNLOCKIMAGE . t v ittt ettt ettt et eeeeeaeeneseeseeseeseeas 82

UNUSEIMAgE e ¢ vttt et ettt et e et eeeeeeeeaeenesoeesoeeseesenas 82

Programmer's Reference Guide - 5 - TEGL Windows Toolkit

Table of Contents

USEIiMaAgE e ¢ v ittt ettt et e et oesoeeeeeeeaeenesoesoeesosseeas 83
Mouse CliCk AreasS ...ttt ittt ettt eeeeeeneeeeneeeens 84
definemouseclickarea. . v vttt ittt ittt ittt 84
findmousecCliCKpPtr. vttt ittt it et et et et 85
resetmsclickactive. ...ttt e e e e 87
resetmsCliCKCallPrOC . i it ittt it ettt eeeeeseeseeseenas 87
resetmouseclicks. .t e e e e e e 88
resetmsCliCKkSenSE . i i vttt ittt et e e e e e e 89
LY @ T T 90
clearkeyboardbuf. ittt i e e e e e e 90
clearteglkeyboardbufttt e e e 90
defineglobalkeyclickarea. c v ettt ettt eeteeeeeeeennns 91
definelocalkeycClicKkarea. oo ettt ittt eeteeeeeeeenans 92
AropkeyClicK . i vttt it it et i e e e e e e e e e e 92
findkeyCliCK P L. it i ittt ittt e it e et et et e e 93
resetkeyClicKkCallpProOC .t vt i ittt ettt eeeeeeeeeeeeeenas 93
Chapter 5 = MeNUS .t ittt ittt eeeeeeeeeeeeeeoeoeneeenseenens 94
Creating @ MeNU. c v i ee i in i et teeeeeeeeeeeeeeoeeeoeesoeeseennns 94
Creating a entry text list......iiiiiiiiiiiin e eeeennnns 94
CreateoPtionmMeNU. @ vttt ittt ittt eeeeeeeeeeeeeeseeseenas 96
defineopPtionsS . ittt it it ittt it ettt e e e 97
CreateshadoWom. v v v vttt ittt ittt et ettt ettt aeeneean 98
reS1ZEeOPtiONMENU . ¢ vt vt ittt ittt ettt et eeseeseeseeseenas 99
togglecheckmark. ... ittt it i it it et et et et et 100
LoggleentrystatusS .t v ittt ittt et it et et et et 101
replaceoptiontext . v ittt ittt e e e e et e 102
oY fe MY oY o) ulli A e} o1 o Y- ol 103
SELOPLI0NMENUCOLOL S . i vt ittt ittt ittt ee s eesonseeseesenns 103
setoptionmenuborderColor . i ittt ittt it et eeeenns 104
sethidesubmenu.ttt ittt ittt 104
Creatding @ Bar MeNU. ..ot et eeeeeeeeeeeoeeeesoeesoeeseeeans 105
Createbarmenu. .. .o ittt ittt it et et e 105

@] S ol o= T et X w1 @ o SO 106
SetbhartextColor. it ittt ittt e e e e et 107
SEeLbharmenUCOLlOr . v i it ittt et ettt et 107
SetbarborderColor. vt i i ittt et et e ettt 108
setbarborderoff. .. il e e 108
setbarshadowtextttt it ettt et 108
Setharfillstyle . it ittt ittt ettt 109
SEeLharmMeNUMATrgiN. « vt it ittt eeeeeeeeeeeeeeeeseeseesenns 109
Tcon OpPtion MeNUS . o vt et i ot teeeeeeeeeeeeeeoesnesosseeseeas 110
defineoptionclickarea. c ettt ittt teeteeeeeeeennns 110
resetopPLiloNmMENUEVENE S . i vt ittt ittt ettt et eeseeseeseenan 111
Chapter 6 - Mouse, Keyboard and Timer HandlersS............. 113
D B U a5 A e 113
swapteglintroff. . .ot e e et et et 113

SR =N @) ult Y B o i) o PSR 114
Mouse Emulation.ttt ittt ittt etteteneenennenens 114
MCULrSOrOf . o it e et e e e e 114

10T B X @ i ok o 115

Programmer's Reference Guide - 6 - TEGL Windows Toolkit

Table of Contents

ST i o T < 115
Standard Mouse Functions.........o.iiiiiiiiiitiiinennnnnn. 116
S oK 0L b = 116
NIdemOUSE . ittt e e e e e e e e e e 116
FSTSR ol 11 Lo JURST=Y Yo X< R i ¥ o 1SN 116
CULSOESNa e e vttt ittt ettt ettt ettt e sesesesesesesnsneess 117
Setmousehot sPOt . v i it ittt i it e e e e e e e e e 119
SELMOUSECO L0 e i ittt ittt ettt et ettt ettt sttt 119
MOUSEPOSIEION . v ittt et it it ettt it e et ettt eeseaeeaaan 119
getbuttonreleaseinfo. ...ttt ittt it i i ee e 120
getbuttonpressinfo. ...ttt ittt i et et e e 121
clearbuttoninfo. ...t e e e 121
SELMOUSEMINMAR . ¢ v vttt et et e et e et et et e ee et eeseeeenaeeenn 122
frozZenmoOuSE . v vt ittt e e e ettt 122
freezemouse. .ttt e e e e e et 123
UNLreezZemMOUSE .t i ittt i it ittt ettt ettt ettt tneennennes 124
SetmoUuSEesSeNSItivVIitY ittt ittt it it et et et 124
getmousesensitivity ..ottt it i e e et et 125
setkeyboardmoUusSe . .« v v it ittt ittt ettt ettt e e 125
TSRl 1 Y X I 126

(o LY w8 @ 1= wi Y o < 127
Timer FUNCLIiONS. . ittt ittt it e et e et ettt eeneeannn 127
SWAPELIMErOUL o v v vttt it ittt e it e it ettt et 127
SWAPELIMErIN . v it it ittt e it e it e et ettt 128
settimerstart. .. it e e e e e 128
resettimerflag. .ot i it ittt e et e e e 129

o Bt} o ulle 8 111 el @1 1 5o) O 129
timerswtich. . ot e e e e 129
Keyboard Interrupt Events..... .ttt ittt tneneeenenens 130
Keyboard Scan CodesS. . v ittt ittt teteeeeeeneeeesssesnseens 130
=Ko Lo L 2= @) b al Y) 131
deletecaptUrekey . v i ittt ittt it it it et ettt eeenenenans 132
Leglreadkey . vttt it ettt e et e et et et 132
Leglkeypressed. c v v it it ittt it et et et et et et e 133
NI11KEeYCAllPrOC . i it ittt ettt ettt eeeeeeesoeesoeeseeseesans 133
Keyboard MiscCellaneOUS . ot oot eeeeeeeeeeeoeenesnesoseeeas 133
SELShiftKeyS .ttt ittt it it e it e et et et ee e e 134
Show Button Status.. ...ttt ittt ittt eaeens 134
showbuttonstatus. ... it it et ie e e 134
Chapter 7 - Assembly Language Graphics..........eiieeeeeen. 136
Setting Video ModesS . i v ittt ittt teeeeeeeeeeeeeeseeseenas 136
CabBd0x200X 2 e v ittt e e et e e e e e e e e et 136
€gab40x350XK L6 . i ittt it ittt e e e e e et et e 137
RercCT 20X 348K . i ittt e e e e e e e e e e e e 137
setvideochodlces . vt ittt it e e e e e e 138
SVFaB00X600K LB .« vttt i ettt e e e e et 138
VIaB40XA80K LB . ¢ i ittt ettt et e e e e et et 138
videoautodetecth . ..ottt il e e e e e e 139
Videodid. vttt e e e e e e e et et 139
Graphic Primitives. ... i ettt ittt teeeeeeeeeeeeeennns 140

Programmer's Reference Guide -7 - TEGL Windows Toolkit

Table of Contents

B w0 T o [140
PUL DL XS e i e et et et ettt eeeeeeeeoeeoeesoeeeoessesseeneeas 141

e £ o TR 141

e £ o i e O 142

S o @ e 142
PigimagesSize . i i it ittt e et it e e e e et e e e 143

SE L APATE e ¢ttt ittt e ettt e 143

ST W v ¥ K 144

B I I Y= o T e O 144

B I o o T o O 145

BV e 1T o) o 1o 145
New Graphic Primitives.ttt teeteeeeeeeennnns 146
Dl o L wl e I~ SO 146

LD i o Lo w1 O 146
OVETY LAY IMG e v v e et e et e et e e e eeeeeeeeneeoesnesoeesesseesans 147

SR @] €))7 w1 147
Graphic Derivatives. ..o ettt i it ittt ittt eeeeeeeeenns 147
b e B af @@ 3 al 1= al T - 148

- el < 148
Lo o N C 3 ar= oY o e N = S 148
PUL PRI CE sttt ittt et et e e it ettt it et eeteeeeeseeseeneens 149

3R I = B 4 = 149

=1 oY w1 ' 149
Chapter 8 - Special Effects. ...ttt tenteeeeeeeenns 151
Screen BacCKkdrop. .. v ittt ittt e e et e e et e 151
ClearteglsCree. v vt it ittt ettt e tesesesesesssesnseess 151
setteglbordershow. . o ittt ittt ittt e e et e e 152
setteglbackcColor. i vttt i ittt e e e e e e 152
setteglborderColor . v it ittt ittt ettt e et e e 153
setteglfillpattern procedure. ...t ie ittt eneeeeeeeenns 154
Setteglfillstyle. v ittt ittt ettt 154
Creating ShadowW BOXeSeiieeeeeeeeeeeeeeeeeoeesoeseennns 155
ShadoWbhoX . v i v ittt e e e e e ettt 155
shadowboxtext . .o i ittt e et ettt it 156
SEeLShadoWCOlor . v vt it it it et et ettt 156
setshadowbordercolor. ..o v ittt ittt ittt ittt eeennnn 157
setshadowfillpattern. ...ttt ittt eeteeeeenenns 157
setshadowfillstyle . . w ettt ettt teeeeeeeenenns 158
Creating Shadow TeXt .. .oiiee ittt eeeeeeneeeeeeseeseennns 159
Shadowtext . i vt ittt it e et et et et 159
setshadowtexttype. c i i ittt ittt it ettt ettt et eeeens 160
setshadowtextshadow. ittt it 160
setshadowtexthighlight.ttt eeenenns 161
shadowtexthighlightoff. i eeeennn 161
Other text effects. ...ttt it e i ie it een 162
o Q=Y o @ N wll = w4 162

=3 o ol < w4, 162
@ 0 T 163
definebuttonclick. ...ttt ittt et e 163
definelongbuttonclicK. v it ittt ittt ittt eeeeeeans 164

Programmer's Reference Guide - 8 - TEGL Windows Toolkit

Table of Contents

defineuserbuttonclick.ttt 164
putuserbuttonclick. ..ottt ittt et et e e e 165

4 o @ X< T e o = 165
CcollapsetoiConShoW. ¢ vttt ittt it et ettt ee s eeeeaaan 165
CollapsetomSCliCK . it ittt ittt ettt ettt 166
explodefromiconhide.ottt ittt teeeeeeeennns 166
explodefrommsclicK. vttt ittt ittt it e e e 167
Moving and Transforming XOR BOXES. .. it eeteeeeeeeeeeenan 167
L@ T =Y T - 167

75y @ il) @ 1@ bSO 168

Ay o i) (110 T - O 169

I T o N = 5 o i o 170
ArawlongbULLon . v v vt ittt it e e et et 170
Chapter 9 — Writing EventS. ... i it ii ettt nteeeeeeeeeeanns 171
MOUSE AWALCIIE S S e ¢ v vt vt ottt oot eeeesonesensonsoneenseeseeeeas 171
findframe. @ o i e e e e e e e e 171
CheckmoUuSEeC liCKPOS .. v vttt i ittt ettt ettt eeteeseeseaann 172
checkformouseselect ... ittt ittt ittt it ie e 173
Special EffeChS. it in ittt ittt it etteeeeeeeeeeeseanaanns 174
PresshbULtOn . c i it ittt ittt e e e e e e e e 174
VisUal DU LONPrE S S . v it ittt ittt e ettt e et eesaeseaseenenens 175
Chapter 10 — Animation....c..ee ittt ittt nteeeeeeeeeeeeeanas 177
Animation OVervVIieW. ... it ittt ittt ittt ettt ettt eneenens 177
Animation Functions.ttt ittt 180
OF1gin PrOCEAUL . vt it ittt et ettt eeeeeeeeeeseeseeseesens 180

e £ w3 e I i o O 180
destination. ...ttt ittt it e et e et e e e 181
resetframe. ... ittt e e e ettt 182
SEQUEIICE 4 e e e e e e o e o e o e oooeneneoenesenessneesssesnseees 182
reSEl SEqUENCE . v i ittt ittt ettt ettt e et e e 183

= L B = 1= 184
currentframenumber.ttt i e e e 185
animateinitttt e e e et e e e 185

Fo 0 T 40 186
animatecomplete. o vttt it it i et et et e e e e 186
Example Animation.t ii ittt eeeeeeeeeeeeeeeeeenens 186
Chapter 11 — Writing TexXt ...vi ittt ittt e teeeeeeeeeeeeeanas 188
TEGLWrt Variables.ttt it ittt ieteaneennnn 188
Bit-mapped FoONnLS. .t i it ittt et ttttteeeeeeeeeeeseeeneas 188
Creating Your Own Bit-mapped FontsS.......ieiiieteeeeennnn 188
TEGLWrt Functions and ProCeduUresS. eeeneeeaneennnn 189
B Lol w e B = w4 189

(@b w o =Y B D~ w42 189
tegltextwidth. .ottt it it et et it et e e 190
teglcharwidth. .ottt ittt it it e it e it ettt e s saenaans 191
teglcharheightttt it it e it et et eeteenanns 191
Leglwrtchar. i v ittt ittt et e e e et et et et e e 191

[STSY ul e Riate) e Yo 3o wl I Y o - I E OO 192
settegliont . @ittt ittt e e e e e e e e 192
Showing ALL Fonts FONTTEST.PAS. ¢ i ittt it ittt ee s eneeeseenns 192

Programmer's Reference Guide - 9 - TEGL Windows Toolkit

Table of Contents

fontname. . . ittt e e e e e i et 193
showonefont . .. ittt it e et et e e e 193

S 0 o i 193
Chapter 12 — Event Library. .o eee e e et eteeteeeeeeeeeeenas 195
The File SeleCtor . @ittt it ittt ettt ettt eeseeeaneeanann 195
selectafile. . it e e e e e e e 195
String Editing Dialog. . v et ittt it eeeeeeeeeeeeeeseeseenas 196
Y e i = L O 196
Mouse Sensitivity Dialogue WindoW. et eeteeeeeeeennn 196
SELMOUSE SN S . v vt ittt ettt ettt et e et et ettt 197
Bells & Whistles, Sound Unit.....ouiiiitieeeeeeeeeeeneenn 197
ASKSOUNASENSE . v v ittt ittt e e e et e 197
01T 198

S @ LY @ 1Y o T 198
soundswitch. .ot e e e e e e 199
Chapter 13 - Virtual MemoOry Managero eeeeeeeeeeeeeeeeas 200
Heap Management . .@ . i it ittt it ittt eeeeeeeeeeeeeeeeoeneeenens 200
The Heap Manager .o v e oo et et eeeeeeeeeeeeeeeeeeoeeenseseens 200
The TEGL Heap Error FUNCLioN.......ii it in it eeteeeeeeans 201
The TEGL Heap Manager FUNCLIiONS. ...ttt iitinteneeeeeenens 202
0T £ U 141 ¢ 202

Lo i Y 10 203
Expanded Memory Manager (EMM)ttt tn e eneneneeenenens 203
Expanded Memory FUNCLIONS. . vttt ittt teeteeeeeeeeeenns 204
emminstalled. ottt e e e et e et e e 204
emspagesavallable.ttt ittt e e e e 205
allocateexpandedmemOryPaATES « ¢« v o o o o oo oo osesesesesensess 205
mMapexXPandedmMemMOLYPATES « ¢ « o o o o o o s o s o s o sosesesnssessssess 206
getpageframebaseaddres s . i v v ittt ittt ittt ettt 206
deallocateexprandedmemOryPaATES « v o o e o e o oo o s osesesensensess 207
JetVerSIOoNNUMDE L . vt ittt et ettt ettt e eeseesoeeenseaeans 207
gethandlecountused. . i v i it ittt ittt it ittt eeesesenens 208
getpagesownedbyhandle.ttt ittt ittt 209
Expanded Memory Test PrOgram.eeeeeeeeeeesesesesnens 209
A RAM Disk Driver. ...t iiii ittt ettt teeeeteneeeeneenens 212
EINS O Il e ¢ e e e e o e o o oo oo oo oo oeosososesesesesesesesesesess 213
EINS S EEK .t vttt ittt et e e et e e e e 214
emsblockwrite. oot e e e e e e 214
emsblockread. . ..ottt i e e e e e 215

1 (1= @ @ 1 = 216
Virtual Disk HeapD .o i e it ittt ittt eeeeeeeeoeeeoeeeeeseeseenas 216
vdskopenheapfile. .ottt ittt ittt ie ittt e eeeeas 217
vemsopenheapfile. vttt ittt it ettt e e e 218
VASKgEetmMEmM. & v i ittt ettt e et ettt eeeeeeeeeeeeeeeeas 219
vdskfreemem. . .o v ittt e e e e ettt 219
vdskwriteheapdata. ...ttt ittt i ie et 220
vdskreadheapdata. ..o ottt ittt ittt ettt 221
vdskcloseheapfile. ittt ittt ittt ee it teeeeeneens 221
The Virtual Heap Error Function.........oeieetinteeeeeeenn 222
The Virtual MemoOry Managel ..o e e e e eeeeeeeeeeseeseeseeeens 222

Programmer's Reference Guide - 10 - TEGL Windows Toolkit

Table of Contents

UseharddisKk. v vttt it ittt et ittt ittt teeeeaeeans 223
MoveFromVirtual ProCedUTrE. v i v vt it eneeneteneoesoeeeeean 223
MOVELOVITtUA L. i ittt it et ettt it ettt et aesaaeeaaan 224
freevirtual. ...ttt it e it et e e e e e 224
CMAXAVAL Lt ittt et e et et ettt eeeeeeneeeeeeeseeseeseenas 225
VirtUualmemuUsSed. v vt i ittt eeeeeeeeeeeeeoeeeoeeseeseeneens 225
The Virtual Memory Error Function..........c.eieeteeeeeeensn 225
Resolving FragmentS. .o e et teeeeeeeeeeeeeeeeeoeeseeeeeas 226
reservehUgeminimum. « v v v vt i ittt ittt et oot oeeeeseeseenas 227
Chapter 14 - Sizing and SliderS....iei i e tenteeeeeeeeeeeens 228
defineresizeclickarea. c v ettt ittt teeteeeeeeeeeans 228
defineresizeminmax. « oot e et ittt eeeeeeeeeeeeeeeeesans 229
definesliderarea. . v vt e et ittt eeeeeeeeeeeeeeseeeeenans 229
AroPSlider S . v ittt ittt et et ettt eee et eeeeeeeeean 230
findsliderfs ..t it ittt ittt et ettt e e e 230
reS1zZeframe. v it ittt it it e et et et e e e 231
selectandmoveframe. . ..o i ittt ittt ittt ettt eeeans 232
SetsSlideposition. vttt ittt e e et et e e 232
Miscellaneous FUNCLIONS . .t ittt it ittt teeteeeeeeeeseennens 233
checkctrlbreak. ... ittt it i ittt e i e et e e 233
checkctrlbreakfs. ..ottt ittt ittt i et i e et e e 233
AroptimerticK . it ittt it et it e it e et e e e e 234

o T I o e I) e O 234
OVE T L A AT @ e ¢ e e et vt et o e o e oeoeesesesesesesesesesesesess 235
SettimerticK . it ittt it i it e e et et e e et 235
Graphics Library — tgraph.. ..ottt ettt teeeeeeeeeeanas 237
2 237
CloSEgraPh. c v i ittt ittt it et et e e e e 238
detectgrapPh. . v i ittt ittt it et it et ettt 238

(e 1Y w0 X T sl 238

(e £ wi X T sl 239
getfillpattern. . vttt ittt it ittt ittt e e e 239
getgraphmode. . @ o i ittt ittt e et e ettt ettt 240

(o LS w4 1= - 240

(o 1S w41 5 240
gettextsetting s . v vttt it it i it e e e e e e e et 241

(o riar= @Y o ot == 1 5 B 241
IMAgES I ZE . i it et e et et et e e et et et e e e 241

a8 o T e a1 o O 242
s 0 O 242

(@b i = w2 243

el S = o ¥ 243
resSTOrEeCr MO . ¢t vttt ittt ettt ettt ettt ettt 243
SELKCOLOr . i ittt e e e e e e e e e e 244

S w1 @ 20 I @ 2 244
setfillpattern. vttt ittt et et e e e 244

S wl e O L i V0 O 245
SettexXtJUSEify . vttt it i it et e et et e e e e e 245

AP PEND I CE S . & i ittt e e i i i e e it et et ettt e e e e 246
Video BUffeIrS . @ittt ittt ittt ettt ie e teeeeeseeseaseenns 246

Programmer's Reference Guide - 11 - TEGL Windows Toolkit

Table of Contents

LT T 7 246
= (LS 246
A Frame StacCKk. ... it ittt ittt ittt ettt eeeeas 247
A Simple WindoW ManNagel ... oo e oo e et eeeeeeeeeoeseeseeseenas 247
Partial Image Update. . v ve ittt i iteeeeeeeeeeeeeeseeeeeas 249
Refined Partial Image Update. ..v. ittt enteeteneeeeenns 249
A Refined Partial Image Update Algorithm................. 250
A Quick Run through the algorithm...........c..iiiieeeeen. 252
TEGL Heap MaNager .« o v e e e eeeeeeeeeeeeeeeeeesenenenenseens 254
TEGL Upper Heap Manager ... u e e e e e eeeeeeeeeeeeoeeenenseens 258
Combining the best of both Heap Managers (Coexisting)....260
Conditional Compilation.....ee ettt enteneeeeeeeeeeeeenns 263
D 264

Programmer's Reference Guide - 12 - TEGL Windows Toolkit

Table of Contents
SPECIAL NOTE for documentation on disk

You have received Version II of the TEGL Windows Toolkit for TURBO C. The
documentation that you are reading is supplied on disk. We will have a
printed manual in the near future and it will be somewhat different that
what you are looking at now.

Because we wanted everyone to be able to read this manual and be able to
print it out we have not embedded any special control characters in it
with the exception of formfeeds at page breaks.

In this manual you will notice that at times there are references to

things like ctrlkey or keydown or something discriptive but somewhat odd.
Please, be imaginative, these will be icons when the manual is printed.

Programmer's Reference Guide - 13 - TEGL Windows Toolkit

Acknowledgements

Acknowledgements

In this manual references are made to several products

TURBO C and TURBO Assembler are registered trademarks of
Borland International.

IBM is a registered trademarks of International Business
Machines Inc.

MS-DOS and Windows are registered trademarks of Microsoft
Inc.

MacIntosh is a registered trademark of Apple Computer Inc.

Programmer's Reference Guide - 14 - TEGL Windows Toolkit

Chapter 1 - Introduction

INTRODUCTION

Welcome to the world of GUI (Graphical User Interface) in a DOS
environment. This guide will provide you with the basics (and more) for
getting started with using the TEGL Windows Toolkit.

TEGL Windows is a comprehensive GUI toolkit for the simplest to the most
sophisticated system programming projects. In order to exploit all the
advantages of this toolkit, we encourage you to experiment and to try the
examples as listed in this manual. Spending time learning the functions of
TEGL Windows will reward you many times over with a system that

provides a Professional look and feel. The power of TEGL Windows

is limited only by your imagination.

Why Program with TEGL Windows

Because TEGL Windows Toolkit provides the framework in making programs
easy to use. In this way, it is similar to several other user interfaces
on the market today, including Apple's Macintosh, Microsoft's Windows and
GEM from Digital Research Incorporated.

Programs made with TEGL Windows are easier to use for several reasons,
visual effects of graphics can generally communicate information more
effectively than text. For example, the graphical image of a folder

suggests that it contains documents, drawings, and even other folders.

Provided are powerful functions that you can use to build very interactive
applications. By g very interactive, we mean a type of user interface
where a significant portion of the design and development effort goes into
making the program easy to use.

TEGL Windows Toolkit is based on event handling. Events consists of
anything from a key getting pressed on the keyboard, to a timer signaling
that some amount of time has elapsed, to a message indicating that the
user has selected a particular item from the menu or has selected an icon.
A particularly useful capability of this is that while the TEGLSupervisor
is waiting for one of these events to occur, you can set the timer to
signal a background task like an internal print spooler. This limited
multitasking capability makes it easier to build very interactive
programs.

It's important to note that the TEGL Windows Toolkit supports only a
single application running at any given time. Microsoft's Windows will
support multiple concurrent applications, provided they are g
well-behaved, which means that they don't directly manipulate the
computer's hardware. Most popular applications, by the way, are not
well-behaved.

Programmer's Reference Guide - 15 - TEGL Windows Toolkit

Chapter 1 - Introduction

TEGL is for a single application, which has the beneficial effect of being
part of the final application code and, on the average, much faster than
programs written for Windows or GEM. TEGL also takes less RAM, requiring
only 50k when all features are used.

The Components of TEGL Windows Toolkit

Now that you have a rough idea of what the TEGL Windows Toolkit is and how
it relates to other alternatives in the microcomputer software marketplace,
let's explore its' components n more detail. The purpose of this section
is to give you an overall understanding of how to use the toolkit in your

program.

TEGL is subdivided into a set of libraries; multitasking kernel; windowing
screen manager; mouse, keyboard and timer handler; a virtual heap manager;
drop down and pop-up menu events; and an animation unit.

One of the original goals of TEGL was to provide a graphical user
interface (GUI) to a computer running under DOS. This interface is used in
a number of entertainment products produced by TEGL Systems Corporation
(TSC) . As TSC designed and built the entertainment products, TEGL was
created to build a set of software routines that were needed by the games.
TSC gathered these routines into modules, each categorized by their
overall function. For instance, all the routines that manipulate windows
are collected and form the TEGLUnit. Similarly, all the drop-down menus
and menu bars form TEGLMenu.

TEGL Windows Toolkit is the tools that were developed in writing these
first entertainment applications. These tools are now available for
developing any application

The modules are categorized by the kind of functions they deliver;
TEGLintr handles the mouse, keyboard and timer interrupts; TEGLMenu
provides drop down menus and menu bars; Animate provides icon animation;
and VIRTMem provides the virtual heap for almost unlimited windowing
ability.

TEGLUnit provides a high level integration between window frames,

mouse click areas, keyboard handler, timer interrupts, virtual memory, and
multitasking kernel.

What's On your disks

For your reference, here's a summary of most of the files on the

distribution disks:

README . TXT
This file contains any last-minute notes and
corrections, type README at the system prompt to

Programmer's Reference Guide - 16 - TEGL Windows Toolkit

Chapter 1 - Introduction

view the file. You may print this file on your printer
for future reference, once you review the material.

TEGLSYS.H, TEGLSYS.LIB

TEGLUNIT.

TEGLMENU.

TEGLGRPH.

TEGLICON.

TEGLINTR.

FASTGRPH.

The header file and library for the toolkit. This is all
you need to start programming.

C
This is the window manager that provides the graphical
interface support for the other modules. This module
provides the event supervisor and the frame/stack
coordinator.

C
This unit provides the drop down menu interface.

C
Module that provides shadow boxes, shadow texts,
exploding and imploding boxes, pop-down/pop-up icon
buttons, etc..

C
A library of standard icons; key OK, key CANCEL,
key NEXT, key LAST.

C MOUSEASM.ASM

Integration of keyboard and mouse handler. This unit
provides the standard mouse routines which integrates
the keyboard cursor keys and the mouse to provide a
seamless dual control of the mouse cursor; with or
without a mouse driver.

C EGAGRAPH.ASM
Fast assembly language graphics routines. This is the
core of the graphical routines that provide the
foundation for pop-down menus and movable windows.
This module includes functions that interface with the
ANIMATE unit, to allow the recognition of video paging.

TEGLWRT.C WRTASM.ASM

Crisp proportional Bit-Mapped screen fonts, ranging
from 6 to 24 pixels in height.

VIRTMEM.C FREEOPEN.ASM

SELECTFL.

Virtual Memory handler that interfaces with TEGLUNIT.
This unit automatically pages out images from memory to
EMS, hard disk, or floppy (depending on availability),
when memory is at a premium.

C

Programmer's Reference Guide - 17 - TEGL Windows Toolkit

SENSEMS.C

SOUNDUNT.C

ANIMATE.C

TEGL.C, TEGL.PRJ

FONTTEST.C

DEBUGUNT.C

FONTASM. ZIP

ICONEDIT.C, ICON*.*

SAM*.C, SAM*.PRJ

MAKEFILE.MAK

Chapter 1 - Introduction

A standard event unit that may be used by any
application program to provide a dialogue window in
selecting filenames from a list of file on disk.

A standard event unit that provides a dialogue window
that allows a user to adjust the sensitivity of a
mouse.

A standard event unit that allows a user to adjust the
duration and the sound output of a tone.

Unit that allows icons to be animated.

A demonstration program that uses most of the features
of the TEGL Windows Toolkit ITI.

A demonstration event unit that displays all available
fonts in movable windows. Used in tegl.pas (sample
program) .

A demonstration event unit that displays general
information regarding windows and the number of times
the mouse button has been pressed.

A library of bitmapped fonts in Turbo Assembler format.
The source may be modified to create a new font.

The Icon Editor, written using the TEGL Window Toolkit,
to design and generate icons to include in your TEGL
application. ICONASM, ICONDEF, ICONINC and ICONLIB are
standalone programs that will assist you in generating
various formats that you can use to add icons to your
program. A number of standard icons have been created to
include immediately into your application.

Some of the sample programs in this guide are provided
in ready-to-compile form.

The make file for compiling the library.

Installing TEGL on your system

The complete TEGL Toolkit is approximately 3 megabytes of source code,
when expanded. A hard disk is required for the installation. It may be
possible to compile on floppy, but we haven't tried it.

Programmer's Reference Guide - 18 - TEGL Windows Toolkit

Chapter 1 - Introduction

At the DOS prompt, type INSTALL, and follow the instructions.

Development System Recommendations

You must have 640k RAM, a hard disk drive, and an EGA/VGA graphics card
with 256k memory and EGA/VGA color monitor on an IBM PC or compatible
computer. In our development, we've used an IBM PC AT with 2.5MB RAM, 72MB
hard disk, and a paradise VGA 256k card with a NEC/MultiSync 3D. We've
also tested all our examples on an IBM PC XT with 640k RAM, a 20MB hard
disk, and a ATI VIP VGA graphics adapter card with an IBM 8513 VGA color
monitor.

Compiling with Turbo C

TEGL Windows Toolkit requires Borland's Turbo C Version 2.0, and Turbo
Assembler to compile all the units. Turbo Assembler is only needed if you
make the library (which is not necessary). Only Turbo C is required to
compile programs.

Refer to the Turbo C Reference Manual for including headers and using
libraries within programs, as well as setting up the environment and
creating project files.

Compiling with Quick C

TEGL Windows Toolkit requires Microsoft Quick C Version 2.0. The graphics
functions provided in graphics.lib can be used. See the Appendix
Conditional Compilation to best determine your requirements.

How to use this Reference Manual

This manual is organized in a presentation manner to lead you through the
concepts of the TEGL Windows Toolkit IT.

Each Function is shown seperately with its name, parameter list, and other
references. All functions are prototyped in "teglsys.h". For a start here
is the main entry point into the TEGL Windows Toolkit IT.

teglsupervisor

Function
Main entry point.
Syntax

Programmer's Reference Guide - 19 - TEGL Windows Toolkit

Chapter 1 - Introduction

void teglsupervisor (void);
Remarks

This should be the last statement in main.
Example

volid main ()

{

/* all the setup code for menus etc. goes first */

teglsupervisor();

}

Program Framework

Most of the examples presented throughout this manual will require the
following minimal skeletal C framework before the example code will
compile and execute. A few of the examples given are complete programs.

/* samshell.c */
/* the minimum requirements for a program */
/* using TEGL Windows Toolkit II */

#include <graphics.h>
#include "teglsys.h"

volid main ()
{
easytegl () ;

/* insert your code here */

/* then turn control over to the supervisor */
/* use cntrl-break to exit a program that */
/* doesn't have a specific break out point. */

teglsupervisor();

Programmer's Reference Guide - 20 - TEGL Windows Toolkit

Chapter 1 - Introduction

Once control has been turned over to the supervisor then the only way to
exit a program is by a menu selection or icon that halts the program. Many
of the example programs don't have this so you must press Ctrl-Break to
exit. When Ctrl-Break is pressed then program control is turned over to

an Event Handler. In the case of the sample programs control is passed to
guit in tegleasy.

An Event Handler, as covered in Chapter 4, is usually attached to an icon,
menu selection, or in this case the Ctrl-Break handler. The Ctrl-Break
handler, when attached to an exit event, allows the program to exit
gracefully by pressing ctrlkey scrlock which is the break key on

most keyboards.

Chapter 2 provides a foundation to using the TEGL Windows Toolkit by using
a few program examples. Chapter 3 shows you how to create an icon using
the icon editor, and how to integrate and use the icons in your program.
Chapter 4 is heart of the windowing system, which uses most of the
functions provided by the other modules. In Chapter 5 we delve further
into how the teglmenu works along with teglunit to provide the

standard drop-down menus and exploding windows. In Chapters 6 through 8,
we discuss some of the graphic and mouse primitives that the teglunit

uses. You may use some of these routines independently of TEGL Windows
Toolkit. In Chapter 10 we explore animate along with a sample

application that animates a button icon. Chapter 11 looks at writing text
to a window using bit-mapped fonts. Chapter 12 provides an overview of the
standard event library like selecting a file and setting the mouse
sensitivity. In Chapter 13, we look at the Virtual Memory handler and how
to use VM within an application. Finally, in Chapter 14 and 15, we look at
re-sizing, slider bars and anything else that we may have missed.
Appendices provide greater details on the TEGL Windows Toolkit and the
philosophy behind the design.

Frames or Windows?

In this manual the word frame is used often. A frame is our term for
the implementation of a window. All the identifiers in the toolkit use
frame, not window. You can use these terms interchangeably.

How to Contact TEGL Systems Corporation
If you have any comments or suggestions, you may contact us by
writing to
TEGL Systems Corporation
780 - 789 West Pender Street
Vancouver, British Columbia
Canada, VoC 1H2

or phone us at

Programmer's Reference Guide - 21 - TEGL Windows Toolkit

Chapter 1 - Introduction
(604) 669-2577
or facsimile us at

(604) 688-9530

Programmer's Reference Guide - 22 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

TEGL Easy

The TEGL Windows Toolkit provides tools to assist you in creating an
eye-appealing, functional and intuitive graphical interface to your
programs.

There is no fixed format that you must follow when using the TEGL Windows
Toolkit. Screen handling, menus, or push button icons are a function of
your program design and not a mandatory function of the TEGL Windows
Toolkit. However, the tools are provided so you can use emulate the

look and feel of most popular windowing packages without locking you

into a ridged menu system.

What TEGL Windows Toolkit can do

Overlapping windows are handled without having the application program
redraw the window whenever that window is uncovered. This removes the
complexity of having to redraw, which is necessary with some windowing
systems. The only time a window has to be redrawn is when it is re-sized.

The overhead in maintaining graphic images in memory is offset by the
virtual memory manager which automatically swaps the images to EMS and/or
disk when more memory is needed. Even with memory swapping, application
programs are faster and smaller than those written for other windowing
environments.

TEGL Windows handles all mouse and keyboard activities, including all
selections of a menu items and «clicks on a mouse click area. When the
user wants to move a window for instance, the teglsupervisor handles

all of the user interaction from the clicks of the right mouse button on a
window to when the button is released to indicate the new position. When
the button is released, and moveframecallproc has been installed for

that window, the teglupervisor will call your application procedure

with the new location. Your application can either move the frame by
calling movestackimage or not do so, depending on whatever it

determines is appropriate.

Event-Driven Code

While it is possible to write your application in a serial manner using
TEGL Windows by polling the keyboard to see if a key has been pressed, or
checking the mouse if the mouse has been clicked on an icon or menu, it is
much more efficient to write using Event-Driven programming.

Event-driven programming is a style of building programs that makes for
extremely interactive applications.

An event is simply the automatic calling of one of your application's
functions that is triggered by an action such as the mouse cursor

Programmer's Reference Guide - 23 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

overlapping with an icon on the screen. This type of event handling
removes the complex checking of keyboards and mouse devices from the
central program and allows for an almost parallel (multitasking) type of
program to be created.

Your choice in programming will determine whether your program responds to
the user in a sequential mode where one action must be completed before
proceeding to the next, or multiple activities that may be completed at
the user's leisure.

