
UNIX

Every computer you use has an Operating System which completes the tasks you send
it with menu selections, mouse clicks, and typed commands. The operating system of
the NeXT computer is, as you might have guessed, UNIX.

Up until now, you may have only used menus, windows, and buttons in your interaction
with UNIX. This Graphical User Interface (GUI) is one of the NeXT’s strengths. But a
far more common interface that you will find available on every UNIX system is the
Command Line Interface (CLI). In this situation you exchange information with the
computer solely through text input and output — you type commands and the computer
prints responses.

Why would you want to work with just text when you have fantastic menu-driven
programs at hand? That’s for you to find out in this course. Suffice it to say that many
people enjoy the power and flexibility of UNIX’s Command Line Interface, and prefer to
use it over menus, windows, and mice wherever possible.

Hopefully the following information will get be enough to get you started. Don’t worry
about learning every single thing... just absorb as much as you can and use this
CheatSheet for reference as you work with UNIX in the labs.

Where to get help

Manual Pages

These handy guys may well be one of your most useful assets for finding UNIX
information quickly. In a Terminal window, simply type:

man <command>

This will bring up help on the command you type in place of <command>.

If you want help on a particular subject, use the following:

man -k <subject>

This will bring up a list of commands relevant to <subject>. You can then use the
normal man command above to get more information on any of those listed.

CIT documentation

The packet from CIT entitled, “Introduction to Phoenix” has many nitty-gritty
details that all of us often forget. It is a good thing to bring to lab for reference.
Anyway, we all know how much fun these things are to read when you get bored.
You can pick these up in the CIT InfoCenter, at 87 Prospect Avenue.

1 UNIX

Concepts

Userids and addresses

Every UNIX user has a unique userid. From the computer’s point of view, your
userid is your only real name. People who want to contact you from outside
Princeton must type <your userid>@phoenix.Princeton.edu in order to
reach you. This whole “phrase” is your own unique Internet address.

Passwords

Nothing but common sense here. Everyone has their own password, and no one
should know yours. When you choose a password, don’t use a real word. If you
do, there’s a chance that someone will discover it, because with a little UNIX
knowledge, it’s not too hard to write a program that will discover every password
that can be found in a dictionary.

Why does it matter if someone guesses your password? Unfortunately, there are
scum who would love to enter your account, using your password, and break into
other computers. You would be blamed.

If you want to change your password right now, ask your TA for help changing it
with the Preferences application.

Files

Files are “collections of related data records” (Webster’s). They are more of an
intuitive concept than anything else. A word-processing document, for example,
is a file.

Directories

UNIX allows you to organize your files into directories. A directory is like a folder,
which (usually) contains related files. You can have directories within directories,
forming an entire “tree” of directories. (If you were to draw out the directory
structure on paper it would resemble a genealogical tree.)

Along with every other UNIX user, you have a home directory. This is where
you keep all your own files (and directories). It’s also the place you find yourself
when you log in. The computer’s shorthand for “your home directory” is “~”, and
its shorthand for someone else’s home directory is ~<userid> . For example,
you would refer to omkensey’s home directory as ~omkensey .

Whenever you want to run an executable file, you usually need to tell the
computer exactly where the file is. For example, throughout this course you will
use the handin program to submit your work electronically. Since handin is in

the ~cs111/bin directory, to run it you would type

~cs111/bin/handin .

Luckily, there’s another way. If you type a command which isn’t in the current
directory, the computer will search through a list of other directories that contain

commonly-used commands. This list is called your path. If ~cs111/bin is in your

UNIX 2

path, you could merely type

handin

to run the program. To see your list of paths, type echo $path .

For more information on files and directories, see “Welcome to NeXT.”

Disk quotas

Your disk quota is the maximum amount of information you are allowed to store
in your home directory. To get information about how much storage you have
used, and how much space you have left before you hit your disk quota, type
quota -v .

If you use the quota -v command, you will see a number labelled “limit.” This is
the absolute, unyielding maximum amount of information you can store. If you
approach this limit, the computer will let you know, and will ask you to remove
some files.

Commands

This section will give an overview of some of the more useful UNIX commands. It is by
no means comprehensive, but it should give you what you need to know for basic
survival. To use these commands, type them while in a Terminal window (see the
Terminal CheatSheet).

