
Intro to Objective C on the NeXT Machine
by Gerrit Huizenga

gerrit@mentor.cc.purdue.edu

Prerequisites:
Basic understanding of the C Programming Language

Helpful Extras:
Some experience with the NeXT Machine
Some familiarity with SmallTalk
Experience with Ansi C or the Gnu C compiler
Familiarity with Objective Oriented Programming

Outside Reading
Object Oriented Programming:    An Evolutionary Approach

by Brad Cox
Objective-C Compiler Version 4.0 Reference Manual

The Stepstone Corporation
Display PostScript System

Adobe Systems Incorporated
NeXT Technical Documentation

NeXT Incorporated

Goal
This course will provide an introduction to Object Oriented Programming using Objective 
C on the NeXT machine.    If you are interested in doing any software development on 
the NeXT machine, this course will help get you started.    I will discuss the terminology 
and concepts used in Objective Oriented Programming as well as describe the syntax 
used in Objective C. I will show how to read an Objective C spec sheet and describe 
some of standard Classes of Objects provided by NeXT and how to use some of them.

Future Courses

I plan to teach the following courses in the future:

Introduction to the NeXT Interface Builder
Intermediate Objective C on the NeXT machine
Advanced Interface Builder 

I may also teach a class a more advanced class on Objective C and the NeXT 
Object Classes.

1



Object Oriented Programming

What is it?

Grouping of functionality and data

Separation of interface and implementation

Type-dependent operations

Code Sharing

Hierarchical partitioning of functionality

A different way of solving problems

How does it work?

Syntactical support for abstract data types

Message-sends instead of function calls

Compiler support for inheritance

Programmer thinks differently

2



Abstract Data Types

Computer programs manipulate data.
What they do to that data is important.
How they do it or what form the data takes is not.

So...create new data types and and declare exactly what the program can 
do to manipulate a variable of that type.

This provides a form of data integrity...

And provides flexibility for future modification of the data's form (i.e. for 
efficiency, bug-fixing, or enhancement).

Terminology:

In object-oriented languages, these data types are called Classes.

A variable of a given class is an instance of that class.

The word object is often used to refer to an instance of a class (e.g., a 
Button object is an instance of the Button class).

The operations that a given class implements are called methods (not 
functions).

3



Messaging

We can ask an object to perform a method without knowing what its class 
is.

Instead of calling a function to perform some operation on an object, we 
send that object a message asking it to perform that operation on itself.

Depending on the class of the object, different code will be executed by the 
computer.

This is useful since a given message may be meaningful to different 
classes of objects (e.g. "size" is meaningful both to a stack and a queue 
even though each may calculate its size in a very different way.)

Terminology:

The messages sent to an object are called messages.

Instead of calling a function, we send a message to an object to get it to 
perform one of its methods.

4



Example of Object Oriented design

The Unix File System is Object Oriented.    Most of you are familiar with the 
following Unix system calls:

open()
close()
read()
write()
lseek()
ioctl()

The open() call takes a file name as one of its arguments and returns a 
handle to a file.    The open call may perform some device specific 
initialization, such as supplying DTR to a terminal line or locating a disk 
drive which contains the named file.    In the kernel, there is a switch 
statement which decides which device specific routines be called based on 
the filename that you have provided.    Each of the other routines listed 
above have similar code to decide how to do buffering and actually locate 
the data that you are working with, either by sending the appropriate 
commands to the disk drive or tape drive, or waiting for serial input from a 
terminal line, or sending data to a printer.

As the person using the routines though, you generally don't have to know 
which set of operations will be performed by the kernel, but that the kernel 
will do whatever is necessary to fulfill your request.

In this example, the class might be FileManipulation, the methods would be
open(), close(), etc, and an object would be the file descriptor that the 
open() routine returns.

5



Inheritance

Related classes can share common code.

A new class can be created which inherits all the functionality and 
data of some other class (i.e. instances of the new class understand 
all the messages that an instance of the class it inherits from 
understands).

The new class can choose to respond to any given message in a 
different way than the class it inherits from does and can also define 
new methods.

The new class can modify the data used to implement the class it 
inherits from and can add to that data.

Terminology

A class which inherits from another class is a subclass of the class it 
inherits from.    A class is a subclass of its superclass.

When a subclass responds to a message in a different way than its 
superclass does, the subclass is said to have overridden its superclass's 
method. 

Subclass is often used as a verb, "I subclassed the Vehicle class to create 
the Car class."

6



Programming

The thought processes of the programmer are as much a part of object-
oriented programming as any of the above.

Programs must be thought of as a collection of cooperating pieces of data 
(objects) rather than a thread of control.