A good example of multiple event handling is a program that simulates a
calculator. Each key of the calculator pad is tied together with a

Mouse Click Area event-handler (ie. a C function) that handles that
particular key. With the selection of one of the numeric icon keys, the
supervisor activates the appropriate event-handler which either adds,
multiplies, subtracts, or divides the digits. On completion of the
event-handler's task, the control is returned back to the supervisor to
await for other events. Other event-handlers, such as notepads, will
continue to respond to keyboard or mouse actions along with the activities
on the calculator.

An Event is a powerful concept. Hypertext on the MacIntosh is based on a
similar structure. By associating an event with a word, image, or icon,
you can chain a series of events together. One event may lead to
another?

The number of icon/events that can be created is limited only by available
memory.

Attaching your Function to an Event

There are six (6) basic types of events that the teglsupervisor
recognizes. The following will provide a brief discussion on event
handling.

{bo Mouse Click Area}

This event occurs whenever the mouse cursor overlaps a defined mouse click
area on the screen. Depending on the activation sense, the supervisor may
call the event-handler only if the left button is clicked (activation
sense set to msclick), or if the mouse cursor passes over the defined
mouse click area (activation sense set to mssense). The most common

use of a mouse click area is the association of an icon with an
event-handler.

{bo Click and Drag}
This event is associated with the movement of a window. Control is passed

Programmer's Reference Guide - 24 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

to the Event-handler after a new frame position has been selected. One use
of this type of event processing is the dragging of an icon-frame to the
trash can (like the MacIntosh).

{bo Expand and Shrink}

This event is associated with the sizing of a window. Control is passed to
the Event-handler after a new frame size has been selected. We use this
type of event to re-size a window.

{bo Keyboard Events}

To accommodate systems without a mouse. The Keyboard Event allows you to
tie the keyboard to any normal mouse-click-area event handler.

{bo Timer Ticks}

The PC has an internal timer that interrupts the activities of any running
program 18 times a second. This interruption is transparent to the
operating system and is used mainly to update the system clock.

The TEGLunit module uses this timer to provide a flag for the interval of
timed events. An event-handler may be defined to occur at resolutions up
to 18 times a second or several hours later.

{bo Ctrl-Break}

The Ctrl-Break event is usually tied with the event-handler quit, but,
like any Event, you may write your own to perform a a different task when
a Ctrl-Break event occurs.

Frames

TEGL Windows Toolkit is a window manager or more correctly a FRAME STACK
coordinator. A frame is any defined region of the screen. By stacking two
or more frames on the screen, the supervisor monitors the location of the
frames and ensures that each frame retains it's own entity.

Once a frame is created, the frame area can be cleared and drawn with any
graphic functions provided by the Turbo C language or any other

graphical functions provided by other library packages. However, the
responsibility of drawing within the window is with the program.

Use the x, vy, x1, yl coordinates provided within the frame struct
when drawing to the window.

Menus

Programmer's Reference Guide - 25 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

The TEGL Menus are actually event-handlers that have been written to
accommodate drop-down menus, menu selections, lists within a frame, etc.

The menus require a list of items and related events to be created. The
list may then be attached to a bar menu using the OutBarOption, which
is simply a frame with multiple horizontal mouse click defines.

When teglsupervisor senses the mouse overlapping with one of the bar
menu selections, an internal baroptionmenu event is called and a

search is made to find the list that is related to the selection. A menu
window is then created and displayed using the list. The menu window is
simply another frame with multiple mouse click defines.

A Minimum TEGL Program

The following demo program, prints out the message g Hello World! to a
small movable window. Note: this one doesn't require the minimum shell
that we described in the Introduction.

/* samc0201l.c */
/* the minimum requirements for a program */
/* using TEGL Windows Toolkit II */

#include <graphics.h>
#include "teglsys.h"

volid main ()
{
easytegl () ;
/* insert your code here */
pushimage (100,100,200,120) ;
shadowbox (100,100,200,120);
setcolor (BLACK) ;
outtegltextxy (105,105, "Hello world");

/* then turn control over to supervisor */

teglsupervisor();

Programmer's Reference Guide - 26 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

Adding Menus (Top Down Design)

A powerful feature in programming with TEGL Windows is the ability to
visually see your application develop. Top down design is a methodology
where the layout and menu designs are created first and the functional
aspect of the program created later. Program stubs are used as place
markers to indicate the required function.

Adding a drop down menu and connecting the event later is a simple
task with TEGL Windows.

/* samc0202.c */

#include <graphics.h>
#include "teglsys.h"

optionmptr oml, om2;

unsigned getmssense (imagestkptr ifs, msclickptr ms)

{
setmousesense (ifs->x,1fs->y);
return(l);

}

volid main ()

{
easytegl () ;

oml = createoptionmenu (fontl4);

defineoptions (oml," Info... ",TRUE,NULL);
defineoptions (oml, "--", FALSE, NULL);
defineoptions (oml," Quit ", TRUE, quit);

om2 = createoptionmenu (fontl4);
defineoptions (om2," Memory ", TRUE, showcoordinates);
defineoptions (om2," Mouse sensitivity ", TRUE,getmssense);

createbarmenu (0, 0,getmaxx ()) ;
outbaroption(" File ",oml);
outbaroption (" Utility ",om2);

teglsupervisor();

Programmer's Reference Guide - 27 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

The event showcoordinates is defined as part of the DebugUnt
module, setmousesense is defined in SENSEMS, and Quit is
defined in TEGLEasy.

Info... is defined to NULL which
is a program event stub that does nothing.

Adding events as you go along is easy, now that the menu is set up.
Adding your First Event

The following is an event that opens a window and writes a message.
Notice how we attached infooption as an event to the menu selection
Info... by replacing NULL with infooption.

/* samc0203.c */

#include <graphics.h>
#include "teglsys.h"

optionmptr oml, om2;

unsigned infooption (imagestkptr ifs, msclickptr ms)

{
imagestkptr fs;
unsigned x=200,y=120,w=340,h=100;

hidemouse () ;
quickframe (&fs, &x, &y, &w, &h) ;

setcolor (BLACK) ;

frametext (fs, 1,2, "TEGL Windows Toolkit II");
frametext (fs, 2,2, "Copyright 1990, TEGL Systems Corporation");
frametext (fs,3,2,"All Rights Reserved.");

showmouse () ;

return(l);

}

unsigned getmssense (imagestkptr ifs, msclickptr ms)

{
setmousesense (ifs->x,1fs->y);
return(l);

Programmer's Reference Guide - 28 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

}

volid main ()

{
easytegl () ;

oml = createoptionmenu (fontl4);
defineoptions(oml," Info... ",TRUE, infooption);
defineoptions (oml, "--", FALSE, NULL);

defineoptions (oml," Quit ", TRUE, quit);

om2 = createoptionmenu (fontl4);
defineoptions (om2," Memory ", TRUE, showcoordinates);
defineoptions (om2," Mouse sensitivity ", TRUE,getmssense);

createbarmenu (0, 0,getmaxx ()) ;
outbaroption(" File ",oml);
outbaroption (" Utility ",om2);

teglsupervisor();

You may notice that the event returns to the TEGLSupervisor leaving
the window on the screen.

We can refined this procedure by adding a while loop to wait for the user
to click on a icon. The getmousey(ifs) function will return once the
user has selected the OK icon.

The new event listing.

unsigned infooption (imagestkptr ifs, msclickptr ms)
{
imagestkptr fs;
unsigned x=200,y=120,w=340,h=100;

hidemouse () ;
quickframe (&fs, &x, &y, &w, &h) ;

setcolor (BLACK) ;

frametext (fs, 1,2, "TEGL Windows Toolkit II");
frametext (fs, 2,2, "Copyright 1990, TEGL Systems Corporation");
frametext (fs,3,2,"All Rights Reserved.");

Programmer's Reference Guide - 29 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

definebuttonclick (fs,x+300,y+70, imageOK, NULL) ;

getmousey (fs) ;

dropstackimage (fs);

showmouse () ;

return(l);

TEGLEasy

activebutton

Function
Makes a button/frame.

Syntax
void activebutton (unsigned x, unsiged vy,

char *s, callproc);

Remarks
This is for creating a button which is attached to a
frame that is the same size as the button. p the
event can then have as the first statement
framefromicon to make a dramatic button to frame
transition.

Restrictions

See also

Example

if the imagestkptr is required then save the
stackptr immediately after calling activebutton.

explodefromiconhide, collapsetoiconshow.

activebutton (100,100, "INFO", infooption);

coltox

Programmer's Reference Guide - 30 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

Function
Calculates the X coordinate for a text col.

Syntax
int coltox (int col);

Remarks
This is used to treat the graphics display as if it
were in text mode to make it easy to place a
succession of characters.

Restrictions

The calculation is made using the currently selected
font.

See also
rowtoy, setteglfont, seteasyfont.

Example

outtegltextxy (coltox(col)+ifs->x, rowtoy (row)+ifs->y,s);

errmess
Function
Display an error message.
Syntax
void errmess (unsigned x, unsigned y,char *s);
Remarks

The error message s is displayed in a frame at
coordinates x,y. The frame is sized to the message
and is adjusted to keep within the confines of the
screen.

The frame is displayed until the 'OK' button in the
lower right corner is clicked.

See also
getyesno.

Example

errmess (100,100, "You must enter a file name first");

Programmer's Reference Guide - 31 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

fitframe
Function
Creates coordinates that fit on the physical screen.
Syntax
void FitFrame (unsigned *x, unsigned *y,
unsigned *width, unsigned *height);
Remarks

See also

Example

X,y are the desired upper left coordinates for a

frame. width and height are the desired width

and height in pixels for the frame. If the starting
coordinates would cause the frame to extend beyond the
bounds of the screen then they are decremented until the
frame will fit. If width or height are greater

than their corresponding getmaxx or getmaxy then

they are set to the maximum screen size.

The lower right coordinates are returned in width=x1,
and height=yl.

qguickframe.

unsigned x=639,y=120,w=340,h=100;

fitframe (x,y,w,h); /* adjusted to x=299 */

framefromicon

Function

Syntax

Opens a frame in an event that was called from a click
on a icon.

Programmer's Reference Guide - 32 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

void framefromicon (imagestkptr ifs, msclickptr ms,

unsigned x, unsigned y, unsigned x1, unsigned yl);

Remarks
This would be the first statement in an event that
attached to an icon or button created with active
button.

This procedure will hide the icon then display an
exploding wire box from the icon location to the
coordinates x,y,x1,yl where a frame is opened and
cleared. An OK button is placed in the lower right
corner of the frame and it is attached to
collapsetoiconshow which will close the frame when
it is clicked on.

See also
activebutton, explodefromiconhide

Example

/* samc0205.c */
#include "teglsys.h"

unsigned easymessage (imagestkptr frame,msclickptr mouseclickpos)
{
framefromicon (frame, mouseclickpos, 150,150,400,190);
prepareforupdate (stackptr) ;
frametext (stackptr,1,2,"Icon to Frame Transformation");
commitupdate () ;

return 1;

}

volid main ()

{
easytegl () ;
activebutton (100,100, "MESSAGE", easymessage) ;
teglsupervisor();

is

frametext

Programmer's Reference Guide - 33 - TEGL Windows Toolkit

Function

Syntax

Remarks

Restrictions

Example

/* samc0206.c

Chapter 2 - TEGL Easy

Writes text to a frame using row, column coordinates
simulating text mode.

void frametext (imagestkptr ifs, int row, int col,
char *s);

ifs is the frame to write to. Row and Col

are the row and column locations relative to the frame.
That is, row 1, col 1, is the upper left corner of the
frame. Note the coordinates are the reverse of graphics
coordinates where column comes first.

The text display is based upon the current font. Swithing
fonts will cause uneven text.

#include "teglsys.h"

volid main ()

{

imagestkptr fs;

unsigned x=100,y=100,w=200, h=50;

easytegl () ;

quickframe (&fs, &x, &y, &w, &h) ;
frametext (fs, 2,2, "Hello World!");

teglsupervisor();

getmousey

Function
Waits for a mouse click and returns the mouse
click number.

Syntax

unsigned getmousey (imagestkptr ifs)

Programmer's Reference Guide - 34 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

Remarks
Mouse clicks numbers are numbered in the order that
you define the mouse click areas.
ifs is the frame where we are waiting for a mouse
click to occur. The mouse click number is returned.
Example

definebuttonclick (fs, x+250,y+70, imageOK, NULL) ;
definebuttonclick (fs, x+300,y+70, imageCANCEL, NULL) ;

switch (getmousey (fs)) {
case 1 : /* imageOK was clicked on */ break;
case 2 : /* imageCANCEL was clicked on */ Dbreak;
}
getyesno
Function
Gets a yes Oor no response.
Syntax
char getyesno (unsigned x,unsigned y, char *s);
Remarks
X,y are the coordinates to display the frame. s
is the question to ask, allowing that the only answer
can be Yes or No. The frame has a yes and no
button displayed in the lower right corner.
This function returns a 1 if Yes is clicked and O
if No is clicked.
Example

if (getyesno (100,100, 'Do you want to erase the file'))
{

}

else ; /* cancel the command */

/* erase the file */

Programmer's Reference Guide - 35 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

easytegl

Function
Does a simplified startup for the toolkit.

Syntax
void easytegl (void);

Remarks
This procedure should be called at the very start of
your program. It sets up some default values and clears
the screen.
When you have become familiar with the start-up
requirements of the TEGL Windows Toolkit then you can
write your own initialization procedure.

Example

#include "teglsys.h"

volid main ()

{
easytegl () ;
teglsupervisor();

lastcol
Function
Returns the number or last column of a frame calculated
by the number of text characters that will fit within
a frame.
Syntax
int lastcol (imagestkptr ifs);
Remarks

The calculation is based upon the currently selected
font.

Programmer's Reference Guide - 36 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

Restrictions

Does not allow for BGI fonts.
See also

lastrow, coltox, rowtoy.
Example

imagestkptr fs;
unsigned x=100,y=100,w=200,h=50;

lastcol (fs); /* returns the number of columns that will fit */

lastrow

Function
Returns the number or last row of a frame calculated
by the number of text characters rows that will fit
within a frame.

Syntax
int lastrow(imagestkptr ifs);

Remarks
The calculation is based upon the currently selected
font.

Restrictions

Does not allow for BGI fonts.
See also

lastcol, coltox, rowtoy.
Example

imagestkptr fs;
unsigned x=100,y=100,w=200,h=50;

lastrow (fs); /* returns the number of rows that will fit */

outframetextxy

Programmer's Reference Guide - 37 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

Function
Writes text to frame using relative coordinates.
Syntax
void outframetextxy (imagestkptr ifs, unsigned x,
unsigned y, char *s);
Remarks
Macro
Uses the currently selected font. Normally,
outtegltextxy (..) uses screencoordinates to display
your graphic text. Thus you are required to add
ifs->x and ifs->y to your offsets.

outframetextxy expands to add the frame
coordinates to your relative coordinates.
Restrictions
Does not work with BGI fonts.
See also
frametext.
Example

/* writes "message" at x=5,y=5 pixels from the upper left corner of fs */
outframetextxy(fs, 5,5, "message") ;

quit
Function
Halts program.
Syntax
unsigned quit (imagestkptr ifs, msclickptr ms);
Remarks

Control break is set to this event by default in
easytegl.

setctrlbreakfs (quit);

Programmer's Reference Guide - 38 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

quickframe
Function
Pushes an image and clears the frame.
Syntax
void quickframe (imagestkptr *ifs, unsigned *x, unsigned *y,
unsigned *width, unsigned *height);
Remarks

See also

Example

imagestkptr ifs;

X,y are the desired upper left coordinates, width

and height are the size of the frame. Coordinates

are adjusted to fit the physical screen and are returned
in x,y,width,height. The frame struc is also returned

in ifs.

fitframe.

int x=100,y=100,w=200,h=150;

hidemouse () ;

qguickframe (&ifs, &x, &y, &w, &h) ;
frametext (ifs,2,2,"This is too TEGL easy!");

showmouse () ;

restoretext
Function

Restores the current font.
Syntax

Macro

void restoretext (void) ;
Remarks

Programmer's Reference Guide - 39 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

the current font is saved when selecteasytext is
called. selecteasytext allows you to temporary
change to another font.

rowtoy

Function
Calculates the Y coordinate for a text row.

Syntax
int rowtoy (int row);

Remarks
This is used to treat the graphics display as if it were
in text mode and make it easier to place succeeding rows
of text on the screen. Returns the pixel offset needed
to add to frame->y to get row.

Restrictions

See also

The calculation is based on the current font.

coltox, lastcol, lastrow, frametext

selecteasytext
Function
Changes to the font set by seteasyfont
Syntax
Macro
void selecteasytext (void);
Remarks

See also

The font used after this call is selected by previous
call to seteasyfont.

restoretext.

seteasyfont

Programmer's Reference Guide - 40 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

Function

Set the font used by the TEGLEasy Unit.
Syntax

Macro

void seteasyfont (fontptr p);
Remarks

Some of the routines in TEGLEasy write to the screen.
This font is used by these routines.

See also
selecteasytext, restoretext

Example

seteasyfont (countdwn) ;

Programmer's Reference Guide - 41 - TEGL Windows Toolkit

Chapter 3 - Icons

ICONS

Icons are pictures that represent objects. This Icon image diskdrve
represents a diskette.

Icons are the mainstay of GUI's.

The TEGL

Windows Toolkit provides the tools that can create and manipulate icons up
to a 100 x 100 pixels in size. By placing an icon within a window frame,
they may be attached directly to an TEGL event to provide graphical menu
selections, animated to provide visual feedback, displayed as graphic
images like the TEGL Deck of Cards, or used to display a company logo.

The ICON Editor

Included in TEGL Windows Toolkit is a powerful icon editor that utilizes
the full power of the tookit to provide you with fast, flexible and easy
icon file editing. The source code for the icon editor is also included so
you can expand and modify it to suit your needs.

The Main Bar Menu
Open ICONDEF File

Opens an existing ICON.DEF file, or creates a new DEF file. To create a
new DEF file, type in the name of the DEF file in the filename box and
click on key OK.

Quit
Quits the icon editor. NOTE: The icon editor does not prompt you to save
your files.

Editing

The mouse cursor changes to cross-hairs when the cursor enters the icon
drawing area. Pressing the mouse left button will place a pixel at the
current coordinates. Pressing the mouse right button will erase the pixel.
You can hold the mouse left or right button, while moving the mouse to
draw or erase a series of pixels.

The drawing bar at the bottom of the drawing area has two functions. Press
and hold the right mouse button on the drawing bar to drag the drawing
area to a new location. Click with the left mouse button on the drawing
bar to select from the drawing menu.

The Drawing Bar Menu

SAVE

Programmer's Reference Guide - 42 - TEGL Windows Toolkit

Chapter 3 - Icons

Saves the file with the filename displayed on the drawing bar.
SAVE AS
Saves the file with a new filename.

SAVE AND EXIT ICON FILE
Saves the file with the filename displayed on the drawing bar and closes
the editing area for the file.

CREATE C CONSTANTS
Creates a ¢ constant file with the extension g .CON for including
in a program.

COPY IMAGE AREA

Copies an area into the internal IMAGE AREA. When this option is active a
scissors icon appears on the drawing bar. Click once with the left mouse
button to mark the upper left corner of the area to copy. Move the mouse
cursor to the bottom right corner of the area to copy and click again on
the left mouse button. When the scissors disappear, the area has been
copied to the internal IMAGE AREA.

CUT IMAGE AREA

Copies an area into an internal IMAGE AREA and clears the Icon area to the
background color. When this option is active a scissors icon appears on
the drawing bar. Click once with the left mouse button to mark the upper
left corner of the area to cut. Move the mouse cursor to the bottom right
corner of the area and click again on the left mouse button. When both
the scissors disappear and the area is cleared, then the area has been
copied to the internal IMAGE AREA.

FILL IMAGE AREA

Fills an area with the current pixel color. Bits that are already set on
are not overwritten. When this option is active, a coffee mug icon appears
on the drawing bar. Click once with the left mouse button to mark the
upper left corner of the area to fill. Move the mouse cursor to the
bottom right corner of the area and click again on the left mouse button.
The coffee mug disappears when the area is filled with current pixel
color.

PASTE IMAGE AREA
Paste the copied/cut area from the internal IMAGE AREA to the icon drawing
area. When this option is active, a glue bottle icon appears on the

drawing bar. Click once at the position where the image is to be pasted.
The pasted image overwrites any pixels on the drawing area.

Programmer's Reference Guide - 43 - TEGL Windows Toolkit

Chapter 3 - Icons
MERGE IMAGE AREA
Merges the copied/cut area from the internal IMAGE AREA to the icon
drawing area. When this option is active, a glue bottle icon appears on
the drawing bar. Click once at the position where the image is to
be merged. The merged image only writes to empty pixel areas.
OVERLAY IMAGE AREA
Overlays the copied/cut area from the internal IMAGE AREA to the icon
drawing area. When this option is active, a glue bottle icon appears on
the drawing bar. Click once at the position where the image is to
be overlayed. The overlay image only writes to active pixels.
ROTATE IMAGE AREA 45 DEGREES
Rotates the internal IMAGE AREA by 45 degrees.
ROTATE IMAGE AREA 90 DEGREES
Rotates the internal IMAGE AREA by 90 degrees.
REDUCE IMAGE AREA

Shrinks the image within the internal IMAGE AREA by 50%. The algorithm
deletes every second pixel.

REVERSE IMAGE AREA

Reverses the image within the internal IMAGE AREA from left to right.
PIXEL COLOR

Pick the current pixel color from a palette of 16 colors.

BACKGROUND COLOR

Pick the current background color from a palette of 16 colors.

CHANGE PIXELS COLOR

Change all pixels with color m to another color n. Where m

and n are selected from a palette of 16 colors. To cancel the command
without changing any pixel colors, select the same color for both m
and n.

ERASE COLOR PIXELS

Erases all pixels with the selected pixel color. The color is selected
from a palette of 16 colors.

Programmer's Reference Guide - 44 - TEGL Windows Toolkit

Chapter 3 - Icons

EXPLODE ICON IMAGE
Enlarges the drawing area. The largest size is a ratio of 3 to 1 (3 pixels
representing 1 pixel).

IMPLODE ICON IMAGE
Shrinks the drawing area.

CLEAR ICON IMAGE
Clears the drawing area.

RELOAD ICON FILE
Reloads the original icon file.

EXIT ICON FILE
Finishes the editing of a icon file.

You can open as many editing windows at once as you like. The internal
IMAGE AREA is common to all the edit windows that are open. Consequently,
whatever is in the internal IMAGE AREA can be pasted to any edit window.
This allows for the building of icons from small pieces, or copying an
icon to transform it to something different.

ICON Constants

Select from the Drawing Bar Menu CREATE C CONSTANTS, to generate
constants for including in your program. If you have a large number of
icons for generating constants, you can use the program ICONINC to
generate all icons in a one pass.

putpict
Function
Puts the defined icon to the specified screen area.
Syntax
void putpict (unsigned x,unsigned vy,
unsigned char *buf,unsigned n);
Remarks

x, y defines the upper left corner of the screen
area for placing the icon image.

buf points to the defined icon image.
n defines the color change for any pixel that is

Programmer's Reference Guide - 45 - TEGL Windows Toolkit

Chapter 3 - Icons

black within the icon.

ICON Assembler Functions

The program ICONASM provides a second method that allows you to add
large icon images to your program (eg. the TEGL Deck of Cards).

ICONASM generates a C function in assembler. Turbo Assembler is
required to assemble the file to object code. You may then create an obj
file that will link the icon function into your C program.

To display the icon, use the icon function name (your icon name prefixed
with Image).

imageMyIcon (10,25, BLACK) ;

Note that these functions are always far.

ICON Utilities

ICONDEF

ICONDEF is a utility program that allows you to strip the .DEF files
from a turbo C source file, include file or Assembler file, provided
that the commented /*.. prefix is still a part of your constants.

Be careful that the Input filename is not the same as one of the
definition files. Using a suffix other then .DEF will ensure that the
include file is not overwritten while extracting. However, any filenames

that do end in .DEF should be copied to a subdirectory if you are not sure
about the ICON definition names.

Syntax: ICONDEF MYFILE.INC

Where: MYFILE.INC is the include file generated by ICONINC
or any file that embeds the include file.

ICONLIB

ICONLIB is for assisting the programmer in combining the definition
files into a single library file for maintenance. Use ICONDEF to extract.

Programmer's Reference Guide - 46 - TEGL Windows Toolkit

Chapter 3 - Icons

Syntax: ICONLIB *[.DEF] MYPROG.DLB

Where: *[.DEF] may use any DOS wild-card specifications.
MYPROG.DLB may be any library filename.

ICONINC

ICONINC helps the ICON Editor in generating a large number of Turbo
C ICON constants. Multiple icon definitions may be output to a single
include file.

Syntax: ICONDEF *[.DEF] MYFILE.INC

Where: *[.DEF] may use any DOS wildcards specifications.
MYFILE.INC may be any include filename.

ICONASM
ICONASM is for assisting the ICON Editor in generating functions

from icon definition files. Multiple functions may be output to a single
asm file.

Syntax: ICONASM *[.DEF] MYPROG.ASM

Where: *[.DEF] may use any DOS wildcards specifications.
MYPROG.ASM may be any assembler filename.

ICONS in TEGLIcon module.

There are a number of icons that have been created. The following
are included in the "teglsys.h" file.

ImageCREDITS

TEGL Windows Toolkit II
ImageTRASH

A trash can
ImageOK

Programmer's Reference Guide - 47 - TEGL Windows Toolkit

Chapter 3 - Icons

OK button
ImageCANCEL
Cancel button
ImageBLANKBUT
A blank button for creating your own
ImagelBUT ImageMBUT ImageRBUT
Used by DrawLongButon to create an extra long button

icon.
ImageDOWN

Down arrow.
ImageUP

Up arrow.
ImageRIGHT

Right arrow.
ImagelEFT

Left arrow.
ImageR

Registered Trademark. reg
ImageC

Copyright. copyright
ImageTIGER

A TEGL tiger.
ImagelAST

Last button.
ImageNEXT

Next button.
ImageQUESTION

Question Button.

Programmer's Reference Guide - 48 - TEGL Windows Toolkit

Chapter 4 - Frames

Frames

The power and speed of TEGL Windows is most apparent when handling frames.
By automatically saving and restoring overlapping images, TEGL Windows is
a very powerful tool for creating the illusion of separate multiple
windows. Appendix A describes the philosophy behind the TEGL Windows
Toolkit.

This chapter provides the basic foundation for creating, manipulating, and
attaching related items to a frame.

Creating, Manipulating, and Dropping Frames

countframes
Function
Returns the number of frames currently on the
stack.
Syntax
unsigned countframes (void);
frameexist
Function
Determines i1f a frame is on the frame stack.
Syntax
char frameexist (imagestkptr ifs);
Remarks
If ifs exists then it contains the address
of one of the frames on the stack.
Example

if frameexist (ifs)
dropstackimage (ifs);

Programmer's Reference Guide - 49 - TEGL Windows Toolkit

Chapter 4 - Frames

pushimage

Function
Used to save the background image before clearing and
drawing new images in this area. Equivalent to opening
a window area.

Syntax
void pushimage (unsigned x, unsigned y,unsigned x1,

unsigned yl);

Remarks
Windows are created by pushing and popping the
background image. x, y, x1, yl are absolute
coordinates starting with 0,0 at the upper left corner
of the screen to getmaxx, getmaxy at the lower right
corner.

Restrictions

Saving large images can require a lot of memory even
with the Virtual Memory Manager. If a program is
expected to use most of memory it would be sensible to
include specific checks on memory requirements and
availability before performing a PushImage.

A full screen in EGA mode (640 x 350) requires about
110K of memory, in VGA mode (640 x 480) the requiment
is about 150K.

See also
popimage, dropstackimage, rotatestackimage,
rotateunderstackimage

Example
The following will create a shadowed box on the upper
left screen area. Use the right mouse button to drag
the box around.

/* samc0401.c */
#include "teglsys.h"

Programmer's Reference Guide - 50 - TEGL Windows Toolkit

Chapter 4 - Frames

volid main ()

{
easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);

teglsupervisor();

}

popimage
Function
Used to restore the top background image after a
PushImage. Equivalent to closing a window area.
Syntax
void popimage (void) ;
Remarks

Restores the uppermost image area created by (it pushImage.

See also

pushimage, dropstackimage, rotatestackimage,
rotateunderstackimage
Example

This example waits until a mouse button is pressed then
calls popimage to restore the background image.

/* samc0402.c */
#include "teglsys.h"
volid main ()
{ easytegl () ;
pushimage (1,1,100,100);

shadowbox (1,1,100,100);
showmouse () ;

Programmer's Reference Guide - 51 - TEGL Windows Toolkit

Chapter 4 - Frames

while (mouse_buttons == 0);
popimage () ;

while (mouse_buttons == 0);
abort_msg("");

rotatestackimage

Function
Rotates a frame forward or backward relative to the
frames on the screen.

Syntax
void rotatestackimage (imagestkptr framel,

imagestackptr frame2);

Remarks
Frames may be rotated to the foreground to allow user
input or updates, etc.

A frame may be rotated as the first frame using
rotatestackimage.

In order to access an image that is not the most recent
pushimage you must save the global variable
stackptr right after the pushimage. the saved
pointer may be used to manipulate the frame.
Restrictions
A frame can only be rotated above a known frame. To
rotate a frame below another frame on the stack, use
the rotateunderstackimage routine.
See also
pushimage, popimage, dropstackimage
Example
The following example creates two overlapping frames
and waits for a click of a mouse button before
rotating the bottom frame to the top.

Programmer's Reference Guide - 52 - TEGL Windows Toolkit

Chapter 4 - Frames
/* samc0403.c */
#include "teglsys.h"
volid main ()
{ imagestkptr fs;

inittegl();

pushimage(1,1,100,100);

shadowbox (1,1,100,100);

fs = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;

showmouse () ;

while (mouse_buttons == 0);
rotatestackimage (fs, stackptr) ;

while (mouse_buttons == 0);
abort_msg("");

rotateunderstackimage

Function
Rotates a frame forward or backward relative to the
frames on the screen. Rotates a frame below frame?2.
Syntax
void rotateunderstackimage (imagestkptr framel,
imagestkptr frame2);
Remarks

In order to access an image that is not the most recent
pushimage you must save the global variable

stackptr right after the pushimage. the saved

pointer may be used to manipulate the frame.

Programmer's Reference Guide - 53 - TEGL Windows Toolkit

Chapter 4 - Frames

Restrictions
A frame can only be rotated below a known frame. To
rotate a frame above another frame on the stack, use
the rotatestackimage.

See also
pushimage, popimage, dropstackimage

Example
The following example creates two overlapping frames
and awaits for a click of a mouse button before
rotating the Top frame under the second frame.

/* samc0404.c */

#include "teglsys.h"

volid main ()

{

imagestkptr fs;
easytegl () ;
pushimage (1,1,100,100);
shadowbox(1,1,100,100);
fs = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;

showmouse () ;

while (mouse_buttons == 0);
rotateunderstackimage (stackptr, £s);

while (mouse_buttons == 0);
abort_msg("");
}
dropstackimage

Programmer's Reference Guide - 54 - TEGL Windows Toolkit

Function

Syntax

Remarks

See also

Example

/* samc0405.c */

#include

volid main ()

{

Chapter 4 - Frames

Used to close a frame that is not necessarily the
topmost image on the stack. Equivalent to closing a
window area.

void dropstackimage (imagestkptr frame);
Restores an image area created by pushimage.

In order to access an image that is not the most recent
pushimage you must save the global wvariable

stackptr right after the pushimage. The saved

pointer may be used to manipulate the frame.

pushimage, popimage, rotatestackimage,
rotateunderstackimage

The following example creates two overlapping frames
and awaits for a click of a mouse button before
dropping the bottom frame from the screen.

"teglsys.h"

imagestkptr fs;
easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);
fs = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;

showmouse () ;

while (mouse_buttons == 0);
dropstackimage (fs) ;

while (mouse_buttons == 0);
abort_msg("");

Programmer's Reference Guide - 55

TEGL Windows Toolkit

Chapter 4 - Frames

hideimage

Function
Hides an Image Frame from the screen but retains the
current stack position and frontal image.

Syntax
void hideimage (imagestkptr frame);

Remarks

This procedure may be used in a variety of ways.
Blinking a frame by alternating between hideimage and
showimage. Moving a frame from one location to another.
See also
showimage
Example
The following example blinks a frame continuously until
a mouse button is pressed.

/* samc0406.c */
#include "teglsys.h"

volid main ()

{
imagestkptr fs;
unsigned 1i;

easytegl ();

pushimage (1,1,50,50);
shadowbox (1,1,50,50);
fs = stackptr;
showmouse () ;

i = 20000;

do
{

——i;

Programmer's Reference Guide - 56 - TEGL Windows Toolkit

Chapter 4 - Frames

if (1 == 10000)
hideimage (fs);
if (1 == 0)
{
showimage (fs, fs->x, fs->y) ;
i = 20000;
}
}
while (mouse_buttons ==) ;

if (1 <= 10000)
showimage (fs, fs->x, fs->y) ;

showimage

Function
Shows a Hidden Image Frame.
Syntax
void hideimage (imagestkptr frame)
See also
hideimage
Example
The following example moves a frame from one location
to another when a mouse button is pressed.

/* samc0407.c */

#include "teglsys.h"

volid main ()

{

imagestkptr fs;
easytegl () ;
pushimage (1,1,100,100);
shadowbox(1,1,100,100);
fs = stackptr;

Programmer's Reference Guide - 57 - TEGL Windows Toolkit

Chapter 4 - Frames

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;
showmouse () ;

while (mouse_buttons ==) ;

hideimage (fs);
showimage (fs, fs->x+100, fs->y+100) ;

while (mouse_buttons == 0);
abort_msg("");
}
showcoordinates
Function
An Event that displays the coordinates of a frame.
Syntax
unsigned showcoordinates (imagestkptr ifs,
msclickptr ms);
Remarks

This event displays the coordinates of a frame.

Preparing a Frame for Update

prepareforpartialupdate

Function
Prepares a portion of a frame for output. Removes all
overlapping images above the partial area that is being
updated on the screen.

Syntax

Programmer's Reference Guide - 58 - TEGL Windows Toolkit

Remarks

Restrictions

See also

Example

/* samc0408.c */

#include <graphics.

Chapter 4 - Frames

void prepareforpartialupdate (imagestkptr frame;
unsigned x, unsigned y,unsigned x1, unsigned yl);

Xx,y,x1,yl are absolute coordinates starting with 0,0 at
the upper left corner of the screen to getmaxx, getmaxy
at the lower right corner.

The coordinates must be within the absolute frame
coordinates. Use the current Frame coordinates +
offsets to obtain the correct absolute coordinates.

prepareforpartialupdate and prepareforupdate can

be used on multiple frames (provided the update areas
do not overlap) but must be matched by an equal number
of calls to commitupdate.

prepareforupdate, commitupdate
The following example creates two overlapping frames

and awaits for a click of a mouse button before drawing
a circle on the bottom frame.

h>

#include "teglsys.h"

volid main ()

{
imagestkptr fs;

easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);

fs = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;

showmouse () ;

while (mouse_buttons ==) ;

prepareforpartialupdate (fs, fs->x, fs->y, fs->x1, fs->y1);

setcolor (BLUE) ;

circle(fs->x+48, fs->y+45,50);

commitupdate () ;

Programmer's Reference Guide - 59 - TEGL Windows Toolkit

Chapter 4 - Frames

while (mouse_buttons == 0);
abort_msg("");

prepareforupdate

Function
Prepares a frame for output. Removes all overlapping
images above the frame area that is being updated on
the screen.
Syntax
void prepareforupdate (imagestkptr frame);
Remarks
Identical to prepareforpartialupdate, except the
current frame coordinates are passed automatically.
Restrictions

prepareforpartialupdate and prepareforupdate can
be used on multiple frames (provided the update areas
do not overlap) but must be matched by an equal number
of calls to commitupdate.

See also
prepareforpartialupdate, commitupdate

Example
The following example creates two overlapping frames
and awaits for a click of a mouse button before drawing
a circle on the bottom frame.

/* samc0409.c */
#include <graphics.h>

#include "teglsys.h"

volid main ()

{
imagestkptr fs;

Programmer's Reference Guide - 60 - TEGL Windows Toolkit

Chapter 4 - Frames

easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);
fs = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;
showmouse () ;

while (mouse_buttons == 0);

prepareforupdate (fs);
setcolor (BLUE) ;
circle(fs->x+48, fs->y+45,50);
commitupdate () ;

while (mouse_buttons == 0);
abort_msg("");
}
commitupdate
Function

Commits update. Replaces all overlapping images above
the frame area that was being updated on the screen.

Syntax
void commitupdate (void);
Remarks
commitupdate must be used to close the functions
prepareforpartialupdate and prepareforupdate.
Restrictions

commitupdate must be called an equal number of
times for each prepareforpartialupdate and
prepareforupdate.

See also

Programmer's Reference Guide - 61 - TEGL Windows Toolkit

Chapter 4 - Frames

prepareforpartialupdate, prepareforupdate
Example

The following example creates two overlapping frames
and awaits for a click of a mouse button before drawing
a circle on the bottom frame.

