
Release 2.1    Copyright ã1993-1994 by Lighthouse Design, Ltd.    All Rights Reserved.

compareChars(), compareFloats(), compareInts(),
com-pareLongs(), compareShorts(), compareStrings()

SUMMARY Compare two primitive variables

Declared In: Foundation/FCCompare.h

SYNOPSIS FCCompareType compareFloats(float first, float second)
FCCompareType compareChars(char first, char second)
FCCompareType compareStrings(const char *first, const char *second)
FCCompareType compareShorts(short first, short second)
FCCompareType compareInts(int first, int second)
FCCompareType compareLongs(long first, long second)

DESCRIPTION These functions compare two primitive type variables and return
FC_COMPARE_LESS_THAN, FC_COMPARE_EQUAL_TO, or FC_COMPARE_GREATER_THAN

depending on whether first is less than, equal to, or greater than second, respectively.

You will most often use these functions when writing your own comparison method for the sortable
FCCollection subclasses.    For example, if you had a class called Employees and you wanted to be able
to sort employees by the number of years they've been with the firm, you might write the following
method:

- (FCCompareType) compareSeniority:comparisonObject
{
 return compareInts([self yearsWithFirm],
 [comparisonObject yearsWithFirm]);
}

If your collection is a subclass of FCSortedCollection, you could then call the [employees
setSortSelector: @selector(compareSeniority)] and your collection would stay constantly sorted
by seniority.    Or, if the collection were a subclass of FCOrderedCollection, you could call [employees
sortByCompare: @selector(compareSeniority)] and your collection would be sorted by seniority
until you added another employee to it or otherwise changed the ordering.

See also: -€ setSortSelector: (FCSortedCollection), -€ sortByCompare: (FCOrderedCollection)