Program design is data-oriented rather than process-oriented.

User-interface programming is fundamentally object-oriented.

Terminology:

Object-oriented programmers use phrases like:

"When the user presses this button, it sends a message to this object which
calculates something and then sends a message to this other object which 
updates this and..."

instead of

"We wait for the user to press a button and then we decide which one it 
was, and, based on that, we decide what to do, then we wait for the user to 
do something else..."

7



Objective C

In Objective C, we describe the interface to a class using using the 
@interface declaration:

@interface Stack : Object

followed by the variables used to implement the object (these are called the
class's instance variables, and each instance of this class has its own 
copy of these variables):

{
StackLink *top;
unsigned int size;

}

Then we list the methods that this class implements (i.e. the messages that
objects of this class understand):

- free;

- push: (int) anInt;

- (int) pop;

- (unsigned int) size;

and finish up with the @end declaration:

@end

8



This would normally be stored in a header file called "Stack.h".    The 
definitions for the superclass of the class you are subclassing are imported 
at the beginning of the file.    An import uses the #import directive which is 
similar to the #include directive, but ensures that the file is only include by 
your file once. With all of this in place, the file would look like this:

#import <objc/Object.h>

@interface Stack : Object

{

StackLink *top;

unsigned int size;
}

- free;
- push: (int) anInt;
- (int) pop;
- (unsigned int) size;

@end

9



Note that in the @interface declaration, we specify the class that this class 
inherits from (its superclass).    The superclass of the Stack class is the 
Object class (all classes are at least a subclass of the Object class).

Method names always contain a colon (":") before any of the arguments 
that are passed along in the message (e.g. push:).

Any number of parameters may be sent in a message, each separated by a
keyword ending in colon.    For example, if we wanted to be able to push 
two integers on the stack with one message, we could define the method:

- push: (int) first and: (int) second;

The name of this method is "push:and:".

Parameters passed in the message are declared using the C "type cast" 
notation.    Any type that is valid as a C function parameter is valid as a 
method parameter.    The return type of a method is also specified using the
"type cast" notation.    If no return type is specified, then the method is 
assumed to return a pointer to an object.

10



We define the implementation of the class (in a sepearate file from the 
interface) using the @implementation directive:

@implementation Stack

Objective C is just like normal ANSI-C (as implemented by the GNU C 
compiler), except that it provides the ability to define classes, create 
instances of objects, and send messages to objects.    Two new 
fundamental types are added to the language:

id pointer to an object
SEL a message (we sometimes call messages selectors, thus the 

abbreviation).

Both variables of type id and type SEL are valid parameters that can be 
sent in a messages or passed to a C function.

Messages are sent using a Smalltalk-like syntax:

id s;
int i;

s = [Stack new];
[s push:34];
i = [s pop];

11



In the implementation of a class, methods can manipulate the class's 
instance variables (e.g. the linked list pointed to by top in the Stack 
class), can generally do anything normally allowed in C, and can send 
messages to objects.

What objects can an object send messages to?

itself (this is very common)

itself, but use its superclass's implementation!

objects pointed to by one of its instance variables (i.e. instance 
variables of type id).

objects passed to it as a parameter in a message sent to us by 
some other object

factory objects (factory objects are sometimes knowns as class 
objects)

12



How does an object send a message to itself?

Example:    [self push:34.0];

self is a special variable which is a pointer to the object which 
received the message which invoked the currently executing 
method(!).    In other words, it is the receiver of the message.

Example:    Remember push:and: ?    Here is probably how that 
method would be implemented:

- push: (int) first and: (int) second
{

[self push: first];
[self push: second];
return self;

}

Notice that the push:and: method returns self.    Remember that if a 
method does not specify the type of its return value, the default is to 
return a pointer to an object (i.e. something of type id).    This means 
that, barring any other sensible thing to return, methods should 
always return self!

13



How can an object send a message to itself but use its superclass's 
implementation?    And why would someone ever want to do that?

Why?    ...because in the implementation of a method which is 
overridden (i.e. the superclass implements it, and the subclass 
implements it differently, a class may want (and often does want) to 
perform its superclass's implementation as part of its own 
implementation.

How?    ...any message an object sends to the pseudo-variable super 
will cause its superclass's implementation of the method to be 
performed.

An object can send a message to super in any method.    super 
implicitly means "self, but use superclass's implementation"

There is one and only one factory object per class.    There is a global
id variable which points to it, and that variable's name is the same as 
the class's name.    You send messages to it to create new instances 
of that class or to query class-specific (as opposed to instance-
specific) information.