/* samc04010.c */

#include <graphics.h>
#include "teglsys.h"

volid main ()

{
imagestkptr fs;

easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);
fs = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;
showmouse () ;

while (mouse_buttons == 0);
prepareforupdate (fs);
setcolor (BLUE) ;

circle (fs->x+48, fs->y+45,50);
commitupdate () ;

while (mouse_buttons == 0);
abort_msg("");

Moving a Frame

Programmer's Reference Guide - 62 - TEGL Windows Toolkit

Chapter 4 - Frames

frameselectandmove

Function
Allows a frame to be moved. This routine is normally
called by the teglsupervisor when the right mouse
button is held down and the mouse cursor is positioned
over a frame.

Syntax

imagestkptr frameselectandmove (unsigned mxpos,
unsigned mypos) ;
Result type
Returns a pointer to the frame that the mouse had
selected and moved.

Remarks
The movement of the Frame is under the control of the
user until the mouse button is released. To move a
frame under program control, use movestackimage.
Restrictions

This function returns immediately if neither mouse
button is held down on entry.

See also
setmoverestrictions, setframemobility,
setmoveframecallproc, movestackimage

Example
The following example displays a green mouse cursor and
calls frameselectandmove whenever the right mouse
button is pressed. The routine exits and changes the
mouse cursor back to white when the left mouse button
is pressed.

/* samc04011l.c */
#include <graphics.h>

#include "teglsys.h"

volid main ()
{
imagestkptr fs;
easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);

Programmer's Reference Guide - 63 - TEGL Windows Toolkit

Chapter 4 - Frames
fs = stackptr;

showmouse () ;
setmousecolor (GREEN) ;

do
if (mouse_buttons == 1)
fs = frameselectandmove (mouse_xcoord,mouse_ycoord) ;
while (mouse_buttons != 2);

setmousecolor (WHITE) ;

setautorotate

Function
Sets the frame stack auto rotate function.

Syntax
Macro
void setautorotate (char onoff);

Remarks
Auto rotate is normally set to FALSE. That is, a frame
will not automatically rotate to the top of the stack.
When set to TRUE any frame that is partially covered
will be moved to the top of the stack when
teglsupervisor detects a left mouse button click
anywhere on the frame.

Example

/* samc04012.c */
#include <graphics.h>

#include "teglsys.h"

volid main ()

{
imagestkptr fs;

Programmer's Reference Guide - 64 - TEGL Windows Toolkit

Chapter 4 - Frames

easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);
pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;

setautorotate (TRUE) ;
showmouse () ;

teglsupervisor();

setmoverestrictions

Function
Sets the minimum and maximum coordinates that a frame
may be moved.
Syntax
Macro
void setmoverestrictions (imagestkptr frame;
unsigned x, unsigned y, unsigned x1, unsigned yl);
Remarks
Sets the area that a frame is restricted to when
frameselectandmove is called.
Restrictions

The restriction does not apply when a frame is moved
using movestackimage.

See also
frameselectandmove, setframemobility,
setmoveframecallproc, movestackimage

Example
The following sets the frame mobility to the upper half
of the screen. Use the right mouse button to move the
frame around.

/* samc04013.c */

Programmer's Reference Guide - 65 - TEGL Windows Toolkit

Chapter 4 - Frames

#include <graphics.h>
#include "teglsys.h"

volid main ()

{

easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);

setmoverestrictions (stackptr, 0,0, getmaxx () ,getmaxy () / 2);

teglsupervisor();

setframemobility

Function

Syntax

Remarks

Restrictions

See also

Toggles the ability for a frame to move.

Macro
void setframemobility (imagestkptr frame, char movable);

When the mobility of a frame is set to off (FALSE), the
frame outline will move when frameselectandmove is
called, however, the frame is not moved to the new
location when the mouse button is released.

The default frame mobility is ON (TRUE) .

The mobility toggle has no effect when a frame is moved
using movestackimage.

frameselectandmove, setmoverestrictions,
setmoveframecallproc, movestackimage

Programmer's Reference Guide - 66 - TEGL Windows Toolkit

Example

/* samc04014.c */

Chapter 4 - Frames

The following example toggles a frames mobility to off.

#include <graphics.h>
#include "teglsys.h"

volid main ()

{

easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);

setframemobility (stackptr, FALSE) ;

teglsupervisor();

setmoveframecallproc

Function

Syntax

Remarks

An event process that is called after an frame has been
dragged to a new screen position.

Macro
void setmoveframecallproc (imagestkptr frame, callproc p);

Can be used for the trash can effect, originating with
the MacIntosh, by which file icons are dragged to the
trash can to be deleted from the system.

the event may check the mouseclickpos struct (fields
ms.x, ms.y, ms.xl, and ms.yl) for the new frame

Programmer's Reference Guide - 67 - TEGL Windows Toolkit

Chapter 4 - Frames

location and whether they overlap the desired frame.
Restrictions
If you wish for the frame to move to the new location,
the event must call movestackimage before returning.
See also
frameselectandmove, setmoverestrictions,
setframemobility, movestackimage
Example
The following is a very simple Event Handler that
simply closes the frame if the frame is moved.

/* samc04015.c */
#include "teglsys.h"

unsigned poof (imagestkptr ifs, msclickptr ms)
{
hidemouse () ;
dropstackimage (ifs);
showmouse () ;
return(0);

}

volid main ()

{
easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);

setmoveframecallproc (stackptr,poof);

teglsupervisor();

movestackimage

Programmer's Reference Guide - 68 - TEGL Windows Toolkit

Chapter 4 - Frames

Move a frame to a new screen location.

void movestackimage (imagestkptr frame, unsigned x,

Used to move a frame under Program control to a new

x and y are absolute coordinates that

specify the upper left corner of the frame at the new

Function
Syntax
unsigned y);
Remarks
screen location.
location.
Restrictions

The coordinates are not validated, so care must be
taken to ensure that the resulting coordinates of the
lower right corner falls within the screen area.

See also

frameselectandmove,
setframemobility,

Example

setmoverestrictions,

setframecallproc

The following example moves a smaller frame under
another larger frame to demonstrate the integrity of

stacked images.

/* samc04016.c */

#include "teglsys.h"

volid main ()

{
imagestkptr fs;
unsigned 1i;

easytegl ();

pushimage (1,1,20,20);
shadowbox (1,1,20,20);
fs = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;

for (i=0;1<=100; i++)

movestackimage (fs, fs->x+2, fs->y+2);

while (mouse_buttons == 0);
abort_msg("");

Programmer's Reference Guide

69

TEGL Windows Toolkit

Chapter 4 - Frames

moveframe
Function
Moves an Xor wire frame from one location to
another.
Syntax
moveframe (int *fx, int *fy, int *fx1, int* fyl,
int rx, int ry, int rxl,int ryl, int color);
Remarks

This only moves a wire frame not the actual frame.
The mouse button must be held down on entry or this
function returns immediately. rx,ry,rxl,ryl are

the starting coordinates. fx, fy,fx1l,fyl are the
coordinates when the mouse button is released.
color is the wireframe color.

Low Level Frame Functions

unlinkfs

Function
Disconnects a frame from the stack.

Syntax
void unlinkfs (imagestkptr frame);

Remarks
UnLinkFS allows you to disconnect a frame from the
Image stack to stop any further actions by the frame
manager.
This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.

Restrictions

This procedure should be used in conjunction with

Programmer's Reference Guide - 70 - TEGL Windows Toolkit

Chapter 4 - Frames

hideimage, showimage, createimagebuffer,
dropimagebuffer, and linkfs.

If you unlink a frame from the stack without first
hiding the frame, the stack manager will not
acknowledge the existence of the frame and will
overwrite the unlinked frame area.

See also
linkfs, linkunderfs

Example
The following example hides the frame before unlinking
and dropping the image.

/* samc04017.c */

#include "teglsys.h"

volid main ()

{
imagestkptr fs;

easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);
fs = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;

showmouse () ;
while (mouse_buttons == 0);

hideimage (fs);
unlinkfs (fs);
dropimagebuffer (fs);

while (mouse_buttons == 0);
abort_msg("");

Programmer's Reference Guide - 71 - TEGL Windows Toolkit

Chapter 4 - Frames

linkfs
Function
Reconnects a frame to the stack.
Syntax
void linkfs (imagestkptr framel, imagestkptr frame2)
Remarks
linkfs reconnects framel with the frame stack, above
frame?.
This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.
Restrictions

See also

Example

/* samc04018

.c */

This procedure should be used in conjunction with
hideimage, showimage, createimagebuffer,
dropimagebuffer, and unlinkfs.

unlinkfs, linkunderfs

The following example performs the same function as
rotatestackimage.

#include "teglsys.h"

volid main ()

{

imagestkptr fs;

easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);

fs = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;

showmouse () ;
while (mouse_buttons == 0);

hideimage (fs);

unlinkfs (fs);

Programmer's Reference Guide - 72 - TEGL Windows Toolkit

Chapter 4 - Frames

linkfs (fs, stackptr);
showimage (fs, fs->x, fs->y) ;

while (mouse_buttons == 0);
abort_msg("");
}
linkunderfs
Function

Syntax

Remarks

Restrictions

See also

Example

/* samc04019.c */

Reconnects a frame with the frame stack, below the
specified frame.

linkunderfs (imagestkptr framel, imagestkptr frame2)
linkunderfs reconnects framel below frame2.

This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.

This procedure should be used in conjunction with
hideimage, showimage, createimagebuffer,
dropimagebuffer, and unlinkfs.

unlinkfs, linkfs

The following example performs the same function as
rotateunderstackimage.

#include "teglsys.h"

volid main ()

{

imagestkptr fsl, £fs2;

Programmer's Reference Guide - 73 - TEGL Windows Toolkit

Chapter 4 - Frames
easytegl () ;

pushimage (1,1,100,100);
shadowbox (1,1,100,100);
fsl = stackptr;

pushimage (50, 50,150,150);
shadowbox (50, 50,150, 150) ;
fs2 = stackptr;

showmouse () ;
while (mouse_buttons == 0);

hideimage (f£s2);

unlinkfs (fs2);
linkunderfs (fs2, £sl);
showimage (fs2, £s2->x, £s2->y) ;

while (mouse_buttons == 0);
abort_msg("");

createimagebuffer

Function
Allocates an Image buffer (frame) on the Heap.
Syntax
void createimagebuffer (imagestkptr *frame,
unsigned x, unsigned y, unsigned x1, unsigned yl);
Remarks
This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.
Restrictions

This procedure should be used in conjunction with
hideimage, showimage, createimagebuffer,
dropimagebuffer, and unlinkfs.

See also
dropimagebuffer

Example

Programmer's Reference Guide - 74 - TEGL Windows Toolkit

/* samc04020.c */

Chapter 4 - Frames

The following example performs the same function as
pushimage.

#include "teglsys.h"

volid main ()

{
imagestkptr fs;

easytegl () ;

createimagebuffer(&fs,1,1,100,100);
linkfs (fs, stackptr);
getbiti(1,1,100,100, fs->imagesave);
shadowbox (1,1,100,100);

showmouse () ;

teglsupervisor();

dropimagebuffer

Function
Frees the memory used by the frame on the heap.

Syntax
void dropimagebuffer (imagestkptr frame);

Remarks
This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.

Restrictions

See also

This procedure should be used in conjunction with
hideimage, showimage, createimagebuffer,
dropimagebuffer, and unlinkfs.

createimagebuffer

Programmer's Reference Guide - 75 - TEGL Windows Toolkit

Chapter 4 - Frames

Example
The following example performs the same function as
popimage.
getfsimage
Function
Retrieves the screen image within a stacked frame.
Syntax

void getfsimage (unsigned x, unsigned vy,
imagestkptr frame);
Result type
Returns a (non-stacked) frame containing the screen
image and other related frame information.
Remarks
The (non-stacked) frame may be used for replication or
it can be merged with other frames.
See also

put fsimage

Example
The following example creates a single frame and
replicates the frame.

putfsimage

Programmer's Reference Guide - 76 - TEGL Windows Toolkit

Function

Syntax

Remarks

FGNORN

FGAND

FGOR

FGXOR

FGNOT

See also

Chapter 4 - Frames

Places the frame saved image anywhere on the screen.

void putfsimage (unsigned x, unsigned vy,
imagestkptr frame, unsigned rwbits);

rwbits are constants defined in "teglsys.h" which
define how the images are placed on the screen.
replaces screen area with frame image

AND's screen area with frame image. Toggles off screen
areas that do no have a frame image. Creates an outline
of the frame image.

OR's screen area with frame image. Toggles on empty
screen areas that have a frame image. Creates a solid
frame image.

XOR's screen area with frame image.

Inverts frame image and replaces screen area with
image.

getfsimage
Example
The following example creates a single frame and
replicates the frame.
freeimagebuffer
Function
Frees up the memory allocated for a frame buffer.
Syntax
void freeimagebuffer (imagestkptr ifs);
Remarks

Programmer's Reference Guide - 77 - TEGL Windows Toolkit

Chapter 4 - Frames

This is generally an internal function. Do not use it
unless you have a clear understanding of inner workings
of the frame stack.

getpartialfrontimage

Function
Gets the partial image of a frame and returns a pointer
to a temporary buffer.
Syntax
imagestkptr getpartialfrontimage (imagestkptr frame,
unsigned x, unsigned y, unsigned x1, unsigned yl);
Remarks
This is a safer way to get the partial image of a
frame than using GetBiti. Overlapping frames are
partially removed and then restored before returning.
getfrontimage
Function
Get the image of a frame and returns a pointer to
a temporary buffer.
Syntax
Macro
imagestkptr getfrontimage (imagestkptr ifs);
Remarks
This is a safer way to get the image of a frame
than using GetBiti. Overlapping frames are
partially removed and then restored before returning.
pageinfs

Programmer's Reference Guide - 78 - TEGL Windows Toolkit

Chapter 4 - Frames

Function
Syntax

Remarks

See also

Read an image into memory.
void pageinfs (imagestkptr ifs);

If the image is already in memory then no action
is taken.

pageoutfs.
Example
This example checks to see if the image is in memory
first before attempting to read it in. note that
pageinfs check this automatically before reading in an
image.
if ifs->imagepageout then /* the image is not in memory */

pageinfs (ifs);

lockimage

Function
Locks an frame image into memory.

Syntax
Macro
void lockimage (imagestkptr ifs);

Remarks
The image is read into memory if required. The lock is
maintained until a specific call is made to
unlockimage.
Lock image can be used where it is desirable to
replicate an image on the screen repeatedly. After it
is locked then it can be placed on the screen with a
call to putbiti.

Restrictions

This should be used with caution especially if you are

Programmer's Reference Guide - 79 - TEGL Windows Toolkit

Chapter 4 - Frames

locking in a large image. You can fragment the heap and

the Virtual Memory Manager may not be able to allocate

a large enough memory block for subsequent image swaps.
See also

unlockimage, useimage, unuseimage

Example
If the image is less than 64k then it can be copied
to Turbo's heap and then the image can be unlocked
reducing the chance of a heap error.

pageoutfs

Function
Page out a frame image.

Syntax
pageoutfs (imagestkptr ifs);

Remarks
If the image is successfully paged out to ems or disk
then teglfreemem is called to free up the memory
used.

Restrictions

If ifs is in use, or locked or already paged out
then no action is taken.
See also

pageinfs.
Example
pageoutfs (ifs);
if (ifs->imagepageout) /* success */

else ; /* failure */

Programmer's Reference Guide - 80 - TEGL Windows Toolkit

Chapter 4 - Frames

setimagecoordinates

Function
Sets the frame pointer to a new set of coordinates.
Syntax
Macro
void setimagecoordinates (imagestkptr ifs,
unsigned x, unsigned y,unsigned x1,unsigned yl);
Remarks

A frame's coordinates should not be changed if it is
visible.

pageoutimagestack

Function
Requests the virtual memory manager to page out
images to make a chunk of memory available.
Syntax
char pageoutimagestack (unsigned long mem) ;
Remarks
mem is the amount of memory required. A large
value for mem will result in all image buffers
being paged out. This function returns true if the
amount of memory requested has been freed.
Restrictions
Large amounts of memory are required to process image
swapping. If you allocate too much and don't free it up
as quickly as possible you may get a heap error.
Example
/* —-- force all imagebuffers to disk */
if (pageoutimagestack (512000)) ; /* —-- ignore result */
/* —-- do whatever needs that much memory */

supersortmemuse (256000) ;
supersort () ;
/* —-- release it before working with windows again */

Programmer's Reference Guide - 81 - TEGL Windows Toolkit

Chapter 4 - Frames

supersortfreemem() ;

unlockimage
Function
Unlocks a frame image.
Syntax
Macro
unlockimage (imagestkptr ifs);
Remarks
unlock simply sets a flag in the imagestkptr.
After unlocking, the Virtual Memory Manager can swap
the image to EMS or Disk as required. If the image
wasn't locked then no action is taken.
Restrictions

See also

see restrictions for lockimage.

lockimage, useimage, unuseimage.

Example

see example for lockimage.
unuseimage
Function

Flags a frame image as no longer in use.
Syntax

Macro

unuseimage (var ifs : imagestkptr);
Remarks

Programmer's Reference Guide - 82 -

This should be called as soon as possible after a
useimage to keep as much memory free for the virtual
memory manager.

TEGL Windows Toolkit

See also

Example

useimage (ifs);

Chapter 4 - Frames

useimage, lockimage, unlockimage.

/* -- do something with it */

/* —- then let the memory manager swap it out if required */

unuseimage (ifs);

useimage
Function
Makes an image available for use.
Syntax
Macro
useimage (var ifs : imagestkptr);
Remarks
The frame image is read into memory if not already
there and then flagged as being in use.
Restrictions

See also

Example

useimage (ifs);

if you do prepareforupdate then the in use flag is
set to false.

unuseimage, lockimage, unlockimage.

/* -- do something with it */

/* —- then let the memory manager swap it out if required */

unuseimage (ifs);

Programmer's Reference Guide - 83 - TEGL Windows Toolkit

Chapter 4 - Frames
Mouse Click Areas

Mouse click areas are those places on the screen where we sense if the
mouse pointer has passed over or has been clicked on. Frames can have
mouse click areas on them that are, of course, only available if the frame
is visible and the mouse click area is uncovered.

The sensitivity of the mouse click area has two levels. The most sensitive
is MSSENSE where just having the mouse pointer pass over the area

causes an action. The other level is MSCLICK where the mouse pointer

must be over the mouse click area and the left mouse button has been
pressed.

definemouseclickarea

Function
Attaches an sensitive area of a frame to an event
function.

Syntax
void definemouseclickarea (imagestkptr ifs, unsigned x,

unsigned y, unsigned x1, unsigned yl,char active,
callproc p, char sense);
Remarks

ifs is any imagestkptr. the x, y, x1, yl are
coordinates relative to a frame. This means that the
upper left corner of a frame is considered 0,0.

active is a boolean flag to indicate whether the
Mouse Click Area is an active entry TRUE or a

place holder FALSE in a list of mouse clicks. A
place holder is simply a defined entry with no action
recognized.

p is the event to call when the Mouse Click Area

is activated, either by the mouse pointer passing by
the click areas or a mouse click occurring on an click
area.

nilunitproc may be used to define a no-event
handler. This may be used in conjunction with the
functions findframe and checkmouseclickpos to
check for the respective mouse click activation.

Programmer's Reference Guide - 84 - TEGL Windows Toolkit

Chapter 4 - Frames

nilunitproc may also be used as a temporary
parameter. use resetmsclickcallproc to add the proper
event handler later.

sense is either MSSENSE or MSCLICK. MSSense
activates the event handler whenever the mouse cursor
passes over the defined mouse click areas. MSCLICK
requires the right mouse button to be pressed while the
mouse cursor is on the mouse click area.

Restrictions
The number of mouse click areas is limited only by
memory. Overlapping click area take priority over
underlying click areas.

The coordinates of a Mouse click area must reside
within the Frame, otherwise the click areas are not
recognized.

See also
findmouseclickptr, resetmouseclicks,
resetmsclicksense, resetmsclickcallproc,
resetmsclickactive, checkmouseclickpos

Example
The following example creates a frame that attaches an
'OK' icon with an Event Handler called DropBoxOption
which simply closes the frame and exits.

The function CheckforMouseSelect is used to create
the illusion of a button being pressed when clicked on.

findmouseclickptr

Function
Searches for a Mouse Click Pointer associated with a
Mouse Click Number.
Syntax
msclickptr findmouseclickptr (imagestkptr ifs,
unsigned clicknumber) ;
Result type

Programmer's Reference Guide - 85 - TEGL Windows Toolkit

Remarks

Restrictions

See also

Example

Chapter 4 - Frames

Returns a mouse click pointer (msclickptr), pointing to
a Mouse Click Structure.

Click Numbers are in the order that you define the
Mouse Click areas. The first definemouseclickarea is
known as Click Number 1, the second is Click Number 2,
etc..

In certain instances it is easier to advance through
the mouse click areas by Click Numbers. However, most
functions, including the calling of Events, pass the
Mouse Click Pointer.

To translate a Mouse Click Pointer back to a Click
Number, use the Mouse Click Pointer fields ie.
clicknumber := mouseclickpos->clicknumber where
mouseclickpos is of type msclickptr.

findmouseclickptr returns a NULL if the clicknumber is
not found. Compare the resulting msclickptr with NULL
before referencing the structure.

definemouseclickptr, resetmouseclicks,
resetmsclicksense, resetmsclickcallproc,
resetmsclickactive, checkmouseclickpos

The following example defines an array of 100 Mouse
Click Areas. You may click with the left mouse button
on the individual tiles to produce a sound, or on the
'OK' to produce a series of sounds.

The function findmouseclickptr is used within the
event handler playallnotes to translate a random
click number into a note.

The function checkformouseselect is used to create
the illusion of a button being pressed when clicked on.

resetmsclickactive

Programmer's Reference Guide - 86 - TEGL Windows Toolkit

Function

Syntax

Remarks

Restrictions

See also

Example

Chapter 4 - Frames

Resets the active flag to indicate whether a Mouse
Click Area Entry is active or inactive.

void resetmsclickactive (imagestkptr ifs,
unsigned mouseclicknumber, char active);

The mouseclicknumber is in the order that you defined
the mouse click areas. the first definemouseclickarea
is known as mouseclicknumber 1, the second is
mouseclicknumber 2, etc..

active is a boolean flag to indicate whether the mouse
Click Area is an active entry (TRUE) or a place holder
(FALSE) in a list of mouse clicks. A place holder is
simple a defined entry with no action recognized.

if the mouseclicknumber is invalid, the flag is not
updated.

definemouseclickptr, resetmouseclicks,
findmouseclickptr, resetmsclicksense,
resetmsclickcallproc, checkmouseclickpos

This example creates an array of 10 buttons which all
point to the same event handler switchon. the

active flag for a pressed button is turned off to
prevent multiple calls to switchon, until another
button is pressed. resetmsclickactive is used

within switchon to toggle the button active state.

resetmsclickcallproc

Function

Changes the Event Handler for a Mouse click to another
Event Handler.

Programmer's Reference Guide - 87 - TEGL Windows Toolkit

Syntax

Remarks

See also

Example

Chapter 4 - Frames

void resetmsclickcallproc (imagestkptr ifs,
unsigned mouseclicknumber, callproc p);

mouseclicknumbers are in the order that you define the
mouse click areas. the first definemouseclickarea is
known as mouseclicknumber 1, the second is
mouseclicknumber 2, etc..

p is the event to pass control to when the mouse
click area 1is actived.

nilunitproc may be used to define a no-event
handler. This may be used in conjunction with the
functions findframe and checkmouseclickpos to
check for the respective mouse click activation.

nilunitproc may also be used to deactivate an
event handler.

definemouseclickptr, resetmouseclicks,
findmouseclickptr, resetmsclicksense,
resetmsclickactive, checkmouseclickpos

This example switches between two events that play a
different series of sounds. The function
checkformouseselect is used to create the illusion of
a button being pressed when clicked on.

resetmouseclicks

Function

Syntax

Remarks

Removes a chain of mouse click areas from a frame.

void resetmouseclicks (imagestkptr frame,
msclickptr clickptr)

the clickptr parameter is the last click pointer from

Programmer's Reference Guide - 88 - TEGL Windows Toolkit

Restrictions

See also

Example

Chapter 4 - Frames

where the remainder of the chain of click areas will be
removed.

A parameter of NULL removes the Mouse Click Area
chain completely.

the clickptr should be a valid mouseclickptr. Use
findmouseclickptr to locate a valid pointer.

if clickptr is invalid, the parameter will be treated
as NULL.

definemouseclickptr, findmouseclickptr,
resetmsclicksense, resetmsclickcallproc,
resetmsclickactive, checkmouseclickpos

The following example displays a varying number of bars
that can be selected. The Event Handler

showbarlist plays a sound corresponding to the bar
selected and clears the frame and re-displays a new
series of bars.

resetmsclicksense

Function

Syntax

Remarks

Restrictions

resets the sense parameter associated with a mouse
Click Area.

void resetmsclicksense (imagestkptr ifs, char newsense;)

newsense is either MSSENSE or MSCLICK. MSSENSE
activates the event handler whenever the mouse cursor
passes over the defined mouse click areas. MSCLICK
requires the right mouse button to be pressed while the
mouse cursor is on the mouse click area.

resetmsclicksense resets the sense type for the chain
of all Mouse Clicks. If you have a mixture of different

Programmer's Reference Guide - 89 - TEGL Windows Toolkit

Chapter 4 - Frames

senses, use a combination of findmouseclickptr and
field settings to reset the sense.

See also
definemouseclickptr, resetmouseclicks,
findmouseclickptr, resetmsclickcallproc,
resetmsclickactive, checkmouseclickpos

Example

The following example requires a menu selection to

toggle between the menu dropping down automatically or

requiring a mouse clickon the menu bar.
Keyboard
clearkeyboardbuf
Function

Clears the hardware keyboard buffer.

Syntax

Macro

void clearkeyboardbuf (void);
See also

clearteglkeyboardbuf.

clearteglkeyboardbuf

Function
Clears the software buffer maintained by the

Programmer's Reference Guide - 90 - TEGL Windows Toolkit

Syntax

Remarks

Chapter 4 - Frames
Toolkit.

Macro
void clearteglkeyboardbuf (void) ;

This will discard all pending keystrokes.

defineglobalkeyclickarea

Function

Syntax

Remarks

Restrictions

See also

Flexible keycode assignment.

void defineglobalkeyclickarea (imagestkptr ifs,
msclickptr ms, unsigned keycode, char repeatkey,
callproc,p

ifs is the frame and ms is the mouse click
area the key is assigned to, these are passed to

P.

If ifs and ms are set to nil then the frame

and mouse click area that the mouse pointer is over are
passed to p. If the mouse pointer is not over a

frame then Nil is passed to p.

If repeatkey is set TRUE then addition key presses
are buffered, otherwise, they are discarded.

A special case for this routine is passing 0 as the
keycode parameter. In this case any key that is not
being trapped for will activate p. The key pressed
can be determined by using getch.

Only the most recently declared key is trapped if a key
is trapped more than once.

definelocalkeyclickarea.

definelocalkeyclickarea

Programmer's Reference Guide - 91 - TEGL Windows Toolkit

Chapter 4 - Frames

Function
Assign a keycode to a frame and mouse click area.
Syntax
void definelocalkeyclickarea (imagestkptr ifs,
msclickptr ms, unsigned keycode, char repeatkey,
callproc p);
Remarks

ifs is the frame and ms is the mouse click
area the key is assigned to, these are passed to p.

If repeatkey is set TRUE then additional key presses
are buffered otherwise they are discarded.

Within a frame definelocalkeyclickarea has

prioritry over defineglobalkeyclickarea.
See also

defineglobalkeyclickarea.

dropkeyclick
Function
Removes a key trap.
Syntax
void dropkeyclick (imagestkptr ifs, unsigned keycode,
callproc p):
Remarks
If ifs is not NULL then the frame's local key
stack is searched first. If the key is not found then
the search proceeds to the global key stack.
p must match the callproc that the key was
originally assigned to.
findkeyclickptr

Programmer's Reference Guide - 92 - TEGL Windows Toolkit

Function

Syntax

Remarks

Chapter 4 - Frames

Locates a key assignment.

keyclickptr findkeyclickptr (imagestkptr ifs,
unsigned keycode);

If ifs is not NULL then the frame's local key stack
is searched first. If the key is not found then the
search proceeds to the global key stack keystackptr.

if the keycode is not found then NULL is returned.

resetkeyclickcallproc

Function

Syntax

Remarks

Changes the callproc a key is assigned to.

void resetkeyclickcallproc (imagestkptr ifs,
unsigned keycode, callproc p);

If ifs is not NULL then the frame's local key stack
is searched first. If the key is not found then the
search proceeds to the global key stack keystackptr.

If keycode is not found then no action is taken.

Programmer's Reference Guide - 93 - TEGL Windows Toolkit

Chapter 5 - Menus

Drop Down, Pop Up Menus

The Menu unit is good example of an event library that you can add to the
power of TEGL Windows. The generic pull-down or drop-down menus provides a
wide range of menu architecture that will meet most application needs.

A Menu event uses the standard outtegltextxy and definemouseclickarea
functions to list and to create additional mouse click areas on the
screen.

Even though the menu unit is comprehensive, TEGL Windows Toolkit II is not
limited to a standard architecture of menus. The menu unit may be used as
an example in creating other types of menu events; such as hanging menus
which are not dependent on a bar type selection; or an icon menu, that
when clicked on explodes to display a box full of icons that can be
selected from.

The entries for the menu unit are created and linked at run-time. The
entries may be manipulated, copied, or deleted as required within the
program. In comparison, some systems offer a external menu compiler which
links the menu with the program at compile time. The advantages to an
external menu compiler are minimal, and it adds another step in creating a
menu system.

The advantages to creating dynamic menus at run-time, is the ability to
create a menu system that is based on an external text file (ie. the menu
text selections may be stored in a text file and read in at run-time to
create a menu) .

Creating a Menu

Creating a bar menu is a two step process. The first is to create the
entry text list that is associated with a option menu. The second is the
creation of the menu bar from which option menus may be selected. You may
use the first step by itself to attach an Option Entry list to icon,
instead of a bar.

Creating a entry text list

An entry text list is simply an linked chain of text entries, with a root
entry for each text list.

---------------------- +——+ S
|AnchorOMPtr| ————— >|OptlonMenu |Ol| —————— >|OptlonMenu |02| ————— >nil
o + o o +——+ o o +——+

* *

Programmer's Reference Guide - 94 - TEGL Windows Toolkit

Chapter 5 - Menus

S +——+ Iy +——+t
|OptionEntry|01 | |OptionEntry|01 |
. . +——+ e e +——+
* *
S +——+ Iy +——+t
|OptionEntry|02 | |OptionEntry|02 |
S e ——— S S ——— T ——— +-—+
* *
- +-—+ nil
|OptionEntry|03|
. . +——+
*
nil
e +
typedef struct optionmenu {
optionmptr nextom; -——-—-— +
unsigned numofentries;
——————— > unsigned maxwidth; t—m | ——————— >
unsigned padding;
fontptr fonttype;
F———— optioneptr firstentry;
optioneptr currententry;
} optionmenu;
e +
A |- - +
*
e +——+
typedef struct optionentry { |Ol
F———— optioneptr nextoe; +--
char entryline[41];
char entryactive;
int entrycolor;
callproc entrycallproc;
} optionentry;
e +
A |- - +

OM is a short form for an optionmenu structure. This is the

header or the root entry for an entry list. The header contains
information regarding the number of entries, the maximum width of the
entries, the amount of padding on left and right when displayed and the
font type that is used. By duplicating the header with a different set of
parameters, an Option Entry list may be chained to two or more

headers to allow for different fonts.

Programmer's Reference Guide - 95 - TEGL Windows Toolkit

Chapter 5 - Menus

OE is a short form for an optionentry structure. There is no limit

to the number of OE records that a list can contain, with the

exception that the number of entries cannot be greater than the size of
the screen when the OE list is displayed. This is a limitation of the
ListOptionMenu functions within the Menu unit and the screen vertical
size, rather then a maximum entry limitation. The ListOptionMenu

event could be modified to accommodate lists greater then the screen size
by displaying a portion of a list and adding another event to display the
remainder.

The OE record contains the entry (text) line, as well as information
on whether the entry line is active or inactive (place holder), its color,
and the event that is called when it is selected.

createoptionmenu

Function

Creates an Option Menu header.
Syntax

optionmptr createoptionmenu (fontptr fonttype);
Result type

Returns a Option Menu pointer type.

Remarks
fonttype is one of the fonts in the font library.
The option menu header is used to build and reference
the option entry list. Use this om pointer
when calling the function defineoptions.
Restrictions

To create multiple om headers with different fonts
on a single oe list, use createshadowom to
automatically create and link the oe list to a
new om header.

See also
defineoptions, createshadowom

Programmer's Reference Guide - 96 - TEGL Windows Toolkit

Example

optionmptr

Chapter 5 - Menus

om2;

oml = createoptionmenu (fontl4);

om2 = createoptionmenu (script);

defineoptions

Function

Syntax

Remarks

Restrictions

Adds Option Entries to an Option Menu.

void defineoptions (optionmptr om, char *entrystr,
char active, callproc p);

The om pointer must be defined by
createoptionmenu before option entries may be
added.

entrystr is the text string to be displayed when

the option menu is opened. The entrystr has two

types of control character which may be embedded as
part of the string. The g - is used to display a

dotted separator line between options. To underline a
character or a series of characters, add the wvalue of
128 to the ascii value. The underline character is only
valid for characters that do not have descenders.

Active specifies whether this entry is active (can
be selected) or not active. Inactive entries are
displayed as jagged characters.

p defines the Event that is associated with
this menu entry. The p is attached automatically
to the option entry when the option menu is displayed.

Programmer's Reference Guide - 97 - TEGL Windows Toolkit

See also

Example

optionmptr oml;

Chapter 5 - Menus
There are no limitations on the number of entries that
can be defined under a single om header. However,
too many entries will list past the bottom of the screen.

createoptionmenu, createshadowom, underlinechar

oml = createoptionmenu (fontl4);

defineoptions (oml,
defineoptions (oml,
defineoptions (oml,
defineoptions (

defineoptions (oml,

"Desktop info...",TRUE, infooption);
"__" FALSE,NULL) ;
"Calculator", TRUE, NULL) ;
,"Clock", TRUE, NULL) ;
"Snapshot", TRUE, NULL) ;

createshadowom

Function
Creates a duplicate Option Menu Header with a different
Font type.

Syntax

Result type

Remarks

Restrictions

See also

Example

optionmptr createshadowom (optionmptr om,
fontptr fonttype);
Returns a new Option Menu pointer type.

om must be an existing optionmenu pointer.
fonttype is one of the fonts in the font library.

The original om pointer must be defined by
createoptionmenu before a duplicate option menu
header may be created.

createoptionmenu, resizeoptionmenu

Programmer's Reference Guide - 98 - TEGL Windows Toolkit

Chapter 5 - Menus

optionmptr oml,om2;

oml = createoptionmenu (fontl4);
defineoptions (oml, "Desktop info...",TRUE, infooption);
defineoptions (oml, "--",FALSE, NULL) ;

defineoptions (oml, "Clock", TRUE, NULL) ;

(
defineoptions (oml, "Calculator", TRUE, NULL) ;
(
defineoptions (oml, "Snapshot", TRUE, NULL) ;

om2 = createshadowom(oml, script);

resizeoptionmenu

Function
Allows an Option Menu header to recalculate the
size of the option menu window when changing the font
type.
Syntax
void resizeoptionmenu (optionmptr om, fontptr fonttype);
Remarks

om must be an existing optionmenu pointer.
fonttype is one of the fonts in the font library.
See also
createoptionmenu, createshadowom
Example

optionmptr oml;

oml = createoptionmenu (fontl4);
defineoptions (oml, "Desktop info...",TRUE, infooption);
defineoptions (oml, "--",FALSE, NULL) ;
defineoptions (oml, "Calculator", TRUE, NULL) ;
defineoptions (oml, "Clock", TRUE, NULL) ;

Programmer's Reference Guide - 99 - TEGL Windows Toolkit

Chapter 5 - Menus
defineoptions (oml, "Snapshot", TRUE, NULL) ;

resizeoptionmenu (oml, script);
/* —-- Changes the font type Fontl4d to Script */

togglecheckmark

Function
Changes the first character of an entry string to 0x30
(check mark) or a 0x32 (space).