Necessary commands

• Type ls to get a listing of what is in your current directory. You should know

that UNIX hides files beginning with dots (like .login) — this is just a convenient
way to hide files you know are there and don’t want to see each time you type
ls. If you do want to see the hidden files, type ls -A.

While ls gives you just the listing, ls -s will tell you the size of each file:

prompt> ls -s
total 1001
 4 hummingbird.wn 1 now.wn 1 swan2.wn
 411 hurrah.snd 2 swan1.wn 584 were_free.snd
prompt>

The file sizes next to each file are given in kilobytes(KB) — roughly a thousand

characters. A single-spaced page in WriteNow, like hummingbird.wn above,
weighs in at about 4 kilobytes.

One important point: if ls -s comes across a directory, it will not tell you the
size of everything inside it. It will give you something like 1 KB — that’s how
much space the directory needs to keep an index of everything that’s inside.

Finally, to see which elements of a listing are directories and which are
executable programs, type ls -F . Directories are followed by a slash (“/”), and

executable files are followed by an asterisk (“*”). In the following example, TA

3 UNIX

is a directory, mumble is a normal file, and hello is an executable file.

TA/ mumble hello*

• cd is used for changing directories. To move into a directory, just type
cd <directory name>. Typing cd .. will take you up to the directory
which contains the current one. If you get lost, cd by itself will take you back to
your home directory.

REMEMBER THIS: use ~ as an abbreviation for your home directory. Typing

cd ~/songs

will send you to the subdirectory songs in your home directory. You can also
get to someone else’s home directory by typing cd ~<userid>, where
<userid> is the userid of the person you are looking for.

• cat spits out the contents of a file or files. Type cat <filename(s)> and
watch the file(s) scroll up the screen, one after the other. (This is where the
command got its name... from concatenating files and sending them to the
screen.)

• more lets you view a file one screenful at a time. Type
more <filename(s)> to view the files in <filename(s)> in small chunks.
Pressing the spacebar will take you to the next page.

• rm will erase any files you tell it to. Type rm <filename(s)>. Be careful with
this command! If you do erase something by accident, all is not lost. Send mail
with a request to restore your file to sunadmin@phoenix.

• cp copies a file to a new name or place. The format is

cp <original file> <new file>.

Typing cp ~/wolves ~/lower will make a copy of the file wolves in your

home directory and will name the copy lower.

• UNIX has a fast way to send a file to the printer: lpr. If you just type

lpr <filename>

your file should go to the nearest printer (the “local” printer).

If that doesn’t work, or if you want to send your file to a specific printer, use

lpr -P<name of printer> <filename>.

For example, lpr -Pnext_cs_001_toimpossible laughing would

send the file laughing to the printer to the left of the NeXT machine
“toimpossible.” See the Printing CheatSheet for more on printer names.

• To print a file with half the paper lpr uses, use the enscript command. The

format is the same as that of lpr, except after enscript type -2rG (2

columns, rotated 90 degrees, in Gaudy, fancy, format). For example,

enscript -2rG -Pnext_cs_001_toimpossible laughing

UNIX 4

Not-absolutely-necessary-but-still-very-interesting commands

• finger will tell you information about a user. Give it a try by typing
finger <name>.

• Typing who will tell you who is currently logged onto the system and where they
are logged in from.

• w is like who, but the last column of its output tells you what each person is
doing. Try it — it’s legal to be a voyeur on the network!

Advanced commands

• grep is not a command; it’s a way of life. In its most simple usage, grep finds a
search-string in a text file. Type grep ’foo’ <filename(s)> to find the
string “foo” in the file(s) <filename(s)>. Grep will output every line containing
“foo” to the screen.

To find “flowers” in the files guatemala and amanita, type

grep ’flowers’ guatemala amanita

• wc counts words, lines, and characters in a file. Type wc <filename(s)>,
and wc will give you something like this:

toyou% wc foo bar
 904 7950 51288 foo
 165 1348 8432 bar
 1069 9298 59720 total
toyou%

The first column is the number of lines, the second is the number of words, and
the third, the number of characters.

• compress shrinks a file’s size down to, on average, about a half of its previous
size. There are many reasons for compressing files. One is simply to save disk
space, which is expensive and sometimes scarce. The other is to make a file
smaller so it can be transmitted faster over the network. Compressed files all
have a .Z on the end. To compress a file, type compress <filename>.