Example:    

id s;

s = [Stack new];

14



The file which contains the implementation of the class ends with the 
@end directive (just like the interface file does).

Example:

@implementation Stack

- free
{

StackLink *next;

while (top != (StackLink*) 0) {
next = top->next;
free( (char *) top);
top = next;

}

return [super free];
}

< other methods >

@end

15



File:    Stack.h

#import <objc/Object.h>

typedef struct StackLink {
int data;
struct StackLink *next;

} StackLink;

@interface Stack : Object
{

StackLink *top;
unsigned int size;

}

- free;
- push: (int) value;
- (int) pop;
- (unsigned int) size;

@end

16



#import "Stack.h"

@implementation Stack

#define NULL_LINK (StackLink *) 0

- free
{

StackLink *next;

while (top != NULL_LINK) {
next = top->next;
free ((char *) top);
top = next;

}
return [super free];

}

- push: (int) value
{

StackLink *newLink;

newLink = (StackLink *)malloc(sizeof StackLink);
if (newLink == 0) {

fprintf(stderr, ªOut of memory\nº);
return nil;

}
newLink->data = value;
newLink->next = top;
top = newLink;
size++;

return self;
}

17



- (int) pop
{

int value;
StackLink *topLink;

if (0 != size) {
topLink = top;
top = top->next;
value = topLink->data;
free (topLink);
size--;

} else {
value = 0;

}
return value;

}

- (unsigned int) size
{

return size;
}

@end

18



Factory Objects

Objective-C automatically creates a factory object for each class 
used in an application.

Exactly 1 instance of a factory object per class exists at runtime

The name of the factory object is the name of the class

The primary purpose of a factory object is to provide a mechanism to 
create instances of the class:

id myStack;

myStack = [Stack new];

Factory objects respond to factory methods.

Factory methods are indicated by a "+" preceding the name when 
declared and defined.

+ new
{

self = [super new];
top = (StackLink *) 0;
return self;

}

Factory objects are not instances of the class and therefore do not 
have access to the instance variables associated with an instance of 
the class, so factory methods typically redefine self before accessing 
instance variables.

19



File: CalculatorBrain.h

#import <appkit/appkit.h>
#import <objc/Object.h>

@interface CalculatorBrain : Object
{

id stack;
int accumulator;
BOOL accumulatorEntered;
id display;

}

/* Private */

- handleDigit: (int) digit;

/* Public */

- add:sender;
- digit:sender;
- divide:sender;
- enter:sender;
- multiply:sender;
- subtract:sender;
- zero:sender;

@end

20



File CalculatorBrain.m

#import "CalculatorBrain.h"
#import "Stack.h"

@implementation CalculatorBrain

+ new
{

self = [super new];
stack = [Stack new];
accumulatorEntered = YES;
return self;

}

- setDisplay:anObject
{

display = anObject;
return self;

}

- handleDigit: (int) digit
{

if (accumulatorEntered == YES) {
accumulator = digit;
accumulatorEntered = NO;

} else {
accumulator = accumulator * 10 + digit;

}

[display setIntValue:accumulator];
return self;

}

21



- add: sender
{

if (accumulatorEntered == NO) { /* Hit plus sign, pretend Enter hit */
[self enter:self];

}
accumulator = [stack pop] + [stack pop];
[self enter:self];
[display setIntValue:accumulator];
return self;

}

- digit:sender
{

int operand;

return [self handleDigit:[sender selectedTag]];
}

- divide:sender
{

int operand;

if (accumulatorEntered == NO) {
[self enter:self];

}
operand = [stack pop];
if (operand != 0) {

accumulator = [stack pop] / operand;
} else {

[stack pop];
accumulator    = MAXINT;

}
[self enter:self];
[display setIntValue:accumulator];
return self;

}

22



- enter:sender
{

[stack push:accumulator];
accumulatorEntered = YES;
return self;

}

- multiply:sender
{

if (accumulatorEntered == NO) {
[self enter:self];

}
accumulator = [stack pop] * [stack pop];
[self enter:self];
[display setIntValue:accumulator];
return self;

}

- subtract:sender
{

int tmp;                              /* needed because order of eval not defined for ª+º 
below */

if (accumulatorEntered == NO) {
[self enter:self];

}
tmp = - [stack pop];
accumulator = tmp + [stack pop];
[self enter:self];
[display setIntValue:accumulator];
return self;

}

- zero:sender
{

return [self handleDigit:0];
}
@end

Reading A Class Specification

23



There are three software kits currently available on the NeXT Machine.    These 

three kits are the Application Kit, the Sound Kit and the Music Kit.    There are 

also some classes that come with the Objective C compiler.    These kits are 

documented in detail in Chapter 21 of the NeXT Technical Documentation which 

is available on any NeXT machine.    The documentation for the classes provided 

by these kits are prepared in a standard form, called a Class Specification.