Syntax
void togglecheckmark (unsigned omnum, unsigned oenum,

char status);

Remarks
omnum is the position of the option menu header
relative to the anchoromptr. oenum is the
position of the option entry relative to the om
header.

status of 1 will change the first character
of the entry to a checkmark, 0 will change the
character to a space.
See also
toggleentrystatus, replaceoptiontext
Example

optionmptr oml;

oml = createoptionmenu (fontl4);
defineoptions (oml," Show as icons ", TRUE,viewoptiontoggle);
defineoptions(oml," Show as text ",TRUE,viewoptiontoggle);

(
defineoptions (oml,"-",FALSE,NULL) ;

defineoptions(oml," Sort by name ",TRUE,viewoptiontoggle);
defineoptions(oml," Sort by date ",TRUE,viewoptiontoggle);
defineoptions(oml," Sort by size ",TRUE,viewoptiontoggle);
defineoptions(oml," Sort by type ",TRUE,viewoptiontoggle);

togglecheckmark (1,7, TRUE) ;

Programmer's Reference Guide - 100 - TEGL Windows Toolkit

Chapter 5 - Menus

/* puts a check mark at the front of Sort by Type */

toggleentrystatus
Function
Sets an Option entry to active or not active.
Syntax
void toggleentrystatus (unsigned omnum, unsigned oenum,
char status);
Remarks

omnum is the position of the option menu header
relative to the anchoromptr.

oenum is the position of the option entry relative
to the om header.

status of 1 will set the entry as active, 0 will

set the entry to nonactive. active specifies

whether this entry is active (can be selected) or
nonactive. Nonactive entries are displayed as Jjagged
characters.

See also

togglecheckmark, replaceoptiontext
Example

optionmptr oml;

oml = createoptionmenu (fontl4);

defineoptions (oml, "Desktop info...",TRUE, infooption);
defineoptions (oml, "--",FALSE, NULL) ;

defineoptions (oml, "Calculator", TRUE, NULL) ;

(

(
defineoptions (oml, "Clock", TRUE, NULL) ;
defineoptions (oml, "Snapshot", TRUE, NULL) ;

toggleentrystatus(1l,5,FALSE); /* toggles snapshot off */

Programmer's Reference Guide - 101 - TEGL Windows Toolkit

Chapter 5 - Menus

replaceoptiontext

Function

Syntax

Remarks

See also

Example

optionmptr oml;

Replaces Option entry string by another text string.

void replaceoptiontext (unsigned omnum, unsigned oenum,
char *entrystr);

omnum is the position of the option menu header
relative to the anchoromptr.

oenum is the position of the option entry relative
to the om header.

entrystr is a replacement text string that will be
displayed when the Option menu is opened. The
entrystr has two types of control character which may
be embedded as part of the string. The g - is used to
display a dotted separator line between options. To
underline a character or a series of characters, add
the value of 128 to the ascii wvalue. The underline
character only works with characters that do not have
descenders.

togglecheckmark, toggleentrystatus

oml = createoptionmenu (fontl4);

defineoptions (oml,
defineoptions (oml,
defineoptions (oml,
defineoptions (

defineoptions (oml,

"Desktop info...",TRUE, infooption);
"__" FALSE,NULL) ;
"Calculator", TRUE, NULL) ;
,"Clock", TRUE, NULL) ;
"Snapshot", TRUE, NULL) ;

/* —- Replaces "Snapshot" with "Picture" */

replaceoptiontext

(1,5, "Picture");

Programmer's Reference Guide - 102 - TEGL Windows Toolkit

Chapter 5 - Menus

toggleoptionbar
Function
Inverts mouse click areas.
Syntax
void toggleoptionbar (imagestkptr ifs, msclickptr,
opt, msclickptr lastopt);
Remarks

opt and lastopt mouse click areas are

inverted. It is assumed that lastopt has

already been inverted and this call would return
it to normal.

setoptionmenucolors

Function

Syntax

Remarks

See also

Example

Changes the menu entry colors.
Macro
setoptionmenucolors (unsigned activecolor,
unsigned inactivecolor);
activecolor is the text color for active entries.
inactivecolor is the text color for entries that
are currently inactive but have entry positions within

the menu.

setoptionmenubordercolor

setoptionmenucolors (BLACK, LIGHTGRAY) ;

Programmer's Reference Guide - 103 - TEGL Windows Toolkit

Chapter 5 - Menus

setoptionmenubordercolor

Function

Changes the color of the option menu border.
Syntax

Macro

void setoptionmenubordercolors (unsigned color);
Remarks

color is the color of the border.

See also
setoptionmenucolors

Example

setoptionmenubordercolor (WHITE) ;

sethidesubmenu

Function
Toggles the hiding of sub menus.

Syntax
void sethidesubmenu (char onoff);

Remarks
Default is true. When a submenu is pulled down from a
bar menu it is normally hidden when a selection is
made. If set to 0 then the pulldown is left displayed
until the selection that was made returns.

Example

sethidesubmenu (TRUE) ;

Programmer's Reference Guide - 104 - TEGL Windows Toolkit

Chapter 5 - Menus

Creating a Bar Menu

A bar menu is one of the more popular methods of creating a user interface.
As mentioned before, a bar menu is simply another event with the event
handler set to baroptionmenu. baroptionmenu is activated

whenever the mouse cursor passes by the one of the defined mouse click
areas on the bar.

when baroptionmenu is activated, optionmenuselection is called
in place of the teglsupervisor.

There are three activities within a menu system that require a rewrite of
the teglsupervisor. optionmenuselection checks if
The mouse is clicked outside the menu bar or menu window thus closing

any active menus and returning back to the TEGL supervisor.

Sensing the mouse cursor movement to another bar entry, thus closing
any active menu and opening another menu window.

Sensing the mouse cursor moving to another entry within a menu and
highlighting the entry.

createbarmenu
Function
Creates a Bar window frame.
Syntax
void createbarmenu (unsigned x, unsigned vy,
unsigned 1n);
Remarks

X, y 1s the position of the bar menu frame.

In is the pixel length of the bar.
See also

outbaroption
Example

Programmer's Reference Guide - 105 - TEGL Windows Toolkit

Chapter 5 - Menus

createbarmenu (0, 0, getmaxx) ;

outbaroption
Function
Attaches an option menu (list) to a displayed text
string on the BAR.
Syntax
void outbaroption (char *entrystr, optionmptr om);
Remarks

See also

entrystr is the bar text header that is associated
with the om list.

om is the option menu header returned from
createoptionmenu.

createbarmenu
Example
optionmptr oml;
oml = createoptionmenu (fontl4);

defineoptions (oml
defineoptions (oml
defineoptions (oml
defineoptions (oml
defineoptions (oml
defineoptions (oml
defineoptions (oml

createbarmenu (0,0

;" Show as icons ", TRUE, viewoptiontoggle);

;" Show as text ",TRUE,viewoptiontoggle);
,"-", FALSE, NULL) ;

;" Sort by name ",TRUE,viewoptiontoggle);
," Sort by date ",TRUE,viewoptiontoggle);
," Sort by size ",TRUE,viewoptiontoggle);
;" Sort by type ",TRUE,viewoptiontoggle);

, getmaxx) ;

outbaroption (" Options ",oml);

Programmer's Refer

ence Guide - 106 - TEGL Windows Toolkit

Chapter 5 - Menus

setbartextcolor
Function

Changes the default text color on the bar.
Syntax

Macro

void setbartextcolor (unsigned color);
Remarks

color is the default text color on the bar.
See also

setbarmenucolor, setbarbordercolor
Example

setbartextcolor (GREEN) ;

setbarmenucolor
Function
Changes the bar color.
Syntax
Macro
void setbarmenucolor (unsigned color);
Remarks

color is the default color for the bar.
See also

setbarmenucolor, setbarbordercolor
Example

setbarmenucolor (BLUE) ;

setbarbordercolor

Programmer's Reference Guide - 107 - TEGL Windows Toolkit

Chapter 5 - Menus

Function

Changes the bar border color and toggles the border on.
Syntax

Macro

void setbarbordercolor (unsigned color);
Remarks

color is the default border color for the bar.
See also

setbartextcolor, setbarborderoff
Example

setbarbordercolor (GREEN) ;

setbarborderoff
Function

Toggles the bar border off.
Syntax

Macro

void setbarborderoff (void);
Remarks

setbarbordercolor resets the border on.
See also

setbarbordercolor, setbartextcolor
Example

setbarborderoff (void);

setbarshadowtext

Programmer's Reference Guide - 108 - TEGL Windows Toolkit

Chapter 5 - Menus

Function

Toggles Bar Shadow Text on/off.
Syntax

Macro

vold setbarshadowtext (char onoff)
Remarks

onoff is either 1 for on and 0 for off.
Example

setbarshadowtext (TRUE) ;

setbarfillstyle
Function
Sets the Bar Fill Style.
Syntax
Macro
void setbarfillstyle (unsigned pattern);
Remarks

Sets the pattern for the bar. The fill patterns are
defined by constants in graphics.h.

pattern is a numeric type.

See also
setfillstyle graphics.h.

Example

setbarfillstyle (BKSLASH _FILL);

setbarmenumargin

Programmer's Reference Guide - 109 - TEGL Windows Toolkit

Function

Syntax

Remarks

Example

Chapter 5 - Menus

Sets the left margin on the barmenu.

Macro
void setbarmenumargin (unsigned margin);

margin is the desired left margin where the menu
selections start at. This wvalue is in pixels and the
default is 16.

Can be used if a icon or some symbol should be displayed
at the extreme left of the menu.

setbarmenumargin (32) ;

Icon Option Menus

Optionally you can attach a menu to an icon or an area of a frame.

The following function adds a drop down menu to any frame area.

defineoptionclickarea

Function

Syntax

Remarks

Attaches an option menu (list) to a frame or icon area.

void defineoptionclickarea (imagestkptr ifs,
unsigned x, unsigned y, unsigned x1, unsigned yl,
optionmptr om, char sense, unsigned char omtype);

ifs is any imagestkptr. x, vy, x1, yl are
coordinates relative to a frame. This means that the
upper left corner of a frame is considered 0,0.

om is the option menu header returned from
createoptionmenu.

sense 1s either MSSENSE or MSCLICK. MSSENSE
activates the menu event handler whenever the mouse

Programmer's Reference Guide - 110 - TEGL Windows Toolkit

See also

Example

optionmptr oml;

Chapter 5 - Menus

cursor passes over the defined mouse click areas.
MSCLICK requires the right mouse button to be pressed
while the mouse cursor is on the mouse click area.

omtype is the enumerated type of UPPERRIGHT,

UPPERLEFT, LOWERRIGHT, and LOWERLEFT, which specifies
whether the menu pop-down at the upper right or upper
left corner, or pop-up at the lower right or lower left
corner.

definemouseclickarea, resetoptionmenuevents

oml = createoptionmenu (fontl4);

defineoptions (oml
defineoptions (oml
defineoptions (oml
defineoptions (oml
defineoptions (oml
defineoptions (oml
defineoptions (oml

pushimage (530, 320
putpict (530,320, 1

;" Show as icons ", TRUE, viewoptiontoggle);

;" Show as text ",TRUE,viewoptiontoggle);

,"-",FALSE, NULL) ;

," Sort by name ",TRUE,viewoptiontoggle);

," Sort by date ",TRUE,viewoptiontoggle);

," Sort by size ",TRUE,viewoptiontoggle);
)

w

, Sort by type ",TRUE,viewoptiontoggle

’

,624,340) ;
mageCREDITS, BLACK) ;

defineoptionclickarea (stackptr,0,0,93,19,0oml,MSCLICK, LOWERRIGHT) ;

resetoptionmenueven

ts

Function

Syntax

Remarks

Programmer's Refer

Eliminates duplicate menu events where the frame has
been closed.

void resetoptionmenuevents (void) ;
The Menu unit keeps track of menu to frame attachments.
In most cases the attachment is permanent, that is,

until the program terminates. However in some cases,

ence Guide - 111 - TEGL Windows Toolkit

Chapter 5 - Menus

like the icon editor, the menu to frame attachment
changes every time the icon editor explodes or implodes
an icon image. Since the Menu unit has no way of
knowing whether the attachment still exists, a special
function was created to eliminate duplicate or
nonexistent event relationships.

The only problem with not calling ResetOptionMenuEvents
would be an accumulation of menu events for
non-existing frames. Eventually the heap area will
overflow.

See also
defineoptionclickarea

Example

optionmptr oml;

oml = createoptionmenu (fontl4);
defineoptions (oml," Show as icons ", TRUE,viewoptiontoggle);
defineoptions (oml," Show as text ",TRUE,viewoptiontoggle);

(
defineoptions (oml,"-",FALSE,NULL) ;

defineoptions(oml," Sort by name ",TRUE,viewoptiontoggle);
defineoptions(oml," Sort by date ",TRUE,viewoptiontoggle);
defineoptions(oml," Sort by size ",TRUE,viewoptiontoggle);
defineoptions (oml," Sort by type ",TRUE,viewoptiontoggle)

’

pushimage (530,320, 624, 340) ;

putpict (530,320, imageCREDITS, BLACK) ;

defineoptionclickarea (stackptr,0,0,93,19,0oml,MSCLICK, LOWERRIGHT) ;
popimage () ;

pushimage (530,320, 624, 340) ;

putpict (530,320, imageCREDITS, BLACK) ;

defineoptionclickarea (stackptr,0,0,93,19,0oml,MSCLICK, LOWERRIGHT) ;
resetoptionmenuevents () ;

Programmer's Reference Guide - 112 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Interrupt Handlers (TEGLIntr)

The mouse is perhaps one of the most outlandish devices ever conceived as
an interface for computer system (at least in programming it). However, in
the world of GUI, the mouse is a mandatory device.

Programming for a mouse is a programmer's nightmare, simply because it
adds another level of interfacing. Conceptually, keyboard and mice do not
mix. As an example, the mouse is dependent on screen location and whether
the user had clicked the mouse at a specific location on the screen and
whether that location was on an icon. The keyboard, on the other hand, is
almost a direct path between pressing a key and executing a subroutine
(i.e. if keypress then do something).

The programmer is required to write two separate routines for the same
function to handle this mix of interfaces. As well, some systems do not
have a mouse, so you cannot rely on the mouse pointer being available on
all systems.

TEGL Windows Toolkit, of course, provides an almost seamless integration
of the two devices. On systems without a mouse, TEGL will emulate the
mouse by using the cursor keys on the numeric keypad. On systems with a
mouse, the cursor keys may be used simultaneously to move the mouse cursor
around. A key may also be attached to an icon/event, having the same
effect as the mouse clicking on the icon.

Interrupts

The TEGLIntr unit is comprised of four captured interrupts: The keyboard
interrupt (int $09), the mouse subroutine interrupt (function 12), the
timer interrupt (int $08) and the control break handler (int $1B).

swapteglintroff and swapteglintron should be called just before
and after a call to spawn to restore and then to recapture interrupt
vectors.

swapteglintroff
Function
Restores all interrupts to the original saved vectors.
Syntax
void swapteglintroff (void)
Remarks

Programmer's Reference Guide - 113 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

All interrupts are initially turned on.
See also
swapteglintron

swapteglintron
Function
Saves and initialize the required TEGL interrupts.
Syntax
void swapteglintron (void)
Restrictions

swapteglintron cannot be called more then once in
succession, otherwise the system will hang.

See also
swapteglintron

Mouse Emulation

The mouse cursor is an internal function of the TEGL mouse unit, rather
than using the cursor provided by the mouse driver. This way a mouse
cursor is always available even on systems that do not have a mouse.

The support for the emulated mouse is identical, in all respects, to the
actual mouse driver.

In order to provide a seamless integration of the mouse and keyboard,

the Mouse function 12 interrupt $33 is used to capture the mouse hardware
interrupts, and keyboard interrupt $09 is used to capture key codes.
Since both are hardware interrupts, a kbmousebusy flag is used to
serialize any conflict if both interrupts occurs at the same time.

The emulated mouse cursor is controled by the following primitives. They
may be used ONLY if the mouseshow flag is FALSE, otherwise
you may find mouse droppings on the screen.

mcursoroff

Function
Switches the Emulated Mouse Cursor off.

Programmer's Reference Guide - 114 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Syntax

void mcursoroff (void)
Restrictions

Use ONLY when mouseshow flag is FALSE.
See also

mcursoron, msetpos

mcursoron
Function
Switches the Emulated Mouse Cursor on.
Syntax
void mcursoron (unsigned xpos, unsigned ypos);
Remarks
Xpos, ypos is the relative screen coordinates from
the upper left corner of 0,0.
Restrictions

Use ONLY when mouseshow flag is FALSE.
See also
mcursoroff, msetpos

msetpos
Function
Sets a new position for the Emulated Mouse Cursor.
Syntax
void msetpos (unsigned xpos, unsigned ypos);
Remarks
Xpos, ypos is the relative screen coordinates from
the upper left corner of 0,0.
Restrictions

The emulated mouse cursor must be on before setting a
new position.

Use ONLY when mouseshow flag is FALSE.

See also
mcursoroff, mcursoron

Programmer's Reference Guide - 115 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Standard Mouse Functions

showmouse

Function
display a mouse cursor at current mouse_xcoord,
mouse_ycoord.

Syntax

void showmouse (void) ;
See also
hidemouse, setmouseposition, cursorshape

hidemouse

Function
Hides mouse cursor.
Syntax
volid hidemouse (void)
See also
showmouse, setmouseposition, cursorshape

setmouseposition

Function

Sets x,y coordinates of mouse cursor.
Syntax

void setmouseposition (unsigned mousex, unsigned mousey)
Remarks

mousex, mousey are relative coordinates from the
upper left corner of the screen 0,0.
See also

Programmer's Reference Guide - 116 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

showmouse, hidemouse, cursorshape

cursorshape

Function
Sets the mouse cursor shape.

Syntax
void cursorshape (masktype shape)

Remarks
Sets the mouse cursor shape to the bit pattern
specified in shape.
masktype is predefined as follows:

typedef

unsigned masktype [2][16];

The mouse shape is based on the underlying byte values contained in the
shape array. the shape array is 64 bytes long, with the first

32 bytes corresponding to a 16 by 16 screen mask, and the remaining 32
bytes corresponding to a 16 by 16 cursor mask. The first 32 bytes are
ANDed to the screen, followed by ORing the second 32 bytes

with the screen pixels to create the final mouse image.

For example the pointinghand masktype is defined as a constant as
follows:

masktype pointinghand
/* Screen Mask */
= {{OxEl1lFF, OxE1lFF, OxE1FF, OxE1lFF, OxEl1lff, O0xE000, OxE000, 0xe000,
0x0000, 0x0000, 0x0O0000, Ox0000, 0x0000, 0x0000, 0x0000, 0x00O0O0},
/* Cursor Mask */
{0x1E00, 0x1200, 0x1200, 0x1200, 0x1200, O0Ox13ff, 0x1249, 0x1249,
0x1249, 0x9001, 0x9001, 0Ox9001, 0x8001, 0x8001, 0x8001, OxFFFF}};

The resulting type is:

Programmer's Reference Guide - 117 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Screen Mask

1110000111111111 = OxElFF
1110000111111111 = OxElFF
1110000111111111 = OxElFF
1110000111111111 = OxElFF
1110000111111111 = OxElFF
1110000000000000 = 0xE100
1110000000000000 = 0xE100
1110000000000000 = 0xE100
0000000000000000 = 0x0000
0000000000000000 = 0x0000
0000000000000000 = 0x0000
0000000000000000 = 0x0000
0000000000000000 = 0x0000
0000000000000000 = 0x0000
0000000000000000 = 0x0000
0000000000000000 = 0x0000

Cursor Mask

0001111000000000 = 0x1EO0O0
0001001000000000 = 0x1200
0001001000000000 = 0x1200
0001001000000000 = 0x1200
0001001000000000 = 0x1200
0001001111111111 = O0x13FF
0001001001001001 = 0x1249
0001001001001001 = 0x1249
0001001001001001 = 0x1249
1001000000000001 = 0x9001
1001000000000001 = 0x9001
1000000000000001 = 0x8001
1000000000000001 = 0x8001
1000000000000001 = 0x8001
1000000000000001 = 0x8001
1111111111111111 = OxFFFF

There are 5 masktype constants defined in the teglntr.c module. They
are: pointinghand, hourglass, standard, diagcross, and checkmark.

See also
showmouse, hidemouse, setmousehotspot

Programmer's Reference Guide - 118 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

setmousehotspot
Function
Sets the cursor hot-spot values relative to the
upper-left corner of the mouse cursor image.
Syntax
void setmousehotspot (unsigned x,unsigned y);
Remarks

X, y are relative coordinates from the upper left
corner of the mouse cursor image 0,0.

See also
cursorshape

setmousecolor
Function
Sets the mouse cursor color.
Syntax
void setmousecolor (unsigned color);
Remarks

Sets the current Mouse Cursor Color to color.

Available colors are defined in graphics.h.
See also

cursorshape

mouseposition

Function
Gets the Mouse Cursor coordinates and button
information.

Syntax

unsigned mouseposition (unsigned *mousex,
unsigned *mousey) ;
Result type
Returns the mouse button status. Left button - 1, Right
button - 2, both buttons - 3.

Programmer's Reference Guide - 119 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Remarks
mousex, mousey are relative coordinates from the
upper left corner of the screen (0,0).

This function is no longer required in version II,
since the the information above are provided in the
global variables mouse_xcoord, mouse_ycoord and
mouse_buttons respectively.

See also
getbuttonreleaseinfo, getbuttonpressinfo,
clearbuttoninfo

Example

unsigned mp, X,V;

mp = mouseposition(x,y);

if (mp = 3) /* —- both buttons down */
{
}

getbuttonreleaseinfo

Function
Gets the Mouse Cursor button release information.
Syntax
void getbuttonreleaseinfo (unsigned button,
unsigned *buttonstat, unsigned *buttonrelease,
unsigned *xpos, unsigned *ypos);
Remarks

button specifies for which button information is
required.

buttonstat is the current button status
information.

buttonrelease is the number of times the button
has been released.

Xpos, ypos specifies the coordinates where the
button was last released.

Programmer's Reference Guide - 120 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

The information is reset back to zero after the
information has been read.

See also
mouseposition, getbuttonpressinfo,
clearbuttoninfo

getbuttonpressinfo

Function
Gets the Mouse Cursor button press information.
Syntax
void getbuttonpressinfo (unsigned button,
unsigned buttonstat, unsigned *buttonrelease,
unsigned *xpos, unsigned *ypos);
Remarks

button specifies for which button information is
required.

buttonstat is the current button status
information.

buttonpress is the number of times the button has
been pressed.

Xpos, ypos specifies the coordinates where the
button was last pressed.

The information is reset back to zero after the
information has been read.

See also
mouseposition, getbuttonreleaseinfo,
clearbuttoninfo

clearbuttoninfo

Function
Clears the Mouse button info counters.

Programmer's Reference Guide - 121 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Syntax

See also

void clearbuttoninfo(void);

getbuttonreleaseinfo, getbuttonpressinfo

setmouseminmax
Function
Sets the Mouse Cursor minimum and maximum coordinates.
Syntax
void setmouseminmax (unsigned minx, unsigned miny,
unsigned maxx, unsigned maxy) ;
Remarks

See also

MinX, MinY are the minimum relative coordinates
that the mouse may travel. MaxX, MaxY are the
maximum relative coordinates that the mouse may travel.

SetMousePosition

frozenmouse

Function
Prevents the mouse from moving when updating the
screen.

Syntax
volid frozenmouse (void)

Remarks

Programmer's Reference Guide - 122 -

Certain EGA registers cannot be read reliably. Rather
then attempting to read and restore the register with
each movement of the mouse, it is more economical to
simply freeze the mouse, while the screen is being
updated.

FrozenMouse retains a counter on the number of times
the mouse is frozen. In order to unfreeze the mouse,
the same number of unfreezemouse calls must be made.

TEGL Windows Toolkit

Restrictions

See also

Chapter 6 - Mouse, Keyboard and Timer Handlers

FrozenMouse may be used if the screen update is
temporary (i.e. XorBox), or the second EGA page is being
updated. Care must be taken that the mouse cursor is

not overlapping the updated area, otherwise mouse
droppings may result.

freezemouse, unfreezemouse

freezemouse

Function
Prevents the mouse from moving or being overwritten
when updating the screen.

Syntax

Result type

Remarks

Restrictions

See also

char freezemouse (unsigned x, unsigned vy,
unsigned x1, unsigned yl);

Returns the last MouseShow status.

Certain EGA registers cannot be read reliably. Rather
then attempting to read and restore the register with
each movement of the mouse, it is more economical to
simply freeze the mouse, while the screen is being
updated.

freezemouse differs from frozenmouse in that

a check is made on whether the mouse cursor overlaps
the updated area. If the mouse cursor overlaps the
update area, the mouse is hidden until unfreezemouse
displays the mouse.

freezemouse also retains a counter on the number

of times the mouse is frozen. In order to unfreeze the
mouse, the same number of unfreezemouse calls must be
made.

frozenmouse may be used if the screen update is
temporary (i.e. XorBox), or if the second EGA video page
is being updated.

frozenmouse, unfreezemouse

Programmer's Reference Guide - 123 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

unfreezemouse
Function
Releases the mouse from a frozen or freeze status.
Syntax
void unfreezemouse (char mshow) ;
Remarks

mshow is the mouse show status returned from
freezemouse, or use the global mouseshow flag if
frozenmouse was called.

freezemouse and frozenmouse retain a counter
on the number of times the mouse is frozen. In order to
unfreeze the mouse, the same number of unfreezemouse
calls must be made.

See also
frozenmouse, freezemouse

setmousesensitivity

Function
Sets the mouse-to-cursor movement sensitivity.
Syntax
void setmousesensitivity (unsigned xsense,
unsigned ysense, unsigned threshold);
Remarks

xsense defines the horizontal movement
sensitivity.

ysense defines the vertical movement sensitivity.

The sensitivity numbers range from 1 through 100, where
50 specifies the default mickey factor of 1. The
mouse-to-cursor movement is more sensitive at higher
numbers.

The threshold parameter sets the ratio at which

Programmer's Reference Guide - 124 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

the mouse-to-cursor movement is doubled. This range of
this parameter is also 1 through 100. The lower the
threshold, the more sensitive the mouse.

See also
getmousesensitivity

getmousesensitivity

Function
Returns the mouse-to-cursor movement sensitivity
scaling factors previously set by setmousesensitivty.
Syntax
void getmousesensitivity (unsigned *xsense,
unsigned *ysense, unsigned *threshold);
Remarks

xsense defines the horizontal movement
sensitivity.

ysense defines the vertical movement sensitivity.

The sensitivity numbers range from 1 through 100, where
50 specifies the default mickey factor of 1. The
mouse-to-cursor movement is more sensitive at higher
numbers.

The threshold parameter is the ratio at which the
mouse-to-cursor movement is doubled. This range of this
parameter is also 1 through 100. The lower the
threshold, the more sensitive the mouse.

See also
setmousesensitivity

setkeyboardmouse

Function
Toggles the keyboard mouse on or off.
Syntax

Programmer's Reference Guide - 125 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

void setkeyboardmouse (char onoff)

Remarks
The cursor keys leftarrow downarrow uparrow
rightarrow, on the keyboard, may be used to emulate
the mouse movements. setkeyboardmouse (FALSE)
will turn off the emulation, to allow getch to
retrieve the keycode.

Restrictions

setkeyboardmouse will have no effect on keyboard
events, (i.e. the cursor keys may be assigned functions
by means of addcapturekey), which will have
priority over the keyboard mouse.

See also
setkbsteps, getkbsteps

setkbsteps

Function
Sets the amount of pixel movement with each cursor key
press.

Syntax
void setkbsteps (unsigned xsteps, unsigned ysteps,

unsigned sfxsteps, unsigned sfysteps);

Remarks
xsteps, ysteps are the positive incremental wvalues
for moving the mouse cursor to the next position.
Initial values are (x=12,y=8).

sfxsteps, sfysteps are the positive incremental
value for moving the mouse cursor to the next position
when using the shiftkey in conjunction with the
leftarrow downarrow uparrow rightarrow keys.
Initial values are (x=2,y=1).

Restrictions
setkbsteps will have no effect on keyboard events,
(i.e. the cursor keys may be assigned functions by
means of addcapturekey), which will have priority
over the keyboard mouse.

See also
setkeyboardmouse, getkbsteps

Programmer's Reference Guide - 126 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

getkbsteps
Function
Returns the pixel movement value set for the keyboard
mouse.
Syntax
void getkbsteps (unsigned *xsteps, unsigned *ysteps,
unsigned *sfxsteps, unsigned *sfysteps:
word)
Remarks

xsteps, ysteps are the positive horizontal and
vertical step increments.

sfxsteps, sfysteps are the positive horizontal and
vertical step increments when using the shiftkey in
conjunction with the leftarrow downarrow uparrow
rightarrow keys.

See also
setkeyboardmouse, setkbsteps

Timer Functions

A timer tick has the standard resolution of interrupting any process
within the system, 18 times a second. TEGL Windows uses the captured
timer interrupt to decrement counters and set a flag when the counter is
zero. TEGLSupervisor monitors the status of the flag and calls the
attached event when the flag is set. Thus timed events are processed
outside the critical timer tick interrupt.

Timer events may be used as clocks, background tasks, print spoolers etc.

swaptimerout
Function
Restores the original timer vectors.
Syntax
void swaptimerout (void)
Remarks

use swaptimerout if you need to turn the timer

Programmer's Reference Guide - 127 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

off.
See also
swaptimerin

swaptimerin
Function
Captures the original timer vectors and sets the
interrupt vectors to point at TEGL's timer function.
Syntax
void swaptimerin (void)
Remarks
The timer interrupt is originally swapped in.
Restrictions

SwapTimerIn cannot be called more then once in

succession, otherwise the system will hang.
See also

SwapTimerIn

settimerstart
Function
Sets the timer value of timepiece counter.
Syntax
void settimerstart (timerecptr *timepiece,
unsigned timeset);
Remarks

timepiece is of the type timerecptr. if
timepiece is set to NULL, a timepiece
structure is created and initialized to timeset.

timeset is a word wvalue counter. a value of 18 is
equivalent of 1 second.

See also
resettimerflag

Programmer's Reference Guide - 128 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

resettimerflag

Function
Resets the flag that indicates the completion of a
cycle. A cycle is when the counter reaches zero and is
reset back to its original wvalue.

Syntax
void resettimerflag(timerecptr timepiece);

Remarks

timepiece is of the type timerecptr.

timepiece is created by settimerstart.
See also

settimerstart

droptimercount
Function
Deletes a timepiece record from the timer event
chain.
Syntax
void droptimercount (timerecptr timepiece);
Remarks

timepiece is of the type timerecptr.

timepiece is created by settimerstart.
See also

settimerstart

timerswtich
Function
Toggles the timer handler on or off.
Syntax
volid timerswitch (char onoff)
Remarks

Programmer's Reference Guide - 129 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

onoff sets the status on whether the timer event
chain is scanned and decremented. A value of 0 stops
the counters from being decremented. A value of 1
resets the counters back to their original values and
causes the counters within the timer event chain to
be decremented 18 times a second.

timerswitch does not remove the timer interrupt
vectors.

See also
swaptimerout, swaptimerin

Keyboard Interrupt Events

There are two levels at which the keyboard interrupt may be used. At the
higher keyboard event level (monitored by the teglsupervisor),

complete events, like swapping rotating windows, may be attached to a key
on the keyboard. However, at the lower level setting the keycall
parameter in addcapturekey to point at a key handler allows low level
functions like positioning the mouse cursor to be performed.

A good example of a key handler is the default mouse click handler.

The enterkey is used to automatically position the mouse cursor on the
first defined mouse click area and simulates the holding down of the mouse
right button, until the key is released.

The higher Keyboard Event level is set with a call to
definelocalkeyclickarea and defineglobalkeyclickarea within

teglunit. The keycall parameter in addcapturekey is set to

NULL. Instead of calling an external callproc, the keys are

stacked in a keyboard buffer that is monitored by the teglsupervisor.

This TEGL keyboard buffer is separate from the normal keyboard buffer. The
teglkeypressed and teglreadkey functions are provided to check

and read captured keys.

Note: The keyboard handler uses scan codes rather then translated Ascii

codes.

Keyboard Scan Codes

0x01 esckey 0x20 key D 0x40 key F6
0x02 key lkey ! 0x21 key F 0x41 key F7
0x03 key 2key @ 0x22 key G 0x42 key F8
0x04 key 3key # 0x23 key H 0x43 key F9
0x05 key 4key $ 0x24 key J 0x44 f10

0x06 key 5key % 0x25 key K 0x45 numlock

Programmer's Reference Guide - 130 - TEGL Windows Toolkit

Chapter 6 - Mouse,

Keyboard and Timer Handlers

Programmer's Reference Guide - 131 -

keycode is the scan code of the keys
keyboard. This is different from the

usually translated and passed by DOS.

value listed in the scancode table.

0x07 key bkey * 0x26 key L 0x46 scrlock
0x08 key Tkey & 0x27 ; 0x47 homekey key 7
0x09 key 8key * 0x28 ' " 0x48 uparrow key 8
0x0A key 9key (0x29 ~ ~ 0x49 pgupkey key 9
0x0B key QOkey) 0x2A shiftkey Left O0x4A key -
0x0C {key -} _ 0x2B {key } 0x4B {leftarrow} {key
0x0D key =key + 0x2C key Z 0x4C key 5
0x0E backspace 0x2D key X 0x4D rightarrow key 6
0x0F forwtabbacktab 0x2E key C O0x4E key +
0x10 key Q 0x2F key V 0x4F endkey key 1
0x11l key W 0x30 key B 0x50 downarrow key 2
0x12 key E 0x31 key N 0x51 pgdnkey key 3
0x13 key R 0x32 key M 0x52 inskey key O
0x14 key T 0x33 key ,key < 0x53 delkey key
0x15 key Y 0x34 key .key > 0x54 sysreq
0x16 key U 0x35 key /key ? 0x85 bigfrontFllkeyback
0x17 key I 0x36 shiftkey Right 0x86 bigfrontFl2keybac
0x18 key O 0x37 prtsckeykey *
0x19 key P 0x38 altkey
Ox1A [{ 0x39 {spacebar}
O0x1B] } 0x3A {capslock}
0x1C enterkey 0x3B key F1
0x1D ctrlkey 0x3C key F2
0x1E key A 0x3D key F3
O0x1F key S 0x3E key F4
. 0x3F key F5
addcapturekey
Function
Adds a keyboard scancode to the keyboard handler for
capturing, or for processing immediately when the key
is pressed.
Syntax
void addcapturekey (unsigned keycode, char repeatkey,
keybrdcallproc keycall);
Remarks

on the
ascii code that is
Use the scancode

repeatkey is set to 1 if the key is expected
to repeat. 0 if the key must be released before

TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers
generating another interrupt.

keycall is the key call function when the
keyboard handler captures the key. If keycall is
set to nilkeycallproc the scancode of the capture
key is added to the TEGL keyboard buffer.

addcapturekey can stack the same scan code any
number of times, however, only the most recent entry in
the Scancode chain is used.
See also
deletecapturekey

deletecapturekey

Function
Removes a keyboard scancode from the keyboard scancode
chain.

Syntax
void deletecapturekey (unsigned keycoded);

Remarks

keycode is the scan code of the keys on the
keyboard. This is different from the ascii code that is
usually translated and passed by DOS.

If the same scan code is stacked more then once the

most recent entry in the Scancode chain is deleted.
See also

addcapturekey

teglreadkey

Function

Reads a scan code from the TEGL keyboard buffer.
Syntax

unsigned teglreadkey (void);
Result type

Returns the first captured scan code in the TEGL

Programmer's Reference Guide - 132 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

keyboard buffer.
Restrictions
Use teglkeypressed to check if any scan codes are
in the TEGL keyboard buffer.
See also
teglkeypressed

teglkeypressed

Function
Returns True if a scan code is captured; False
otherwise.

Syntax
char teglkeypressed (void);

Remarks

The scan code is added to the TEGL keyboard buffer.
See also
teglreadkey

nilkeycallproc
Function
Dummy function to use a place holder.
Syntax
char nillkeycallproc (void);
Remarks

This function always returns false.
See also
addcapturekey.

Keyboard Miscellaneous

setshiftkeys

Programmer's Reference Guide - 133 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Function
Toggles the Shift flags on/off.
Syntax
void setshiftkeys (unsigned char shiftflag,
char onoff);
Remarks

shiftflag may be one of the types as follows:

enum { sk_rightshift = 0x01 };
enum { sk_leftshift = 0x02 };
enum { sk_ctrlshift = 0x04 };
enum { sk _altshift = 0x08 };
enum { sk_scrolllock = 0x10 };
enum { sk_numlock = 0x20 };
enum { sk_capslock = 0x40 };
enum { sk_inslock = 0x80 };

onoff sets the above bits to on 1 or off 0.

Show Button Status

The tegl.c demonstration program uses the debugunt module to
display the mouse button status through a menu selection.

showbuttonstatus

Function
An Event that displays the mouse button status.
Syntax
unsigned showbuttonstatus (imagestkptr frame,
ms mouseclickptr);
Remarks

Information is displayed on the number of times the
mouse buttons have been pressed and released. Shows the
last coordinates where the mouse button was pressed and
the coordinates where the mouse button was released.

Programmer's Reference Guide - 134 - TEGL Windows Toolkit

Programmer's Reference Guide - 135 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Assembler Graphics

The fastgrph module is the engine that provides the speed that is seen
in the TEGL Windows Toolkit. Most of the graphics tools are written in
assembler, with some of the noncritical support routines written in

C.

Setting Video Modes

The following Types and Consts relate to detecting and selecting wvideo
modes.

The VidID type is passed as a parameter to VideoID to determine the
graphics equipment available.

struct vidid =
unsigned videoOtype;
unsigned displayOtype;
unsigned videoltype;
unsigned displayltype;

’

The graphics adaptor card detected is returned in the VideoOType field.
Here are a list of the Constants and values and whether they are
currently supported by the toolkit.

