
Page 1 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Intro to Objective C on the NeXT Machine

by Gerrit Huizenga

gerrit@cc.purdue.edu

Abstract

This course will provide you an introduction to Object
Oriented Programming using Objective C on the NeXT
machine. If you are interested in doing any software
development on the NeXT machine, this course will help
get you started. I will discuss the terminology and
concepts used in Object Oriented Programming as well
as describe the syntax used in Objective C. I will show
how to read an Objective C spec sheet and describe
some of the standard Classes of Objects provided by
NeXT and how to use them.

Page 2 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

References

Prerequisites

 Basic understanding of the C Programming Language

Helpful Extras

 Some experience with the NeXT Machine

 Some familiarity with SmallTalk

 Experience with Ansi C or the Gnu C compiler

 Familiarity with Object Oriented Programming

Outside Reading

 Object Oriented Programming: An Evolutionary Approach

 Brad Cox

 Objective-C Compiler Version 4.0 Reference Manual

 The Stepstone Corporation

 Display PostScript System

 Adobe Systems Incorporated

 NeXT Technical Documentation

 NeXT Incorporated

Page 3 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Object Oriented Programming

What is Object Oriented Programming?

1. Grouping of functionality and data

A single module contains a group of data and all the routines

that act on that data

2. Separating the interface from the implementation

Interface defines only the routines and can be exported to any

other modules. The implementation can then be hidden and

modified without affecting other modules.

3. Type-dependent operations

An operation such as “sort” can be defined for each type of

data (or object), each version of which may be implemented

differently, but all of which do something similar.

4. Code sharing

Code can be easily reused and/or extended without rewriting

through inheritance.

5. Hierarchical partitioning of functionality

Code modules can have specific, limited interactions with

other modules. Each module is responsible for its own set of

data. Several independent modules can then be put together

like building blocks to perform a specific task.

6. Solving problems a different way

Allows the programmer to solve a problem using a possibly

different strategy which may easier to understand in some

applications.

Page 4 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

How is Object Oriented Programming Different?

1. Syntactical support for abstract data types

Abstract data types are a grouping of data and the functions

which operate on that data. An Object Oriented

Programming Language typically supplies support for this

grouping of data and functions.

2. Message-sends instead of function calls

The programmer typically thinks in terms of one data objects

sending a message to another data object rather than in terms

of which function calls what other functions.

3. Compiler support for inheritance

The compiler for an Object Oriented Language tries to make

it as easy as possible to resuse code through the use of

inheritance.

4. Programming from a different perspective

Program design is usually viewed in terms of how the data

interacts, rather than in terms of how the various procedures

interact.

What is an Abstract Data Type?

In an Object Oriented Programming Language such as Objective C, an

Abstract Data Type consists of a definition of data (similar to structs in C or

records in Pascal) and the entire set of functions which can modify that data.

Anyone who uses an Abstract Data Type needs to know how s/he can access

or modify that data. However, no one except the implementor of the Abstract

Data Type needs to know the details of the implementation.

Computer programs manipulate data. What they do to that data is important.

How they do it, or what form the data takes is not. Therefore the programmer

is free to create new data types and declare exactly what the program can do

to manuipulate a variables of those new types.

Page 5 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Why Use an Abstract Data Type?

1. They provide a form of data integrity.

You provide the only methods which are allowed to modify

your data. You can then tightly check any attempted

modifications to that data, as well as rest assured that your

data will not contain unexpected values.

2. They allow flexibility for future modifications to the data’s form

You are free to change the underlying implementation to use

faster algorithms or more appropriate data storage methods.

You can also provide many types of bug fixes without

changing the interface. And you are free to make

enhancements to the data structures and add new methods

without affecting existing code which uses your module.

Terminology Used in Objective C

1. Class

In object-oriented languages, an Abstract Data Types is

called a Class.

2. Instance

A variable of a given Class is called an Instance.

3. Object

An Object is an Instance of a Class (e.g., a Button Object is

an Instance of the Button Class).

4. Method

The operations that a given class implements are called

Methods (not functions).

Page 6 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

How Objects Interact

Instead of calling a function of another object directly, you send a message

from your object to another object which asks the recipient to perform a

particular method. You reference the destination object through the use of a

local instance variable which points to that object.

You do not need to know the Class of the destination object. This allows you

to send a generic message such as a request for the size of an object to any of

a set of objects. The object will then either calculate in its own way the size of

itself or return a message saying that it did not understand your request. This

might be useful if one of your modules uses a data storage object. You can

then use either a stack object or a queue object, but your code won’t care and

will simply tell the object to store or fetch an item or perhaps return the

number of items currently being stored (such as with a “size” message).

Page 7 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Example of Object Oriented Design

Access to the Unix filesystem is Object Oriented. Most of you are familiar with

the following Unix system calls:

fd = open(“/tmp/output”, O_RDWR, 0666);

close(fd)

read(fd, &buffer[0], 256)

write(fd, &buffer[0], cc)

lseek(fd, offset, whence);

ioctl(fd, request, arg);

The open() call takes a file name as one of its arguments and returns a handle to a

file. Open() may perform some device specific initialization such as supplying

DTR to a terminal line or locating a disk drive which contains the named file. In

the kernel is a switch() statement which decides which device specific routines

should be called based on the filename that you have provided. Each of the other

routines listed above have similar code to decide how to do buffering and actually

locate the data with which you are working, either by sending the appropriate

commands to the disk drive or tape drive, by waiting for serial input from a

terminal line, or by sending data to a printer.

As the person using the routines, you generally don't have to know which set of

operations will be performed by the kernel. The kernel will do whatever is

necessary to fulfill your request.

Page 8 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

In Objective C, the filesystem access routines might look like the following:

fd = [File open:”/tmp/output” flags:O_RDWR modes:0666];

[fd close];

cc = [fd read:&buffer[0] size:256];

cc = [fd write:&buffer[0] size:cc];

offset = [fd lseek:offset whence:0];

retval = [fd ioctl:request argument:arg];

Page 9 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Inheritance

Related classes can share common code.

1. Always inherits all previous methods and data

A new class can be created which inherits all the

functionality and data of some other class (i.e. instances of

the new class understand all the messages that an instance of

the class from which it inherits understands).