The class specifications are grouped according to kit; within each kit they are 

arranged in alphabetical order by class.    Each class specification details the 

instance variables the class declares, the methods it defines, and any special 

constants and defined types it uses.    There's also a general description of the 

class and its place in the inheritance hierarchy.    However, you won't find a 

discussion of any kit's design or an explanation of how to go about using the kit to

program an application.    You may occasionally encounter terms that assume 

some prior knowledge about the kits, Mach, the Display PostScript system, or 

object-oriented programming.    This information is briefly described in Chapter 1 

of the NeXT Technical Documentation, and described more thoroughly in the 

volume of the NeXT Technical Documentation entitled Concepts.    

A more complete guide to reading the specifications is available at the beginning 

of Chapter 21 of the NeXT Technical Documentation.

24



Organization

Information about a class is presented under the following headings:

INHERITS FROM

The first line of a class specification lists the classes that the class 

being described inherits from.    For example the Menu class in the 

application kit has the following inheritance hierarchy:

Panel : Window: Responder : Object

The first class listed (Panel, in this example) is the class's 

superclass.    The last class listed is always Object, the root of all 

Objective-C inheritance hierarchies. The classes between show the 

chain of inheritance from Object to the superclass.

REQUIRES HEADER FILE

Each kit is identified by a master header file that includes almost 
all the other header files you need to program with the kit:

Kit Header File
Application Kit /usr/include/appkit/appkit.h
Music Kit /usr/include/musickit/musickit.h
Sound Kit /usr/include/soundkit/soundkit.h

25



Each of these header files include the master header file for 
classes which come with the compiler.    If you aren't using one of 
these header files, you should include <objc/objc.h>.

Occasionally, a class will also list a UNIX header file not included 
by the master header file.

Because the kits are written in Objective-C, they make use of 
constants and types defined in the principal header file for 
Objective-C, objc.h.    Only a handful of these constants and types
are used by the kits, but they're used pervasively.    For 
convenience, they're listed below.

Defined Types:
id An object.

STR A C string.    STR is a shorthand for (char *).    It's 
used only for an array of characters that's terminated
by the null character.

SEL A method selector.    SEL is another shorthand for 
(char *), where the character string can be thought 
of as a method name.    However, SEL is used only 
as a unique code for a method name, rather than as 
a pointer to an actual occurrence of the name in 
memory.    Values should be assigned to SEL 
variables only with the @selector operator:

SEL aMethod; 
aMethod = @selector(moveTo::);

This allows selectors to be tested by matching the 
value of a SEL code, rather than by comparing all 
the characters in a string.

26



BOOL A char that holds one of two values: YES (true) or 
NO (false).

Constants:
nil A null object id, (id)0.
YES Boolean true, (BOOL)1.
NO Boolean false, (BOOL)0.

DEFINED IN

The name of the kit is given after this heading, along with the 
version number of the software release that's documented.    The 
table below lists the libraries where the kits are defined:

Kit Library
Application Kit libNeXT_s.a
Sound Kit libNeXT_s.a
Music Kit libmusickit.a

The common classes that come with the Objective-C compiler 
are defined in libsys_s.a.    Since these classes aren't part of a kit,
they're introduced by a slightly different heading, ªDEFINED AS,º 
and are identified as common classes.

The ª_sº suffix on libNeXT_s.a and libsys_s.a designates them as
shared libraries.    All three libraries reside in the /usr/lib directory.

CLASS DESCRIPTION

This section gives a general description of the class.    It tells how 
the class fits into the general design of its kit and how your 
application can make use of it.

27



INSTANCE VARIABLES

The instance variables that are incorporated into each object 
belonging to the class, including instance variables inherited from
other classes, are listed next.    The first instance variable in all 
the lists is one inherited from the Object class, isa.    isa identifies 
the class that an object belongs to for the Objective-C run-time 
system; it should never be altered or read directly.

After all the instance variables are listed, those declared in the 
class being described are explained.

However, instance variables that are for the internal use of the 
class are neither listed nor explained.    These instance variables 
all begin with an underscore ( _ ) to prevent collisions with names
that you might choose for instance variables in a subclass you 
define.

METHOD TYPES

Methods are next listed by name and grouped by typeÐfor 
example, methods used to draw are listed separately from 
methods used to handle events.    This directory includes all the 
principal methods defined in the class and some that are defined 
in classes it inherits from.    Inherited methods are followed by the 
name of the class where they're defined; they're included in the 
directory to let you know which inherited methods you might 
commonly use with instances of the class and where to look for a 
description of those methods.