TG_MDA = $01; monochome display, not supported

TG_CGA = 502; Color graphics, supported

TG_EGA = $03; Enhanced graphics, supported

TG_MCGA = 504; Multicolor graphics array, not supported
TG_VGA = $05; Video graphics array, not supported

TG_HGC = $80; Hercules graphics, supported

TG_HGCPlus= $81; Hercules plus, supported

TG_InColor= $82; Hercules incolor, supported in 2 color mode

cga640x200x2
Function
Set the video mode to 640 x 200 in 2 colors.
Syntax
void cga640x350x2 (void);
Remarks

Programmer's Reference Guide - 136 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

This function uses initgraph to switch to
the graphics mode.
See also
ega640x350x16, herc720x348x2, svga800x600x1l6,
vga640x480x16

egab640x350x16
Function
Sets the video mode to 640 x 350 in 16 colors.
Syntax
void ega640x350x16 (void)
Remarks

This function uses initgraph to switch to
the graphics mode.
See also
cga640x350x2, herc720x348x2, svga800x600x16,
vga640x480x16

herc720x348x2
Function
Set the video mode to 720 x 350 in 2 colors.
Syntax
void herc720x348x2 (void);
Remarks

This function uses initgraph to switch to
the graphics mode.
See also
cga640x350x2, egab640x350x16, svga800x600x16,
vga640x480x16

setvideochoices

Programmer's Reference Guide - 137 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Function

Sets the allowable video modes.
Syntax

setvideochoices (unsigned vmode, char accept);
Remarks

By default all video modes are acceptable. Certain
programs may not support all video modes.

See also
videoid, videoautodetect.

Example
This statement would cause the program to abort if
it were run on a machine which only supported CGA
graphics.

setvideochoices (TG_CGA, FALSE) ;

svga800x600x16
Function
Sets the video mode to 800 x 600 in 16 colors.
Syntax
void svga800x600x16 (void);
Remarks
This function uses initgrph to switch to the
graphics mode.
Restrictions

Requires appropiate hardware support.

See also
cgab640x350x2, ega640x350x16, herc720x348x2,
vga640x480x16

vga640x480x16

Programmer's Reference Guide - 138 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Function
Sets the video mode to 640 x 480 in 16 colors.
Syntax
void vga640x480x16 (void);
Remarks
This function uses initgraph to switch to the
graphics mode.
Restrictions

Requires a VGA card and monitor.
See also
cga640x350x2, egab640x350x16, herc720x348x2,
svga800x600x16

videoautodetect

Function
Detects the graphics equipment and switches to graphics
mode if available.

Syntax
videoautodetect;

Remarks

Selects the highest resolution that is available and
supported.

The global variable InitDriverCode can be

examinded to determine the video mode set.
See also

videoid

videoid
Function
Detects the graphics equipment available.
Syntax
videoid(strict v *vidid);
Remarks

Programmer's Reference Guide - 139 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Graphics equipment is only detected. The current
video mode is not changed.

Graphic Primitives

Turbo C offers a rich set of graphics commands, that work with almost
any video display. However, the drawback to the flexibility of Turbo
C's BGI Graphics is the speed at which the graphics are displayed.

To provide a toolset that could operate quickly, the following assembler
graphic routines were written to replace the ones offered by Turbo C.

Other then the documented restrictions you may freely mix and match
Turbo's graphic routines with TEGL's.

The following constants are defined in teglsys.h and may be assigned
to RMWBITS to define the type of binary operation between each byte
in the line and the corresponding bytes on the screen.

unsigned rmwbits;
enum { FGNORM = 0x00 };
enum { FGAND = 0x08 };
enum { FGOR = 0x10 };
enum { FGXOR = 0x18 };
enum { FGNOT = 0x80 };
fastline
Function
Draws a line from (x,y) to (x1,y2).
Syntax
void fastline (unsigned x,unsigned y,unsigned x1,
unsigned y2, unsigned n);
Remarks

sets the global variable rmwbits to the
appropriate mode for drawing the line.

X,y specifies the line starting coordinates.

Programmer's Reference Guide - 140 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics
x1,yl specifies the line ending coordinates.
n specifies the color of the line.
Fastline will only draw a continuous line.

setlinestyle, setcolor and setwritemode has no
effect on fastline.

putpixs
Function
Plots a pixel.
Syntax
void putpixs (unsigned x, unsigned y, unsigned n);
Remarks

See also

Plots a point in the color defined by n at (x,vy).

Set the global variable rmwbits to the appropriate
mode for plotting the pixel.

Putpixs replaces the PutPixel routine in Graphics.h.

getpixs

getpixs
Function
Return the pixel value at x,vy.
Syntax
unsigned getpixs (unsigned x,unsigned vy)
Remarks

See also

Gets the pixel color at (x,Vy).

getpixs replaces the getpixel routine in
graphics.h.

putpixs

Programmer's Reference Guide - 141 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

getbiti
Function
Copies the specified screen image into a buffer.
Syntax
void Getbiti (unsigned x, unsigned y, unsigned x1,
unsigned yl, void *buffer)
Remarks
Xx,y,x1,yl defines a rectangular region on the screen.
buffer is a memory area that is large enough to
hold the resulting image.
getbiti replaces the getimage routine in
graphics.h. By using cgetmem with
bigimagesize, Getbiti will allow saving of images
larger than 64k.
Restrictons

The saved image structure of getbiti and
putbiti is different than what getimage and
putimage use.

See also
putbiti, bigimagesize

putbiti
Function
Copies the buffer to the specified screen area.
Syntax
void putbiti (unsigned x, unsigned y, void *buffer,
unsigned rmwbits)
Remarks

x,y defines the upper left corner of the screen
area for placing the saved image.

buffer is the image buffer that contains a copy of
the screen image saved previously by getbiti.

Programmer's Reference Guide - 142 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

rmwbits defines the type of binary operation
between the saved image and the corresponding bytes on
the screen.

putbiti replaces the putimage routine in
graphics.h by using cgetmem with
bigimagesize, putbiti will allow the saving and
restoring of images larger then 64k.
Restrictons
The saved image structure of getbiti and
putbiti is different than what GetImage and
PutImage use.
See also
getbiti, bigimagesize

bigimagesize
Function
Calculates the size of the image buffer.
Syntax
unsigned long bigimagesize (unsigned x, unsigned vy,
unsigned x1, unsigned yl);
Remarks

x,y,x1,yl defines the rectangular coordinates that
will be used for getbiti.

bigimagesize replaces the BGI imagesize
routine. By using cgetmem with bigimagesize,
image buffers may be larger then 64k.

See also
getbiti, putbiti

setapage

Function
Sets the active page for graphics output.
Syntax

Programmer's Reference Guide - 143 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

void setapage (unsigned pagenum) ;

Remarks
Makes pagenum the active graphics page. All output,
including those from the BGI's graphics routines,
will be directed to pagenum.

Only two pages are supported with the EGA's
640 x 350 x 16 mode.

See also
setvpage, flipapage, flipvpage, videopage

setvpage
Function

Sets the visual graphics page number.
Syntax

void setvpage (unsigned pagenum) ;
Remarks

Makes pagenum the visual graphics page. All output,
including that from the BGI routines, will still be
directed to the active pagenum.

Only two pages are supported with the EGA's
640 x 350 x 16 mode.

See also
setapage, flipapage, flipvpage, videopage

flipapage
Function
Flips the active page to the alternate page.
Syntax
void FlipAPage (void);
Remarks

Makes the alternate page the active graphics page. All
output, including that from the BGI routines, will be
directed to the new active page.

Programmer's Reference Guide - 144 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Only two pages are supported with the EGA's 640 x 350 x
16 mode. If the current active page is (1),

FlipAPage will set the active page to (2). The reverse
is true, if the current active page is (2).

flipapage does not have an equivalent in the BGI.
See also

setapage, setvpage, flipvpage, videopage

flipvpage
Function
Flips the visual page to the alternate page.
Syntax
void flipvpage (void)
Remarks

Makes the alternate page the visual graphics page.

Only two pages are supported with EGA's 640 x 350 x 16.
If the current visual page is (1), flipvpage will

set the visual page to (2). The reverse is true, if the
current visual page is (2).

flipvpage does not have an equivalent in the BGI.
See also

setapage, setvpage, flipapage, videopage

videopage
Function

Returns the current Visual page.
Syntax

unsigned VideoPage (void);
Remarks

Returns the current visual graphics page.
Only two pages are supported with the EGA's

Programmer's Reference Guide - 145 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics
640 x 350 x 16 mode.

videopage does not have an equivalent in the BGI.
See also
setapage, setvpage, flipapage, flipvpage

New Graphic Primitives

The TEGL Windows Tookit's ability to display fast graphics is, in a way,
just the tip of the iceberg. The following routines provide functions to
extract and overlay buffered images before displaying the final results on
the screen.

Some of these routines may be used to create a virtual image (an image
larger then the size of the screen). The only limitation at this time is
the need for graphic primitives that will draw to a buffered image.

extractpixs

Function
Return the pixel value at x,y within an image
buffer.

Syntax
unsigned extractpixs (unsigned x, unsigned vy,

void *buffer)

Remarks
Gets the pixel color at (x,y) within the saved
image buffer.

extractimg

Function
Extract an image area from a buffer.
xX,y,x1,yl from buff2
to buffl.

Syntax

Programmer's Reference Guide - l46 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

void extractimg(unsigned x, unsigned y, unsigned x1,
unsigned yl, void *buffl, void *buff2);
Remarks
Extracts the image defined by x, y, x1, yl from
buff2 and places it in buffl.
See also
overlayimg, putbiti, getbiti

overlayimg
Function
Overlays buffered image.
Syntax
void overlayimg(unsigned x, unsigned vy,
void *buffl, void *buff2);
Remarks

Overlays an image in buffl to buff2 at
x,y offsets.

See also
ExtractIMG, PutBiti, GetBiti

swapbytes
Function
Swaps two buffers.
Syntax
void swapbytes (void *buffl, void *buff2,
long bytestoswap);
Remarks

Swaps the images within buffl with buff2.
Graphic Derivatives
The following are some fast common routines to create XOR boxes that

can be erased simply by calling the routine again.

Programmer's Reference Guide - 147 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

XORing pixels to the screen has the unique feature that when the same
pixel is XORed to the same location a second time the pixel is restored to
it's original look.

The XOR box routines here allow boxes to flit and dance across the screen
without (if used correctly) changing any of the underlying display.

xorcornerbox
Function

Creates box corners only.
Syntax

void xorcornerbox (int x, int y, int x1, int y1,

int color);

Remarks

x,y,x1,yl are the coordinates of a rectangle.

This routine is used in ziptobox and zipfrombox

to create the shrinking and expanding corner images.
xorbox
Function

Draws a (xor) rectangle.
Syntax

void xorbox (int x, int y, int x1, int y1l, int color);
Remarks

(x,y) define the upper left corner of a rectangle,
and (x1,vy1l) define the lower right corner.
Coordinates must be within the physical screen.
This routine i1s used in moveframe to move an (xXor)
box image around.

Icon Graphics

Programmer's Reference Guide - 148 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

putpict
Function
Puts an icon to a specified screen area.
Syntax
void putpict (unsigned x, unsigned vy,
unsigned char *buf, unsigned n);
Remarks

x,y defines the upper left corner of the screen
area for placing the icon image.

buf points to the icon image.

n is the default color for any pixel that is
black within the icon.

See also
pictsize, icon editor.

pictsize
Function
Gets the width and height in pixels of an icon image.
Syntax
void pictsize(unsigned *width, unsigned *height,
unsigned char *buffer);
Remarks

buffer must point to a valid icon image.
See also
putpict, icon editor.

abort_msg

Function
Closes the graphics system and displays the message
string.

Programmer's Reference Guide - 149 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Syntax
void abort_msg(char *msqg);

Remarks
This routine is defined in fastgrph because of the
need for closing the graphics system and returning to
text mode before the message can be displayed.

Programmer's Reference Guide - 150 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Special Effects

The TEGLGrph unit has a nice collection of graphic effects that may
be used to create 3D characters, shadow boxes, long icon buttons, etc..

These routines may be combined with the BGI fonts and graphics for even
more effects.

We suggest that if you build other graphic effects they should support a
standard parameter list. Specifically coordinates should be ordered

X, y, x1, y where x, y are the upper left coordinates and

x1, yl are the lower right coordinates of an area on the screen.

Screen Backdrop
The backdrop is normally the full physical screen filled with a color and
pattern to give the effect of a mat. On this mat we place icons and open

up windows. It's like the velvet mat a Jeweler uses to show off gem stones.

The backdrop does not require a window frame to draw on.

clearteglscreen
Function
Clears the screen to the backdrop pattern.
Syntax
void clearteglscreen (void);
Remarks
Fills the complete screen using the bitmask found in
teglbackpattern or teglfillstyle with the
background color of teglbackcolor. Completes the
clearing by placing a border if teglbordershow is
TRUE in the color of teglbordercolor.
The default is a gray matted area with white borders.
Restrictions

Must be in Graphics mode.

See also
setteglbordershow, setteglbackcolor,
setteglbordercolor, setteglfillpattern,
setteglfillstyle

Example

Programmer's Reference Guide - 151 - TEGL Windows Toolkit

Chapter 8 - Special Effects

ega640x350x16(); /* —-- sets the graphics mode */
setmouseminmax (0, 0, getmaxx () , getmaxy ()) ;

clearteglscreen();

setteglbordershow
Function
Sets the switch on whether a border should be drawn or
not drawn after the bar fill.
Syntax
Macro
void setteglbordershow(char bordershow) ;
Remarks
Switches the border on=TRUE or off=FALSE when
teglclearscreen is called.
The default is on TRUE.
Restrictions

Must be called before calling teglclearscreen.
See also
teglclearscreen, setteglbackcolor,
setteglbordercolor, setteglfillpattern,
setteglfillstyle
Example

setteglbordershow (FALSE) ;
clearteglscreen{();

setteglbackcolor

Programmer's Reference Guide - 152 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Function
Sets the color of the backdrop.
Syntax
Macro
void setteglbackcolor (unsigned backcolor);
Remarks
Sets the background color for the backdrop to
backcolor.
The default is WHITE.
Restrictions

Must be called before calling teglclearscreen.
See also
teglclearscreen, setteglbordershow,
setteglbordercolor, setteglfillpattern,
setteglfillstyle
Example

setteglbackcolor (GREEN) ;
clearteglscreen();

setteglbordercolor

Function
Sets the border color of the backdrop.
Syntax
Macro
void setteglbordercolor (unsigned bordercolor);
Remarks
Sets the border color for the backdrop to
bordercolor.
The default is WHITE.
Restrictions

Must be called before calling teglclearscreen.
See also
teglclearscreen, setteglbordershow,
setteglbackcolor, setteglfillpattern, setteglfillstyle

Example

Programmer's Reference Guide - 153 - TEGL Windows Toolkit

Chapter 8 - Special Effects

setteglbordercolor (BROWN) ;
clearteglscreen{();

setteglfillpattern procedure TEGLGRPH
Function

Sets the Fill pattern for the backdrop.
Syntax

Macro

void setteglfillpattern(unsigned char backpattern);
Remarks

Sets the fill pattern for the backdrop to
backpattern.

unsigned char teglbackpattern[9] =
{0xAA, 0x55, O0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55};

Restrictions

Must be called befor calling teglclearscreen
to have effect.
See also
teglclearscreen, setteglbordershow,
setteglbackcolor, setteglbordercolor, setteglfillstyle

setteglfillstyle

Function

Sets the Fill style for the backdrop.
Syntax

Programmer's Reference Guide - 154 - TEGL Windows Toolkit

Remarks

Restrictions

See also

Example

Chapter 8 - Special Effects

Macro
void setteglfillstyle(unsigned pattern);

Sets the fill style to pattern.
Use one of the predefined fill styles from Graphics.h.

Setting the fill style cancels the user defined
pattern.

Must be called before calling teglclearscreen.
teglclearscreen, setteglbordershow,

setteglbackcolor, setteglbordercolor,
setteglfillpattern

setteglfillpattern (SOLID_FILL);
clearteglscreen();

Creating Shadow Boxes

A shadow box is a simple rectangular that has a shadow edge to give a
3-dimensional effect. A shadow box is the quickest method to clear a
window after pushimage.

shadowbox
Function
Creates a 3-D type box at the rectangular area defined
by %, y, x1, yl.
Syntax
void shadowbox (unsigned x, unsigned vy,
unsigned x1, unsigned yl);
Remarks

X, y, x1, yl defines the rectangular area for the
shadowbox.

The default bar SOLID fill color is
WHITE with BLACK borders and BLACK shadow.

Programmer's Reference Guide - 155 - TEGL Windows Toolkit

Chapter 8 - Special Effects

See also
setshadowcolor, setshadowbordercolor,

setshadowfillpattern, setshadowfillstyle
Example

pushimage (100,100,200, 200) ;
shadowbox (100,100,200, 200) ;

shadowboxtext

Function
Outputs a text string within a shadowbox.

Syntax
void shadowboxtext (unsigned x, unsigned y, unsigned txtlen,

char *textstr);

See also
shadowbox

Example

shadowboxtext (100,100,200, "Tegl systems corporation");

setshadowcolor
Function
Sets the bar fill color.
Syntax
Macro
void setshadowcolor (unsigned bcolor);
Remarks

bcolor defines the shadowbox color.
The default bar fill color is WHITE.

Programmer's Reference Guide - 156 - TEGL Windows Toolkit

Chapter 8 - Special Effects

See also
shadowbox, setshadowbordercolor,
setshadowfillpattern, setshadowfillstyle

Example

pushimage (100,100,200, 200) ;
setshadowcolor (RED) ;
shadowbox (100,100,200, 200) ;

setshadowbordercolor

Function

Sets the shadowbox border color.
Syntax

Macro

void setshadowbordercolor (unsigned bcolor);
Remarks

bcolor defines the shadowbox border color.

The default border color is BLACK.

See also
shadowbox, setshadowcolor, setshadowfillpattern,
setshadowfillstyle

Example

pushimage (100,100,200, 200) ;
setshadowbordercolor (LIGHTGRAY) ;
shadowbox (100,100,200, 200) ;

setshadowfillpattern

Programmer's Reference Guide - 157 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Function

Sets the bar fill pattern for ShadowBox.
Syntax

Macro

void setshadowfillpattern(unsigned char backpattern);
Remarks

The default fill pattern is SOLIDFILL which is
defined in graphics.h.

See also

shadowbox, setshadowcolor,
setshadowbordercolor, setshadowfillstyle

Example

unsigned char myshadowpattern[9] =
{0xAA, 0x55, O0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55};

pushimage (100,100,200, 200) ;
setshadowfillpattern (myshadowpattern) ;
shadowbox (100,100,200, 200) ;

setshadowfillstyle
Function

Sets the bar fill style for shadowbox.
Syntax

Macro

void setshadowfillstyle(unsigned pattern);
Remarks

pattern is of one of the predefined type in
graphics.h.

The default fill style is SOLID_FILL.

See also

shadowbox, setshadowcolor, setshadowbordercolor,
setshadowfillpattern

Example

pushimage (100,100,200, 200) ;

Programmer's Reference Guide - 158 - TEGL Windows Toolkit

Chapter 8 - Special Effects

setshadowfillstyle (LINE_FILL);
shadowbox (100,100,200, 200) ;

Creating Shadow Text

Shadow text enhances the normal BGI fonts by writing the text string
several times with a slight shift of the x,y coordinates on each write.

This simple method provides a 3-D quality to any BGI or TEGL font.

shadowtext
Function
Displays a shadowed textstr at (x,vy).
Syntax
void shadowtext (unsigned x,unsigned vy,
unsigned color, char *textstr);
Remarks

X,y specifies the coordinates for displaying the
textstr.

color specifies the color of the textstr.

shadowtext is affected by settextstyle,
settextjustify and setusercharsize in
graphics.h.
See also
setshadowtexttype, setshadowtextshadow,
setshadowtexthighlight, shadowtexthighlightoff
Example

shadowtext (100,100, LIGHTCYAN, "TEGL systems corporation");

Programmer's Reference Guide - 159 - TEGL Windows Toolkit

Chapter 8 - Special Effects

setshadowtexttype
Function
Sets the shadow text font type.
Syntax
Macro
void setshadowtexttype (fontptr texttype);
Remarks

texttype is a pointer to one of the TEGL fonts. If
texttype is set to NULL, shadowtext uses
outtextxy in the graphics.h.
See also
shadowtext, setshadowtextshadow,
setshadowtexthighlight, shadowtexthighlightoff
Example

setshadowtexttype (script) ;
shadowtext (100,100, LIGHTCYAN, "TEGL systems corporation");

setshadowtext shadow

Function

Sets the shadow color for ShadowText.
Syntax

Macro

void setshadowtextshadow (insigned color);
Remarks

color is the shadow color when displaying the
shadowed text.

The default shadow color is BLACK.
See also
shadowtext, setshadowtexttype,

setshadowtexthighlight, shadowtexthighlightoff
Example

setshadowtextshadow (LIGHTGRAY) ;

Programmer's Reference Guide - 160 - TEGL Windows Toolkit

Chapter 8 - Special Effects

shadowtext (100,100, LIGHTCYAN, "TEGL systems corporation");

setshadowtexthighlight

Function

Sets the highlighted color for shadowtext.
Syntax

Macro

void setshadowtexthighlight (insigned color);
Remarks

color is the highlighted color when displaying the
shadowed text. Sormally, shadowtext toggles the
high bit of color to achieve the different
shadings.

See also
shadowtext, setshadowtexttype,

setshadowtextshadow, shadowtexthighlightoff
Example

setshadowtexthighlight (BLUE) ;
shadowtext (100,100, LIGHTCYAN, "TEGL systems corporation");

shadowtexthighlightoff

Function
Resets the highlight color set by
setshadowtexthighlight.
Syntax
void shadowtexthighlightoff (void);
Remarks

Switches off the highlight color set by
setshadowtexthighlight.
See also

Programmer's Reference Guide - 161 - TEGL Windows Toolkit

Chapter 8 - Special Effects

shadowtext, setshadowtexttype,
setshadowtextshadow, setshadowtexthighlight
Example

setshadowtexthighlight (BLUE

shadowtext (100,100, LIGHTCYAN "TEGL systems corporation");
shadowtexthighlightoff ()

shadowtext (100,120, LIGHTCYAN, "TEGL systems corporation");

Other text effects

extendtextxy
Function
Makes embossed text.
Syntax
void extendtextxy (unsigned x, unsigned y, char *sg);
Restrictions
Does not work with BGI fonts.
Example

imagestkptr ifs;

quickframe (ifs,100,100,300,150);
outtegltextxy (105,105, "normal text");
extendtextxy (105,125, "embossed text");

shifttextxy

Function
Writes text with a leading white edge.
Syntax

Programmer's Reference Guide - 162 - TEGL Windows Toolkit

Restrictions

Remarks

Example

imagestkptr ifs;

Chapter 8 - Special Effects
void shifttextxy(unsigned x, unsigned y, char *s);
Does not work with BGI fonts.

x and y are absolute screen coordinates, s
is the string to display.

setshadowcolor (LIGHTGRAY) ;

quickframe (ifs,100,100,300,150);
outtegltextxy (105,105, "normal text");
shifttextxy (105,125, "shifted text");

Buttons

definebuttonclick

Function

Syntax

Remarks

Example

Displays an icon, sets mouse click area and attaches
to an Event.

definebuttonclick (imagestkptr ifs, unsigned x,
unsigned y, char *button, callproc p);

Ifs is the frame the icon is placed on. Button can
be any icon image. p is the event to pass control to
when the icon is clicked on.

p can be set to collapsetoiconshow or

it

collapsetomsclick if the button is for closing a frame.

definebuttonclick (ifs, 150,200, &imageock,collapsetoiconshow) ;

Programmer's Reference Guide - 163 - TEGL Windows Toolkit

Chapter 8 - Special Effects

definelongbuttonclick

Function

Syntax

Remarks

Example

Displays a long button with text, sets mouse click area,
and attaches it to an event.

void definelongbuttonclick (imagestkptr ifs unsigned x,
unsigned y, unsigned 1ln, char *msg, callproc p);

ifs is the frame the button is placed on. x,y are the
coordinates to place the button at. 1ln is the length of
the message in pixels (depends on currently selected
font) and msg is the text to place inside the button.
p is the event to activate when the button is clicked on.

definelongbuttonclick (ifs,100,150,35,"Quit", collapsetomsclick);

defineuserbuttonclick

Function

Syntax

Remarks

Restrictons

Displays a button with text, sets mouse click area, and
attaches it to an event.

void defineuserbuttonclick(imagestkptr ifs, unsigned x,
unsigned y, char *msg, callproc p);

ifs is the frame the button is placed on. X,y are
the coordinates to place the button at and msg is
the text to place inside the button. p is the
event to activate when the button is clicked on.

msg cannot be more than about 4 characters. This is
dependant on the currently selected font.

Programmer's Reference Guide - 164 - TEGL Windows Toolkit

Example

Chapter 8 - Special Effects

defineuserbuttonclick (ifs, 100,150, "Quit", collapsetomsclick);

putuserbuttonclick

Function

Syntax

Restrictions

Remarks

Explosions

Draws a button at the coordinates with a message.

void putuserbuttonclick (imagestkptr ifs, unsigned x,
unsigned y, char *msqg);

msg cannot be more than about 4 charcters, depends
upon the currently selected font.

This routine just displays a button, no mouse click
area 1is defined.

collapsetoiconshow

Function

Syntax

Restrictions

Remarks

Collapse a frame and restore the icon it came from.

unsigned collapsetoiconshow (imagestkptr ifs,
msclickptr ms);

Should only be attached to a frame created after a call
to explodefromiconhide.

After opening a frame from a explodefromiconhide, this
Event can be attached to a button within the frame. When

Programmer's Reference Guide - 165 - TEGL Windows Toolkit

Chapter 8 - Special Effects

this button is clicked on, the frame will collapse and zip
to the original icon location and restore the icon.

See also
explodefromiconhide, definebuttonclick.

collapsetomsclick

Function
Collapse a frame and zip back to the original mouse click
position.
Syntax
unsigned collapsetomsclick (imagestkptr ifs,
msclickptr ms);
Restrictions
Should only be attacted to a frame created after a call
to explodefrommsclick.
Remarks

After opening a frame from a explodefrommsclick, this
Event can be attached to a button within the frame. When
this button is clicked on, the frame will collapse and zip
to the original defined mouse click area.

See also
explodefrommsclick, definebuttonclick.

explodefromiconhide

Function
Hides the icon, zips and opens a new frame.
Syntax
void explodefromiconhide (imagestkptr : ifs,
mouseclickptr ms, unsigned x, unsigned vy,
unsiigned x1, unsigned yl);
Restrictions
The icon exploded from must be in a frame of its own
for this to look right.
Remarks

ifs and ms are the parameters passed to an event.
Xx,y,x1,yl are the coordinates where a new frame is

Programmer's Reference Guide - 166 - TEGL Windows Toolkit

See also

Chapter 8 - Special Effects
to be opened. After a call to this procedure a new frame is
created. Save the global variable stackptr if you wish to

manipulate the new frame.

collapsetoiconshow, definebuttonclick.

explodefrommsclick

Function

Syntax

Remarks

See also

Zips from a mouse click location to a new frame
position.

void explodefrommsclick (imagestkptr ifs,
mouseclickpos ms, unsigned x, unsigned vy,
unsigned x1, unsigned yl);

ifs and ms are the parameters passed to an event.

Xx,y,x1,yl are the coordinates where a new frame is

to be opened. After a call to this procedure a new frame is
created. Save the global variable stackptr if you wish to
manipulate the new frame.

collapsetomsclick, defineuserbuttonclick.

Moving and Transforming XOR Boxes

movebox
Function
Moves a (XOR) wire frame from x, y to ax, ay.
Syntax
void movebox (int ax, int ay, int x, int vy,
int x1, int yl);
Remarks

x, y, x1, yl specify the coordinates of the
starting (XOR) wire frame.

Programmer's Reference Guide - 167 - TEGL Windows Toolkit

See also

Example

Chapter 8 - Special Effects

ax, ay are the upper left coordinates of the
ending position of the (XOR) wire frame.

The box movement is divided into 6 steps which is added
or subtracted from the originating position until it
reaches the destination.

The global variable zipduration may be changed to
set the delay between each movement step.

xorbox, xorcornerbox, ziptobox, zipfrombox

A wire frame box 50(w) x 50(h) is moveed from 100,100
to 500,280.

movebox (500, 280,100,100,150,150) ;

ziptobox
Function
Creates a moving and expanding (XOR) wire frame from
ax, ay, axl, ayl to x, y, x1, yl.
Syntax
void ziptobox(int ax, int ay, int axl, int ayl,
int x, int y, int x1, int y1);
Remarks

ax, ay, axl, ayl specifies the rectangular
coordinates of the starting (XOR) wire frame.

X, y, x1, yl specifies the rectangular coordinates
of the ending (XOR) wire frame.

The box is moved from (ax,ay) to (x,y) using

MoveBox before the box is transformed (expanded).

The transformation is divided into 6 steps which is
added or subtracted from (ax,ay,axl,ayl) until the size
equals (x,y,x1,yl).

The global variable zipduration may be changed to
set the delay between each movement step.

Programmer's Reference Guide - 168 - TEGL Windows Toolkit

See also

Example

ziptobox (100,100,

Chapter 8 - Special Effects

xorbox, xorcornerbox, movebox, zipfrombox
A wire frame box 50(w) x 50(h) at (100,100) will be

visually moved and expanded to a box 100(w) x 100(h) at
400, 200.

150,150,400,100,500,200);

zipfrombox

Function
Creates a shrinking and moving (XOR) wire frame from
x, y, x1, yl to ax, ay, axl, ayl.

Syntax
void zipfrombox (int ax, int ay, int axl, int ayl,

int x, int y, int x1, int y1);
Remarks

See also

Example

X, y, x1, yl specifies the rectangular coordinates
of the starting (XOR) wire frame.

ax, ay, axl, ayl specifies the rectangular
coordinates of the ending (XOR) wire frame.

The box is transformed by dividing the transformation
steps into 6 steps which is added or subtracted from (x,
y,x1,y1l) until the size equals (ax,ay,axl,ayl). The box
is then moved from (x,y) to (ax,ay) using MoveBox.

The global variable zipduration may be changed to
set the delay between each movement step.

xorbox, xorcornerbox, movebox, zipfrombox
A wire frame box 100(w) x 100(h) at (x=400,y=200) will

be visually shrunk and moved to a box 50(w) x 50(h) at
(x=100,y=100) .

zipfrombox(100,100,150,150,400,100,500,200) ;

Programmer's Reference Guide - 169 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Icon Button

drawlongbutton
Function
Creates an icon button of size 1n at (x,Vy).
Syntax
void drawlongbutton(unsigned x, unsigned vy,
unsigned 1ln);
Remarks
X,y specifies the coordinates for the icon button.
1n specifies the length of the icon button in
pixels.
Example

unsigned x, Vy;

x = 100; yv = 100;

drawlongbutton (x,y,200);

setteglfont (fontl4);

setcolor (WHITE) ;

outtegltextxy (x+15,y+1, "TEGL Systems Corporation");

Programmer's Reference Guide - 170 - TEGL Windows Toolkit

Chapter 9 - Writing Events

Writing Events

All Event-handlers must use the following header definition.

unsigned myevents (imagestkptr frame, msclickptr mouseclickpos);

This is the declaration of a callproc. It is a far call, you must
compile in the large memory model.

Mouse Awareness

findframe
Function
Searches through the Frame stack for the first frame
that overlaps the coordinates passed as a parameter.
Syntax

imagestkptr findframe (unsigned mxpos,
unsigned mypos);
Result type
Pointer.
Remarks
Returns a imagestkptr if the parameters overlap
one of the frames, otherwise returns NULL for no match.

findframe is used by the teglsupervisor, but is
provided as an external function to allow for
specialize routines that may be used to replace the
teglsupervisor.

Restrictions
findframe starts the scan from the top of the stack,
thereby returning the first frame found that overlaps
the parameters.

See also
checkmouseclickpos

Example
The following example creates 250 random boxes and
monitors the position of the mouse pointer to see if it
overlaps one of the boxes. The timer tick routine is

Programmer's Reference Guide - 171 - TEGL Windows Toolkit

Chapter 9 - Writing Events

used to blink the overlapped box, once every second.

checkmouseclickpos

Function
Compares all Mouse click defines within a frame, for a
match with the current mouse coordinates.

Syntax
msclickptr checkmouseclickpos (imagestkptr frame,

unsigned mxpos, unsigned mypos);

Result type
Pointer.

Remarks
Returns a msclickptr type if mouse coordinates
matches one of the mouse click defines, otherwise
returns NULL for no match.

checkmouseclickpos is normally an internal function,
used by the teglsupervisor. The mouse click position
information is normally provided as the second
parameter of an event, whenever an event is called.

However, checkmouseclickpos may be used to rewrite the
teglsupervisor or used to determine if the mouse click
position has changed.

Restrictions
findframe should be used first, to check if another
frame is overlapping the current frame, before using
checkmouseclickpos.

See also
definemouseclickptr, resetmouseclicks,
findmouseclickptr, resetmsclicksense,
resetmsclickcallproc, resetmsclickactive

Example
The following example defines an array of 100 Mouse
click areas which uses checkmouseclickpos to establish
the mouse location within the frame.

Programmer's Reference Guide - 172 - TEGL Windows Toolkit

Chapter 9 - Writing Events

checkformouseselect

Function

Syntax

Result type

Remarks

Restrictions

See also

Example

Programmer's Refer

Checks if one of the mouse click areas within a frame
has been selected.

msclickptr checkformouseselect (imagestkptr frame)

Returns the Mouse Click Pointer if mouse button was
released while the mouse cursor overlaps a button icon.

This function may be used when only the Frame is known
and the program is waiting for the user to click on one
of a series of unknown icons.

checkformouseselect may be used within an event to wait
on a multiple button type icon replies from the user.

If pressbuttonflag is true, then visualbuttonpress is
called to simulate the pressing of a button icon.

If pressbuttonflag is true, the restrictions for
visualbuttonpress should be followed. If the icon does
not have a black fringe, set pressbuttonflag to false.

pressbutton, visualbuttonpress
The following example creates (8) button type icons,
which calls up a window that displays two choices,

Cancel or OK. The event waits until one of the
choices are made before returning to teglsupervisor.

ence Guide - 173 - TEGL Windows Toolkit

Chapter 9 - Writing Events

Special Effects

pressbutton

Function
Simulates the pressing of a button type icon. The
actual routine simply shifts the icon down and to the
right by two pixels.

Syntax
void pressbutton (imagestkptr fs, msclickptr mouseopt);

Remarks
This function is used mainly by visualbuttonpress to
simulate the action of a electronic button switch.
pressbutton may be used to create the illusion of a
button left in the down position.

Restrictions

You are required to redraw the button if you need the
button in the up position.

This routine only works with icons that have a black
fringe of two pixels wide on the right and bottom of
the icon. The defined mouse click area should not
include this shadow area ie. x1 and yl is less two
pixels.

See also
visualbuttonpress, checkformouseselect

Example
The following example creates (8) button type icons and
toggles the buttons on/off whenever the icon is clicked
upon.

visualbuttonpress

Programmer's Reference Guide - 174 - TEGL Windows Toolkit

Chapter 9 - Writing Events

Function
Performs the pressing and releasing of a button type
icon, controlled by the holding down of the left mouse
button. Returns when either the user releases the left
mouse button or the mouse cursor wanders off the
defined mouse click area.

Syntax

char visualbuttonpress (imagestkptr frame,
msclickptr mouseopt);

Result type
Returns true i1if mouse button was released while the
mouse cursor overlaps with the button icon.

Remarks
This function may be used whenever the Frame and the
Mouse Click Option is known. If the program is waiting
for the user to click on one of a series of unknown
icons, use checkformouseselect to do an automatic frame
and Mouse click Option search.

visualbuttonpress is excellent as an entry routine for
an event, since the frame and mouse click position are
known.

Restrictions
This routine only works with icons that has a black
fringe of two pixels wide on the right and bottom of
the icon. The defined mouse click area should not
include this shadow area ie. x1 and yl is less two
pixels.

See also
pressbutton, checkformouseselect

Example
The following example creates (8) button type icons,
allowing the mouse cursor to glide over (while the
buttons simulates the on/off motions). A series of
beeps are sounded when the mouse button is released
with the mouse cursor is on a button.

Programmer's Reference Guide - 175 - TEGL Windows Toolkit

Chapter 9 - Writing Events

Programmer's Reference Guide - 176 - TEGL Windows Toolkit

Chapter 10 - Animation

Animation

The Animation unit provides the tools to animate a series of icons.
Combined with the Icon Editor, an event can come to life.

Animation in its simplest form is the sequential display of frames. A
frame in the sense of the animator is a single still image that is
displayed. By linking a series of frames, animation is achieved by
displaying each frame in sequence.

Animation is as simple as declaring a object, initializing the object,
then animating the object.