2. Can add new data

A new class can define additional data for this class.

3. Can define new methods

A new class can define additional methods to which this

class will respond.

4. Can redefine methods

A new class can redefine a method which it has inherited.

The new method can perform differently from the inherited

method even though it has the same name.

5. Can utilize functionality of previous methods and enhance them

A new class can implement a new method with the same

name as a method it has inherited and also invoke the

inherited method as part of its new implementation.

Page 10 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Terminology

1. Subclass

A class which inherits from another class is a subclass of the

class from which it inherits. Subclass is often used as a verb,

"I subclassed the Vehicle class to create the Car class."

2. Superclass

A superclass is a class from which some subclass inherits.

3. Override

When a subclass responds to a message in a different way

than its superclass, the subclass is said to have overridden its

superclass's method.

Page 11 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Programming Philosophy

1. The thought processes of the programmer are as much a part of object-

oriented programming as any of the previous.

2. Programs must be thought of as a collection of cooperating pieces of data

(objects) rather than a thread of control.

3. Program design is data-oriented rather than process-oriented.

4. User-interface programming is fundamentally object-oriented.

Terminology

Object-oriented programmers use phrases like:

"When the user presses this button, it sends a message to this

object which calculates something and then sends a message

to this other object which updates this and...,"

instead of

"We wait for the user to press a button and then we decide

which one it was; and, based on that, we decide what to do,

then we wait for the user to do something else...."

Page 12 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Objective C

In Objective C, we describe the interface to a class using the @interface

declaration:

@interface Stack : Object

followed by the variables used to implement the object (these are called the class's

instance variables, and each instance of this class has its own copy of these

variables):

{

 StackLink *top;

 unsigned int size;

}

Then we list the methods that this class implements (i.e. the messages that objects

of this class understand):

- free;

- push: (int) anInt;

- (int) pop;

- (unsigned int) size;

and finish up with the @end declaration:

@end

Page 13 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

This would normally be stored in a header file called "Stack.h". The definitions

for the superclass of the class you are subclassing are imported at the beginning of

the file. An import uses the #import directive which is similar to the #include

directive, but ensures that the file is only include by your file once. With all of this

in place, the file might look like this

#import <objc/Object.h>

@interface Stack : Object

{

 StackLink *top;

 unsigned int size;

}

- free;

- push: (int) anInt;

- (int) pop;

- (unsigned int) size;

@end

Note that in the @interface declaration, we specify the class from which this class

inherits (its superclass). The superclass of the Stack class is the Object class. All

classes are at least a subclass of the Object class.

Method names always contain a colon before any of the arguments that are passed

along in the message (e.g. push:).

Any number of parameters may be sent in a message with each separated by a

keyword ending in colon. For example, if we wanted to be able to push two

integers on the stack with one message, we could define the method

- push: (int) first and: (int) second;

The name of this method is push:and:.

Page 14 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Parameters passed in the message are declared using the C "type cast" notation.

Any type that is valid as a C function parameter is valid as a method parameter.

The return type of a method is also specified using the "type cast" notation. If you

don’t spcify a return type, then the method is assumed to return a pointer to an

object.

We define the implementation of the class in a sepearate file from the interface

using the @implementation directive

@implementation Stack

Objective C is just like normal ANSI-C (as implemented by the GNU C compiler),

except that it provides the ability to define classes, create instances of objects, and

send messages to objects. Two new fundamental types are added to the language

id pointer to an object

SEL a message (we sometimes call messages selectors, thus the

abbreviation).

Both variables of type id and type SEL are valid parameters that can be sent in a

messages or passed to a C function.

Page 15 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Sending Messages

Messages are sent using a Smalltalk-like syntax.

id s;

int i;

s = [Stack new];

[s push:34];

i = [s pop];

In the implementation of a class, methods can manipulate the class's instance

variables (e.g. the linked list pointed to by top in the Stack class), can generally do

anything normally allowed in C, and can send messages to objects.

To what objects can an object send messages?

1. itself (this is very common)

2. itself, but use its superclass's implementation!

3. objects pointed to by one of its instance variables (i.e. instance variables

of type id).

4. objects passed to it as a parameter in a message sent to us by some other

object

5. factory objects (factory objects are sometimes knowns as class objects)

Page 16 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

How does an object send a message to itself?

[self push:34.0];

Self is a special variable which is a pointer to the object which received the

message which invoked the currently executing method(!). In other words, it is

the id of the object which received the current message.

Remember push:and: ? Here is how that method might be implemented.

- push: (int) first and: (int) second

{

 [self push: first];

 [self push: second];

 return self;

}

Notice that the push:and: method returns self. Remember that if a method does

not specify the type of its return value, the default is to return a pointer to an

object (i.e. something of type id). This means that, barring any other sensible

thing to return, methods should always return self!

How can an object send a message to itself but use its superclass's

implementation? And why would someone ever want to do that?

Why send a message to your superclass?

Because you typically want to inherit much of the functionality that the

superclass’s method already provides. You don’t want to have to reimplement that

code, but you usually want to enhance it by adding new code such as error

checking or more initialization.

How do you send a message to the superclass?

Any message an object sends to the pseudo-variable super will cause its

superclass's implementation of the method to be performed.

Page 17 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

An object can send a message to super in any method. Super implicitly means

self, but use superclass's implementation.

There is one and only one factory object per class. There is a global id variable

which points to it, and that variable's name is the same as the class's name. You

send messages to it to create new instances of that class or to query class-specific

(as opposed to instance-specific) information. For example,

id s;

s = [Stack new];

This creates a new instance of a Stack and s will contain a pointer to that instance.