CLASS METHODS 
INSTANCE METHODS

28



A detailed description of each method defined in the class follows
the classification by type.    Methods that are used by class 
objects
(factory objects) are presented first; methods that are used by 
instances (the objects produced by the class, instance methods) 
are presented next.    The descriptions within each group are 
ordered alphabetically by method name.

Each description begins with the syntax of the method's 
arguments and return values, continues with an explanation of 
the method, and ends, where appropriate, with a list of other 
related methods.    Where a related method is defined in another 
class, it's followed by the name of the other class within 
parentheses.

All methods have reliable return values.    Unless the method 
description mentions otherwise, every method returns self.    This 
allows you to chain messages together:

[[[receiver message1] message2] message3];

Internal methods used to implement the class aren't listed.    
Since you shouldn't override any of these methods, or use them 
in a message, they're excluded from both the method directory 
and the method descriptions.    However, you may encounter 
them when looking at the call stack of your program from within 
the debugger.    A private method is easily recognizable by the 
underscore (_) that begins its name.

There are a couple of other sections in some of the class specifications.    
However, they are beyond the scope of this class.

29



List

INHERITS FROM Object

REQUIRES HEADER FILES <objc/List.h>

DEFINED AS A common class

CLASS DESCRIPTION

List allows easy manipulations of collections of objects.    Collections 
can be manipulated as fixed or variable size lists, sets, or ordered 
collections.

INSTANCE VARIABLES

Inherited from Object struct _SHARED *isa;

Declared in List id *dataPtr; 
unsigned numElements; 
unsigned maxElements; 
unsigned growAmount;

dataPtr data of the List object

numElements Actual number of elements

maxElements Total allocated elements

growAmount Number of elements to grow or shrink the 
array by

METHOD TYPES

Creating and freeing a List object
- free - freeObjects 

+ new 
+ newCount:

Manipulating objects by index - addObject:    
- count 
- insertObject:at:    
- lastObject 
- objectAt:    
- removeLastObject 
- removeObjectAt:    
- replaceObject:with:

Manipulating objects by id - addObjectIfAbsent:    
- indexOf:    
- removeObject:    
- replaceObjectAt:with:

30



Emptying the List - empty

Sending messages to the objects
- makeObjectsPerform:    - makeObjectsPerform:with:

Managing the storage capacity- capacity 
- capacity:    
- setGrowAmount:

Archiving - read:    
- write:

FACTORY METHODS

new
+ (List *)new
Returns a new List.

newCount:
+ (List *)newCount:(unsigned)numSlots
Returns a new List object large enough to hold numSlots objects.

INSTANCE METHODS

addObject:
- addObject:anObject
Puts anObject at the end of the List.

addObjectIfAbsent:
- addObjectIfAbsent:anObject
Searches the List for anObject and, if it isn't already in the List, adds it 
at the end.    If anObject is already in the list, this method does nothing.

capacity
- (unsigned)capacity
Returns the maximum number of objects that can be stored in the List 
without increasing its current capacity.

capacity:
- capacity:(unsigned)numSlots
Sets the storage capacity of the List to numSlots objects.    It's best not 
to use this method.

count
- (unsigned)count
Returns the number of objects currently in the List.

31



empty
- empty
Empties the List of all its objects.

free
- free
Deallocates the List object, but not the objects that are in the List.

freeObjects
- freeObjects
Deallocates storage for the List object and for every object in the List.   
Does not free argument itself.    Since free methods are performed, no 
side effect should be produced on the List object itself during these 
performs.

indexOf:
- (unsigned)indexOf:anObject
Returns the index of the first occurrence of anObject in the List, or -1 if 
anObject isn't in the List.

insertObject:at:
- insertObject:anObject 

at:(unsigned)index
Puts anObject into the List at index, moving objects down one slot to 
make room, and returns self.    However, if an object isn't already 
located at index Ðthat is, if index is greater than the value returned by 
countÐthis method just returns nil.

lastObject
- lastObject
Returns the last object in the List, or nil if there are no objects in the 
List.    This method doesn't remove the object that's returned.

makeObjectsPerform:
- makeObjectsPerform:(SEL)aSelector
Sends an aSelector message to each object in the List, starting with 
the first and continuing through the List to the last object.    The 
aSelector method must be one that takes no arguments.    List should 
not be modified by side effects during the execution of this method.

makeObjectsPerform:with:
- makeObjectsPerform:(SEL)aSelector 

with:anObject
Sends an aSelector message to each object in the List, starting with 
the first and continuing through the List to the last object.    The 
aSelector method must be one that takes a single argument of type id. 
The message is sent with anObject as the argument.    List should not 
be modified by side effects during the execution of this method.

