
Stone Age n
(1864) :the first known period of prehistoric human culture characterized by
the use of stone tools

Welcome to the Stone Age!    This column shall be dedicated to a recursive descent
into appkit programming: stone tools aka Acme Gizmos, new objects, tricks, and tales
from the dark night of the programmer's soul. In the spirit of FSF and my conviction
that this really is a revolution, here's a tool from my chest. Like all good object
libraries, this column should be written collectively. I invite all of you to "Step right
up" in this space and show off your neat objects, even if unpolished, because its the
concepts that count.    Next month: Kris Jensen describes a new Gizmo.
Composite Objects: A Slider/TextField Hybrid
SliderDualActing and its cell class, SliderCellFine, combine a special ªdual-
actingº slider, a text field, and two arrow buttons into one composite object.   
This allows the end-user multiple input techniques while abstracting the client
or application user of the object away from the details of coordinating the
various Appkit components. The special slider solves some of the problems of
providing fine control over a large range of values in a small space. This
project illustrates the power gained both by subclassing Appkit objects and
combining objects.

First, a picture:

Features

Component objects make programming easier:

· The end-user gets multiple input methods: a slider, a textfield, and a pair of
buttons which decrement or increment the slider, while the program only
deals with one object. All of the validation and synchronization methods are
in one place instead of distributed throughout source files. Programs often
have lines like these in read: and other resetting methods:

[numberField setIntValue:number];
if (number>[numberSlider maxValue]&&okToExceedMaximum)
 [numberSlider setMaxValue:number];
[numberSlider setIntValue:number];

All of the coordinating code can be replaced by the last line.    The
SliderDualActing handles the rest.

·€We want to continually update the textfield as we drag the slider (and
SliderDualActing handles this without any programmer intervention), but we
also want to notify another target either continually or on mouseUp. The
second case is more usual, as continual notification may take too much
processing time. Therefore, our composite object has an UpTarget and an

1

UpAction.

· Users should not be stopped from entering values higher than maxValue or
lower than minValue, if it makes sense to the application. For example, in
TextArt, the fontSizeSlider has a default value of 140 points. However, if users
want a higher value, they simply type in a value into the textPal, and if the
SliderDualActing BOOL instance variable allowHigher is YES, the slider resets
its maximum value. A further enhancement to this class would be methods to
write the user's maximum and minimum values to the NX_Defaults
mechanism to restore on the next launch.

· Sometimes, the user justs wants to ªcrawlº along the slider's values. I have
added a matrix of two buttons which increment or decrement the slider by
altStep. They connect to the sliders' action method incrementDecrement:.

· Component objects can provide a convenient method for implementing
Undo. The SliderDualActing knows its last value and can respond to an undo
method. Alternatively, you can specify an undo target and a tag telling the
target what needs to be undone. The default is for the slider to handle undo
itself. One simple strategy for a single-level undo is to have a global undo
object, which stores the id of the last control set. Undo from the menu tells
this undo object to send the undo method to the control that last set it. My
undo object is accessable via NXApp, and looks like this:

@interface Undo:Object
{
 BOOL hasUndo;
 id lastClass;
}
- setLastClass:anID;
- undo:sender;
@end

Special sliders provide several additional user interface features:

· Sliders with a large range can cause problems: If the slider isn't very long,
the resolution (how much the value changes when the slider is dragged one
pixel) can become unacceptably large. On the other hand, screen space is
often in short supply, making it hard to use the long sliders needed    to obtain
a fine resolution. SliderDualActing and SliderCellFine provide methods to
change the slider's value by specifiable small amounts by checking if the
Alternate or other meta keys are down while the slider is being dragged.
Currently, pressing the Alternate key causes the slider to change by the
altStep instance variable and adding the Shift key halves this amount.

· Looking at float values that have insignificant digits is ªnoisyº and very
unSteveLikeä. Sometimes, however, a user wants to specify a value to a high
degree of accuracy. Our composite object provides a mechanism to
dynamically change the TextField textPal's floating point format.    Normally
the user will not be bothered with the floating point values, but dragging the
slider while pressing the Alternate and Shift keys puts the SliderDualActing

2

into decimal state (as well as changing the value by a prespecified small
amount). This allows precision while preserving aesthetics.