The file which contains the implementation of the class ends with the @end

directive (just like the interface file does). For example,

Page 18 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

@implementation Stack /* Definition of a Class to implement a Stack */

- free /* release all space associated with an instance of class Stack */

{

 StackLink *next; /* temporary for pointer to a Stack element */

 while (top != (StackLink*) 0) { /* free each element in */

 next = top->next; /* the linked list */

 free((char *) top);

 top = next;

 }

return [super free]; /* perform the Object class’s free method which */

 /* frees all space for this instance */

}

< other methods >

@end

Page 19 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

File: Stack.h

#import <objc/Object.h> /* include the method definitions for our parent class */

typedef struct StackLink {

 int data;

 struct StackLink *next;

} StackLink; /* This declares a local typedef for use inside this Object */

/* The typedef StackLink may be used outside the interface if passed in as

 argument to a method */

@interface Stack : Object /* declare our superclass */

{ /* instance variables which are local to each instance of Stack */

 StackLink *top; /* Pointer to top of Stack (implemented as a linked list) */

 unsigned int size; /* Current number of elements on the stack */

}

/* Methods implemented by our Class. These methods are either new or they override

 the methods that we inherited from our superclass */

- free; /* method to free the entire stack */

- push: (int) value; /* Put an integer on the stack */

- (int) pop; /* Return the current value on the top of stack */

- (unsigned int) size; /* Return the current number of elements on the stack */

@end /* End of the @interface section */

Page 20 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

File: Stack.m

#import "Stack.h" /* include our interface spec, typedefs, etc */

@implementation Stack /* Begin the definition of the implementation */

#define NULL_LINK (StackLink *) 0 /* Local, unexported definition */

- free /* Definition of instance method which free’s all resources related to Stack */

{

 StackLink *next; /* Local variable, NOT an instance variable */

 while (top != NULL_LINK) {

 next = top->next; /* Free the local elements */

 free ((char *) top);

 top = next;

 }

 return [super free]; /* Free this instance of Stack */

}

- push: (int) value /* push: takes an integer as an argument */

{

 StackLink *newLink;

 /* Allocate space for an element here; our Stack is a linked list */

 newLink = (StackLink *)malloc(sizeof StackLink);

 if (newLink == 0) {

 fprintf(stderr, “Out of memory\nº”);

 /* Add better error recovery here */

 return nil;

 }

 newLink->data = value;

 newLink->next = top;

 top = newLink;

 size++; /* Keep our bookkeeping straight */

Page 21 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

 return self; /* Return self on success (non-nil) */

}

- (int) pop /* Pop takes no arguments and returns the int on the top of stack*/

{

 int value;

 StackLink *topLink;

 if (0 != size) { /* Locate the value, remove from Linked List */

 topLink = top;

 top = top->next;

 value = topLink->data;

 free (topLink);

 size--; /* Again, keep bookkeeping straight */

 } else {

 value = 0; /* return 0 is stack is empty */

 }

 return value; /* otherwise, return the value we found */

}

- (unsigned int) size /* return the number of elements on the Stack */

{

 return size;

}

/* We could also have a method called -setSize: which we could use internatlly to verify the
value we put on the stack. Here we don’t want the value to become negative */

@end

Page 22 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Factory Objects

Objective-C automatically creates a factory object for each class used in an

application.

 Exactly 1 instance of a factory object per class exists at runtime

 The name of the factory object is the name of the class

The primary purpose of a factory object is to provide a mechanism to create

instances of the class:

id myStack;

myStack = [Stack new];

Factory objects respond to factory methods.

Factory methods are indicated by a "+" preceding the name when declared and

defined.

+ new

{

 self = [super new];

 top = (StackLink *) 0;

 return self;

}

Factory objects are not instances of the class and therefore do not have access to

the instance variables associated with an instance of the class, so factory methods

typically redefine self before accessing instance variables.

Page 23 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

File: CalculatorBrain.h

#import <appkit/appkit.h> /* The Kitchen Sink, avoid when possible*/

#import <objc/Object.h> /* Include definitions for our superclass */

/* A Class definition for an HP-like calculator */

@interface CalculatorBrain : Object

{

 id stack; /* To hold an instance of the Stack Class we just defined */

 int accumulator; /* A copy of the value currently being displayed */

 BOOL accumulatorEntered; /*Has value of accumulater been pushed?*/

 id display; /* Some form of display object */

}

/* Private */ /* Objective C doesn’t really have a good way to make methods private */

- handleDigit: (int) digit; /* Internal method to process a digit */

/* Public */

- digit:sender; /* Method invoked when a digit is pressed on the calculator */

- add:sender; /* Calculator keys are bound to these methods */

- divide:sender;

- enter:sender;

- multiply:sender;

- subtract:sender;

- zero:sender;

@end

Page 24 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

File CalculatorBrain.m

#import "CalculatorBrain.h"

#import "Stack.h"

@implementation CalculatorBrain

+ new

{

 self = [super new]; /* Create a new instance of CalculatorBrain */

 stack = [Stack new]; /* Create a Stack for our PostFix calculator */

 accumulatorEntered = YES; /* Do local initialization */

 return self; /* Return self so other Classes can inherit from us */

}

- setDisplay:anObject /* Gives our Object a way to name its output */

{

 display = anObject;

 return self;

}

- handleDigit: (int) digit

{

 if (accumulatorEntered == YES) {

 accumulator = digit; /* Set or increment accumulator */

 accumulatorEntered = NO;

 } else {

 accumulator = accumulator * 10 + digit;

 }

 [display setIntValue:accumulator]; /* Redisplay new value */

 return self;

}

Page 25 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

- add: sender /* sender is the id of the object which sent the original message */

{

 if (accumulatorEntered == NO) {

 [self enter:self]; /* push accumulator if necessary */

 }

 accumulator = [stack pop] + [stack pop];

 [self enter:self]; /* Add top two values, push result on stack */

 [display setIntValue:accumulator]; /* Display new result */

 return self;

}

- digit:sender /* sender is the id of the object which sent the original message */

{

 int operand;

 /* In this case, sender is an instance of the Matrix Class. We ask that class for

 *the tag on the associated element in the sending matrix. The tag matches the

 * the number on the button in this case.