32



objectAt:
- objectAt:(unsigned)index
Returns the id of the object located at slot index, or nil if index is 
beyond the end of the List.

read:
- read:(NXTypedStream *)stream
Reads the List object from an archive

removeLastObject
- removeLastObject
Removes the object occupying the last position in the List and returns 
it.    If there are no objects in the List, this method returns nil.

removeObject:
- removeObject:anObject
Removes the first occurrence of anObject from the List, and returns it.   
If anObject isn't in the List, this method returns nil.

The positions of the remaining objects in the List are adjusted so 
there's no gap.

removeObjectAt:
- removeObjectAt:(unsigned)index
Returns the object located at index and removes it from the list.    If 
there is no object at index, this method returns nil.

The positions of the remaining objects in the List are adjusted so 
there's no gap.

replaceObject:with:
- replaceObject:anObject 

with:newObject
Returns the object at index and replaces it with newObject.    If there is 
no object at index or newObject is nil, this method simply returns nil.

replaceObjectAt:with:
- replaceObjectAt:(unsigned)index 

with:newObject
Replaces the first occurrence of anObject in the List with newObject 
and returns anObject.    However, if newObject is nil or anObject isn't in
the List, this method does nothing but return nil.

setGrowAmount:
- setGrowAmount:(unsigned)numSlots
Sets the amount of memory that the List should grow or shrink by.    
The argument, numSlots, is a number of objects.

write:
33



- write:(NXTypedStream *)stream
Stores the List object in an archive

 
Figure    1.    Inheritance Hierarchy of the Common Classes

34



OpenPanel

INHERITS FROM SavePanel : Panel : Window : Responder : 
Object

REQUIRES HEADER FILES appkit.h

DEFINED IN The Application Kit, version 0.9

CLASS DESCRIPTION

The OpenPanel provides a convenient way for an application to query 
the user for the name of a file to open.    It can only be run modally (the
user should use the directory browser in the Workspace for non-modal 
opens).    It allows the specification of certain types (i.e. file name 
extensions) of files to be opened.    Every application has one and only 
one OpenPanel, and the method new returns a pointer to it.

See the class description for SavePanel for more information.

INSTANCE VARIABLES

Inherited from Object struct _SHARED *isa;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame; 
id contentView; 
id delegate; 
id firstResponder; 
id lastLeftHit; 
id lastRightHit; 
id counterpart; 
id fieldEditor; 
int winEventMask; 
int windowNum; 
float backgroundGray; 
struct _wFlags wFlags; 
struct _wFlags2 wFlags2; 
id miniWindowView;

Inherited from Panel (none)

Inherited from SavePanel id form; 
id browser; 
id okButton; 
id accessoryView; 
char filename[]; 
char directory[]; 
char **filenames; 
const char *requiredType; 
struct _spFlags spFlags;

Declared in OpenPanel NXFileFilterFunc fileFilterFunc; 
35



const char *const *filterTypes;

fileFilterFunc function to filter files

filterTypes types allowed to open

METHOD TYPES

Creating an OpenPanel + 
newContent:style:backing:buttonMask:defer:

Filtering files - allowMultipleFiles:    
- fileFilterFunc 
- setFileFilterFunc:

Querying the chosen files - filenames

Running the OpenPanel - runModalForDirectory:file:    
- runModalForDirectory:file:types:    
- runModalForTypes:

FACTORY METHODS

newContent:style:backing:buttonMask:defer:
+ newContent:(const NXRect *)contentRect 

style:(int)aStyle 
backing:(int)bufferingType 
buttonMask:(int)mask 
defer:(BOOL)flag

Creates a new OpenPanel (actually every app has no more than one 
OpenPanel, this returns a pointer to it).    A simpler interface to creating
the OpenPanel is via the inherited new method which calls this method
with all the appropriate arguments.