As an example:

animateobject bounceicon;
resetframe (&bounceicon, 1) ;
animateinit ();

origin (&bounceicon, 604, wy) ;
animate (&bounceicon, 8) ;

Animation Overview

Animating a series of icons is relatively easy with the functions in the
animate module. The hardest part is creating the series of icons and
coordinating the movement differences between them.

The first step is to declare an variable of animateobject. Here

bounceicon is declared as the type animateobject.

animateobject bounceicon;

The variable bounceicon must be initialized before we can
begin adding frame sequences. To initialize bounceicon,
use the function init.

init (&bounceicon) ;

Programmer's Reference Guide - 177 - TEGL Windows Toolkit

Chapter 10 - Animation

The next step is to add an icon frame to it. The function addframe

adds an icon frame sequence to a animateobject. The parameters are

from left to right; the icon constant, defined in TEGLIcon Unit; (-15,

0) the horizontal and vertical travel offset, respectively, on completion
of this frame sequence; (14,37) the height and width of the icon; (10) the
duration in (milliseconds) before progressing to the next sequence; (0,0)
the sound in hertz, and duration; (black) the color replacement for any
black pixels in the icon. In this case, black replaces black.

addframe (&bounceicon, imageBLANKBUT, -15,0,14,37,10,0,0,black);

An object can have a number of different frame sequences. In our example,
we need two sequences; a sequence for animating from the right side of the
screen to the left side and a sequence for animating from the left to the

right. Thus we will label the above frame as Sequence 1. The labels

are arbitrary numbers ranging from 0 to 65535. However, you must use this

label to switch to the appropriate sequence when the frames are animated.

sequence (&bounceicon, 1) ;

Use the function resetsequence to reset the counters within the

object before creating the second sequence. We then assign the second
sequence the arbitrary number of 2. The only difference between this
addframe and the last addframe is the horizontal travel offset.
Instead of -15, the value is positive, adding to the x coordinate.

resetsequence (&bounceicon) ;
addframe (&bounceicon, imageBLANKBUT, 15,0,14,37,10,0,0,black);
sequence (&bounceicon, 2) ;

The function animateinit, replicates the first screen to the second
screen.

Programmer's Reference Guide - 178 - TEGL Windows Toolkit

Chapter 10 - Animation

animateinit (&bounceicon);

Set the animation origin. In our test program, we will set the icon to the
middle of the screen.

origin (&bounceicon,getmaxx div 2,getmaxy div 2);

To animate the frames, we use the function animate. animate

displays the frames until the requested frame count is reached. Since
we have only one frame to animate within each sequence, the animator
will loop using the same frame until it satisfies the requested frame
count.

However, since we are working with coordinates, we do not know how many
frames it would take to move the icon across the screen. The function
destination will perform a test run on the sequence until one of the
coordinates is satisfied and passes back a count of the frames needed to
reach the destination. Thus, we can use the method Destination with

the method animate to finally animate the icon.

sequence (&bounceicon, 1);
Animate (&bounceicon, Destination(&bounceicon, 36, 0));

Animating from left to right.

sequence (&bounceicon, 2);
animate (&bounceicon, destination (&bounceicon, 560, 0));

Try experimenting with the example program. You can use the same icon to
add a few more frames to each sequence. Vary the travel offsets to see
the effect. However, be careful that the resulting travel distance should
reach the destination, otherwise the animator will loop forever trying to
reach a false destination. As well, the function destination provides
only an approximate count of frames to reach the destination. The actual
destination coordinate will depend on the travel offset values on each
frame added or subtracted from the origin.

Programmer's Reference Guide - 179 - TEGL Windows Toolkit

Chapter 10 - Animation

Animation Functions

origin procedure

Function
Sets the animated object's starting origin.
Syntax
void origin (animateobject *ao, unsigned ox,
unsigned oy);
Remarks

Sets where the first frame will be displayed.
See also

getorigin, destination
Example

apple animateobject;

origin (&apple, 100, 100);

getorigin
Function
Gets the animated object's current coordinates.
Syntax
void getorigin(animateobject *ao, int *lastox,
int *lastoy);
Remarks

Returns the current coordinate from where animate
will proceed from.

The origins of an animated object will change
depending on the travel offset defined in each

Programmer's Reference Guide - 180 - TEGL Windows Toolkit

Chapter 10 - Animation

animation frame.
See also

origin, destination
Example

animateobject apple;
unsigned lastx, lasty;

animate (&apple, 5);
getorigin (&apple, &lastx, &lasty);

destination

Function
Returns a count on the number of frames that is needed
for animating before the sequence gets the destination
coordinates dx,dy.

Syntax

unsigned destination (animateobject *ao, int dx, int dy);
Result type

Unsigned. Frame count.
Remarks

destination will return a count if either x

or y coordinates of the origin is less then or

greater then the destination dx,dy coordinates.

destination is only an approximation of the number
of frames required to complete the travel distance. The
actual movement is dependent on each frame and its
travel offsets.

See also
origin, getorigin

Example

animateobject apple;

animate (&apple, destination(&apple, 300, 300));

Programmer's Reference Guide - 181 - TEGL Windows Toolkit

Chapter 10 - Animation

resetframe

Function
Syntax

Remarks

See also

Example

animateobject

Resets a sequence to begin at
void resetframe (animateobject

if startframe is greater then
in the sequence, the sequence

any frame number.
*ao, unsigned startframe);

the number of frames
is set at the last frame.

startframe of 0 will reset the sequence back to

the beginning.

sequence

apple;

resetframe (&apple, 0);

animate (&apple,

5);

sequence
Function
Sets the sequence pointer.
Syntax
sequence (animateobject *ao, unsigned seqgnum) ;
Remarks

segnum is any number associated with a sequence of
frames. If the sequence number does not exist, the

Programmer's Reference Guide - 182 -

TEGL Windows Toolkit

Chapter 10 - Animation
method will assume that a new sequence will be created.

Creating a new sequence, simply records the segnum
and the start frame. So creating a sequence can occur
anytime after adding the first frame. You can continue
to add frames after sequence. Use
resetsequence to clear and start a new sequence.

See also
resetsequence, resetframe

Example

animateobject apple;

init (&apple);

addframe (&apple, imageAPPLE, mx, my, ht,wd,dl, hz,hzdl, color);
addframe (&apple, imageAPPLE, mx, my, ht,wd,dl, hz,hzdl, color);
sequence (&apple, 88);

ResetSequence (&apple) ;

addframe (&apple, imageAPPLE, mx, my, ht,wd,dl, hz,hzdl, color);
addframe (&apple, imageAPPLE, mx, my, ht,wd,dl, hz,hzdl, color);
sequence (&apple, 99) ;

sequence (&apple, 88);
animate (&apple, 5);

resetsequence

Function
Sets the internal data pointers firstframe and
currentframe to nil.

Syntax
void resetsequence (animateobject *ao);

Remarks
resetsequence will reset the internal data
pointers to nil. This will allow a new sequence to
begin.

Restrictions

Use the method sequence to save the data pointers,
otherwise all created frames will be lost.
See also

Programmer's Reference Guide - 183 - TEGL Windows Toolkit

Chapter 10 - Animation
resetsequence, resetframe
Example
animateobject apple;

init (&apple);

addframe (&apple, imageAPPLE, mx, my, ht,wd,dl, hz,hzdl, color);
addframe (&apple, imageAPPLE, mx, my, ht,wd,dl, hz,hzdl, color);

sequence (&apple, 88) ;

resetsequence (&apple);

addframe (&apple, imageAPPLE, mx, my, ht,wd,dl, hz,hzdl, color);
addframe (&apple, imageAPPLE, mx, my, ht,wd,dl, hz,hzdl, color);

sequence (&apple, 99) ;

sequence (&apple, 88) ;
animate (&apple, 5);

addframe
Function

Add a animation frame.
Syntax

void addframe (animateobject *ao, char *pp,

int mx, int my, insigned ht, unsigned wd, unsigned dy,
unsigned hz, unsigned hzdy, unsigned co);

Remarks

addframe is the icon definition pointer.

mx,my is the travel offsets that are added to the

origin after the icon is displayed.

ht,wd is the height and width of the icon. These
parameters are used to save the background image before

drawing the icon.

dy is the delay in milliseconds after
the image.

hz,hzdy is the frequency of the frame
hzdy is the duration. If the duration

Programmer's Reference Guide - 184 - TEGL

displaying

sound, and
of hzdy is

Windows Toolkit

Chapter 10 - Animation

longer then the image dy, then dy is used for
the frame and the sound is left on after the frame
ends.

co 1s the replacement color for the BLACK
color pixels defined in the icon.
Restrictions
Use the function sequence to save the data pointers,
otherwise all created frames will be lost.
See also
resetsequence, resetframe
Example

animateobject apple;
init (&apple);

addframe (&apple, imageBLANKBUT,-15,0,14,37,10,0,0,black);
animate (&apple, 5);

current framenumber

Function
Returns the current frame number.
Syntax
unsigned currentframenumber (animateocbject *ao);
Result type
Unsigned.
See also
resetframe

animateinit

Function
Replicates the first active screen page to the second
in preparation for animating.

Programmer's Reference Guide - 185 - TEGL Windows Toolkit

Chapter 10 - Animation

Syntax

vold animateinit (void)
See also

resetframe

animate
Function
Begins the Animation Sequence.
Syntax
animate (animateobject *ao, unsigned numframe) ;
Remarks
numframe is the number of frames to animate. If
the number of frames in a sequence is less then the
requested numframe, then the sequence loops to the
beginning.
Restrictions

Since animate uses two video pages, the function
animateinit must be called to replicate the first page
to the second.

See also
resetframe, destination

animatecomplete
Function
Closes the animation sequence.
Syntax
void animatecomplete (animateobject *ao);
Remarks

complete toggles the sound off and resets the
frame to the beginning.

Example Animation

Programmer's Reference Guide - 186 - TEGL Windows Toolkit

Chapter 10 - Animation

#include <stdio.h>
#include <graphics.h>
#include "teglsys.h"

animateobject bounceicon;

volid main ()

{
easytegl () ;

init (&bounceicon) ;

addframe (&bounceicon, imageBLANKBUT, -15,0,14,37,10,0, 0, BLACK) ;
sequence (&bounceicon, 1) ;

resetsequence (&bounceicon) ;
addframe (&bounceicon, imageBLANKBUT, 15,0,14,37,10,0, 0,BLACK) ;
sequence (&bounceicon, 2) ;
origin (&bounceicon,getmaxx () / 2,getmaxy () / 2);
animateinit ();
clearkeyboardbuf () ;
while (!'kbhit ())

{

sequence (&bounceicon, 1) ;

animate (&bounceicon, destination (&bounceicon, 36,0));

sequence (&bounceicon, 2) ;
animate (&bounceicon, destination (&bounceicon, 560,0));

}

teglsupervisor();

Programmer's Reference Guide - 187 - TEGL Windows Toolkit

Chapter 11 - Writing Text

Writing Text

the teglwrt module provides the tools to write to the screen using
proportional bit-mapped fonts. Unlike BGI fonts, a font may be as
small as 5 pixels high and 3 pixels wide.

Both BGI vector fonts and TEGL bit-mapped fonts may be used together.
Like the BGI outtextxy procedure, teglouttextxy is affected by

the settextjustify procedure. To turn off the proportional

print, use the procedure setproportional (FALSE) .

TEGLWrt Variables

Bit-mapped Fonts

There are 25 bit-mapped fonts available in the teglwrt module
They are:

font09 fontl4 countdwn oenglish script ocr
fraktur italic georgian apls? pc9 gaelic
litalic pc24 pc3270 m3270 egal9 future
broadway script?2 lcdfont lightl4 brdwxl19 sansxl19
wndwx19 light9

To select a font, just pass it to setteglfont.
eg. setteglfont (countdwn) .

Creating Your Own Bit-mapped Fonts
You can create and add your own fonts by modifying the assembler files
then assembling the new font to to an object file. Each bit in a byte

represents a pixel of the font.

The format of a TEGL font is:

1 byte header - indicating the height of the font.
Each character is:

1 byte - proportional font width
n bytes - defined by the 1 byte header

Programmer's Reference Guide - 188 - TEGL Windows Toolkit

Chapter 11 - Writing Text
TEGLWrt Functions and Procedures
fmttegltextxy and outtegltextxy will display characters with
underlines. To underline a character in a string, use the macros defined

in teglsys.h (A_, B_, C__ Z_), to append to your string.

The following example will underline the T in TEGL.

outtegltextxy (100,100, T_"EGL systems corporation");

fmttegltextxy
Function
Writes formatted output to the graphics screen.
Syntax
void fmttegltextxy (int x, int vy,
char *fmt [,argument . . .]);
Remarks

fmttegltextxy is affected by the justification
settings set by settextjustify and color by
setcolor.

X,y 1s the coordinates of the graphic screen.

fmt is the format string. See printf for a
complete discription on format specifications.

fonttable is a global variable which is used to
set the pointer to an internal font table.

See also
printf

outtegltextxy

Function
Writes mystr to the graphics screen at x,vy.

Programmer's Reference Guide - 189 - TEGL Windows Toolkit

Chapter 11 - Writing Text

Syntax
void outtegltextxy(int x, int y, char *mystr);
Remarks
outtegltextxy is affected by the justification
settings set by settextjustify and color by
setcolor.

X,y 1s the coordinates of the graphic screen.
mystr is the text string for output.

fonttable is a global variable which is used to
set the pointer to an internal font table.

See also
teglwrtchar

Example

settext justify (CENTER_TEXT, CENTER_TEXT) ;

setcolor (GREEN) ;

setteglfont (script);

outtegltextxy (100,100, "TEGL systems corporation");

tegltextwidth
Function
Returns the proportional width of mystr.
Syntax
int tegltextwidth (char *mystr);
Remarks
TEGLTextWidth will scan and total the exact number
of pixels mystr will occupy.
Restrictions

Any unprintable characters will not be included in the
final size.
See also

teglcharwidth, teglcharheight

Programmer's Reference Guide - 190 - TEGL Windows Toolkit

Chapter 11 - Writing Text

teglcharwidth
Function
Returns the proportional width of a character.
Syntax
int teglcharwidth (int c);
Remarks
c is the ordinal wvalue of the character.
teglcharwidth will return a value based on the
currently selected font.
Restrictions

Characters outside the 28-126 ascii code will return a
invalid size.

See also
tegltextwidth, teglcharheight

teglcharheight
Function
Returns the height of the proportional font.
Syntax
int teglcharheight (void);
Remarks

teglcharheight will return to the first byte in

the font table which is the height of the current font.
See also

tegltextwidth, teglcharwidth

teglwrtchar

Function

Writes a single character to the graphics screen.
Syntax

void teglwrtchar(int ¢, int x,int y, int color);

Programmer's Reference Guide - 191 - TEGL Windows Toolkit

Chapter 11 - Writing Text

Remarks
X,y specifies the coordinates for writing the
character.

c 1s the ascii code of the character. Valid
character range is 28-126.

color is color of the output character.
See also
teglouttextxy

setproportional

Function
Switch Proportional font on or off.

Syntax
Macro
void setproportional (char onoff);

Remarks
Default is proportional font on TRUE. If
proportional font is off FALSE, the spacing is 8
bits.

setteglfont

Function
Sets the font to use in subsequent calls to
outtegltextxy.

Syntax
void setteglfont (fontptr p);

Remarks

This procedure simply sets the fonttable variable
to point to p.

Showing ALL Fonts FONTTEST.PAS

Programmer's Reference Guide - 192 - TEGL Windows Toolkit

Chapter 11 - Writing Text

The TEGL.C demonstration program uses the fonttest module to display
all available fonts, or, individual fonts by selecting from a menu.

fontname
Function
Returns the name of a font.
Syntax
char *fontname(unsigned fontnum) ;
Remarks

See also

fontname is used to build the menu for selective
display of fonts.

showonefont, showfonts

showonefont

Function
An Event that displays a font based on
mouseclickpos->clicknumber.

Syntax

See also

unsigned showonefont (imagestkptr ifs, msclickptr ms);

FontName, ShowFonts

showfonts
Function
An Event that displays all fonts.
Syntax
unsigned showfonts (imagestkptr frame, msclickptr ms);
Remarks

Programmer's Reference Guide - 193 -

An Event that displays all the available fonts and

TEGL Windows Toolkit

Chapter 11 - Writing Text
their respective names.

See also
fontname, showonefont

Programmer's Reference Guide - 194 - TEGL Windows Toolkit

Chapter 12 - Events

Events Library

The Event's covered here span over several modules. They may be used
immediately in programming an application.

The File Selector

The file selector selectafile provides a dialogue event, that
displays the files of a directory and lets the user select one of the
existing files or enter a new file name.

The file selector dialogue box allows the user to choose any displayed file
either by clicking on the file name and then clicking on the OK button or by
clicking on the selection area and typing in the filename.

To change directories, position the mouse cursor at a directory filename
and click or click at the bar at the top of the file selector window and
type in the directory path.

selectafile will return the full file name, including the directory
prefix, for the file selected. If the Cancel button was clicked
or no file was selected, the file name returned will be a NULL.

selectafile

Function
Provides a file selection dialogue that allows a user
to choose or create a new filename.

Declaration

char selectafile(int x, int y, char *path,
char *fileselected);
Result type
Toolean. True if a file was selected. False if no file
was selected or the mouse clicked on the cancel button.

Remarks
X,y 1s the coordinates where the file selection
dialogue will be displayed.
path is the original directory path specification.
Use a global string variable to retain the last
directory path.

fileselected will contain the selected path and

Programmer's Reference Guide - 195 - TEGL Windows Toolkit

Chapter 12 - Events

filename, if the function returns True.

String Editing Dialog

The EditString procedure provides a facility for getting text input

from the user. The file selector uses this routine to get a new filename.
editstring
Function
Provides string input facility.
Declaration
void editstring(imagestkptr fs, int x, int vy,
int maxlen, char *textstr);
Remarks
fs is of the type imagestkptr, created by
pushimage.
X,y 1s the relative coordinates from the upper
left of fs where a blinking vertical bar and text
input will be displayed.
maxlen is the number of maximum number of input
characters.
textstr is the user input string.
Restrictions
String editing should be on the topmost window.
Example

char mystring[12];
pushimage (100,100,150,150);

setteglfont (fontl4);
editstring(stackptr,5,5,12, &mystring);

Mouse Sensitivity Dialogue Window
The mouse sensitivity dialogue box allows the user to change the horizontal,

Programmer's Reference Guide - 196 - TEGL Windows Toolkit

Chapter 12 - Events

vertical and threshold settings of the mouse. The dialogue box consists of
radio type buttons that can adjust the numeric counters.

setmousesense
Function
Provides a mouse sensitivity dialogue window that
allows the user to change the sensitivity setting of
the mouse.
Declaration
void setmousesense (int x, int y);
Remarks
X,y 1s the coordinates where the SetMouseSense
dialogue will be displayed.
Restrictions
The dialogue does not check if the mouse is present.
Example

unsigned askmousesense (imagestkptr frame,
msclickptr mouseclickpos);
{
setmousesense (160, 75);
return(l);

Bells & Whistles, Sound Unit

the asksoundsense dialogue window allows the user to change the duration
of the beeps and whistle settings of the sound unit. The dialogue box consists
of radio type buttons that can adjust the numeric counters.

asksoundsense

Function
A sound duration dialogue event

Programmer's Reference Guide - 197 - TEGL Windows Toolkit

Chapter 12 - Events

Syntax
unsigned asksoundsense(imagestkptr frame,
msclickptr ms);
Remarks
An event that displays a dialogue box that permits the
user to set the sound duration for beeps and whistles.
beep
Function
Toggles the sound on for a specific tone and
duration for n times.
Declaration
void beep(unsigned tone, unsigned n,
unsigned duration);
Remarks

tone specifies the frequency of the emitted sound
in hertz.

n specifies the number of times the sound it
toggle on and off.

duration specifies the length in milliseconds of
the sound.

See also
slidebeep, soundswitch

Example

beep (1000, 3,100) ;

slidebeep

Function

Programmer's Reference Guide - 198 - TEGL Windows Toolkit

Declaration

Remarks

See also

Example

Chapter 12 - Events
Performs a sliding type of sound. Whistle type.

void slidebeep (unsigned tonel, unsigned tone2,
unsigned n);

tonel specifies the initial frequency of the
emitted sound in hertz. tone2 specifies the second
frequency from which tonel steps towards.

n specifies the number of times the slide beep
occurs.

beep, soundswitch

slidebeep (1000,2000,2);

soundswitch
Function

Switches the sound function on/off.
Declaration

void soundswitch (char onoff);
Remarks

See also

onoff switches the sound on-1 or off-0.

beep, slidebeep

Programmer's Reference Guide - 199 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Virtual Memory Manager

Graphical images, by their nature, require a tremendous amount of memory
to store and manipulate. Combine this with the DOS limitation of 640k,
writing applications using a graphical environment can be limiting.

Virtual Memory is a concept by which less expensive mass storage devices
(ie. hard disk) may be used as though it were an extension of memory. Then
memory is only limited by the size of the hard disk.

The TEGL virtual memory manager may be used within your application
program independent of its use within the TEGL window manager.

In this chapter, we provide technical information for advanced
programmers. We'll cover topics such as the Virtual Memory Manager, Turbo
C's heap manager, Expanded Memory Manager, calling conventions, and

more.

malloc, calloc, free, and other Turbo C memory allocation functions
are replaced in TEGL by cgetmem and cfreemem. cgetmem

and cfreemem are available in TEGL for memory allocation within your
Turbo C functions.

When cgetmem is used, the virtual memory manager will automatically
swap any images, that is not currently active, to EMS or your hard disk, thus
freeing enough memory to fulfill your request.

Heap Management

With Window Management routines, the memory requirement is unknown. If we
were to attempt to ensure that memory is available for every window that
is created within the program, we would have an unwieldy and unjustifiably
large program. In actual fact, any modest application would require much
more memory than is available.

Rather then attempting to reserve a fixed amount of memory space, which
places a limitation on the program, the heap provides the facility of
allocating memory dynamically. The heap permits us to allocate memory only
when it is required and to release the memory when the task is completed.

The Heap Manager

When the virtual memory manager is initialized, a block of memory is
allocated from Turbo C's far heap. The default when initializing from
teglinit (), is all the remaining memory that is left when a program is
executed. If you need to reserve a part of the far heap for C library
functions (eg. file streams), that uses malloc, calloc etc. you can
use the Macro setheapmemmaxsize (maxsize) to reduce the virtually
memory manager from grabbing all of the far heap.

Programmer's Reference Guide - 200 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

The virtual memory manager is identical with Turbo C's heap manager, in its
operation of allocating from the reserved memory starting starting with the
lowest part of the heap growing upwards. The bottom of the heap is stored
in the variable heaporg. Each time a block of memory is allocated on

the heap (via cgetmem or fgetmem), the heap manage moves

heapptr upward by the size of the requested block.

The top of the heap, or the maximum size of the heap is controlled by the
variable freeptr. It does not point directly at the maximum top,
rather it points at the start of the free pointer chain.

The free pointer chain grows downward as memory blocks are freed. Adjacent
memory blocks are always combined to form larger blocks.

The Virtual Heap Manager allows us to allocate memory blocks that are
greater than 64k. A full EGA screen image (640x350 -16 colors) is
approximately 109k.

The cgetmem differs from fgetmem in that the virtual heap manager

will search through the free space chain and reuses the first available
memory block that can accommodate the request.

When a memory request is made to fgetmem, the manager will

attempt to allocate memory between HeapPtr and FreePtr first,

before attempting to find space on the free space list.

fgetmem is normally not used as part of your TEGL application.

The TEGL Heap Error Function

The hugeheaperror variable allows you to install a heap error function,

which gets called whenever the TEGL heap manager cannot complete an allocation

request. hugeheaperror is a pointer that points to a function with the
following header:

int myheaperror (unsigned long heapsize)

The TEGL heap error function is installed by assigning its address to the
hugeheaperror variable:

hugeheaperror = myheaperror;

The TEGL heap error function gets called whenever a call to cgetmem
cannot complete the request. The size parameter contains the size of

Programmer's Reference Guide - 201 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

the block that could not be allocated, and the TEGL heap error function
should attempt to free a block of at least that size.

Depending on its success, the TEGL heap error function may return a 1 or 2.
A return of 2 indicates success and causes a retry (which could also cause
another call to the TEGL heap error function). A return of any other value
will cause cgetmem to return a NULL pointer.

The standard TEGL heap error function always returns a 1, causing
cgetmem to return a NULL pointer.

TEGLunit sets the heap error function to point to the virtual memory
manager. Don't use the heap error function if you are using TEGLUnit,

the virtual memory handler depends on this function to know when its time
to start paging out window buffers.

The TEGL Heap Manager Functions

cgetmem

Function
Returns a pointer to a memory block of the specified
size.

Syntax
void far * cgetmem(unsigned long heapsize)

Remarks
Returns a (void) pointer. Size is a unsigned long
specifying the size, in bytes, of the memory block to
allocate.
If there isn't enough free space on the heap to
allocate the memory block, the return pointer is NULL.
A user defined run-time error procedure can be used to
intercept any heap errors (see hugeheaperror).

Restrictions

There are actually no restrictions on the size of the
largest block that can be allocated, however, DOS
limits you to the remaining memory after the program is
loaded.

See also
cfreemem

Example
Allocates and frees a 128k buffer.

Programmer's Reference Guide - 202 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

#include "teglsys.h"

volid main ()

{

char far * buffer;

buffer = cgetmem(131072);
cfreemem (buffer,131072);

}

cfreemem
Function
Frees a memory block and returns the memory back to the
heap manager.
Syntax
void cfreemem(void far * freeorgptr,
unsigned long heapsize)
Remarks
freeorgptr is a pointer variable of any pointer type
that was previously assigned by the cgetmem or
fgetmem function. Size is an unsigned long specifying the
size of the memory block, in bytes, to be freed; it must be
exactly the same number of bytes previously allocated
to that memory block by cgetmem or fgetmem.
cfreemem returns the memory region to the TEGL heap.
Restrictions

Do not use cfreemem to free up memory allocated by
Turbo's C heap manager.

See also
cgetmem

Expanded Memory Manager (EMM)

The Expanded Memory Manager is a device driver that controls and manages
expanded memory and application programs that use expanded memory.

Expanded memory is memory beyond DOS's 640K-byte limit. The Expanded
Memory specification (EMS) supports up to 32M bytes of expanded memory.
Because the 8086, 8088, and 80286 (in real mode) microprocessors can

Programmer's Reference Guide - 203 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

physically address only 1M byte of memory, they access expanded memory
through a window in their physical address range.

This is similar to a book, where pages within the book can retain data.
However, Jjust like a book, if you wish to retrieve the data, you must
supply the page number. As well, when you first create the book
(returning a handle) the initial number of pages must be specified. If
you require more pages after the initial allocation, a new book must be
created (Version 3.2 EMS did not provide a function that allows you to
expand the initial allocation with the same handle).

There are approximately 30 EMS functions calls available with EMS Version
4.0; as documented in the specification produced jointly by Lotus
Development Corporation, Intel Corporation, and Microsoft Corporation. A
copy of this documentation (Part number 300275-005) October, 1987, can be
obtained from Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA
95051.

However, EMM Version 3.2 is still widely used as the driver on most systems,
and therefore we are limited in terms of compatibility, to the number of
functions that may be used.

Expanded Memory Functions

emminstalled

Function
Returns an installed status on the Expanded Memory
Manager.

Syntax

char emminstalled(void)

Result type
Returns a char status of 1, if an EMM driver is
installed on the system, 0 if not installed.

Remarks
This function uses the address that is found in the Int
67H vector to inspect the device header of the presumed
EMM. If the EMM is present, the name field at offset
OAH of the device header will contain the string
EMMXXXXO0 .

Programmer's Reference Guide - 204 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

emspagesavailable

Function
Obtains the total number of expanded memory pages
present in the systems, and the number of those pages
that are not already allocated.

Syntax

unsigned emspagesavailable (unsigned
*total_ ems_pages, unsigned * pages_available)

Result type
Returns a return code of 0 if EMM software is
successful. A return code other then 0 indicates a
possible error in the EMM software or a memory hardware
error.

Remarks
This function may be used to determine the number of
pages available before allocating EMS pages.

allocateexpandedmemorypages

Function
Allocates the requested number of pages (l6k per page)
and returns a handle that is used to reference the
allocated pages.

Syntax

unsigned allocateexpandedmemorypages (unsigned
pages_needed, unsigned * handle)
Result type
Returns a return code of 0 if EMM software is
successful. A return code of $88 indicates that the
requested sh PagesNeeded is greater then the number
of pages that is currently available in the system.
See also
mapexpandedmemorypages, getpageframebaseaddress,
deallocateexpandedmemorypages

Programmer's Reference Guide - 205 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

mapexpandedmemorypages

Function
Maps one of the logical pages of expanded memory
assigned to a handle onto one of the four physical
pages within the EMM's page frame.

Syntax

unsigned mapexpandedmemorypages (unsigned handle,
unsigned logical_page,unsigned physical_page)
Result type
Returns a return code of 0 if EMM software is
successful. A return code of $8A indicates that the
logical page requested to be mapped is outside the
range of pages that is currently assigned to the
handle.
Remarks
A logical page is one page from the range of pages that
were allocated through the sh allocateexpandedmemorypages
function. The logical-page number must be in the range
{0_._._..n -_1}}, where {it n} is the number of logical

pages previously allocated.

A physical page is one of four 16k byte pages, in the
range of 0-3, that may viewed as the window to the
expanded memory. Use sh getpageframebaseaddress to
obtain the segment address to the physical window.

See also
allocateexpandedmemorypages,
getpageframebaseaddress, deallocateexpandedmemorypages

getpageframebaseaddress

Function
Returns the segment address of the page frame used by
the Expanded Memory Manager.
Syntax
unsigned getpageframebaseaddress (unsigned
*page_frame_address)
Result type

Programmer's Reference Guide - 206 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Returns a return code of 0 if EMM software is
successful. A return code other then 0 indicates a
possible error in the EMM software or a memory hardware
error.

Remarks
This is only the segment address of the physical page
frame. Use offsets of $0000 for physical page 0, offset
of $4000 for page 1, offset of $8000 for page 2 and
offset of $C000 for page 3.

See also
allocateexpandedmemorypages, mapexpandedmemorypages,
deallocateexpandedmemorypages

deallocateexpandedmemorypages

Function
Deallocates (releases) the pages of expanded memory
currently assigned to a handle.

Syntax
unsigned deallocateexpandedmemorypages (unsigned

handle)

Result type
Returns a return code of 0 if EMM software is
successful.

Remarks
This function notifies the Expanded Memory Manager that
the application will not be making further use of the
allocated expanded memory pages. This function would
typically be called by a program just before performing
an exit.

See also
allocateexpandedmemorypages, mapexpandedmemorypages,
getpageframebaseaddress.

getversionnumber

Programmer's Reference Guide - 207 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Function

Syntax

Result type

Remarks

Returns the EMM Version Number in a string format. A
handle.

unsigned getversionnumber (char * version_string)

Returns a return code of 0 if EMM software is
successful. A return code other then 0 indicates a
possible error in the EMM software or a memory hardware
error.

This function returns a EMM Version Number that may be
used to check if the installed EMM will support the
requested functions. However since Version 4.00 of the
expanded memory specification is downward compatible
with Version 3.2, this function is only useful as
information.

gethandlecountused

Function

Syntax

Result type

Remarks

Returns the number of total handles used by all
applications. a handle.

unsigned gethandlecountused (unsigned
*numberofhandles)

Returns a return code of 0 if EMM software is
successful. A return code other then 0 indicates a
possible error in the EMM software or a memory hardware
error.

The number of available handles depends on the
parameters used to start up the EMM driver, as well as
the number of handles in use by other resident or
multitasking software. The upper limit in Version 4.00
is 255 handles with a lower limit of 32. If the
returned number of handles is zero, the EMM is idle and
none of the expanded memory is in use.

Programmer's Reference Guide - 208 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

getpagesownedbyhandle

Function
Returns the number of expanded memory pages allocated
to a specific EMM handle.
Syntax
unsigned getpagesownedbyhandle (unsigned
handle, unsigned *pagesowned)
Result type
Returns a return code of 0 if EMM software is
successful.
Remarks
An EMM handle never has zero pages of memory allocated
to it.

Expanded Memory Test Program

#include "teglsys.h"

unsigned emm_handle,
page_frame_base_address,
pages_needed,
physical_page,
logical_page,
offset,
error_code,
pages_ems_available,
total _handle_count,
pages_owned,
total_ems_pages,
available_ems_pages;

char version_number[5],
Error_String[80],
verify;

char *dataptr;

void

error (char *error_message, int error_ number)

{
printf ("%$sn", error_message);
printf (" Error_Number = %$Xn", error_number);
printf ("EMS test program aborting.n");

Programmer's Reference Guide - 209 - TEGL Windows Toolkit

void
main ()

Chapter 13 - Virtual Memory Manager

exit (1);

/ *
* Determine if the Expanded Memory Manager is installed, If not,
* then terminate 'main' with an ErrorLevel code of 1.

*/

if (! (emminstalled()))

{
printf ("The LIM Expanded Memory Manager is not installed.n");
exit (1);

}

/* Get the version number and display it */
error_code = getversionnumber (version_number) ;
if (error_code != 0)
error ("Error trying to get the EMS version number ", error_code);
else
printf ("LIM Expanded Memory Manager, version %s is ready for "
"use.nn", version_number);

/ *
* Determine if there are enough expanded memory pages for this
* application.

*/
pages_needed = 1;
error_code = emspagesavailable (&total_ems_pages,
&available_ems_pages);
if (error_code != 0)

error ("Error trying to determine the number of EMS pages "
"available.", error_code);

printf ("There are a total of %d expanded memory pages present in this"
" system.n", total_ems_pages);

printf (" %d of those pages are available for your usage.nn",
available_ems_pages);

/ *
* If there is an insufficient number of pages for our application,
* then report the error and terminate the EMS test program
*/

if (pages_needed > available_ems_pages)

{

Programmer's Reference Guide - 210 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

sprintf (Error_String, "We need %d EMS pages. There are not that "
"many available.", pages_needed);

error (Error_String, error_code);

}

/* Allocate expanded memory pages for our usage */

error_code = allocateexpandedmemorypages (pages_needed, &emm_handle);

sprintf (Error_String, "EMS test program failed trying to allocate %d"
" pages for usage.", pages_needed);

if (error_code != 0)
error (Error_String, error_code);
printf ("$d EMS page(s) allocated for the EMS test program.nn",
pages_needed) ;

/ *
* Map in the required logical pages to the physical pages given to
* us, in this case just one page
*

/

logical_page = 0;

physical_page = 0;

error_code = mapexpandedmemorypages (emm_handle, logical_page,

physical_page);

if (error_code != 0)
error ("EMS test program failed trying to map logical pages onto"
" physical pages.", error_code);

printf ("Logical Page %d successfully mapped onto Physical Page "
"$dnn", logical_page, physical_page);

/* Get the expanded memory page frame address */
error_code = getpageframebaseaddress (&page_frame_base_address);
if (error_code != 0)
error ("EMS test program unable to get the base Page Frame
"Address.", error_code);

w

printf ("The base address of the EMS page frame is - "
"%X.nn",page_frame_base_address) ;

/* Get Handle Count and the number of pages for our handle */
error_code = gethandlecountused(&total_handle_count);
if (error_code != 0)
error ("EMS test program unable to get the Handle Count Used.",
error_code) ;

error_code = getpagesownedbyhandle (emm_handle, &pages_owned);
if (error_code != 0)
error ("EMS test program unable to get the number of pages Owned "

Programmer's Reference Guide - 211 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager
"by handle.", error_code);

printf ("The Total Handle Count is %d and the number of Pages owned is"
" $d.nn", total_handle_count, pages_owned) ;

/* Write a test pattern to expanded memory */
for (offset = 0; offset <= 16382; offset++)
pokeb (page_frame_base_address, offset, offset % 256);

/* Make sure that what is in EMS memory is what we Jjust wrote */
printf ("Testing EMS memory.n");

offset = 1;

verify = 1;

while ((offset <= 16382) && verify)
{

if (peekb (page_frame_lbase_address, offset) != offset % 256)
verify = 0;
offset++;

}

/* If it isn't report the error */
if (!verify)
error ("What was written to EMS memory was not found during memory"
" verification test.", 0);

printf ("EMS memory test successful.nn");
/ *

* Return the expanded memory pages given to us back to the EMS
* memory pool before terminating our test program

*/
error_code = deallocateexpandedmemorypages (emm_handle) ;
if (error_code != 0)

error ("EMS test program was unable to deallocate the EMS pages in"
" use.", error_code);

printf ("$d page(s) deallocated.nn", pages_needed);

printf ("EMS test program completed.n");

A RAM Disk Driver

Expanded Memory (EMS), in its architecture of multiple pages, is limited
in its use as a direct access heap without complex programming. However,

Programmer's Reference Guide - 212 - TEGL Windows Toolkit

Ch

apter 13 - Virtual Memory Manager

one of the simplest ways to take advantage of EMS, is to create a EMS ram

disk.