 */

 return [self handleDigit:[sender selectedTag]];

}

- divide:sender

{

 int operand;

 if (accumulatorEntered == NO) {

 [self enter:self];

 }

 operand = [stack pop];

 if (operand != 0) {

 accumulator = [stack pop] / operand;

 } else {

 [stack pop];

 accumulator = MAXINT;

Page 26 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

 }

 [self enter:self];

 [display setIntValue:accumulator];

 return self;

}

- enter:sender

{

 [stack push:accumulator];

 accumulatorEntered = YES;

 return self;

}

- multiply:sender

{

 if (accumulatorEntered == NO) {

 [self enter:self];

 }

 accumulator = [stack pop] * [stack pop];

 [self enter:self];

 [display setIntValue:accumulator];

 return self;

}

- subtract:sender

{

 int tmp; /* needed because order of eval not defined for +º below */

 if (accumulatorEntered == NO) {

 [self enter:self];

 }

 tmp = - [stack pop];

 accumulator = tmp + [stack pop];

 [self enter:self];

Page 27 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

 [display setIntValue:accumulator];

 return self;

}

- zero:sender /* The zero key is bound directly to this function */

{

 return [self handleDigit:0];

}

@end

Page 28 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Chapter 22:

Class Specifications

 How to Read the Specifications

 Organization

 Method Descriptions

 Implementing Your Own Version of a Method

 Retaining the Kit's Version of a Method

 Sending a Message to Perform a Method

 Common Classes

 HashTable

 List

 Object

 Storage

 StreamTable

 Application Kit Classes

 ActionCell

 Application

 Bitmap

 Box

 Button

 ButtonCell

 Cell

 ChoosePrinter

 ClipView

 Control

 Cursor

 Font

 FontManager

 FontPanel

 Form

 FormCell

 Listener

 Matrix

Page 29 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

 Menu

 MenuCell

 OpenPanel

 PageLayout

 Panel

 Pasteboard

 PopUpList

 PrintInfo

 PrintPanel

 Responder

 SavePanel

 Scroller

 ScrollView

 SelectionCell

 Slider

 SliderCell

 Speaker

 Text

 TextField

 TextFieldCell

 View

 Window

 Sound Kit Classes

 Sound

 SoundMeter

 SoundView

 Music Kit Classes

 Conductor

 Envelope

 FilePerformer

 FileWriter

 Instrument

 Midi

 Note

 NoteFilter

 NoteReceiver

 NoteSender

 Orchestra

 Part

Page 30 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

 Partials

 PartPerformer

 PartRecorder

 PatchTemplate

 Performer

 Samples

 Score

 ScorefilePerformer

 ScorefileWriter

 ScorePerformer

 ScoreRecorder

 SynthData

 SynthInstrument

 SynthPatch

 TuningSystem

 UnitGenerator

 WaveTable

Page 31 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Chapter 22:

Class Specifications

This chapter describes each of the classes defined in the three software kits–the Application

Kit, Sound Kit, and Music Kit–as well as the classes that come with the Objective-C com-

piler. The classes that come with the compiler can be used with any kit (and in programs

that don't use the kits).

Each class specification details the instance variables the class declares, the methods it de-

fines, and any special constants and defined types it uses. There's also a general description

of the class and its place in the inheritance hierarchy. However, you won't find a discussion

of any kit's design or an explanation of how to go about using the kit to program an appli-

cation. You may occasionally encounter terms that assume some prior knowledge about

the kits, Mach, the Display PostScript system, or object-oriented programming. For this

information, turn to the chapters in Part 1 of this manual.

How to Read the Specifications

The class specifications are grouped according to kit; within each kit, they're arranged in

alphabetical order by class.

Organization

Information about a class is presented under the following headings:

INHERITS FROM

The first line of a class specification lists the classes that the class being described inherits

from. For example:

 Panel : Window : Responder : Object

Page 32 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

The first class listed (Panel, in this example) is the class's superclass. The last class listed

is always Object, the root of all Objective-C inheritance hierarchies. The classes between

show the chain of inheritance from Object to the superclass. (This particular example

shows the inheritance hierarchy for the Menu class of the Application Kit.)

REQUIRES HEADER FILE

Each kit is identified by a master header file that includes almost all the other header files

you need to program with the kit:

Kit Header File

Application Kit /usr/include/appkit/appkit.h

Music Kit /usr/include/musickit/musickit.h

Sound Kit /usr/include/soundkit/soundkit.h

Occasionally, a class will also list a UNIX header file not included by the master header

file.

There's also a master header file for the classes that come with the compiler:

 objc/objc.h

If you include a master header files for any of the software kits, you don't need to also in-

clude this file; it's included by the kit file.

See Chapter 21, ™Header Files,º for more information on these files. <<This chapter isn't

available on-line. See the header files themselves in /usr/include.>>

Because the kits are written in Objective-C, they make use of constants and types defined

in the principal header file for Objective-C, objc.h. Only a handful of these constants and

types are used by the kits, but they're used pervasively. For convenience, they're listed be-

low.

Defined Types:

id An object.

STR A C string. STR is a shorthand for (char *). It's used only for an array

of characters that's terminated by the null character.

SEL A method selector. SEL is another shorthand for (char *), where the

character string can be thought of as a method name. However, SEL is used only as a

unique code for a method name, rather than as a pointer to an actual occurrence of the name

in memory. Values should be assigned to SEL variables only with the @selector operator:

Page 33 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

 SEL aMethod;

 aMethod = @selector(moveTo::);

 This allows selectors to be tested by matching the value of a SEL code,

rather than by comparing all the characters in a string.

BOOL A char that holds one of two values: YES (true) or NO (false).

Constants:

nil A null object id, (id)0.

YES Boolean true, (BOOL)1.

NO Boolean false, (BOOL)0.

DEFINED IN

The name of the kit is given after this heading, along with the version number of the soft-

ware release that's documented. The table below lists the libraries where the kits are de-

fined:

Kit Library

Application Kit libNeXT_s.a

Sound Kit libNeXT_s.a

Music Kit libmusickit

The common classes that come with the Objective-C compiler are defined in libsys_s.a.

Since these classes aren't part of a kit, they're introduced by a slightly different heading,

™DEFINED AS,º and are identified as common classes. All three libraries reside in the /

usr/lib directory. (The ™sº suffix indicates that these are shared libraries; see Chapter 18,

™Programming Tools,º for more information about using shared libraries.)

CLASS DESCRIPTION

This section gives a general description of the class. It tells how the class fits into the gen-

eral design of its kit and how your application can make use of it.

· Some classes define ™off-the-shelfº objects: Your program can create direct in-

stances of the class, or modify it in a subclass definition.

· Other classes are ™abstract superclassesº: You wouldn't create an instance of the

class itself, but only of its subclasses. The kits define some subclasses for each abstract su-

perclass; others can be defined by your application.