INSTANCE METHODS

allowMultipleFiles:
- allowMultipleFiles:(BOOL)flag
If flag is YES, then the user can select more than one file in the 
browser.    If multiple files are allowed, then the filename method will 
be non-NULL only if one and only one file was selected.    The 
filenames method will always return the selected files (even if only 
one file was selected).    Note further that, though filename always 
returns a fully-specified path, filenames never returns a fully-specified
path (the files in the list are always relative to the path returned by 
directory).

fileFilterFunc
- (NXFileFilterFunc)fileFilterFunc

36



Sets the function that will be called to filter files that match the list of 
suffixes.

filenames
- (const char *const *)filenames
Returns a NULL terminated list of files (relative to the path returned by 
directory).    This will be valid even if allowMultipleFiles is NO.    This is 
the preferred way to get the name(s) of the file(s) that the user has 
chosen.

runModalForDirectory:file:
- (int)runModalForDirectory:(const char *)path 

file:(const char *)name
Initializes the panel to the file specified by path and name, then 
displays it and begins its event loop.

runModalForDirectory:file:types:
- (int)runModalForDirectory:(const char *)path 

file:(const char *)name 
types:(const char *const *)fileTypes

Loads up the directory specified in path and optionally set name as the
default file to open.    fileTypes is a NULL-terminated list of suffixes (not 
including the ª.º's) to be used to filter which files the user is given the 
opportunity to open.    If the FIRST item in the list is a NULL, then all 
ASCII files will be included.

runModalForTypes:
- (int)runModalForTypes:(const char *const *)fileTypes
Same as runModalForDirectory:file:types: except that the last 
directory from which a file was chosen is used.

setFileFilterFunc:
- setFileFilterFunc:(NXFileFilterFunc)aFunc
Sets the function that will be called to filter files that will be displayed 
in the browser.    The file filter function should return YES if it wants the 
file to be included in the list of chooseable files, NO otherwise.

37



Figure 2.    Application Kit Inheritance Hierarchy

38



Debugging using GDB - the GNU Source Level
Debugger

To debug a program with GDB, type ªgdb programnameº to a shell.    GDB 
commands include:

run arguments...
Start the program with the specified command line arguments.

break linenumber
break function
break method
break filename:function
break filename:linenumber

Place a breakpoint at the specified location.    You can also specify an
if clause with

any of the above:

break function if expression (See expression, bottom of next page)

tbreak args
Place a one-time breakpoint.    Takes same type of arguments as 

break.

info breakpoints
List all breakpoints, with their status and breakpoint numbers.

disable pbnums...
enable pbnums...
delete bpnums...

Temporarily disable/enable/delete breakpoints.    Specify breakpoint 
numbers.

commands bpnum
Specify commands to be executed when breakpoint bpnum is 

reached.

list args
Lists source lines.    Arguments are same as those for the break 

command.

step count
Run count lines of source.    Number of lines defaults to one.

next count
Similar to step, but do not step into functions.

39



finish
Run until the current function/method returns.

backtrace
Show stack frames; useful in discovering where you are after a 

crash.

frame framenumber
Start examining the frame with the specified frame number.

print expression
Print the value of the expression (See expression, below)

set variable = expression
Assign value of expression to variable (See expression, below).

info classes regexp
info selectors regexp
info types regexp

Show info about the classes/selectors/types whose names match the
regular expression regexp.

pclass classname
Show the methods defined for the specified class.

ptype typename
Show the type definition of the specified type.

whatis expression
Show the type of the specified expression.    The expression is not 

evaluated.

expression
Any valid C or Objective-C expression, evaluated within the current 

stack frame.    Expressions    can contain the symbols $ (referring to 
the last value printed), $$ (the

value before the last), $n (the nth value from value history), or $var 
(a convenience

variable, created on the fly if necessary).    Use info history to see 
the value history.

help command
GDB has plenty of help.    Use this command to find out more about 

the above (and other) GDB commands.

40



Glossary
abstract superclass:
In Objective-C, a class that's defined solely so that other classes can 
inherit from it.    Programs don't use instances of an abstract class, only
of its subclasses.

action message:
In the Application Kit, a message sent by a Control object (such as a 
Button or a Slider).    The message translates the user's action in the 
Control into a specific instruction for the application.    See also target.

active application:
The application currently associated with keyboard events.    Menus are
visible on-screen only for the active application, and only the active 
application can have the current key window and main window.

ancestor:
In the Application Kit, a View is said to be the ancestor of all the Views 
below it in the view hierarchy, including its subviews.    See also 
descendant.

Application Kit:
The Objective-C classes and C functions available for implementing the
NeXT window-based user interface in an application.

class:
In Objective-C, a particular kind of object.    Objects that have access to
the same methods and have the same types of instance variables 
belong to the same class.    A class definition declares the instance 
variables and defines the methods for all members of the class.

class method:
In Objective-C, a method that can be used by the class object rather 
than by instances of the class..

class object:
In Objective-C, an object that knows how to create new objects 
(instances) of a class.    Class objects are created by the compiler and 
have the same name as the class; they're the complied version of the 
class.

delegate:
In the Application Kit, an object that acts on behalf of another object.    
Window, Application, Text, Listener, and Speaker objects can be 
assigned delegates.