The following EMS RAM Disk functions provides the basics for storing and
retrieving a file from EMS memory.

emsopen
Function

Opens an EMS Ram Disk file.
Syntax

emsfile emsopen (unsigned minimumpages)
Result type

EMSOpen returns a structure type of EMSFile.
Remarks

EMSFile is predeclared as follows:

typedef struct emsblock {

typedef

emsblockptr

unsigned

unsigned
ems

struct emst
unsigned
unsigned
unsigned lo
unsigned
emsblockptr
ems

nextblockptr;

handle; /* Multiple handles */

emspage; /* Pages allocated */
block;

ilerec {
pageoffset; /* current offset within page */
baseaddress;

ng emsposition;
totalpages; /* Total number of 16k pages */
rootblkptr;

filerec;

The baseaddress and pageoffset forms the

pointer to the physical expanded memory page. The
emsposition field is the current RAM disk file
position. totalpages is the total number of

expanded memory pages allocated for this EMS Ram file.
The rootblkptr points to the first EMS Block

pointer.

The minimumpages parameter specifies the initial
allocation, however if more pages are required, as you
write to the EMS Ram file, pages are automatically

Programmer's Reference Guide - 213 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

allocated as needed. Additional EMS handles and Pages
information are stored in separate EMS Block records
and are chained together.

ems_status will return a 0 if the EMS ram file is
allocated successfully; otherwise, it will return a
nonzero error code.

See also
emsclose

emsseek

Function
Moves the current position of an EMS RAM file to a
specified byte component.

Syntax
void emsseek (emsfile emsramfile,unsigned long

position)

Remarks
emsramfile is the structure type returned by
emsopen, and position is an expression of type
unsigned long.
The current EMS Ram file position is moved to the offset
position. In order to expand the expanded memory
pages allocated, it is possible to emsseek any size
beyond the last byte; thus emsseek (myramfile, 98304)
will automatically allocate, if required, a total of 6

pages.

ems_status will return a 0 if the operation was
successful; otherwise, it will return a nonzero error
code.

Restrictions
EMS Ram file must be open.

See also
emsblockwrite, emsblockread, emsopen, emsclose

emsblockwrite

Programmer's Reference Guide - 214 - TEGL Windows Toolkit

Function

Syntax

Remarks

Restrictions

See also

Chapter 13 - Virtual Memory Manager

Writes the information pointed to by the Buffer pointer
to the EMS Ram file.

void emsblockwrite (emsfile emsramfile, char
*pbuffer,unsigned long bytestowrite)

emsramfile is the structure type returned by sh
EMSOpen, buffer is any char * type, and
bytestowrite is an expression of type unsigned long.

emsblockwrite writes bytestowrite bytes to

the emsramfile. bytestowrite may be greater

than (64k). emsblockwrite will automatically

allocate additional EMS Memory pages i1f the current EMS
ram file position plus bytestowrite exceeds the
currently allocated expanded memory pages.

The current EMS Ram file position is advanced by
bytestowrite on completion of emsblockwrite.

ems_status will return a 0 if the operation was
successful; otherwise, it will return a nonzero error
code.

EMS Ram file must be open.

emsseek, emsblockread, emsopen, emsclose

emsblockread

Function
Reads from the EMS Ram file to memory pointed to by the
buffer pointer.

Syntax
void emsblockwrite (emsfile emsramfile, char

*pbuffer,unsigned long bytestowrite)
Remarks

emsramfile is the structuretype returned by sh
emsopen, buffer is any char * type, and
bytestoread is an expression of type long.

emsblockread reads bytestoread bytes to the

Programmer's Reference Guide - 215 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

memory area pointed to by buffer. bytestoread

may be greater than (64k). emsblockread will read

past the end of Ram file and automatically allocate
additional EMS Memory pages if the current EMS Ram file
position plus bytestoread exceeds the currently
allocated expanded memory pages.

The current EMS Ram file position is advanced by
bytestoread on completion of emsblockread.

ems_status will return a 0 if the operation was
successful; otherwise, it will return a nonzero error
code.

Restrictions
EMS Ram file must be open.

See also
emsblockwrite, emsseek, emsopen, emsclose

emsclose
Function

Close an Open EMS Ram file.
Syntax

volid emsclose (emsfile emsramfile)
Remarks

emsramfile is the structure type returned by sh
emsopen.

ems_status will return a 0 if the operation was
successful; otherwise, it will return a nonzero error
code.

See also
emsopen

Virtual Disk Heap

A virtual Disk Heap allows you to simulate a heap using a sequential file.
Allocating and freeing space within the Virtual Disk Heap are
automatically maintained, with all the flexibility of a real memory heap
manager and the unlimited space of a hard disk. The wvirtual Disk Heap
manager has the ability to reuse free space, as well as merging adjacent
free space fragments.

Programmer's Reference Guide - 216 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

In addition the virtual disk heap (disk mode) can be used as a simple
graphical image database manager. The stored images may be retrieved later
by referring to a unique signature that you provide.

vdskopenheapfile

Function
Opens a heap file on disk.
Syntax
vdskfile vdskopenheapfile (char
*vdskfilename, unsigned vdskattribute)
Result type
vdskopenheapfile returns a structure type

vdskfile.
Remarks
vdskfilename is a char * expression that
contains the name of heap file and vdskattribute
is the attribute that is associated with the file. The
following vdskattribute enum are declared:
enum { vdskreadwrite = 1};
enum { vdsktemporary = 2};

vdskopenheapfile will create a new file if the
file does not exist. If vdskreadwrite is specified,
the file is not erased when the file is closed. if
vdskattribute is set to vdsktemporary, the file is
automatically erased when the file is closed.

vdskfile is declared as follows:

typedef struct vdskfreerecord *vdskfreeptr;
typedef struct vdskfreerecord {

vdskfreeptr nextvdskfree;
unsigned long startblock;
unsigned long endblock;
signate signature;
char blockfree;

} vdskfreerecord;

typedef struct vdskfilerecord *vdskfile;

Programmer's Reference Guide - 217 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

typedef struct vdskfilerecord {

vdskfreeptr vdskfreeptrchain;
unsigned long vdsktopoffile;
unsigned vdskattribute;
unsigned long vdskpacketsave;
char *vdskfilename;
char emstype; /* Selector */
union v {
int vdskheapfile;
emsfile vemsheapfile;
} Vi
} vdskfilerecord;

vdskfreeptrchain maintains a complete list of all
blocks that are allocated and freed. Information
regarding each block are stored in a chain of
vdskfreerecord. The vdsktopoffile is the

position of the end of the heap file. If there are no
free space fragments before the end of the heap file to
satisfy the requested block size, space is allocated
starting at wvdsktopoffile. wvdskattribute is

the passed parameter when the file was opened. The
emstype sets the variant portion to either disk or ems
memory.

startblock and endblock is the starting and
ending address of the allocated or freed block,

respectively. signature is a unique type of a 4
character string that can be used as a search string to
locate an address of a block. Dblockfree indicates

whether the block is allocated or free.

vdskstatus will return a 0 if the operation was
successful; otherwise, it will return a nonzero error
code.

See also
vemsopenheapfile, vdskcloseheapfile

vemsopenheapfile

Function
Opens a heap file in EMS.

Programmer's Reference Guide - 218 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Syntax
vdskfile vemsopenheapfile(int initialalloc)
Result type
vemsopenheapfile returns a variable of type
vdskfile.
Remarks
vemsopenheapfile creates the same structure as
vdskopenheapfile, with the emstype set to ems
memory.

vdskstatus will return a 0 if the ems operation was
successful; otherwise, it will return a nonzero error
code.

See also
vdskopenheapfile, vdskcloseheapfile

vdskgetmem

Function
Allocates a block within the virtual heap memory and
returns a virtual heap address.

Syntax

unsigned long vdskgetmem (vdskfile
vdskpacket, unsigned long heapsize,char *signature)
Result type
vdskgetmem returns a virtual heap address of long.

Remarks
vdskstatus will return a 0 if the virtual heap
allocation was successfull; otherwise, it will return a
nonzero error code.

Restrictions

The Virtual Heap memory must be opened.
See also
vdskfreemem, vdskwriteheapdata, wvdskreadheapdata

vdskfreemem

Programmer's Reference Guide - 219 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Function
Frees the virtual heap memory pointed to by the
VDskHeapPtr.

Syntax
void vdskfreemem(vdskfile wvdskpacket,unsigned long

vdskheapptr)

Remarks
vdskpacket is the structure type returned by
vemsopenheapfile or vdskopenheapfile. The
vdskheapptr must be the virtual disk pointer from
vdskgetmem.

vdskstatus will return a 0 if the virtual heap
de-allocation was successful; otherwise, it will return
a nonzero error code.

Restrictions
The Virtual Heap memory must be opened.

See also
vdskgetmem, vdskwriteheapdata, vdskreadheapdata

vdskwriteheapdata

Function
Writes the data from memory pointed to by the
DataPtr to an allocated virtual heap memory
vdskheapptr.

Syntax
void vdskwriteheapdata (vdskfile wvdskpacket,char far

*dataptr,unsigned long vdskheapptr)

Remarks
vdskpacket is the structure type returned by
vemsopenheapfile or vdskopenheapfile. The
dataptr is of a pointer type that points to a memory
buffer that will be written out to the virtual heap.
The vdskheapptr must be the virtual heap pointer
created from vdskgetmem.

vdskstatus will return a 0 if writing to the virtual
heap was successful; otherwise, it will return a
nonzero error code.

Restrictions
The Virtual Heap memory must be opened.

See also

Programmer's Reference Guide - 220 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

vdskgetmem, vdskfreemem, vdskreadheapdata

vdskreadheapdata

Function
Reads the data from the virtual heap memory to a memory
area pointed to by the DataPtr.

Syntax
void vdskreadheapdata (vdskfile vdskpacket, char far

*dataptr,unsigned long vdskheapptr)

Remarks
vdskpacket is the structure type returned by
vemsopenheapfile or vdskopenheapfile. The
dataptr is of a pointer type that points to a memory
buffer that will be overwritten by the transfer of data
from the virtual heap. The vdskheapptr must be the
virtual heap pointer created from vdskgetmem.

vdskstatus will return a 0 if writing to the virtual
heap was successful; otherwise, it will return a
nonzero error code.

Restrictions
The Virtual Heap memory must be opened.

See also
vdskgetmem, vdskfreemem, vdskwriteheapdata

vdskcloseheapfile
Function
Closes a virtual heap.
Syntax
void vdskcloseheapfile (vdskfile vdskpacket)
Remarks

vdskpacket is the structure type returned by
vemsopenheapfile or wvdskopenheapfile.

vdskstatus will return a 0 if the virtual heap

Programmer's Reference Guide - 221 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

operation was successful; otherwise, it will return a
nonzero error code.

See also
vemsopenheapfile, vdskopenheapfile

The Virtual Heap Error Function

The vdskerror variable allows you to install a virtual heap error
function, which gets called whenever the TEGL heap manager cannot complete
an allocation request. vdskerror is a pointer that points to a

function with the following header:

int myvirtualerr (unsigned long heapsize)

The virtual heap error function is installed by assigning its address to
the vdskerror variable:

vdskerror = myvirtualerr;

The virtual heap error function gets called whenever any virtual function
calls is unable to complete the request. The code parameter contains

a code indicating which virtual heap function is in error. Check
VDSKStatus to determine the severity of the error.

The standard virtual heap error function is set to return to the calling
procedure.

If you are using the Virtual memory manager (next section), use the
virtual memory error function rather then this error function to intercept
virtual errors. The virtual memory manager relies on the standard g

return to the calling procedure to check vdskstatus to indicate

whether to write to EMS or disk file.

The Virtual Memory Manager

The virtual memory manager is in constant use by TEGL windows to provide
memory extensions for graphical images. Your program may use the virtual
memory functions as an external heap, with the restriction that you do
close the virtual memory file.

The following virtual memory functions will automatically select the

Programmer's Reference Guide - 222 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

storage medium when moving data to virtual memory. The data is moved to
expanded memory if adequate space can be found, otherwise the data is
moved to one of the mass storage mediums. Both storage medium (EMS and
Hard disk) are used i1f available.

useharddisk
Function
This function forces the virtual memory manager to use
the hard disk as virtual memory, even if EMS is
available.
Syntax
Macro
void useharddisk (char yesno)
Remarks
if the yesno is 1, then the virtual memory
manager will ignore the installed EMS, and only use the
hard disk.
MoveFromVirtual procedure VIRTMEM
Function
Moves a block of data from virtual back to normal
memory.
Syntax
void movefromvirtual (char far * dataptr,
unsigned long virtualheapptr)
Remarks

The dataptr is any memory block. virtualheapptr
is of the type unsigned long, which is the address
supplied by movetovirtual.

vdskstatus will return a 0 if the virtual memory
operation was successful; otherwise, it will return a
nonzero error code.

See also
movetovirtual, freevirtual

Programmer's Reference Guide - 223 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

movetovirtual

Function
Moves a block of data from memory to virtual memory.
Syntax
unsigned long movetovirtual (char far
*dataptr,unsigned long heapsize)
Result type
movetovirtual returns a unsigned long type, which
is a physical address of the virtual block.
Remarks
The dataptr is any memory block allocated by
cgetmem or fgetmem. heapsize is of the
type unsigned long, which is the size of the memory
block that you are moving to virtual memory.

movetovirtual will automatically allocate ems
memory pages and open any virtual memory files (if
needed) 1f this is the first time call to this
procedure.

vdskstatus will return a 0 if the virtual memory
operation was successful; otherwise, it will return a
nonzero error code.

See also
movefromvirtual, freevirtual

freevirtual
Function
Frees the virtual memory back to the virtual memory
pool for reuse.
Syntax
void freevirtual (unsigned long virtualheapptr)
Remarks

virtualheapptr is of the type unsigned long, which
is the address supplied by movetovirtual.

Programmer's Reference Guide - 224 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

vdskstatus will return a 0 if the virtual memory
operation was successful; otherwise, it will return a
nonzero error code.

See also
movetovirtual, movefromvirtual

cmaxavail
Function
Returns the size of the largest block available in the
upper heap.
Syntax
unsigned long cmaxavail (void)
virtualmemused
Function
Returns the amount of virtual memory allocated.
Syntax
unsigned long virtualmemused (void)
Remarks

This is the total of virual memory allocated. On some
systems this can be a combination of both EMS and
Disk memory.

The Virtual Memory Error Function

The virtualerror variable allows you to install a virtual memory
error function, which gets called whenever the virtual memory manager
cannot complete a virtual function request. virtualerror is a pointer
that points to a function with the following header:

int myvirtmemerr (unsigned code)

Programmer's Reference Guide - 225 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

The virtual memory error function is installed by assigning its address to
the VirtualError variable:

vdskerror := myvirtmemerr;

The virtual memory error function gets called whenever any virtual
function calls is unable to complete the request. The code parameter
contains a code indicating which virtual heap function is in error. Check
vdskstatus to determine the severity of the error.

The standard virtual memory error function is set to return to the calling
function.

Resolving Fragments

The memory used by the heap is a dynamic and volatile part of your program.
Memory is constantly allocated and de-allocated by the window manager along
with allocation of dynamic variables, free space structures, frame
structures, mouse click structures, etc.

Although the virtual memory manager will provide almost unlimited windows,
the concept is still limited by the number of window structures that will
fit in memory and whether the memory is contiguous or fragmented by
allocated memory not under the control of the virtual memory manager.

Fragmentation occurs, when free memory blocks are separated by allocated
blocks. Since certain allocated memory blocks cannot be moved or
de-allocated, fragmentation can cut down the largest block size available
from the heap.

Without a proper control on memory fragmentation, an out of space error
can still occur even when the virtual memory manager pages out all window
images.

In order for the virtual memory Manager to provide large contiguous memory
on the heap, two memory managers are used to partition the far heap memory.
The normal Turbo C heap manager is replaced with cgetmem to allocate
simple memory blocks like frame information and virtual pointer
information. The second, is fgetmem, used by the window manager to
allocated large image buffers.

The function ReserveHugeMinimum partitions the far heap memory into

two parts by allocating a single byte between the minimum and upper memory.
Normal allocations using cgetmem will default to the lower areas.

cgetmem will use the upper area when all lower memory area is used, thus

Programmer's Reference Guide - 226 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

the lower memory area is not a restriction. fgetmem will only
allocate memory from the upper areas.

ReserveHugeMinimum

provides an elegant solution, that allows normal

allocation with cgetmem and volatile fgetmem to coexist.

reservehugeminimum

Function

Syntax

Remarks

Partition the heap memory into lower and upper areas to
reduce fragmentation.

Macro
void reservehugeminimum (unsigned long minsize)

minimumsize is of the type unsigned long, which is the

size calculated by adding (60 bytes for a window structure) +
the average mouse click and key clicks areas per

window (20 bytes per each defined click) multiplied by the
maximum number of window records opened at the same time +
4000 bytes (overhead for the virtual memory manager) plus any
heap memory requirements by the application.

You are not expected to calculate the exact minimumsize,
but as a general rule of thumb, it seems that 12k is
effective for most applications.

Programmer's Reference Guide - 227 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders
Sizing and Sliding

The chapter has the procedures and functions that give the core for
resizing frames and attachings sliders to them.

A slider is a moveable switch. They are quite often used to indicate up
and down or left to right scrolls (as in a text editor). They can be
attached to a window but are seperate, that is, they must be disposed of
seperately.

Resizing frames adds a degree of complexity to maintaining frames in that
the contents of the frame are lost when it is resized. Consequently, you
need to code an event that specifically redraws a frame after resizing.

Resizable frames with slider bars require more work. It is up to the
programmer to dispose of and then reattach new sliders to a frame after
a resize. This presumably is all done within the event that redraws the
window. This is not impossible, just careful thought is required when
making these kinds of frames. The results will speak for themselves.

defineresizeclickarea

Function
Sets a mouse click area for resizing a frame.
Declaration
void defineresizeclickarea (imagestkptr ifs,
unsigned x, unsigned y, unsigned x1, unsigned yl,
callproc resizeproc);
Remarks

The resizeproc must be defined. You cannot pass a
NULL pointer. When a frame is resized its image is
disposed and must be redrawn.

See also
defineresizeminmax.
Example

defineresizeclickarea(ifs,1,1,10, 6, redraweditor);

Programmer's Reference Guide - 228 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders

defineresizeminmax

Function

Declaration

Remarks

See also

Example

Sets the minimum and maximum that a frame can be
resized to.

void defineresizeminmax (imagestkptr ifs,
unsigned minw, unsigned minh, unsigned maxw,
unsigned maxh) ;

minw is the minimum width the frame is allowed if
resized. minh is the minimum height, maxw is the

maximum width, and maxh is maximum height. Values
are in pixels.

defineresizeclickarea.

defineresizeminmax(ifs,200,100,400,200);

definesliderarea

Function

Declaration

Remarks

Defines slider area.

void definesliderarea (imagestkptr ifs, unsigned x,
unsigned y, unsigned x1, unsigned yl, unsigned minx,
unsigned miny, unsigned maxx, unsigned maxy,
callproc slideaction);

ifs is the frame the slider is attached to. x,y,

x1, yl is the slider click area. minx, miny, maxx, maxy
are the bounds the slider can be moved in. Coordinates
are frame relative. slideaction is the event that is
called when the slider is moved.

Programmer's Reference Guide - 229 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders

The msclickptr that is passed to slideaction contains
the new slider position. These coordinates can be used to
determine the correct action to taken.

Restrictions
This procedure only sets the area for the slider and its
bounds. It is up to the programmer to draw the slider bar
and the slider. The slider bar must be drawn before the
call to definesliderarea. Then after this draw the
slider. The toolkit will look after moving the slider
once it has been drawn.

See also

setslidepostion
Example
dropsliders
Function
Removes all sliders from a frame.
Declaration
void dropsliders (imagestkptr ifs);
Remarks
dropsliders should be called before you drop a
frame or resize it.
Restrictions
See also
Example

dropsliders (ifs);

findsliderfs

Programmer's Reference Guide - 230 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders

Function
Finds a slider on a frame.
Declaration
sliderptr findsliderfs (imagestackptr ifs,
msclickptr ms);
Remarks
Returns the sliderptr associated with ms on the
frame. This can be used from within an event that is
called when a slider is moved. With the SliderPtr
you can determine the relative position of the slider
without having to examine any other variables.
Restrictions
See also
Example
resizeframe
Function
Allocates a new buffer for a frame.
Declaration
void resizeframe (imagestkptr ifs,
unsigned x, unsigned y, unsigned x1, unsigned yl);
Remarks
X, y, x1, yl are the new coordinates of the frame.
Restrictions

See also

Example

The frame image is hidden then disposed.

defineresizeminmax

Programmer's Reference Guide - 231 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders

selectandmoveframe

Function
An event that allows the frame to be moved.
Declaration
unsigned selectandmoveframe (imagestkptr ifs,
msclickptr ms);
Remarks

Note that this is an event. You would not directly call
it but rather would pass it with a definemouseclickarea.
See also
definemouseclickarea.
Example

/* the top 10 pixels across the frame ifs is set to SelectAndMoveFrame */

definemouseclickarea(ifs,0,0,ifs->x1,10, TRUE,
selectandmoveframe, MSCLICK) ;

setslideposition

Function
Moves a slider to a new position.
Declaration
void setslideposition(imagestkpointer ifs,
unsigned x, unsigned y);
Remarks

X,y are relative coordinates within the frame and
must be within the slider bar.

See also
definesliderarea.

Programmer's Reference Guide - 232 - TEGL Windows Toolkit

Miscellaneous Functions

Miscellaneous Functions

checkctrlbreak

Function
Checks task handler.

Syntax
void checkctrlbreak (void) ;

Remarks
Normally this routine does not have to be called, but
if you have section of code that is going through a
long loop you should insert it there.
If your program has events that are activated after a
certain number of timer ticks have passed then a call
to checkctrlbreak will allow their processing.
The TEGL Windows Toolkit does not process timer
interrupt tasks directly, rather a flag is set and
the task is performed when it is safe (ie. no frames
are being updated and no memory swaps are begin
processed) .

Example

long x;

for (x = 1;x < 20000000; x++)

/* do your stuff */
checkctrlbreak () ; /* allow processing of other tasks */

checkctrlbreakfs

Programmer's Reference Guide - 233 - TEGL Windows Toolkit

Miscellaneous Functions

Function
Sets an event to call when Ctrl-Break is pressed.
Syntax
Macro
void checkctrlbreakfs(callproc p);
Remarks
P is an event and works like any other. You can
determine within it what processing should take place
(Halt, Continue, Close files, etc..).
Example
see inittegl in tegleasy.
droptimertick
Function
Removes an event set with SetTimerTick.
Syntax
void droptimertick (unsigned ticks, callproc p);
Remarks

both ticks and p must be identical to the
orginal call for the event to be removed.
See also
settimertick.
Example

droptimertick (18, backgroundclock);

nilunitproc

Function

Programmer's Reference Guide - 234 - TEGL Windows Toolkit

Miscellaneous Functions

A place holder for events that have not been coded.

Syntax
unsigned nilunitproc (imagestkptr ifs, msclickptr ms);
Remarks
nilunitproc can be used wherever an event handler
is called for. This can be a place holder or it can be
where event is desired but a parameter is required.
Example
{ -=- a line in a menu that is never selected or active }
defineoptions(filem, '--"',FALSE,nilunitproc);
overlaparea
Function
Returns the area that is occupied by two sets of
coordinates.
Syntax
char overlaparea (unsigned ax, unsigned ay, unsigned axl,
unsigned ayl, unsigned bx, unsigned by, unsigned bxl1,
unsigned byl, unsigned *cx, unsigned *cy,
unsigned *cx1l, unsigned *cyl);
Remarks
a and b coodinates are the areas to test.
If they overlap then the area is return in the c
coordinates and the function returns true, otherwise
the function returns false and the ¢ coordinates
are undetermined.
This is an advanced function that normally would not
be used.
settimertick

Programmer's Reference Guide - 235 - TEGL Windows Toolkit

Function

Syntax

Remarks

See also

Example

Miscellaneous Functions

Sets an event to be called periodically.

void settimertick (unsigned ticks, callproc p,
imagestkptr ifs, msclickptr ms);

Ticks is how many timer ticks to wait before
begin called. p is the event to call. ifs and
ms are passed to p.

droptimertick.

settimertick (18, backgroundclock, NULL, NULL) ;

Programmer's Reference Guide - 236 - TEGL Windows Toolkit

Graphics Library - tgraph

TGraph

The tgraph module provides a subset of the functions in the
graphics.lib unit provided with Turbo C.

tgraph does not have to be used if you are using Turbo C. If your

program requires elaborate graphics drawing and painting then graphics.lib
is needed. If, however, your graphics need are simpler then tgraph

may provide all that is needed. If this is the case your program can be as
much as 25K smaller by using tgraph exculsively. See the appendix
Conditional Compilation for directions on building the toolkit without
using graphics.lib.

If you are programming with Microsoft's C or Quick C then tgraph is
necessary. Depending on the defines in the file teglcond.h (see the
appendix Conditional Compilation) tgraph acts as stand-alone or maps
graphics calls to the equivalent routine in graphics.lib.

Both Turbo C and Microsoft C's provide the file (it graphics.lib but they
are not compatible. TEGL Windows Toolkit tgraph module uses the naming
conventions for graphics.lib in Turbo C.

When using Turbo C and tgraph be sure NOT to specify the graphics library
option in the integrated environment. For the command line compiler do not
include graphics.lib in the link list.

Bar
Function
Draws a bar using the current fill style and color.
Syntax
Bar(xl, yl, x2, y2: Integer);
Remarks

Draws a filled in bar using the pattern and color
defined by SetFillStyle or SetFillPattern.

See also
SetFillStyle, SetFillPattern

closegraph

Programmer's Reference Guide - 237 - TEGL Windows Toolkit

Graphics Library - tgraph

Function
Shuts down the graphics system.
Syntax
closegraph;
Remarks
The screen mode is restored to the original mode before
graphics were initialized.
detectgraph
Function
Detects graphics hardware.
Syntax
void far detectgraph (int far *graphdriver,
int far graphmode);
Remarks

See also

Returns the detected driver and mode value that can be
passed to initgraph which will change to graphics
mode. If no graphics hardware is found or the graphics
hardware is not supported then a call to graphresult
will return a value of -2 (grNotDetected).

initgraph, graphresult

getbkcolor
Function
Returns the current background color.
Syntax
int far getbkcolor (void);
Remarks

See also

Background colors can range from 0 to 15.

getcolor, setbkcolor, setcolor

Programmer's Reference Guide - 238 - TEGL Windows Toolkit

Graphics Library - tgraph

getcolor

Function
Returns the color value passed to the previous call to
setcolor.

Syntax
int far getcolor (void);

Remarks

Drawing colors can range from 0 to 15.
See also
setcolor

getfillpattern

Function
Returns the last fill pattern set by the last call to
setfillpattern.

Syntax
void far getfillpattern(char far *pattern);

Remarks

Copies the user-defined fill pattern set by
setfillpattern into the area pointed to by
pattern. It must be an area of 8 bytes.

The following pattern definition would create a
solid fill.

char solid[8] =
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff;

See also
setfillpattern, getfillsettings

getgraphmode

Programmer's Reference Guide - 239 - TEGL Windows Toolkit

Function
Syntax

Remarks

See also

Graphics Library - tgraph

Returns the current graphics mode.
int far getgraphmode (void);

Returns the current graphics mode set by initgraph
or setgraphmode.

detectgraph, initgraph, restorecrtmode,
setgraphmode

getmaxx

Function
Returns the pixel width (minus 1) of the current graphics
driver and mode.

Syntax
int far getmaxx(void);

Remarks

See also

getmaxx can be used to determine the boundaries of the
screen.

getmaxy, getx, gety

getmaxy

Function Returns the pixel height (minus 1) of the current graphics
driver and mode.

Syntax
int far getmaxy (void);

Remarks

See also

Programmer's Reference Guide - 240 -

getmaxy can be used to determine the boundaries of the
screen.

getmaxx, getx, gety

TEGL Windows Toolkit

Graphics Library - tgraph

gettextsettings
Function
Returns the current text settings.
Syntax
void far gettextsettings(struct textsettingstype
far *textinfo);
Remarks

See also

textsettingstype contains fields for the font,
direction, size and justification that was set by
settextstyle and settextjustify.

settextjustify, settextstyle

graphresult
Function
Returns the error code for the last graphics operation.
Syntax
int far graphresult (void);
Remarks
graphresult is reset to zero after it has been
called. The user may want to store it into a temporary
variable before testing it.
imagesize
Function
Returns the number of bytes required to store a
rectangular region of the screen.
Syntax

unsigned far imagesize(int x1, int yl, int x2, int y2);

Programmer's Reference Guide - 241 - TEGL Windows Toolkit

Graphics Library - tgraph

Remarks
x1,y1l,x2,yl defines the area on the screen.
initgraph
Function
Initializes the graphics system and sets the hardware to
graphics mode.
Syntax
void far initgraph(int far *graphdrive,
int far *graphmode, char far *driverpath);
Remarks

See also

If graphdriver is equal to 0 (DETECT) then a

call is made to detectgraph. If supported hardware

is detected then the graphics system is initialized and
a graphics mode is selected.

The parameter driverpath is provided for compatibility
with graphics.lib, it is not used, all drivers are
linked in.

If you are using one of the Microsoft C compilers and a
hurcules display then the program MSHerc.com must be run
first.

detectgraph, closegraph

line
Function
Draws a line from x1, yl to x2, y2.
Syntax
void far line(int x1, int yl, int x2, int y2);
Remarks

Draws a line in the color set by setcolor

Programmer's Reference Guide - 242 - TEGL Windows Toolkit

Graphics Library - tgraph

outtextxy
Function
Sends a string to the screen.
Syntax
void far outtextxy(int x, int y, char far* textstring);
Remarks

See also

textstring is output at the screen location
X, Y.

outtextxy uses the options set by settextjustify.

settextjustify, gettextsettings

rectangle
Function
Draws a rectangle using the current color.
Syntax
void far rectangle(int x1, int yl, int x2, int y2);
Remarks

See also

x1,yl define the upper left corner of the rectangle,
and x2,y2 define the lower right corner.

setcolor

restorecrtmode
Function
Restore the screen mode.
Syntax
restorecrtmode;
Remarks

Restore the screen mode to its original state before

Programmer's Reference Guide - 243 - TEGL Windows Toolkit

Graphics Library - tgraph

graphics was initialized.
See also
detectgraph, initgraph

setbkcolor
Function

Sets the backgound color.
Syntax

void far setbkcolor (int color);
Remarks

Background colors may range from 0 to 15.
See also
getbkcolor, setcolor

setcolor
Function

set the drawing color.
Syntax

setcolor (int color);
Remarks

Drawing colors may range from 0 to 15.
See also
getcolor

setfillpattern

Function
Selects a user-defined fill pattern.
Syntax
void far setfillpattern(char far *upattern, int color);

Programmer's Reference Guide - 244 - TEGL Windows Toolkit

Graphics Library - tgraph

Remarks
Sets the pattern and color for all filling done by
bar.

See also
getfillpattern, setfillstyle

setfillstyle
Function
Sets the fill pattern and color.
Syntax
void far setfillstyle(int pattern,int color);
Remarks

Set the pattern and color for all filling done by
bar. There are 12 fill patterns available.

See also
getfillsettings

settextjustify

Function
Sets text justification values used by outtextxy
and outtegltextxy.

Syntax
settextjustify (int horiz, int vert);

Remarks

The default justification settings are settextjustify(
lefttext, toptext).

See also
gettextsettings, outtextxy

Programmer's Reference Guide - 245 - TEGL Windows Toolkit

APPENDICES

Appendix A - Overlapping Graphics

There are many methods in creating and managing overlapping windows,
however the end result to the user must be in the context of windows that
form independent layers on a single display.

This section discusses the method that is used with the TEGL Windowing
Manager.

Video Buffers

The video buffer is a block of memory where displayable data is stored. A
program may read and write to the video buffer in the same way it accesses
any other memory.

The video display circuitry updates the screen by continually reading the
data in the video buffer and translating the bit information to the
screen. Each group of bits in the video buffer specifies the color and
brightness of a particular location on the screen. A particular location
on the screen is known as a pixel. If a program changes the contents of
the video buffer, the screen reflects the change immediately.

Because you have control over each pixel in the displayed image, you can
construct complex geometric images, fill arbitrary areas of the screen
with blends of colors, or create animated images that moves across the
screen.

We may think of windows as multiple video buffers, the distinction is that,
with the TEGL Windows Toolkit, only 1 video buffer is used. To create a
window effect, we must physically copy and move display data to and from a
single video buffer, overlaying the images as we would layout images on

paper.
Windows

Windows are simply predefined rectangular areas of the screen. A window
manager is a coordinator that ensures that images related to a window are
saved (stored in memory) before other overlapping images writes to the
screen. When a window is closed, the underlying image is copied back to
screen video buffer.

The basis of a window manager is the copying and restoring of multiple
areas of the screen.

Frames

Programmer's Reference Guide - 246 - TEGL Windows Toolkit

APPENDICES

An EGA video has a maximum resolution of 640 pixels horizontal by 350
pixels. The coordinates are specified as (x,y) and (x1,yl), where x and y
are the horizontal and vertical position respectively. The position is
relative to upper left coordinate which has a coordinate value of (0,0).

(%, Y)
o +
(y)
*
(x)————- >
Fomm e +

A Frame Stack

A frame stack is a list with each entry representing a screen area. Each
entry contains information and data that is required by the window manager
to coordinate the overlaps between frames.

The order of the list is in the same order as the frames are stacked on
the screen.

A Simple Window Manager

This section talks about creating a simple window manager. We will use
the following example to see how we can update frame (A) independent of

the other 3 frames.

The following frames have called PUSHIMAGE to save the underlying
graphics.

S +
e +——+
-t
B | A
D ——+
-t
c |
-t
e T__+
S +

Programmer's Reference Guide - 247 - TEGL Windows Toolkit

APPENDICES

In order for Frame
Frame (D)

(A7)

o _
| B
o _
o _
| ¢
o _

The image for Frame (C) is saved,

The image for Frame (B) is saved,

Programmer's Reference Guide

to be updated, the image for Frame
is erased from the screen
by restoring the the underlying image that was saved previously.

and Frame (C)

and Frame (B)

- 248 -

is saved,

is erased from the screen
by restoring the the underlying image that was saved previously.

is erased from the screen
by restoring the the underlying image that was saved previously.

TEGL Windows Toolkit

APPENDICES

The composite image of (A) is now complete and can be updated. The images
(B), (C) and (D) are restored by reversing the above steps.

In the earlier generations of TEGL, this formed the basis of the stacked
frame concept (the removal of images that overlaps the current).

Partial Image Update

As you can imagine, this process is slow and causes a lot a of unnecessary
updates to the screen. With the foundation of g a simple window manager,

we can now begin to refine this process.

Partial image update is removing only the intersection portion of the
frames from the screen by extracting a section of the saved image.

The following shows the intersection of D,C and B that is needed to
be replaced on the screen.

et

D
fom— +
B |
S +
fom— +
c |
S +

—

Partial Image (D) is replaced first, followed by Partial (C) and (B).
Refined Partial Image Update

Since we are only interested in the composite image of (A), there is still
a lot of unnecessary update to the screen.

Imagine a notepad and you wish to write on the fifth page of the notepad.
The fastest way to lift up five pages in a
group, write, and close the notepad.

So let's split image (D) into 5 pieces.

+-—+
D1

Programmer's Reference Guide - 249 - TEGL Windows Toolkit

APPENDICES

+——+
o t——+
|D2| B
t——t——+
+——+
D3|
+——+
o t——+
D4 c]
t——t——+
+——+
| D5 |
+——+
Notice the double pages of (D2) (B) and (D4) (C). Now we only need to

replace (D1), (B), (D3), (C) and (D5). We don't need to replace (D2) and
(D4) because (B) and (C) has already restored the composite image of (A).

TEGL was further refined to (cut out) only the pieces that needs to
be replaced, thus removing all unnecessary updates to the screen.

A Refined Partial Image Update Algorithm

check for condition where by replacing the bottom image
will replace the top image. eg.

e +
S S +
R +
|3
S +

o +

Replacing 3 will be redundant, since we want to update 1, replacing 2
will remove both 2 and 3.

check i1if we can begin trim the ends off one of the overlapped
images to reduce the size that we need to replace.