Page 34 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Occasionally, the class description will recommend that you define a subclass of a kit class,

even though the kit class isn't abstract. The subclass allows you to customize an object to

the needs of your application.

INSTANCE VARIABLES

The instance variables that are incorporated into each object belonging to the class, includ-

ing instance variables inherited from other classes, are listed next. The first instance vari-

able in all the lists is one inherited from the Object class, isa. isa identifies the class that an

object belongs to for the Objective-C run-time system; it should never be altered or read

directly.

After all the instance variables are listed, those declared in the class being described are ex-

plained.

However, instance variables that are for the internal use of the class are neither listed nor

explained. These instance variables all begin with an underscore (_) to prevent collisions

with names that you might choose for instance variables in a subclass you define.

METHOD TYPES

Methods are next listed by name and grouped by type–for example, methods used to draw

are listed separately from methods used to handle events. This directory includes all the

principal methods defined in the class and some that are defined in classes it inherits from.

Inherited methods are followed by the name of the class where they're defined; they're in-

cluded in the directory to let you know which inherited methods you might commonly use

with instances of the class and where to look for a description of those methods.

CLASS METHODS

INSTANCE METHODS

A detailed description of each method defined in the class follows the classification by type.

Methods that are used by class objects are presented first; methods that are used by instanc-

es (the objects produced by the class) are presented next. The descriptions within each

group are ordered alphabetically by method name.

Each description begins with the syntax of the method's arguments and return values, con-

tinues with an explanation of the method, and ends, where appropriate, with a list of other

related methods. Where a related method is defined in another class, it's followed by the

name of the other class within parentheses.

Page 35 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

All methods have reliable return values. Unless the method description mentions other-

wise, every method returns self. This allows you to chain messages together:

 [[[receiver message1] message2] message3];

Internal methods used to implement the class aren't listed. Since you shouldn't override any

of these methods, or use them in a message, they're excluded from both the method direc-

tory and the method descriptions. However, you may encounter them when looking at the

call stack of your program from within the debugger. A private method is easily recogniz-

able by the underscore (_) that begins its name.

METHODS IMPLEMENTED BY THE DELEGATE

If a class lets you define another object–a delegate–that can intercede on behalf of instances

of the class, the methods that the delegate can implement are described in a separate section.

These are not methods defined in the class; rather, they're methods that you can define to

respond to messages sent to the delegate.

If you define one of these methods, the delegate will receive automatic messages to perform

it at the appropriate time. For example, if you define a windowDidBecomeKey: method

for a Window's delegate, the delegate will receive windowDidBecomeKey: messages

whenever the Window becomes the key window.

Messages are sent only if the delegate has a method that can respond. If you don't define a

windowDidBecomeKey: method, no message will be sent.

Only certain classes define delegates. In the Application Kit, they are:

 Application

 Listener

 Speaker

 Text

 Window

The delegate is inherited by subclasses.

CONSTANTS AND DEFINED TYPES

Page 36 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

If a class makes use of symbolic constants or defined types that are specific to the class,

they're listed in the last section of the class specification. Defined types are likely to show

up in instance variable declarations, and as return and parameter types in method declara-

tions. Symbolic constants typically define permitted return and argument values.

Method Descriptions

By far, the major portion of each class specification is the description of methods defined

in the class. When reading these descriptions, be especially attentive to three kinds of in-

formation that affect how the method can be used:

· Whether you should implement your own version of the method

· Whether you should have your version of the method include the kit-defined version

· Whether you should ever send a message to an object to perform the method

The next three sections examine these questions.

Implementing Your Own Version of a Method

For the most part, the methods in a class definition act as a private library for objects be-

longing to that class. Just as programmers generally don't replace functions in the standard

C library with their own versions, you generally wouldn't write your own versions of the

methods provided for a class.

However, to add specific behavior to your application, you must override some of the meth-

ods that are defined in the kits. Often, the kit-defined method will do little or nothing that's

of use to your application, but it will appear in messages initiated by other methods. To

give content to the method, your application must implement its own version.

To override a kit method with one of your own design, simply define a subclass of the ap-

propriate class and redefine the method. For example, the interface declaration for the Cir-

cleView class illustrated below shows that it does nothing more than override the View

class's drawSelf:: method.

@interface CircleView : View

- drawSelf:(NWRect *)drawRects :(int)rectCount;

@end

Page 37 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

CircleView objects will perform its version of drawSelf:: rather than the empty default ver-

sion defined in View.

In contrast to methods that must be overridden, some methods should never be changed by

the application. The kit depends on these methods doing just what they're currently pro-

grammed to do–nothing more and nothing less. While your application can use these meth-

ods, it's important that you don't override them when defining a subclass.

Most methods fit between these two extremes: They can be overridden, but it's not neces-

sary for you to do so. If a method description is silent on the question of overriding the kit

method, you can be certain that it fits into this middle category. It's a method that you can

override, but like a function in the C library, you normally would have no reason to.

If a method is designed to be overridden, or if it should never be overridden, the method

description explicitly says so.

Retaining the Kit's Version of a Method

Some methods can be overridden, but only to add behavior, not to alter the default actions

of the kit-defined method. When your application overrides one of these methods, it's im-

portant that it incorporate the very method it overrides. This is done by messaging super

to perform the kit-defined version of the method. For example, if you write a new version

of the kit method that moves a Window, you'd most likely still want it to move a Window.

The easiest way to have it do that is to include the old method in the new one through a

message to super.

- moveTo:(NWCoord)x :(NWCoord)y

 [super moveTo:x :y];

 /* your code goes here */

The kits occasionally require you to implement a new version of a method while preserving

the behavior of the method you override. An example is the write: method, which archives

an object by writing it to a typed stream. When you define a kit subclass, you may need to

implement a version of this method that can archive the instance variables your subclass

declares. So that a write: message will archive all of an object's instance variables, not just

those declared in the subclass, your version of the method should begin by incorporating

the version used by its superclass.

Page 38 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

- write:(NXTypedStream *)stream

 [super write:stream];

 /* your code goes here */

Method descriptions explicitly mention that you should incorporate a method you override

only when it's not obvious that it would be a good idea to preserve the default behavior in

the new method.

Sending a Message to Perform a Method

Some methods should never appear as messages in the code you write; you should never

directly ask an object to perform the method. Typically, these are methods that your appli-

cation will use indirectly, through other methods.

