
Release 2.1    Copyright ã1993-1994 by Lighthouse Design, Ltd.    All Rights Reserved.

FCString

Inherits From: Object
Declared In: FCString.h

Class Description
FCString is a convenient class for managing traditional null-terminated C strings of characters.    An
FCString may contain a string of any length, and may hold any character except the null character
(character value 0).

Methods in FCString often take as arguments either C strings or FCStrings. Methods taking C string
arguments have the word "string" in their selectors, whereas methods taking FCString arguments
don't.

Some methods below refer to the UNIX manual documentation (sprintf:... , for instance). To see
this documentation, type "man functionName " at a Terminal command line ("man sprintf", for
example). You can also use the Digital Librarian to search the documentation in
/NextLibrary/Documentation/Unix/ManPages.

A variety of useful macros for working with single characters are available in /usr/include/ctype.h,
which is imported by FCString.h. For more on these, see the UNIX manual page for ctype.

Instance Variables
Inherited from Object
None declared in this class.

Declared in FCString
char *_fc_string ;
int _fc_bufferLength ;

_fc_string the string contents
_fc_bufferLength the length of the string buffer

Method Types

Initializing a new FCString object -init
-initWithString:

Copying and freeing an FCString -copyFromZone:
-free

Manipulating an FCString -prepend:
-prependString:
-append:
-appendCharacter:
-appendString:
-replaceAll:with:
-replaceAllStrings:with:
-replaceFirst:with:
-replaceFirstString:with:
-replaceCharacterAt:with:
-reverse
-setToAllCapitals

-setToInitialCapitals
-setToLowerCase
-trimBlanks
-empty
-sprintf:...
-vsprintf:vaList:

Querying an FCString -compare:
-compareString:
-characterAt:
-getSubstring:start:length:
-occurrencesOf:
-indexOf:
-indexOfString:
-indexOfCharacter:
-indexOfLastCharacter:
-isNumber
-isIdentifier
+packCollection:withSeparator:
-unpackAt:
-stringLength
-textLength

Reading and Writing an FCString -writeText:
-readText:

Setting and Retrieving the FCString's Value
-stringValue
-setStringValue:
-intValue
-setIntValue:
-floatValue
-setFloatValue:
-doubleValue
-setDoubleValue:

Archiving -write:
-read:

Class Methods

packCollection:withSeparator:
+ packCollection:stringCollection withSeparator:(char)aChar;

Creates and returns an FCString containing the concatenation of the string values of the objects in
stringCollection , separated by aChar .

stringCollection must be a kind of FCCollection.    The objects it contains are sent the - stringValue
message to get their string values.    Objects that don't implement - stringValue are skipped.    If
none of the objects respond to - stringValue or if stringCollection is nil , returns nil .
See also: - unpackAt:

Instance Methods

append:
- append:newFCString;

Copies and appends newFCString to the end of the receiver. If newFCString is nil , returns nil .
See also: - appendString:, - appendCharacter:, - prepend:

appendCharacter:

- appendCharacter:(char)newChar;

Appends newChar to the end of the receiver. If newChar is the null character (0), returns nil .
See also: - appendString:, - prepend:

appendString:
- appendString:(const char *)newString;

Copies and appends newString to the end of the receiver. If newString is NULL, returns nil .
See also: - append:, - appendCharacter:, - prependString:

characterAt:
- (char)characterAt:(unsigned)index;

Returns the character at position index . If index is greater than the length of the receiver, returns
0.
See also: - getSubstring:start:length:, - replaceCharacterAt:with:

compare:
- (FCCompareType)compare:anObject;

Compares the receiver with anObject .    Returns FC_COMPARE_GREATER_THAN,
FC_COMPARE_EQUAL_TO, or FC_COMPARE_LESS_THAN depending on whether [self stringValue] is
lexicographically greater than, equal to, or less than [anObject stringValue].

If anObject isn't an FCString or subclass of FCString, returns FC_CANT_COMPARE.
See also: - compareString:

compareString:
- (FCCompareType)compareString:(const char *)string;

Compares the receiver with anObject .    Returns FC_COMPARE_GREATER_THAN,
FC_COMPARE_EQUAL_TO, or FC_COMPARE_LESS_THAN depending on whether [self stringValue] is
lexicographically greater than, equal to, or less than string .