S + oo + oo + e o O + oo RS
SN [— — T N |
R S I -+ |..... —— T_____T___+ +-T ------- + +_______T_+

S + . + . +

e + . + G + Fom— + fom— + fom— +
T T T T T T |
R S I -+ |..... e ey N S +

Programmer's Reference Guide - 250 - TEGL Windows Toolkit

APPENDICES

| | | | EE + EE + EE
fomm + 4o O + S + NS + NS +
EE + EE + EE + | | | |
Fomm S S + Fom e +
S S I e I —_— | | |
[T ——— e Fomt o +
Fomm o Sy Fot Ao e + Fom SO S +
EE + EE + EE + | S + |
R +| [T —— +
| L T
S S I e I S + S + fomm +
| EE + | - S [S + |
Fomm S + oo +
create an new insert that has one end trimmed and repeat steps 1
through 3 to cut the images into the necessary pieces.
fomm S SN S SN + Fom e S SN + NS +
N - —+ — [pp—— + |
| | | R - RS :
R =] e —— | | oo + |
fom O SN + 4o + Fo—— + S N +
fomm S + S S +
EE N + [—— N + |
N ! P S ISR + PR
| | S N ! P +
e N + | [p—— +
fomm S + Fom—— - Fom— N S +
Fom N o + Fom e + Fom e N S —— o +
P | I |-+ oL | +——=] e | [P |
Fomm + Fomm + Fomm + Fomm + Fom e +
———————————— + Fommm—— | ..
EE + | | EE +
fom + Fomm o O O S o + Fo—— +
fomm + S N Py + NS + Fom N + NS +
| NE + EE + |
e (A [+
Fomm + Fom e + Fom e + Fom e + Fom e +
P |+ e | P | P |-+ il |
Fomm + Fomm o o o o + Fomm +

The only time that we are unable to split an overlapping image is when

the image overl

aps by 1 pixel.

e +
[+
| o + |
e +

Programmer's Reference Guide - 251 - TEGL Windows Toolkit

APPENDICES

A Quick Run through the algorithm

The procedure to handle the splitting of images is called
StackOverlaps. StackOverlaps works in the following fashion:

Top (Stackptr)* Bottom
S e et Top Sy +
|ID |x,y,x1,y1|image]...| Fommm - +-—+
e e et
S e et -t
|c |x,y,x1,y1|image]...| B | A
e e S D S—

S e et

A |x,y,x1,yl|image]...| -—+
FomFomm fomm o foeet C |
S e et -t
A |x,y,x1,yl|image]...|

e e et e +——t

Bottom
e +

PrepareForUpdate (A) creates temporary stack entries:

Top (Stackptr)*

et e +——t
+-——-> |Bl|x,y,x1,yl|image]...|
et e +——t
et e +——t e
+—=> |Cl|x,y,xl,yl|image|...| R +-—+
Fomtomm fomm o R |D1 |
et e +——t R +
+> |D1|x,y,x1,yl|image]...| |B1 | A
et e +——t D e +
et e +——t e +
+> |D |x,y,x1,yl|image]...| |c1 |
et e +——t e +
T EE Foe—t |
+-=> |C |x,y,xl,yl|image|...| e +-=+
S S fomo o foe—t
et e +——t e
+-———> |B |x,y,x1,yl|image]...|
et e +——t
et e +——t
A |x,y,x1,y1|image]...|
et - e +——t
Bottom

Programmer's Reference Guide - 252 - TEGL Windows Toolkit

APPENDICES

Begin Cutting and Eliminating: Comparing only the overlapped images.

S Fe— SR 4t 4t
+-——-> |Bl|x,y,x1,yl|image|...| Bottom D1 D1
et ——_—————— e +———+ Image -——+
Fomtomm e Fomm o R B1 |
+--> |Cl|x,y,x1,yl]|image]...| -—+
e S e et
S e et -t
+> |D1|x,y,x1,yl|image]|...| Top Image c1|
R T s S —— fomo o foe—t -
REE—— REE—

StackOverlaps compares Bl with D1, Bl with Cl and
Cl with D1 for overlaps.

eliminate redundant overlaps

Appendix B - Heap Management

One of the major problems with window management is the amount of dynamic
memory that is allocated and de-allocated. Memory is constantly
fragmented with records, dynamic variables, and window images, thus
reducing the largest block size over a period of time.

Empty Heap Memory Fragmented Heap Memory
Top of DOS Memory Top of DOS Memory
FreePtr-> 4+--cemmmmmm e = + e e +
ST it e R P 1--+
FreePtr-> |- - ————————-—————- 2——|+
Free Space
60k
HeapbPtr-> |- - - ——————--——————
*x 0 e e e
cmaxavail
341k Free Space

Programmer's Reference Guide - 253 - TEGL Windows Toolkit

HeapPtr->

* Program *

APPENDICES

Free Space
*

cmaxavail
102k
*

* Program *

This chapter will discuss how the TEGL heap manager using
reservehugeminimum reduces the fragmentation that occurs.

TEGL Heap Manager

There are only two main pointers that manages the heap.

points to the end of the last memory block.
of free memory blocks that can be re-used.

FreePtr->

HeapPtr->

When memory is requested from the TEGL Heap Manager,

Top of DOS Memory

60k

70k

Free Space
*

cmaxavail
102k
*

* Program *

2<—|+

1<-+

The heapptr

freeptr points to a list

a sequential

scan of the freeptr chain is made to see if any of the free memory
space can be re-used. Any free space that satisfy the requested size will

be used.

Programmer's Reference Guide

- 254 -

2<—

1<-+

TEGL Windows Toolkit

The free space is then reduced by the allocation size

APPENDICES

freeptr chain if the block is completely allocated.

cgetmem (102k)

FreePtr->

HeapPtr->

Top of DOS Memory

60k

70k

Free Space
*

cmaxavail
102k
*

* Program *

cgetmem (20k)

FreePtr->

HeapPtr->

Programmer's Reference Guide

Top of DOS Memory

60k

70k

Free Space
*

cmaxavail

2<—|+

1<-+

1-—+
2-— |+
2<— |+

FreePtr->

HeapbPtr->

FreePtr->

HeapbPtr->

- 255 -

of DOS Memory

60k

Free Space
70k

L1177 777777777
L1177 7777777777
L1177 7 777777777
L1177 777777777
L1177 777777777
L1177 777777777
L1117 77 777777777

* Program *

Top of DOS Memory

60k

50k

Free Space
*

cmaxavail

and removed from the

Do+

2<—+

1-—+
2-— |+
2<— |+

TEGL Windows Toolkit

APPENDICES

* Program * * Program *
When memory is released (freed), the TEGL Heap Manager
sequentially scans the freeptr chain to see if any of the free memory
space i1s adjacent to the memory block that is being freed.

cfreemem (A7)

Top of DOS Memory Top of DOS Memory
e + g +
————————————————— 1-——+ ——————————— e [1 -+
————————————————— 2——|+ ———————e X ——— | 2—— | +
———————— X———— | 3—=| | + ——————————ee e ——— | 5= | | ==+
————————————————— 4-- + FreePtr-> |- [4—— | | +
FreePtr-> |-——----—--oo-———- 5-- + *
*
* *

HeapbPtr-> |- - ——————--—--—————— Heapbtr-> |- - - ————
+++++++++H+H ++++++++H+H 4
+H+++++++HH A+ | 2<- |+ +H+++++H+H A+ | 2<- |+

(A) >>> | +++++++++++++++++
+H++++++H+H+ A+ | 3<- | -+ (A)>>> | mmm e
++++++++H+H ++++++++H+H 4+
++++++++++++H+++4++ | 5<= | -= | + +++++++++++++++++ | 5<- | - | -+
++++++++H+H ++++++++H+H 4+
+++++++++H 4+ | 1<+ +H++++H+H A | 1<+
++++++++H+H ++++++++ 4+
++++++++t 4+ | A<————+ +H++++H+H+ Attt | A<=+

* Program * * Program *

If adjacent memory is found, the free space pointer is removed from the
freeptr chain and TEGL's heap manager takes the most recent

entry and moves it to fill the now empty position. The size and the
original pointer (A) is adjusted to reflect a new pointer position and
size.

Top of DOS Memory Top of DOS Memory
e + g +
————————————————— 1-—+ —————————————— e | 1 -4
————————————————— 4——| -+ —————ee e |4 - | -+
FreePtr-> |- S5--1-1+ e 5--1-
* FreePtr-> |-———————m A-—|+

Programmer's Reference Guide - 256 - TEGL Windows Toolkit

HeapPtr->

(A) >>>

When all possible
manager checks if
a free space

not,

cfreemem (B)

FreePtr->

HeapPtr->
(B) >>>

The TEGL memory manager sorts the free space entries,

Programmer's Reference Guide

++++++++

++++++++

++++++++H+H

++++++++H+H

++++++++H+H

++++++++H+H
* Program *

DOS Memory

++++++++H+H

++++++++H+H

++++++++H+H

++++++++H+H

++++++++H+H

++++++++H+H
* Program *

APPENDICES

A<- |+

5<-| -

1<-+

4<———t

HeapbPtr->

FreePtr->

HeapbPtr->

257 -

s

e o o o R
++++++++H+H A+
++++++++HHH 4+
++++++++ 4
++++++++H+H 4
++++++++H+H 4+
++++++++H+H 4+
* Program *

adjacent blocks have been removed, the TEGL heap
the end of memory block is equal to the heapptr.
entry is added to the bottom of freeptr.

Top of DOS Memory

++++++++H+H 4+

++++++++H+ A+

++++++++ 4

++++++++H+H A+

++++++++H+H 4+

++++++++H+H 4+
* Program *

so that all

If

5<-| -

1<-+

4<———t

TEGL Windows Toolkit

APPENDICES

allocation of space using cgetmem will always be towards the lower
part of the heap memory.

TEGL Upper Heap Manager
The TEGL fgetmem is slightly different in its management methods.

Allocation of memory is always attempted between heapptr and
freeptr before searching for free space within the freeptr chain.

fgetmem (20k)
Before cgetmem fgetmem
o + o + o +
——————— 1-——+ —— | 1l-—+ —— | 1l-—+
FreePtr-> |-—-———--—- 2--|+ FreePtr-> |-—————- 2--|+ FreePtr-> |-—————- 2—— |+
* * 40k
60k 60k | || ===
* * 1177777
HeapPtr-> |-—-——--- HeapPtr-> |-—-——--—- HeapPtr-> |-—-————-
—————— - ||
* 50k *
0« 1 e 2<— |+ 70k
* 1177777 *
——————— 2<— |+ —_—————— ——————— 24— |+
* * *
102k 102k 102k
* * *
——————— 1<—+ ——————— 1<+ ——————— | 1<+
Program Program Program
When memory is released (freed), fgetmem uses cfreemem to
release the memory block back into the heap.
cfreemem (A7)
Top of DOS Memory Top of DOS Memory
e + g +
————————————————— 1-——+ ——————————— e [1 -+
———————— X———————— | 2—- ————————— e —— | 3= | =+
_________________ 3-— S Y N
————————————————— 4-- FreePtr-> |- -————--—--——————— | 5—— | -
FreePtr-> |- 5-- *
*

Programmer's Reference Guide

258 -

TEGL Windows Toolkit

APPENDICES

* *

HeapbPtr-> |- - ——————--—--—————— HeapbPtr-> |- - - ————
+++++++++H+H ++++++++H+H 4+
+++++++++H 4+ | 1<+ +H+++++H+ A | 1<+

(A) >>> | +++++++++++++++++
++++++++H+H 4+ | 2<——+ (A)>>> | mmm e
++++++++H+H ++++++++ A+
+++++++++H++++++++ | 3<———+ +++++++++++H 4 | 3<-——+
++++++++H+H ++++++++ 4+
++++++++t 4t | A<————4 +H+++++tttt A+ | 4A<o———+
++++++++H+H ++++++++H+ 4
+++++++++++++++4+ | 5<—mm == + +++++++++++++++++ | <o ———= +
* Program * * Program *

If adjacent memory is found, the free space pointer is removed from the
FreePtr chain and TEGL's heap manager moves the free chain structure

up by one entry to close the empty position. The size and the original
pointer (A) is adjusted to reflect a new pointer position and size.

Top of DOS Memory Top of DOS Memory
e + g +
----------------- 3————+ ————ee e | A+
————————————————— 4o | + —————— | 3= | -4
FreePtr-> |- S5-—— ||+ e d——| = |+
* FreePtr-> |- S5-—1-| |+
* *
HeapbPtr-> |- - —————----—————— Heapbtr-> |- - - - ————
————————————————— +++++++++H+H 4+
(A)>>> | ———mmmm e +H++++++++H++++++ | A<+
++++++++H+H ++++++++H+H 4+
++++++++++++++ 4+ | 3<———+ +++++++++++H 4 | 3<-——+
++++++++H+H ++++++++H+H 4
++++++++t 4 | A<————4 +H+++++Httt A+ | A<o———+
++++++++H+H ++++++++H+H 4
+++++++++++++++4+ | 5<—mm == + +++++++++++++++++ | <o ———= +
* Program * * Program *

When all possible adjacent blocks have been removed, the TEGL heap manager
checks if the end of memory block is equal to the HeapPtr. If not, a free
space entry is added to the bottom of FreePtr.

cfreemem (B)

Programmer's Reference Guide - 259 - TEGL Windows Toolkit

Top of DOS Memory

APPENDICES

Top of DOS Memory

----------------- A-——+ Y [P
————————————————— 3——| -+ —————————— e 4 | +
————————————————— d——| = |+ FreePtr-> |- -—-——-—-—--——————— | 5————
FreePtr-> |——-—————- X——mm————— S5-—-1-| |+ *
*
*
HeapbPtr-> |- - —————----——————
(B)>>> | mm e -
*
————————————————— A<-+ HeapbPtr-> |- - - - ————
+++++++++H+H ++++++++H+H A+
+++++++++++++++++ | 3<——=+ +++++++++++H 4+ | 3<-——+
++++++++H+H ++++++++ 4+
++++++++t 4t | A<————4 +H+++++tttt A+ | 4A<o———+
++++++++H+H ++++++++ 4+
+++++++++++++++4+ | 5<—mm == + +++++++++++++++++ | <o ———=
* Program * * Program *

TEGL uses the more efficient method of maintaining the free space chain in

sorted order.
of the heap.

non-movable records is allocated in the middle of the heap.

Combining the best of both Heap Managers

What we noted that we needed was the ability to have two heaps.

(Coexisting)

One

This allows allocation of memory to favor the lower portion
This does not remove the fragmentation problem where one

for

miscellaneous dyanamic variables and one for large allocations for images.
Combined with the virtual memory handler, this allows the paging out the
large allocations effectively releasing adjacent memory. At the same time
we did not want to limit either heap. The lower heap must have the ability
to flow over to the second heap without problems.

ReserveHugeMinimum provides an elegant solution of partitioning the
standard heap into two parts. A single non-movable byte is allocated as a
partitioner.

cgetmem fgetmem
e + e + e +
FreePtr-> |-—-———--—- l--+ FreePtr-> |-———-—-—- l1--+ FreePtr-> |-———-—-—- 1--+
Programmer's Reference Guide - 260 - TEGL Windows Toolkit

APPENDICES

329k 329k 200k
HeapPtr-> |-—-————-
1177777
1177777
HugeMin HugeMin /177177
HeapPtr-> |-——-———- HeapbPtr-> |-————-—-(| | ===
12k 11k 11k
——————— 1<—+ ——————— 1<+
1171777 1171777
——————— 1<—+ —_—————— —_——————
Program Program Program

cgetmem will always search for free space through the
FreePtr Chain, the lower partitioned area will always be used first (it
is always the first few entries in the freeptr chain).

fgetmem used by the window manager will always attempt to allocate

space between heapptr and freeptr before searching through the

free space pointer chain. Even when searching through the free space
chain, a comparison is made on the minimum area for allocating. When TEGL
frees a memory block, the free space pointer is sorted upwards into the
free space chain.

Top of DOS Memory

Fom - -
.
+] =Bl -
+]|--Cl-mmmmmm e -
+]||--D|-=—mmmm e ———

+ ——E|-mm e
----------------- 4-—+
----------------- 1-—|+
----------------- 3| |+
----------------- 2—— || |+
----------------- 5-— +

+->A | +Ht+++HHtt+Htt 1+
+-—>B | +++++++++++++++++

+===>C | +++++++++++++++++
+=—==>D | +++++++++++++++++
S ——— SE | +++++++++++++++++
Hugemin

Programmer's Reference Guide - 261 - TEGL Windows Toolkit

APPENDICES

R e PR
+++++++++++H+++++ | 3<- | -+
++++++++++++H+++4+4+ | 5<= | = | +
+++++++++H 4+ | A<=+
++++++++ 4 | 2<————4
* Program *

Programmer's Reference Guide - 262 - TEGL Windows Toolkit

Conditional Compilation

The file teglcond.h contains conditions compilation directives that
support different facilities with the Toolkit.

Note! If you change any defines you will have to make the entire toolkit.
The following defines affect the Toolkit:

#define NOGR - The toolkit is built with no explicit references to
graphics.lib provided with Turbo C. Instead a compatible module

tgraph is used which provides a subset of the functions provided in
graphics.lib If your application does not need all the features of the
Graph unit then compiling with this directive enabled can save as

much as 25K of code size in a program (assuming the BGI drivers are linked
in) .

#fdefine NOVIRT - The code that implements virtual memory using either
EMS or a disk drive is not included. Applications save about 8K of code
space but can easily run out of memory if many windows are opened. This
is more critical for EGA or VGA displays since the windows require four
times as much memory than CGA or Hurcules displays.

#define QUICKC - The toolkit will be built assuming that a Microsoft C
compiler is being used.

#define TURBOC - The toolkit will be built assuming that the Turbo C
compiler is being used.

Programmer's Reference Guide - 263 - TEGL Windows Toolkit

Tl 1= o 94
T 237
Click and drag. .o e e et eeteeeeeeeeeeeeeeeeeoeeoesoeeseseneenas 24
B G . it it e e e e e e e e e e e e e e e e e e 144
Event driven Code.ttt ittt ittt ettt eneenens 23
Expand and shrink.ttt tieeeeeeeeeeeeeeennns 25
N A 77
FGNORN . & ittt it e i e i e i it e e it ittt i et et i e 77
[77
L) 77
0 77
N @ 0 = T 192
=T e £ 97
Keyboard events. ...ttt ittt ittt ittt seseseanenens 25
8 I 1Y 124
MoveFromVirtual ProCeAUTL . v vt vttt eeeneeeeeeeeeseeseeneeas 223
L3S TS o = 84
< O < 84
OF i it e et e e e e e e e et e e et e e e e e e e et e e 96
O e it e e e e e e e e e e e e e e e e e ettt 95
(@] o) wii I o N Y ol 96
(@] o) w0 o H 11T o N 95
| =t} T 3 ulle I o ¥ 192
REAAK ey i i it ittt ittt et ettt ettt e e e e 91
TE G LS UP e ViSO e 4 v vt e et e et e et oeoeeeeeneenesoesoeseeseeseenas 24
Timer LiCKS . . i ittt e e et e et e et e it e i e eieeaenenn 25
T 139
F= 1 oY w1 ' P 149
R @ A VY @ 6 i e o 30
=Ko e L 2= o) b el Y P 131
= L B = 1= 184
allocateexpandedmemOryPagE S e ¢ v v o o o o oo oo o ececeneneeseeeeeans 205
E= 0 T 4= 186
animatecomplete. o vttt it it i et et e e et et e e 186
animatelinit ...ttt e e e et e e e e 185
ASKSOUNA SN S . v v ittt et ittt et ettt et et 197
@1 198
o TR 11T T e Y= eI/ 143
o i Y 10 203
CabB40x200 2 e v ittt it et et e e e e e e e e e ettt 136
(o2 1wl 111« 202
checkctrlbreak. . oottt i e et ettt 233
checkctrlbreakfs. ..o ittt et ittt ie et 233
checkformouseselect . .. ittt ittt ittt it ittt 173
ChecKkmoUuSEC LliCKPOS . i vt ittt ittt ittt et eeteeseeseeseennens 172
Clearbuttoninfo. ...t e e e e 121
clearkeyboardbuf it et e et et 90
clearteglkeyboardbufl i e e e 90
ClearteglsCreeil. v i ittt ittt et ittt et et et e esesesesenesasanans 151
(o @ 3 =T Y i ak= 1 o) o NP 238

Programmer's Reference Guide - 264 - TEGL Windows Toolkit

) (4= - V= 225
CollapsetoiCOonShOW. « v ittt ittt ettt it ettt et eeeeeeeeaees 165
COllapsetomSCliCK . i ittt ittt ettt ittt eeteeeeeeeeeeeeeeas 166
T T o 31
FoTe) 111 14T I B T = wlf 61
COUNEErames . o v vttt ittt et e i ettt ettt eeeenes 49
Createbarmenu. . ..o v it ittt i it et e e et e e 105
createimagebuffer. .. vttt ittt ittt ittt e e e 74
CreateoPtionmMeNU. @ vt it ittt ittt et ittt eeeeeeeeseeseeoeeneeas 96
CreateshadoWom. v v v vttt ittt et e et ettt et e taeeneennes 98
currentframenumber. it i e ettt 185
CULSOE S Na e s i i it ittt et et et et ettt et et et asesesesesenesasasans 117
deallocateexpandedmemOryPagE S c v v v o o o o oo oo ooceceneenseeneeans 207
definebuttonclicKk. . vt it it i e et e et e e 163
defineglobalkeyclickarea . c vt ettt ittt eeeeeeeeeeeeeeeeenas 91
definelocalkeyCliCKarea . i v vt ettt ettt eeeeeeeeeeeeeseeeeenas 92
definelongbuttonClicK. v it ittt ittt ittt ettt eeeeanns 164
definemouseclicKkarea. « v o v ittt ittt it ettt ettt e 84
defineoptionclickarea. c v ittt ittt ettt eteeeeeeeeeeeeeenas 110
defineopPtionsS . i ittt it et ettt it e e e e e e 97
defineresizeclickarea. .o vt ittt ittt ittt ittt 228
defineresizeminmax. oo i ittt ittt eeneteeneeeeneeaenens 229
definesliderarea. @ v v it i ittt ittt ettt 229
defineuserbuttonclick. ittt ittt et e e 164
deletecapturekey . v v it ittt ittt ittt ittt ettt eeeeeeeeeananans 132
destination. .« ittt ittt ittt e e e e e et e 181
[LY Y e riak= 1 Y o P 238
o liar=17 I @Y o T § @ 16 & wik e o [P 170
dropimagebuffer. ...ttt ittt ittt it ettt e e e e 75
AropkeyCliCK . i vttt it it et et et e e et et et e 92
o it} o 1= I L o = SRR 230
dropstackimage. . o vttt it ittt e et e e e et e e 54
o Bt} o ulle I {1 et 1@ 1 5o 1 O 129
o Bt} @ ulle I 1= wil A2 <O 234
Y= Y i =Y L P 36
Y e = L ORI 196
€gab40x350K LB . ittt ittt e e e e e e e et et et 137
emminstalled. c ot i it e e e e e e e e et 204
emsblockread. . ..ottt i e e e e et e 215
emsSbhloCKkWrit e . t it i e e et e et e e 214
1S 1= @ @ 1 = 216
10 @) T o P 213
emspagesavallable. ...ttt ittt ittt e e e e e e 205
EINS S EEK . i it ittt e ettt et et e et e 214
S (11 = 31
explodefromiconhide. ...ttt ittt ittt teeeeeeeeeeanns 166
explodefrommscClicCK . vt ittt ittt ittt e et et et e 167
LS QY o @ R wl = w4 162
D i o Lo wil S 1 ORI 146
Dl o L wl B I <= SO 146

Programmer's Reference Guide - 265 - TEGL Windows Toolkit

B w5 o [140
findframe. @ @i e e e e e e e e e et et e 171
findkeyClicKkpPE L. i i it ittt et et e e et ettt e e e 93
findmouseCliCKPtr . vt ittt ittt et et ettt et e e 85
findsliderfs. @it e e e e e e et e 230
it frame. ot e e e e et e e et et e 32
G I I Y= o T o O 144
G I I o o T o O 145
i (ol ol Yo B = w4 189
fontname. . .ttt e e e e e et e e 193
frameexd st . vttt e e et e e e e et e 49
framefromicCon . @ @ittt e e et e e et e e 32
frameselectandmove. ittt ittt e e e et 63
frametext .. i i e e e e e e e e 33
freeimagebuffer. .. ittt ittt ettt ettt e e 77
freevirtual. . ittt e et e e e e e e e 224
freezemousSe. vttt it e e e et e e e e 123
B el @ A= o} 11T B = 122
e £ o @ i e O 142
(e 1Y o 0 X T s P 238
getbuttonpressinfo. v it ittt ittt e e e et e e 121
getbuttonreleaseinfo. . vttt it ittt ettt e i et 120
(e £ w2 T sl 239
getfillpattern. . ittt it et et it e e e et e e 239
getfrontimage . v vttt i et et et et et ettt e 78
JetfsSimMage . v ittt it et et et e e et e e e e 76
getgraphmode. . & ot it ittt ittt i e ettt e ettt 240
gethandlecountused. . .. i ittt ittt ittt et eeeeeeeeeanenans 208
(o LY w8 @ 1= wi Y = I 127
(o 1S w841 - 240
(o 1 w841 5P 240
getmousesensitivity .. ettt ittt it et e e et e e 125
e MO U S Y e 4 vt et et et et e e o e oeoeeeoeeeoeeeoeeeseossseseeeeeans 34
(e £ w3l I o ORI 180
getpageframebaseaddress .« v v ittt ittt ittt ettt 206
getpagesownedbyhandle. ittt ittt ittt 209
getpartialfrontimage. it ittt ittt ittt ittt 78
e £ o O 141
gettextsetting s . i vttt ittt it i et it e it e e e et e e e 241
et Ver S IO NUMD e . v vttt e et ettt e oo e eeeeeeeesnesoeseeseeseenas 207
(o LY WY == o Y 2P 35
o iar= 1 0 o ot S < 1 5 L P 241
e rCT 20X 348K ¢ it i it e e e e e e e e e e e e et 137
hidedimage . ittt ittt et et ettt e eeeeaeeaneeeeeeoeennns 56
o T LY 0L G = 116
R (T T = e O 241
e o T e a1 o O 242
keystackplr . i ittt i i it e e ettt ettt ettt 93
= = o T 36
= = o) 37

Programmer's Reference Guide - 266 - TEGL Windows Toolkit

0 242
s 0 < = 72
1inkunder s . it e e e e e e e et 73
B Y < I 1=K 1O 79
MapPeXPandedmMemMO L YPaTES « ¢ « v o o o v o s o s o s o s ososesosesesesasasass 206
00T B X @ ok i 114
10T B X @ s ok o 115
MOUSEPOSIEION .ttt it it et et it e it e ittt eeseeseeseeeeanneas 119
1LY =Y T - 167
L@ Y = 1= 70
MOVESLACKIMAGE . v v it it it ettt ittt et eeteeeeeseeoeenneas 68
movetovirtual. @ ottt e e e e ettt 224
07 @)< 24
S PO S e v v et et et et et et et e s e e asasasesesesesesesesesasanans 115
L= T 0 = 24
NI11KEYCAL PO . i it ittt et ettt eeeeeeeeeeeoesoesoeeseeneenas 133
0 T I g e I) o O 234
OF1gin PrOCEAUL . v v it ittt e et ee et eeeeeeeeoeeoesoesesseeseenas 180
F@] S ol o= ax) X w1 o [106
OULframet e Ry v vt ittt ittt ittt ettt ettt e eeeeeeeeeseenenans 38
(@b i o =Y B I D~ w4 189
L@ i = w42 243
@Rl = o = T ol - I 235
OVEY LAY IMG e v v e et e et e et e e oo e o eeseeeeeaeenesoesoesoeeseeseenas 147
XK £ o T J 79
S X=X F= @ X 5w < 80
pageoutimagestacK . c vt ittt ittt e e ettt 81
TR I B = 149
X} i 1= X Y 51
prepareforpartialupdate. . ittt i et et et e e e 58
PrepareforuUpdate . i v v it it ittt e e e e e ettt e 60
J S Al Y <7 @ L6 L wi o L 174
PUSHIMAgE . vttt it ittt it ettt ettt et eeeeesenseeseeonaennas 50
PULD I d . o e e e et e et e 142
PULESImMage . .t vt ittt it et it e it e et e et e et e e 76
PUL PG s it i et et et et it ettt e eeeeeeeeseeseeseenneennns 45
PUL PG s it i et et et et it ettt e eeeeeeeeseeseeseenneennns 149
PUL D R S e ittt et et et e et eeeeeeoeeeeeeeeneesessesseennennns 141
PULUsSerbUttonClicCK . it ittt i it it e e e et ettt et et e 165
JUICKErAmME . & ittt it et et et et ettt et et 39
JUIE ¢t ettt et e it e et et s et et eeeeeeeeaeeoeeoesoeesoeeseeneenas 38
el ST U= o X B 243
replaceoptiontexXt . v ittt ittt ittt e e e e e 102
reservehUgeminimum. ¢ v v vt i ittt ittt ot eeeoeeeeseeseeeeenenns 227
resetframe. . ..ot i e e ettt 182
resetkeyClicKkCallpPrOC. i v ittt ittt ettt eeeeeeeeeeeeeoeennens 93
resetmouseclicks . ittt e e e e e e e 88
resetmsclickactive. ...t e e e e 87
resSetmSCliCKCaAllPrOC . i i it ittt ittt et eeeeeeeeseeseeseennens 87
resetmsCliCKSeNnSE . it it it ittt e e e e e et 89

Programmer's Reference Guide - 267 - TEGL Windows Toolkit

resSetoPL 10NMENUEVEN T S . i vt ittt ittt ittt eeeeeeeesoenseeseeneens 111
Bial ST w1 T o 183
resettimerflag. vt in ittt ittt ettt e e e e e 129
TESI1zZeframe . i i it ittt it et et et et et e e e e 231
rEeS1ZEeOPLiONMENU. ¢ vt vt it ittt ettt ettt ettt 99
Bial ST R e B Y @ L T L 243
Bial S R Ui B S Ui - A 39
rotatestackimage. v it ittt ittt e it it et e e e e 52
rotateunderstackimage. . v vt vttt i it i ittt e e e e 53
el) e Y 40
SeleCtalfile . it ittt et et ettt e e e e e e 195
selectandmoveframe. @ @i it it ittt ittt ittt ettt ettt 232
SselecteasylexXt . i ittt it it e ittt et e e et et e 40
SEQUEIICE & 4 e e e e o e o e o e oo oo oo oeosnsnsosesesesesesesesesesensess 182
TSR w= X=X 143
Setautorotate. ittt ittt e e e e et e et et 64
SethbarborderCOlor . @i it ittt ittt e ittt et e et 108
setbharborderoffttt ittt e e et et et e et 108
Setharfillstyle. it ittt et et ettt et e 109
SELArMENUCO L 0T . v i it ittt et et et et e ettt 107
SELharMENUMATLG I N e ¢ vt e et ettt e e e et e e eeeeeeeenesoesosseeneeas 109
setbarshadowtext ..ottt it it it it it ettt esananans 108
SethartexXtCOlor . v i it ittt it it it it et e e et ettt 107
TS ol @ @ 21 @ B 2 244
S @ 20 I @ B 244
TSR Y Y @ o 41
setfillpattern. . vttt it et i e et et e e e e 244
LS w0 i V20 O 245
setframemob i lity. e ettt ittt et ettt et e e e 66
SethidesubmenuU. .« o vttt it ittt et ettt eeeeesenseeseennens 104
Setimagecoordinate s . i vt it i it ittt ittt ettt 81
TSRl 1 Y X 126
SetkeybhoardmoUSE . v i it ittt ittt ettt et et et 125
SELMOUSECO L 0T t v i vttt ettt ettt et o e oeoeeeesesesesesesesasasass 119
SEetmMOUSERO L SPO L . v i i ittt e e e ettt et 119
SELMOUSEMININAR ¢ ¢ ¢ ¢ v e e v e o et o e s oo s oeeeesnennsonssoesosseeneeas 122
SELMOUSEPOSIEI0N .t it ittt et et et ettt ettt 116
S MOUSE SIS e v v vt vt et et ot o e oo oo oeoeosesesesesesesesasesass 197
SEetmMOoUSESENSIEIVIitEY .ttt ittt it et it e it ettt e e e 124
SetmoveframeCal lPrOC . i vt it it ittt et ettt eeeeesesesesesasesans 67
SetmoverestriCtionS .t vttt ittt et ettt e e e e 65
SetoptionmenUbOrderCOlor . v v vt ittt i ittt et e eeeeseeeeeneens 104
SELOPLI0NMENUCO L 0T S . i it ittt et et ettt eeeeeeeeoeeoesoesseeneeas 103
[STR ul e 3al e Yoo wl I} o - I O 192
setshadowborderColor . i v it it ittt ittt ettt eeeeenanasans 157
SEeLshadoWCOlor . i it it ittt it e e e e ettt et esesenesananans 156
setshadowfillpattern. . vttt ittt ittt eeeeeeeeeeeeeeneens 157
setshadowfillstyle . ittt ittt et ieeeeeeeeeeeeeeennens 158
setshadowtexthighlight.ttt ittt ittt teennnns 161
setshadowtextshadow. . .. ittt ittt it it it it ettt eeanans 160

Programmer's Reference Guide - 268 - TEGL Windows Toolkit

setshadowt ety e . v i ittt ittt et e i e e ettt e e esananans 160
o R w0 o w2 = O 134
TSR ulf =B @ Y o Yo X< R e N o O 232
SsetteglbackColor . i it ittt it e e e e e et et ettt 152
SetteglborderCOlor . it it it ittt e it e et ettt 153
setteglbordershow. « vttt il it e e et et ettt 152
setteglfillpattern ProcCedUre. « v vt ittt it enteeeeeeeeeeeeeens 154
Setteglfillstyle . ittt et ettt et e e e 154
TSl wif Yo B @ o 192
SetteXt JUSE Iy . it ittt it et et et et ettt e e e 245
Ssettimerstart i e et e e e e et e 128
settimertick. i e e e e e et e 235
SetvideoChodlCes . i v ittt e e e et e et 138
TSR W v 0¥ K 144
ShadoWbhOX . v i ittt e et e e e e e et 155
shadowboxtext . i vttt ittt e e e i e et e e e 156
ShadowWte Xt . i i i ittt e e et et e et 159
shadowtexthighlightoff.ttt eeeennns 161
S o s < w42 162
showbuttonstatus. . ..ottt i i e e ittt et 134
Showcoordinates . vt i ittt et et e e ettt 58
S 0 A o i 193
SN OWIMAGE . v i ittt it it e it et et et et et e e e e 57
LS o 0L L 1= 116
Showonefont . v i ittt e e e et 193
S @ LY @ 1T o T 198
SOUNASWIECh . L it e e e e e e e 199
SIPAWI e o 4 e e e e o e o e o e o e o e oo oo oeosnsnsosesesesosososesosesesena 113
SUPETL VB ¢ ¢ ¢ e e o e oo oo oo oeoenensnsnsssssssesesesesesesesesess 138
SVGaAB00X6B00K LB . o ittt i ettt et e e e et e et e e 138
R 0] €)Y w < 147
swapteglintroff . @it e e et e e et e e e 113
SR 2N o) wlt Y B T o w0 SO 114
SWAPELIME LI . v i it it e et e it et e et ettt e e 128
SWAPELIME L OUL e v i i it ittt et et et et ettt 127
teglcharheight . ..ottt it it et it e it ettt teeeeaanns 191
teglcharwidbh. .ottt ittt it it ittt it e ettt eeteeeeeoeeanns 191
LeglKkeypPresSsed. v vttt ittt ettt et e e e e 133
Leglreadkey . v vttt it it et e et e e e et e e e e e e 132
LGl SUPEr VI SO e i ittt ittt e ettt eeoeeeeeoeeassneeoeeseeneeneas 19
tegltextwidtbh. .ottt it et et it e it e e e e 190
LU Y B i o = 191
timerswtich. c vttt e e e e e e e 129
togglecheckmark. ..ot ittt i i i e ettt ittt et et 100
LoggleentrystatusS .t vttt it ittt et et ettt et e 101
uleYe fe MY o) o) ulli A e} o1 o X ol 103
L8 8 a Y A = L 1 = 124
UNLInkKE S . ottt e e e e e e e e e e 70
UNLOCKIMAGE . ¢ v ittt et ittt et ettt eeeeeeeeoeeaesoesoeeseeseeneas 82
UNUSEIMAGE e ¢ i i ittt ettt et e e o oeeeeseeeeeaeeassossoesseeseeneas 82

Programmer's Reference Guide - 269 - TEGL Windows Toolkit

Useharddisk. « vttt it ittt e e e e e e e e e e 223
USEIMAgE e ¢ v ittt e ettt s e et eesoeeeeseeseeoeeaesossoeeseeseenees 83
vdskcloseheapfile . ittt ittt ittt ittt teeeeneeeoaennns 221
Vdskfreemem. @ oo vttt i e e e et ettt et e 219
VASKGEEmMEM. & v ittt it e i et et ettt et ettt e e eeeeesesoesesesasasans 219
vdskopenheapfile. .ottt ittt ittt ettt ittt et 217
vdskreadheapdata. . v v vt ittt ittt ittt et ettt 221
vdskwriteheapdata. ..o v ittt ittt it ettt 220
vemsopenheapfile. i v ittt ittt it ettt e e e 218
VIAB40XKA8B0K LB . ¢ i it ettt et e et et e ettt e et et 138
videoautodetecth . v ottt e e e e e et e e 139
V0o LY T 139
A e 1T o) o 1o 145
725 o I 136
VirtualmemusSed. @ v v ittt it ettt ettt ettt ettt 225
VisSUal UL L ON P eSS . vt ittt et ettt ettt eeeseeenesenseeseeneennns 175
- el - 148
b e B af @] @ B al 1= al T - 148
A1y o i) (110 o - O 169

751y @ i@) @ 1@ b4 168