Most of these methods begin with a underscore and are treated as class-internal methods.

However, some don't have an underscore and are included in the method descriptions.

These are methods that your application can implement, even though it won't directly use

them in a message. The messages to perform these methods originate in the kit.

The most notable example of this is the drawSelf:: method that draws a View. Although

you must implement a drawSelf:: method for each View subclass you define, your code

should never send a drawSelf:: message. Instead, you send a display message; the display

method (such as display, displayIfNeeded, or display:::) sees to it that the drawing con-

text is properly set before initiating a drawSelf:: message to the View.

The methods that respond to event messages (such as mouseUp:, keyDown:, and win-

dowExposed:) also fall into this category. Event messages are initiated by the Application

Kit when it receives events from the Window Server; you shouldn't initiate them in your

own code.

The write: and read: methods for archiving and unarchiving are other examples of meth-

ods that shouldn't be sent directly to objects. They're generated by functions, such as NX-

WriteObject() and NXReadObject().

Page 39 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

If a method is designed to respond to messages generated by other methods or by a kit, the

method description will generally say so. If there's a penalty for generating the message

within the code you write (as there is for drawSelf::), the description will include an ex-

plicit warning.

Page 40 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

List

INHERITS FROM Object

REQUIRES HEADER FILES objc/List.h

DEFINED AS A common class, version 1.0

CLASS DESCRIPTION

List allows easy manipulations of collections of objects. Collections can be manipulated

as fixed or variable sized lists, sets, or ordered collections.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in List @public id *dataPtr;

 unsigned numElements;

 unsigned maxElements;

dataPtr Data of the List object

numElements Actual number of elements

maxElements Total allocated elements

METHOD TYPES

Creating and freeing a List object - copy

 - free

 - freeObjects

 + new

 + newCount:

Page 41 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Manipulating objects by index

 - addObject:

 - count

 - insertObject:at:

 - lastObject

 - objectAt:

 - removeLastObject

 - removeObjectAt:

 - replaceObject:with:

Manipulating objects by id

 - addObjectIfAbsent:

 - indexOf:

 - removeObject:

 - replaceObjectAt:with:

Emptying the List - empty

Comparing lists - isEqual:

Sending messages to the objects

 - makeObjectsPerform:

 - makeObjectsPerform:with:

Managing the storage capacity

 - capacity

 - setAvailableCapacity:

Archiving

 - read:

 - write:

CLASS METHODS

new

+ new

Returns a new List.

Page 42 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

newCount:

+ newCount:(unsigned)numSlots

Returns a new List object large enough to hold numSlots objects.

INSTANCE METHODS

addObject:

-addObject:anObject

Puts anObject at the end of the List.

addObjectIfAbsent:

- addObjectIfAbsent:anObject

Searches the List for anObject and, if it isn't already in the List, adds it at the end. If anOb-

ject is already in the list, this method does nothing. No insertion is done and nil is returned

if anObject is nil.

capacity

-(unsigned)capacity

Returns the maximum number of objects that can be stored in the List without increasing

its current capacity.

copy

- copy

Creates a new List, with the same objects. Storage for the objects themselves is not copied

and therefore the same pointers appear both lists.

count

- (unsigned)count

Returns the number of objects currently in the List.

empty

Page 43 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

- empty

Empties the List of all its objects. Current capacity remains.

free

- free

Deallocates the List object, but not the objects that are in the List.

freeObjects

- freeObjects

Deallocates storage for the List object and for every object in the List. Does not free argu-

ment itself. Since free methods are performed, no side effect should be produced on the

List object itself during these performs.

indexOf:

- (unsigned)indexOf:anObject

Returns the index of the first occurrence of anObject in the List, or NX_NOT_IN_LIST if

anObject isn't in the List.

insertObject:at:

-insertObject:anObject

 at:(unsigned)index

Puts anObject into the List at index, moving objects down one slot to make room, and re-

turns self. However, if an object isn't already located at index –that is, if index is greater

than the value returned by count–this method just returns nil. No insertion is done and nil

is also returned if anObject is nil.

isEqual:

- (BOOL)isEqual:anObject

Compares two lists and returns TRUE if both lists have the same number of elements and

pointers to the same objects. It is assumed anObject is really a List.

lastObject

Page 44 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

- lastObject

Returns the last object in the List, or nil if there are no objects in the List. This method

doesn't remove the object that's returned.

makeObjectsPerform:

- makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the List, starting with the first and continuing

through the List to the last object. The aSelector method must be one that takes no argu-

ments. List should not be modified by side effects during the execution of this method.

makeObjectsPerform:with:

-makeObjectsPerform:(SEL)aSelector

 with:anObject

Sends an aSelector message to each object in the List, starting with the first and continuing

through the List to the last object. The aSelector method must be one that takes a single

argument of type id. The message is sent with anObject as the argument. List should not

be modified by side effects during the execution of this method.

objectAt:

- objectAt:(unsigned)index

Returns the id of the object located at slot index, or nil if index is beyond the end of the List.

read:

-read:(NXTypedStream *)stream

Reads the List object from an archive

removeLastObject

- removeLastObject

Removes the object occupying the last position in the List and returns it. If there are no

objects in the List, this method returns nil.

removeObject:

-removeObject:anObject

Page 45 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Removes the first occurrence of anObject from the List, and returns it. If anObject isn't in

the List, this method returns nil.

The positions of the remaining objects in the List are adjusted so there's no gap.

removeObjectAt:

- removeObjectAt:(unsigned)index

Returns the object located at indexand removes it from the list. If there is no object at index,

this method returns nil.

The positions of the remaining objects in the List are adjusted so there's no gap.

replaceObject:with:

-replaceObject:anObject

 with:newObject

Returns the object at index and replaces it with newObject. If there is no object at index or

newObject is nil, this method simply returns nil.

replaceObjectAt:with:

-replaceObjectAt:(unsigned)index

 with:newObject

Replaces the first occurrence of anObject in the List with newObject and returns anObject.