If string is NULL, returns FC_CANT_COMPARE.
See also: - compareString:

copyFromZone:
- copyFromZone:(NXZone *)zone;

Creates an FCString in zone and returns an FCString containing a copy of the receiver's text. If the
method fails, returns nil .

doubleValue
- (double)doubleValue;

Returns a double derived from the receiver. The receiver may contain an optional string of spaces,
then an optional sign character, then a string of digits optionally containing a decimal point, then
an optional "e" or "E" followed by an optionally signed integer. The first unrecognized character
ends the conversion.
See also: - setDoubleValue:, - stringValue, - intValue, - floatValue

empty
- empty;

Empties the receiver. This is equivalent to setting the string value of the receiver to "".
See also: - free

floatValue
- (float)floatValue;

Returns a float derived from the receiver. The receiver may contain an optional string of spaces,
then an optional sign character, then a string of digits optionally containing a decimal point, then
an optional "e" or "E" followed by an optionally signed integer. The first unrecognized character
ends the conversion.
See also: - setFloatValue:, - stringValue, - intValue, - doubleValue

free
- free;

Deallocates the receiver and the storage used by the string it contains. Returns nil .

getSubstring:start:length:
- (int)getSubstring:(char *)buf start:(int)startPos length:(int)numChars;

Copies a substring of length numChars starting at startPos into buf . buf must be allocated by the
client. If the substring runs past the end of the FCString, only the number of characters available
are copied. If the substring does not run to the end of the FCString, no terminating null will be
appended to buf . Returns the number of characters copied. If startPos is greater than the length of
the receiver, if startPos is negative, or if buf is NULL, returns -1.
See also: - characterAt:

indexOf:
- (unsigned)indexOf:otherFCString;

Returns the position of the first character of the first occurrence of otherFCString in the receiver. If
otherFCString is nil or not present in the receiver, returns FC_UNSIGNED_INVALID. In addition, if
the receiver or argument is empty or if otherFCString is longer than the receiver, returns
FC_UNSIGNED_INVALID.
See also: - indexOfString:, - indexOfCharacter:, - indexOfLastCharacter:, -
occurrencesOf:

indexOfCharacter:
- (unsigned)indexOfCharacter:(char)letter;

Returns the index of the first occurrence of letter in the receiver. If letter does not occur in the
receiver, returns FC_UNSIGNED_INVALID.
See also: - indexOfLastCharacter:, - indexOf:, - indexOfString:, - occurrencesOf:

indexOfLastCharacter:
- (unsigned)indexOfLastCharacter:(char)letter;

Returns the index of the last occurrence of letter in the receiver. If letter does not occur in the
receiver, returns FC_UNSIGNED_INVALID.
See also: - indexOfCharacter:, - indexOf:, - indexOfString:, - occurrencesOf:

indexOfString:
- (unsigned)indexOfString:(const char *)otherString;

Returns the position of the first character of the first occurrence of otherString in the receiver. If
otherString is NULL or not present in the receiver, returns FC_UNSIGNED_INVALID.
See also: - indexOf:, - indexOfCharacter:, - indexOfLastCharacter:, - occurrencesOf:

init
- init;

Initializes and returns the receiver, a new FCString instance, and sets its string value to the empty
string.    This method is the designated initializer for FCStrings that start empty.
See also: - initWithString:

initWithString:
- initWithString:(const char *)theString;

Initializes and returns the receiver, a new FCString instance, and sets its string value to theString.   
This method is the designated initializer for FCStrings that start with a value.
See also: - init

intValue
- (int)intValue;

Returns an integer derived from the receiver. The receiver may contain a string of spaces, then an
optional sign character, then a string of digits. The first unrecognized character ends the
conversion.
See also: - setIntValue:, - stringValue, - floatValue, - doubleValue

isIdentifier

- (BOOL)isIdentifier;

Returns YES if the receiver is a valid C identifier (e.g., a variable name). Otherwise, returns NO.
See also: - isNumber

isNumber
- (BOOL)isNumber;

Returns YES if the FCString is a number. A number is defined as any sequence of digit characters
optionally preceded by a plus or minus sign and optionally containing a single decimal point.
Otherwise, returns NO.
See also: - isIdentifier, - intValue, - floatValue, - doubleValue

occurrencesOf:
- (unsigned)occurrencesOf:anFCString;

Returns the number of times anFCString occurs in the receiver. If anFCString is nil , returns 0.
See also: - indexOf:

prepend:
- prepend:newFCString;

Copies and prepends newFCString to the beginning of the receiver. If newFCString is nil , returns
nil .
See also: - prependString:, - append:

prependString:

- prependString:(const char *)newString;

Copies and prepends newString to the beginning of the receiver. If newString is NULL, returns nil .
See also: - prepend:, - appendString:

read:
- read:(NXTypedStream *)stream;

Reads the FCString from the typed stream stream . Used by the Objective-C archiving functions.
You should not use this method directly.
See also: - write:

readText:
- readText:(NXStream *)stream;

Sets the receiver to be a copy of the text read from stream . Null characters in the stream are
ignored. If stream is NULL, returns nil .
See also: - writeText:

replaceAll:with:
- replaceAll:oldFCString with:newFCString;

Replaces all occurrences of oldFCString in the receiver with newFCString . If either argument is nil ,
returns nil . In addition, if oldFCString does not occur in the receiver or if oldFCString is the same
object as newFCString , returns nil .
See also: - replaceAllStrings:with:, - replaceFirst:with:

replaceAllStrings:with:
- replaceAllStrings:(const char *)oldText with:(const char *)newText;