• uncompress uncompresses a compressed file. Any file which ends in .Z is
compressed. To uncompress it, type uncompress <filename.Z> .

For those who want to become UNIX wizards

Pipes

Herein lies the beauty and power of UNIX. With a pipe (|), you can send the
output of one command into the input of another. For example, if you come
across a directory containing a huge number of files, you might type

ls | more

This will send the output of the ls command into more, which lets you view it
one screenful at a time.

5 UNIX

If you think of each UNIX command as a flow of data, pipes are the means of
controlling that flow. Normally, the effect of a command flows right out onto the
screen, the simplest case of data flow. By using a pipe, you can make that flow
of data go someplace else...to another UNIX command, for example. This is the
area in which grep truly shines. Let’s look at another example.

The w command lets us see what each person on the system is doing at the
moment. Unfortunately, if you are on a large UNIX system such as phoenix,
there are bound to be many, many users. It becomes tedious to look through all
of the people to find your friends each time you check up on them. Grep, as we
know, will find any lines containing a certain string. So we want to take the flow
of data from w and “pipe” it into grep, like this:

w | grep <name of friend>

This series of commands will execute w, but instead of printing its output on the
screen, gives it to grep. Grep in turn looks for your friend’s name and since
there is no pipe after grep, the flow goes onto the screen, printing out every line
with your friend’s name in it. Voilá!

Output redirection

• This isn’t too hard. If you follow a command with a greater-than sign (>) and a
filename, the output of the command is saved into that file. For example,

ls > listing

saves the output of the ls command into a file called listing.

Filename expansion

• This isn’t too hard, either. Say you want to count the words of every file in your
current directory. Luckily, you have a special symbol which makes it easy. The
* symbol “expands” to mean any combination of characters. So typing

wc *

would count the words in all the files of the current directory.

• Here’s another example: typing

grep ’buck’ a*

will search for the string “buck” in all the files that begin with “a.”

Aliases

• UNIX allows you to build “aliases” for those long commands which you find
yourself typing over and over again. For example:

alias fb “who | grep foobar”

will check to see if foobar is on the system whenever you type fb.

• You can “pass arguments” to the alias with the sequence \!* . If you type

alias hello “who | grep ‘\!*’”

UNIX 6

the alias will substitute, in place of \!*, anything you type after the hello
command. So if you type

hello eedecker

the computer will actually receive the command “who | grep ‘eedecker’”. (This
command finds out who is on the system, and only prints out eedecker, if she
is on.)

• That’s all! To make an alias permanent, type the alias command (as above) at

the end of a file called .cshrc in your home directory. The .cshrc file is run
every time you log in.

Regular Expressions

Say you want to search a text file for every line which begins with ‘a’. You can’t just
use grep to search for ‘a’ — you’ll get hundreds of lines! Fortunately, grep accepts
certain special characters — like one that represents the beginning of a line — in its

search-strings. Expressions which use these special characters are called regular

expressions, and they pop up often in UNIX.

Here is a tiny, incomplete list of regular expression characters and what they do.
Include any of these in search strings just as you would include a normal character.

^ at the beginning stands for the beginning of a line. To find all lines

in the file foo that begin with the letter “a”, you might type
grep ’^a’ foo.

$ at the end stands for the end of a line (it “anchors” the expression
to the end), and it’s used just like ^. Type grep ‘a$’ foo to find

every line in foo which ends in “a”.

. stands for any single character, so ’r.m’ could mean ’ram’ or ’rem’.

.* will match anything. So m.*e fill find anything which starts in m and
ends in e.

For a more complete list, look for regular expressions in the man page for ed.

UNIX Cultural note: In the old days, UNIX users had to use ed as a text editor (you
have Edit or vi). ed is only cute until you try it. In ed, you can’t look at your
document while you edit it. Instead, you type commands to edit your file, and use
your imagination to see how it looks as you make changes.

Anyway, one of ed’s commands searches for text, and accepts regular expressions.
The command is g/<regular expression>/p, and it does the same thing as grep.
Actually — and this is where the culture shows itself— “grep” can be found in the
abbreviation for ed’s search command: “g/re/p”.

Another related note... some UNIX wizards know ed so well that they use it by
choice. To them, arrow keys and pointing devices are cumbersome and annoying.

7 UNIX