However, if newObject is nil or anObject isn't in the List, this method does nothing but re-

turn nil.

setAvailableCapacity:

-setAvailableCapacity:(unsigned)numSlots

Sets the storage capacity of the List to numSlotsobjects. Only a storage allocation hint, does

not change list elements. If the list already contains more than numSlots elements, its ca-

pacity is left unchanged.

write:

- write:(NXTypedStream *)stream

Stores the List object in an archive

Page 46 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

OpenPanel

INHERITS FROM SavePanel : Panel : Window : Responder : Object

REQUIRES HEADER FILES appkit.h

DEFINED IN The Application Kit, version 1.0

CLASS DESCRIPTION

The OpenPanel provides a convenient way for an application to query the user for the name of a file to open.

It can only be run modally (the user should use the directory browser in the Workspace for non-modal

opens). It allows the specification of certain types (i.e. file name extensions) of files to be opened. Every

application has one and only one OpenPanel, and the method new returns a pointer to it.

See the class description for SavePanel for more information.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame;

 id contentView;

 id delegate;

 id firstResponder;

 id lastLeftHit;

 id lastRightHit;

 id counterpart;

 id fieldEditor;

 int winEventMask;

 int windowNum;

 float backgroundGray;

 struct _wFlags wFlags;

Page 47 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

 struct _wFlags2 wFlags2;

Inherited from Panel (none)

Inherited from SavePanel id form;

 id browser;

 id okButton;

 id accessoryView;

 id separator;

 char *filename;

 char *directory;

 const char **filenames;

 char *requiredType;

 struct _spFlags spFlags;

 unsigned short directorySize;

Declared in OpenPanel NXFileFilterFunc fileFilterFunc;

 char **filterTypes;

fileFilterFunc Function to filter files

filterTypes Types allowed to open

METHOD TYPES

Creating or Freeing an OpenPanel - free

 + newContent:style:backing:buttonMask:defer:

Filtering files - allowMultipleFiles:

 - fileFilterFunc

 - setFileFilterFunc:

Querying the chosen files - filenames

Running the OpenPanel - runModalForDirectory:file:

 - runModalForDirectory:file:types:

 - runModalForTypes:

CLASS METHODS

Page 48 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect

 style:(int)aStyle

 backing:(int)bufferingType

 buttonMask:(int)mask

 defer:(BOOL)flag

Don't call this method, perform new (inherited) instead.

INSTANCE METHODS

allowMultipleFiles:

-allowMultipleFiles:(BOOL)flag

If flag is YES, then the user can select more than one file in the browser. If multiple files are allowed, then

the filename method will be non-NULL only if one and only one file was selected. The filenames method

will always return the selected files (even if only one file was selected). Note further that, though filename

always returns a fully-specified path, filenames never returns a fully-specified path (the files in the list are

always relative to the path returned by directory).

fileFilterFunc

-(NXFileFilterFunc)fileFilterFunc

Sets the function that will be called to filter files that match the list of suffixes.

filenames

- (const char *const *)filenames

Returns a NULL terminated list of files (relative to the path returned by directory). This will be valid even

if allowMultipleFiles is NO. This is the preferred way to get the name(s) of the file(s) that the user has cho-

sen.

free

- free

Frees the storage used by the OpenPanel object. The next time new is sent to the OpenPanel, it will be rec-

reated. You probably never need to call this method since there is one shared instance of the OpenPanel.

runModalForDirectory:file:

Page 49 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

-(int)runModalForDirectory:(const char *)path file:(const char *)name

Initializes the panel to the file specified by path and name, then displays it and begins its event loop.

runModalForDirectory:file:types:

-(int)runModalForDirectory:(const char *)path

 file:(const char *)name

 types:(const char *const *)fileTypes

Loads up the directory specified in path and optionally set name as the default file to open. fileTypesis a

NULL-terminated list of suffixes (not including the ™.º's) to be used to filter which files the user is given

the opportunity to open. If the FIRST item in the list is a NULL, then all ASCII files will be included.

runModalForTypes:

- (int)runModalForTypes:(const char *const *)fileTypes

Same as runModalForDirectory:file:types: except that the last directory from which a file was chosen is

used.

setFileFilterFunc:

-setFileFilterFunc:(NXFileFilterFunc)aFunc

Sets the function that will be called to filter files that will be displayed in the browser. The file filter function

should return YES if it wants the file to be included in the list of chooseable files, NO otherwise.

CONSTANTS AND DEFINED TYPES

typedef (*NXFileFilterFunc)(id self, NXDirEntry *dirEntry);

/* Tags of views in the SavePanel */

#define NX_OPICONBUTTON NX_SPICONBUTTON

#define NX_OPTITLEFIELD NX_SPTITLEFIELD

#define NX_OPBROWSER NX_SPBROWSER

#define NX_OPCANCELBUTTON NX_SPCANCELBUTTON

#define NX_OPOKBUTTON NX_SPOKBUTTON

#define NX_OPFORM NX_SPFORM

Page 50 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Debugging using GDB - the GNU Source Level Debugger

To debug a program with GDB, type gdb programnameº to a shell. GDB

commands include:

run arguments...

 Start the program with the specified command line arguments.

break linenumber

break function

break method

break filename:function

break filename:linenumber

 Place a breakpoint at the specified location. You can also specify an if clause

with any of the above:

break function if expression (See expression)

tbreak args

 Place a one-time breakpoint. Takes same type of arguments as break.

info breakpoints

 List all breakpoints, with their status and breakpoint numbers.

disable pbnums...

enable pbnums...

delete bpnums...

 Temporarily disable/enable/delete breakpoints. Specify breakpoint numbers.

commands bpnum

 Specify commands to be executed when breakpoint bpnum is reached.

Page 51 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

list args

 Lists source lines. Arguments are same as those for the break command.

step count

 Run count lines of source. Number of lines defaults to one.

next count

 Similar to step, but do not step into functions.

finish

 Run until the current function/method returns.

backtrace

 Show stack frames; useful in discovering where you are after a crash.

frame framenumber

 Start examining the frame with the specified frame number.

print expression

 Print the value of the expression (See expression, below)

set variable = expression

 Assign value of expression to variable (See expression, below).

info classes regexp

info selectors regexp

info types regexp

 Show info about the classes/selectors/types whose names match the regular

expression regexp.

pclass classname

 Show the methods defined for the specified class.