· The user can reset the slider to its various defaults (maximum, minimum,
number of decimal places displayed) while using the program by clicking the
slider while pressing the Command key.

Using SliderDualActing, a step by step guide in
Interface Builder:

The first time the object is used, perform steps 1 thru 13; thereafter only step 13 is necessary:

0] Assume that you have a class with an instance variable named ªsliderDAº
1] Copy SliderDualActing.[hm] and SliderCellFine.[hm] to your project
directory.
2] Bring up the Class Window (Command-5) and the Class Attributes
Inspector (Command-1)
3] Make a subclass of slider:

a] Traverse the Class hierarchy to Object->Responder->View->Control-
>Slider

b] Select SubClass from the Operations pull-down menu in the Class
Window

c] Rename the subclass to SliderDualActing
d] Select Parse from the Operations pull-down menu and answer ªOKº to

the ªAdd
        SliderDualActing to Projectº dialogue box

4] Create a new custom view by dragging one from the Palette Window
5] Make it a SliderDualActing by bringing up Inspector Attributes Window
(Command-1) and    clicking on the SliderDualActing class name
6] Size the new slider: Bring up Inspector Size Window (Command-4) and
type in a width of 16. if it's to be a vertical slider, or a height of 16 if it's a
horizontal slider.
7] Drag a textField from the Palette Window
8] Drag a button from the Palette Window. Make a matrix of two buttons by
dragging while pressing the Alt key. In the Inspector Attributes window, be
sure to check ªCells Tag = Positionº. Add arrow icons to these buttons.
9] Select the three objects and ªboxº them by typing Command-g. This allows
you to copy and
paste the control while retaining the connections among the three objects.
10] Connect the textPal outlet of sliderDualActing to the textfield.
11] Connect the action of the textfield to the SliderDualActing method:
ªsendTextAction:º
12] Connect the matrix' target to the SliderDualActing method
ªincrementDecrement:º

13] Connect your control object's sliderDA outlet to the sliderDualActing view.
Now, for other instances of SliderDualActing, you can copy and paste this
box, and only need to set your application's control object to the    slider itself.

3

In your code, in the ªappDidInitº method sent to the App add some   
initialization code:

You need to set the slider's UpTarget and UpAction and its various default
values. An excellent place for this is after the Application receieves an
AppDidInit: message. For example:

/* The app has an outlet named "sliderDA" in this example */
- appDidInit:sender
 {
 [[[[sliderDA setUpTarget:self action:@selector(setAngle:)]
 setMax:360. allowHigher:NO min:-360. allowLower:NO]
 setAltStep:1. whole:YES default:0]

setFormat:NO left:1 right:3]; // formats text pal

/* other initialization code here */
return self;

}

Caveats:

Problem: IB has no inspector for subclasses of known objects in V1.0. This
means you lose the ability to specify various defaults in IB.
Fix: Call the initialization routines illustrated above and documented in
SliderDualActing.m.

Problem: If the value of altStep is large compared to the range of the slider,
drawing update anomalies occur. Instead of adding resolution, you subtract it.
SliderDualActing should have more error checking for bad parameters.

The archiving methods have not been tested since I read mine in from a nib
file.

Documentation and Files:

 The documentation includes Class    Specifications for SliderDualActing and
SliderCellFine. I really enjoyed "cloning" the superclasses in WriteNow and
just cutting and pasting my methods into the preformatted pages. It looks
ªjust like the book.º I have a deep appreciation now for the great insight and
hard work that went into producing the Appkit and its extraordinary
documentation, definitely a winning aspect of the NeXT programming
environment.

· SliderDualActingDistribution (available in NeXT archives
everywhere):
SliderDualActing.doc.wn
SliderDualActing.h
SliderDualActing.m
SliderCellFine.h
SliderCellFine.m

4

SliderCellFine.doc.wn

SliderDualActing.nib
SliderDualActingDemo.m
SliderDualActingDemo.h
Assorted:README,Makefile,IB.proj,snds,tiffs.

copyright    ã 1990 Andrew C. Stone. All Rights Reserved.

5