descendant:
In the Application Kit, a View is said to be the descendant of all the 
Views above it in the view hierarchy, including its superview.    See also 
ancestor.

dispatch table:

41



In Objective-C, a table used to implement run-time messaging.    Each 
object class has a dispatch table that associates method selectors with
the addresses of the method in memory.

dynamic binding:
Binding an object data structure with the method the object is to 
perform at run time, rather than at compile time.

event:
A keyboard or mouse action or other occurrence that the application 
may want to respond to.

event dispatcher:
The part of the Window Server that accepts user input such as 
keyboard and mouse actions and decides which window to assign it to.

event message:
In the Application Kit, a message to perform a method named after an 
event or subevent.    Event messages are used to dispatch events to 
the objects that will respond to them.    See also action message.

factory:
Same as factory object or class object.

factory method:
Same as class method.

factory object:
Same as class object.

first responder:
In the Application Kit, the object that will have the first chance to 
respond to keyboard event messages, mouse-moved event messages, 
and action messages with user-selected targets.    Each Window has its 
own first responder, which it changes in response to mouse-down 
events.

foundation class:
Any class defined by Objective-C and provided with the compiler.    
These classes are at the top of the inheritance hierarchy and provide a 
foundation for the classes defined in programs and the software kits.

id:
In Objective-C, an object type defined as a pointer to the object data 
structure.

inheritance:
In object-oriented programming, the ability of a superclass to pass its 
characteristics (methods and instance variables) on to its subclasses. 
In Mach, the transfer of address space access rights from a parent 
process to a child process.

inheritance hierarchy:

42



In object-oriented programming, the hierarchy of classes that's defined
by the arrangement of superclasses and subclasses.    Every class 
(except Object, which is at the root of the hierarchy) has a superclass, 
and any class may have an unlimited number of subclasses.    Through 
its superclass, each class inherits from those above it in the hierarchy.

instance:
In Objective-C, any object that's not a class object is said to be an 
instance of its class.

instance method:
In Objective-C, any method that can be used by an instance of a class 
rather than by the class object.

instance variable:
In Objective-C, a variable that's part of an object's private data 
structure.    Instance variables are declared in a class definition and 
become part of all the objects that are instances of the class.

Interface Builder:
A tool that lets you graphically specify your program's user interface.    
It sets up the corresponding objects for you and makes it easy for you 
to establish connections between these objects and your own code 
where needed.

key equivalent:
In the Application Kit, the character that can be used as the keyboard 
alternative for a given object.

makefile:
A specification file used by the program make to build an executable 
version of your application.    A makefile details the files and 
dependencies on which your application is built.

message:
In object-oriented programming, a message is the method selector 
(name) and arguments that are sent to an object; it tells the receiving 
object what to do.    In Mach, a message consists of a header and a 
variable-length body; operating system services are invoked by 
passing a message from a thread to the port representing the task that
provides the desired service.

method:
In object-oriented programming, a procedure that can be executed by 
an object.

Music Kit:
The Objective-C classes and C functions available for music 
composition, manipulation, synthesis, and peformance.

next responder:
In the Application Kit, the object that will be sent event and action 
messages that the intended receiver can't handle.    See also responder
chain.

NextStep:

43



NeXT's application development and user environment, consisting of 
the Workspace Manager, Interface Builder, Application Kit, and Window
Server.

nil:
In Objective-C, an object id with a value of 0.

object:
A programming unit that groups together a data structure (instance 
variables) and the operations (methods) that can use or affect that 
data; the central focus of object-oriented programming.

polymorphism:
In object-oriented programming, the ability of different objects to 
respond each in their own way to the same message..

receiver:
In object-oriented programming, the object that receives a message.

responder chain:
In the Application Kit, a linked list of Responder objects that's formed 
by initializing each object's next responder with the id of another 
object.

selector:
In Objective-C, the name of a method when it's used in a source-code 
message to an object, or the integer that replaces the name when the 
source code is compiled.

Sound Kit:
The Objective-C classes and C functions available for creating sound 
effects, doing speech analysis, and performing other sound 
manipulation.

subclass:
For any given class of objects, any class that's one step below it in the 
inheritance hierarchy.

superclass:
For any given class of objects, the class that's one step above it in the 
inheritance hierarchy.

supermenu:
A menu containing a command that controls another menu, its 
submenu.

target:
In the NeXT user interface, what the user selects to be acted on by a 
menu command or a control within a panelÐfor example, text that's 
deleted by the Cut command.    In the Application Kit, the object that's 
receives action messages from a Control.

Window Server:
A process that dispatches user events to windows and enables 
applications to perform drawing operations with the PostScript 
language.

44



45