Page 52 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

ptype typename

 Show the type definition of the specified type.

whatis expression

 Show the type of the specified expression. The expression is not evaluated.

expression

 Any valid C or Objective-C expression, evaluated within the current stack

frame. Expressions can contain the symbols $ (referring to the last value printed),

$$ (the value before the last), $n (the nth value from value history), or $var (a

convenience variable, created on the fly if necessary). Use info history to see the

value history.

help command

 GDB has plenty of help. Use this command to find out more about the above

(and other) GDB commands.

Page 53 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

Glossary

abstract superclass:

In Objective-C, a class that's defined solely so that other classes can inherit from

it. Programs don't use instances of an abstract class, only of its subclasses.

action message:

In the Application Kit, a message sent by a Control object (such as a Button or a

Slider). The message translates the user's action in the Control into a specific

instruction for the application. See also target.

active application:

The application currently associated with keyboard events. Menus are visible on-

screen only for the active application, and only the active application can have the

current key window and main window.

ancestor:

In the Application Kit, a View is said to be the ancestor of all the Views below it

in the view hierarchy, including its subviews. See also descendant.

Application Kit:

The Objective-C classes and C functions available for implementing the NeXT

window-based user interface in an application.

class:

In Objective-C, a particular kind of object. Objects that have access to the same

methods and have the same types of instance variables belong to the same class.

A class definition declares the instance variables and defines the methods for all

members of the class.

class method:

In Objective-C, a method that can be used by the class object rather than by

instances of the class..

Page 54 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

class object:

In Objective-C, an object that knows how to create new objects (instances) of a

class. Class objects are created by the compiler and have the same name as the

class; they're the complied version of the class.

delegate:

In the Application Kit, an object that acts on behalf of another object. Window,

Application, Text, Listener, and Speaker objects can be assigned delegates.

descendant:

In the Application Kit, a View is said to be the descendant of all the Views above

it in the view hierarchy, including its superview. See also ancestor.

dispatch table:

In Objective-C, a table used to implement run-time messaging. Each object class

has a dispatch table that associates method selectors with the addresses of the

method in memory.

dynamic binding:

Binding an object data structure with the method the object is to perform at run

time, rather than at compile time.

event:

A keyboard or mouse action or other occurrence that the application may want to

respond to.

event dispatcher:

The part of the Window Server that accepts user input such as keyboard and

mouse actions and decides which window to assign it to.

Page 55 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

event message:

In the Application Kit, a message to perform a method named after an event or

subevent. Event messages are used to dispatch events to the objects that will

respond to them. See also action message.

factory:

Same as factory object or class object.

factory method:

Same as class method.

factory object:

Same as class object.

first responder:

In the Application Kit, the object that will have the first chance to respond to

keyboard event messages, mouse-moved event messages, and action messages

with user-selected targets. Each Window has its own first responder, which it

changes in response to mouse-down events.

foundation class:

Any class defined by Objective-C and provided with the compiler. These classes

are at the top of the inheritance hierarchy and provide a foundation for the classes

defined in programs and the software kits.

id:

In Objective-C, an object type defined as a pointer to the object data structure.

inheritance:

In object-oriented programming, the ability of a superclass to pass its

characteristics (methods and instance variables) on to its subclasses. In Mach, the

transfer of address space access rights from a parent process to a child process.

Page 56 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

inheritance hierarchy:

In object-oriented programming, the hierarchy of classes that's defined by the

arrangement of superclasses and subclasses. Every class (except Object, which is

at the root of the hierarchy) has a superclass, and any class may have an unlimited

number of subclasses. Through its superclass, each class inherits from those

above it in the hierarchy.

instance:

In Objective-C, any object that's not a class object is said to be an instance of its

class.

instance method:

In Objective-C, any method that can be used by an instance of a class rather than

by the class object.

instance variable:

In Objective-C, a variable that's part of an object's private data structure. Instance

variables are declared in a class definition and become part of all the objects that

are instances of the class.

Interface Builder:

A tool that lets you graphically specify your program's user interface. It sets up

the corresponding objects for you and makes it easy for you to establish

connections between these objects and your own code where needed.

key equivalent:

In the Application Kit, the character that can be used as the keyboard alternative

for a given object.

makefile:

A specification file used by the program make to build an executable version of

your application. A makefile details the files and dependencies on which your

application is built.

Page 57 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

message:

In object-oriented programming, a message is the method selector (name) and

arguments that are sent to an object; it tells the receiving object what to do. In

Mach, a message consists of a header and a variable-length body; operating

system services are invoked by passing a message from a thread to the port

representing the task that provides the desired service.

method:

In object-oriented programming, a procedure that can be executed by an object.

Music Kit:

The Objective-C classes and C functions available for music composition,

manipulation, synthesis, and peformance.

next responder:

In the Application Kit, the object that will be sent event and action messages that

the intended receiver can't handle. See also responder chain.

NextStep:

NeXT's application development and user environment, consisting of the

Workspace Manager, Interface Builder, Application Kit, and Window Server.

nil:

In Objective-C, an object id with a value of 0.

object:

A programming unit that groups together a data structure (instance variables) and

the operations (methods) that can use or affect that data; the central focus of object-

oriented programming.

Page 58 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

polymorphism:

In object-oriented programming, the ability of different objects to respond each in

their own way to the same message..

receiver:

In object-oriented programming, the object that receives a message.

responder chain:

In the Application Kit, a linked list of Responder objects that's formed by

initializing each object's next responder with the id of another object.

selector:

In Objective-C, the name of a method when it's used in a source-code message to

an object, or the integer that replaces the name when the source code is compiled.

Sound Kit:

The Objective-C classes and C functions available for creating sound effects,

doing speech analysis, and performing other sound manipulation.

subclass:

For any given class of objects, any class that's one step below it in the inheritance

hierarchy.

superclass:

For any given class of objects, the class that's one step above it in the inheritance

hierarchy.

supermenu:

A menu containing a command that controls another menu, its submenu.

target:

In the NeXT user interface, what the user selects to be acted on by a menu

command or a control within a panel–for example, text that's deleted by the Cut

Page 59 of 59
Purdue University Computing Center, Copyright 1990, Purdue Research Foundation

command. In the Application Kit, the object that's receives action messages from

a Control.

Window Server:

A process that dispatches user events to windows and enables applications to

perform drawing operations with the PostScript language.