Replaces all occurrences of oldText in the receiver with newText . If either argument is NULL,
returns nil . In addition, if oldText does not occur in the receiver or if oldText is the same string as
newText , returns nil .
See also: - replaceAll:with:, - replaceFirstString:with:

replaceCharacterAt:with:
- replaceCharacterAt:(unsigned)index with:(char)newCharacter;

Replaces the character at index in the receiver with newCharacter . If the receiver is empty or is
shorter than index , returns nil . If newCharacter is ASCII NUL (that is, (char)0), the receiver is
shortened appropriately.
See also: - replaceAllStrings:with:, - characterAt:

replaceFirst:with:
- replaceFirst:oldFCString with:newFCString;

Replaces the first occurrence of oldFCString in the receiver with newFCString . If either argument is
nil or if the arguments are the same FCString, returns nil .
See also: - replaceFirstString:with:, - replaceAll:with:

replaceFirstString:with:
- replaceFirstString:(const char *)oldText with:(const char *)newText;

Replaces the first occurrence of oldText in the receiver with newText . If either argument is NULL,
returns nil . In addition, if the arguments are the same string or if oldText does not occur in the
receiver, returns nil .

See also: - replaceFirst:with:, - replaceAllStrings:with:

reverse
- reverse;

Reverses the order of characters in the receiver.

setDoubleValue:
- setDoubleValue:(double)aDouble;

Sets the receiver to the string equivalent of aDouble .    Note that this method will only store a
limited amount of precision.    If more precision is needed, sprintf:... should be used with an
appropriate format string.
See also: - stringValue, - sprintf:..., - setStringValue:, - setIntValue:, - setFloatValue:

setFloatValue:
- setFloatValue:(float)aFloat;

Sets the receiver to the string equivalent of aFloat .    Note that this method will only store a limited
amount of precision.    If more precision is needed, sprintf:... should be used with an appropriate
format string.
See also: - stringValue, - sprintf:..., - setStringValue:, - setIntValue:, - setDoubleValue:

setIntValue:
- setIntValue:(int)anInt;

Sets the receiver to the string equivalent of anInt .

See also: - stringValue, - setStringValue:, - setFloatValue:, - setDoubleValue:

setStringValue:
- setStringValue:(const char *)aString;

Sets the receiver to be a copy of aString . If aString is NULL, returns nil .
See also: - stringValue, - setIntValue:, - setFloatValue:, - setDoubleValue:

setToAllCapitals
- setToAllCapitals;

Capitalizes all the lower-case characters in the receiver.
See also: - setToInitialCapitals, - setToLowerCase

setToInitialCapitals
- setToInitialCapitals;

Capitalizes the first character of every word in the receiver. A word is delimited by any combination
and number of spaces, tabs, carriage returns, new lines, vertical tabs, or form feeds.
See also: - setToAllCapitals, - setToLowerCase

setToLowerCase
- setToLowerCase;

Changes all upper-case characters in the receiver to lower-case.
See also: - setToAllCapitals, - setToInitialCapitals

sprintf:...
- sprintf:(const char *)format, ...;

Sets the receiver to contain the results of the corresponding sprintf() function call. For more
information on the arguments to sprintf(), see the appropriate UNIX manual page. If format is
NULL, returns nil .
See also: - vsprintf:vaList:

stringLength
- (unsigned)stringLength;

Returns the number of characters in the receiver. The returned value does not include the
terminating null character.
See also: - textLength

stringValue
- (const char *)stringValue;

Returns a pointer to the receiver's _fc_string instance variable. Do not modify this string directly.
See also: - setStringValue:, - intValue, - floatValue, - doubleValue

textLength
- (int)textLength;

Returns the number of characters in the receiver. The return value does not include the
terminating null character. This method is provided in imitation of the Application Kit's Text object.

See also: - stringLength

trimBlanks
- trimBlanks;

Removes all whitespace characters from the beginning and end of the receiver. Whitespace
characters are defined as spaces, tabs, carriage returns, new lines, vertical tabs, and form feeds.

unpackAt:
- unpackAt:(const char *)chars;

Divides the receiver into individual FCStrings at every occurrence of any of the characters in chars
. Returns an FCOrderedSet containing the FCStrings. All occurrences of chars are discarded in the
returned FCOrderedSet. The receiver is not modified. If the receiver is empty or if chars is NULL,
returns nil .

NOTE: The behavior of this method is unpredictable if there are immediately adjacent occurrences
of chars in the receiver.
See also: + packCollection:withSeparator:

vsprintf:vaList:
- vsprintf:(const char *)format vaList:(va_list)ap;

Sets the receiver to contain the results of the corresponding vsprintf() function call. For more
information on the arguments to vsprintf(), see the appropriate UNIX manual page. If format is
NULL, returns nil .
See also: - sprintf:

write:
- write:(NXTypedStream *)stream;

Writes the receiving FCString to the typed stream stream . Used by the Objective-C archiving
functions. You should not use this method directly.
See also: - read:

writeText:
- writeText:(NXStream *)stream;

Writes the receiver's text to the stream . The terminating null is not written. If stream is NULL,
returns nil .
See also: - readText:

