
Release 2.1    Copyright ã1993-1994 by Lighthouse Design, Ltd.    All Rights Reserved.

FCError

Inherits From: Object
Declared In: FCError.h

Class Description
The FCError class announces messages to the user.    A number of standard messages are provided,
as well as standard methods used in announcing messages:    using these helps to provide the user
with a consistent interface. A default announcement method can be registered for each class
which uses the FCError class, making it possible to completely change the user interface of error
handling in a class without changing each line where those errors are reported.

Each instance of FCError is associated with a particular header string (set using the
setHeaderString: method) and a printf() -style message string (set with setMessageString:). 
The parameters to the messageString template can be filled in by calling the

completeMessageString: routine. Each FCError also stores a preferred method of announcing its
message, which is used whenever the default announce method is called.    New instances can be
registered in the class' error registry via the registerError:owner: method, and recalled via the
registeredError:owner: method.

There are quite a few pre-registered FCError's (which can be accessed via the registeredError:
name method).    They are:

noError
Header String: No Error
Message String: This is not an error.

test
Header String: Message System Test
Message String: This error message should be used for testing only.

message
Header String: Message
Message String: %s
Parameters: "Description of Bug."

bug
Header String: Program Bug
Message String: Program bug at line %d of file %s.
Parameters: __LINE__ , __FILE__

bugDescription Header String: Program Bug
Message String: Program bug at line %d of file %s.    %s
Parameters: __LINE__ , __FILE__ , "Description of Bug."

bugBadParameter
Header String: Program Bug

Message String: Program bug at line %d of file %s.    Invalid parameter.
Parameters: __LINE__ , __FILE__

bugBadMethod Header String: Program Bug
Message String: Program bug at line %d of file %s.    Invalid method call.
Parameters: __LINE__ , __FILE__

bugNotImplemented
Header String: Program Bug
Message String: Program bug at line %d of file %s.    Invalid method call.
Parameters: __LINE__ , __FILE__

bugSubclassResponsibility
Header String: Program Bug
Message String: Program bug at line %d of file %s.    Invalid method call.
Parameters: __LINE__ , __FILE__

bugBadFreeParm
Header String: Program Bug
Message String: Program bug at line %d of file %s.    Invalid parameter to free.
Parameters: __LINE__ , __FILE__

bugCustomAssertionFailed
Header String: Program Bug
Message String: %s%d
Parameters: "Description of Bug."

bugDefaultAssertionFailed
Header String: Program Bug
Message String: %s%d
Parameters: "Description of Bug."

fopen
Header String: Program Bug

Message String: Problem opening file %s encountered at line %d of file %s.
Parameters: "FileName", __LINE__ , __FILE__

Currently, FCError supports messages used for teaching, file system interface, bugs, or design
rules.    Possibilities for future extension include facilities for handling interactive dialogs such as
save on quit, save on close, merge nets, etc.

A common use of FCError is to perform assertion tests.    The macros FC_ASSERTION() ,
FC_PRECONDITION() , FC_POSTCONDITION() , and FC_CLAIM() are provided for this purpose.
FC_CLAIM()'s tests can be disabled by compiling with -D FC_BLOCKCLAIMS, making it a
particularly convenient macro for debugging purposes.

Instance Variables
Inherited from Object
None declared in this class.

Declared in FCError
FCString *_fc_owner ;
FCString *_fc_handle ;
FCString *_fc_header ;
FCString *_fc_template ;
FCString *_fc_completeMessage ;
SEL _fc_preferredAnnouncer ;
id _fc_delegate ;

_fc_owner The name of the owner
_fc_handle The registered name
_fc_header "Error", "Warning", "Message", etc.
_fc_template The message string
_fc_completeMessage Parameters for the message string
_fc_preferredAnnouncer The preferred announcer method
_fc_delegate The delegate

Method Types

Factory Methods +zone
+alloc
+initialize

Initializing -init
-initWithHeaderString:messageString:

Freeing -free
Copying -copyFromZone:
Setting and Querying the Default Announcers

+setDefaultAnnouncer:

+defaultAnnouncer
+setAnnouncer:forFile:
+announcerForFile:

Setting and Querying the Error -setMessage:
-message
-setMessageString:
-messageString
-completeMessageString:...
-completeMessage
-completeMessageString
-setHeader:
-header
-setHeaderString:
-headerString

Setting and Querying the Delegate -setDelegate:
-delegate

Setting and Querying the Preferred Announcer
-setPreferredAnnouncer:
-preferredAnnouncer

Announcers -announce
-announceByExiting
-announceByRaisingException
-announceToStderr
-announceWithPanel
-announceWithSyslog

-announceWithLogError
-announceWithSound
-announceToDelegate

Error registry -registerError:owner:
-deregister
+registeredError:owner:
+registeredError:
-registeredErrorString
-registeredOwnerString

Archiving -write:
-read:

Class Methods

alloc
+ alloc;

Returns a new instance of FCError.    Memory for the new object is allocated from the memory zone
returned by the FCError zone class method, localizing the FCError objects.
See also: + zone, + allocFromZone    (Object)

announcerForFile:
+ (SEL)announcerForFile:(const char *)fileName;

Gets the announcer method associated with a given file name.    This announcer will be used for
assertions that fail in that file.

defaultAnnouncer
+ (SEL)defaultAnnouncer;

Gets the default announcer method used by instances of FCError that do not have a Preferred
Announcer.

initialize
+ initialize;

Initializes the class: registers the error reporting function that will be used to report exceptions
raised by FCError, allocates the registration and file tables, and registers the standard, pre-
registered errors.

Never invoke this method directly; it's sent for you when the application starts.    Returns self.

registeredError:

+ registeredError:(const char *)theError;

Returns the standard FCError instance pre-registered by FCError under the name theError.   
Returns nil if no error is registered for the given key.    The pre-registered errors are listed in the
class description.

registeredError:owner:
+ registeredError:(const char *)theError owner:(const char *)theOwner;

Returns the FCError instance registered under the name theError for the owner theOwner.    Returns
nil if no such error is registered.

setAnnouncer:forFile:
+ setAnnouncer:(SEL)theAnnouncer forFile:(const char *)fileName;

Sets the announcer method associated with a given file name.    This announcer will be used for
assertions that fail in the file.

setDefaultAnnouncer:
+ setDefaultAnnouncer:(SEL)theAnnouncer;

Sets the default announcer method used by instances of FCError that do not have a Preferred

Announcer.

zone
+ (NXZone *)zone;

Returns the class zone.    The alloc method allocates new instances of FCError from this zone of
memory.
See also: + alloc

Instance Methods

announce
- announce;

Calls the preferred announcer method of the FCError object.    If the preferred announcer is set to
FC_DEFAULT_ANNOUNCER, uses the default announcer for the class.    Returns what the preferred
announcer returns.
See also: - preferredAnnouncer, + defaultAnnouncer

announceByExiting

- announceByExiting;

Exits the application (returning status code 1).    Never returns.
See also: - announce

announceByRaisingException
- announceByRaisingException;

Alerts the appropriate error handler that an error has occurred. Never returns.
See also: - NX_RAISE(), - announce

announceToDelegate
- announceToDelegate;

Calls the delegate's errorWasAnnounced: method, if it exists. (If it doesn't, nothing happens.)
Returns self .
See also: - delegate, - announce

announceToStderr
- announceToStderr;

Prints the header string and complete message string to stderr . Returns self .

See also: - headerString, - completeMessageString, - announce

announceWithLogError
- announceWithLogError;

Writes the header and complete message string using NXLogError(), which sends it to the Console
or stderr depending on whether the application was launched from the Workspace Manager or a
shell. Returns self .
See also: - headerString, - completeMessageString, - announce

announceWithPanel
- announceWithPanel;

Runs an Alert Panel with the header string as the title and the complete message string as the
msg.    If the delegate responds to provideHelpAbout:, the alternateButton will be labelled
"Help..."; pressing this button will perform the delegate's provideHelpAbout: method.

If running the alert panel fails for some reason, this method falls back on
announceByRaisingException .

Returns self .
See also: - headerString, - completeMessageString, - delegate, - announce

announceWithSound
- announceWithSound;

Plays the system beep.    Returns self .
See also: - announce, NXBeep()

announceWithSyslog
- announceWithSyslog;

Writes the header and complete message string onto the system log using the syslog() call, at the
LOG_ERR priority.    Returns self.
See also: - headerString, - completeMessageString, - announce

completeMessage
- completeMessage;

Returns the complete message string: the message string with parameters filled in by the
completeMessageString: method.    Do not free this FCString or modify it yourself, as it's owned
by the FCError object.
See also: - completeMessageString, - completeMessageString:, - message

completeMessageString
- (const char *)completeMessageString;

Returns the complete message string:    the message string with parameters filled in by the
completeMessageString: method.
See also: - completeMessage, - completeMessageString:, - messageString

completeMessageString:...
- completeMessageString:(char *)messageString, ...;

Sets the parameters for the FCError object's message string (which is a printf() format string).
See also: - setMessage:, - setMessageString:, - completeMessage, -
completeMessageString

copyFromZone:
- copyFromZone:(NXZone *)zone;

Returns an unregistered duplicate of the FCError.

delegate
- delegate;

Returns the receiver's delegate.
See also: - setDelegate:

deregister
- deregister;

Removes receiver from the error registry.    Returns nil if the error was not registered.

free
- free;

Frees the FCError.    If the delegate responds to errorDidFree:, it is notified.

header
- header;

Returns the FCString containing the receiver's header.    Do not free this FCString or modify it
yourself, as it's owned by the FCError object.
See also: - headerString, - setHeader:

headerString
- (const char *)headerString;

Returns the FCError object's header string as a (char *).
See also: - header, - setHeaderString:

init
- init;

Initializes the FCError, which must be a newly allocated FCError instance.    By default, the header
string is set to "Error" and the message string is set to "Unknown error".    Returns self.

initWithHeaderString:messageString:
- initWithHeaderString:(char *)headerString

messageString:(char *)messageString;

Initializes the FCError, which must be a newly allocated FCError instance.    Sets the header string
and message string to be headerString and messageString respectively.    This method is the
designated initializer for the FCError class.

message
- message;

Returns the FCString containing the receiver's message.    Do not free this FCString or modify it
yourself, as it's owned by the FCError object.
See also: - messageString, - setMessage:, - completeMessage

messageString
- (const char *)messageString;

Returns the FCError object's message string as a (char *).
See also: - message, - setMessageString:, - completeMessageString

preferredAnnouncer
- (SEL)preferredAnnouncer;

Returns either the selector sent to the FCError object when the announce message is received, or
FC_DEFAULT_ANNOUNCER.
See also: - setPreferredAnnouncer:, + defaultAnnouncer, - announce

read:
- read:(NXTypedStream *)stream;

Reads the receiver's instance variables from the typed stream stream .

This method is only used by the Objective-C archiving functions. You should not call this method
directly.
See also: - read:

registerError:owner:
- registerError:(const char *)theError owner:(const char *)theOwner;

Enters receiver in the error registry under the name theError for the owner theOwner.    Each owner
has its own namespace.

registeredErrorString
- (const char *)registeredErrorString;

Returns the error string that was used to register the receiver. If the receiver is unregistered then
this method returns NULL.

registeredOwnerString
- (const char *)registeredOwnerString;

Returns the owner string that was used to register the receiver. If the receiver is unregistered then
this method returns NULL.

setDelegate:
- setDelegate:anObject;

Makes anObject the receiver's delegate.
See also: - delegate

setHeader:
- setHeader:theHeader;

Sets the FCError object's header string.    The argument theMessage should be an FCString.   
Common examples of header strings are "Error", "Warning", and "Message".
See also: - setHeaderString:, - header

setHeaderString:
- setHeaderString:(const char *)theHeader;

Sets the receiver's header string.    Common examples of header strings are "Error", "Warning", and
"Message".
See also: - setHeader:, - headerString

setMessage:
- setMessage:theMessage;

Sets the receiver's message string.    The argument theMessage should be an FCString.    The
message may be a printf() format string; parameters may be set by using
completeMessageString:.    This method works by invoking the setMessageString: method.   
Returns self.
See also: - setMessageString:, - completeMessageString:, - message

setMessageString:
- setMessageString:(const char *)theMessage;

Sets the FCError object's message string.    The message may be a printf() format string;
parameters may be set by using completeMessageString:. Returns self.
See also: - setMessage:, - completeMessageString:, - messageString

setPreferredAnnouncer:
- setPreferredAnnouncer:(SEL)thePreferredAnnouncer;

Sets the selector to be sent to the FCError object when the announce message is received.    You
may pass in FC_DEFAULT_ANNOUNCER to cause receiver to use the default FCError announcer
selector.

See also: - preferredAnnouncer, + setDefaultAnnouncer:, - announce

write:
- write:(NXTypedStream *)stream;

Writes the receiver's instance variables to the typed stream stream .

This method is only used by the Objective-C archiving functions. You should not call this method
directly.
See also: - read:

Methods Implemented by the Delegate

errorDidFree:
- errorDidFree:anError;

Sent to the delegate when anError is freed.
See also: - free

errorWasAnnounced:

- errorWasAnnounced:anError;

Sent to the delegate when anError announces an error using the announceToDelegate method.
See also: - announceToDelegate

provideHelpAbout:
- provideHelpAbout:anError;

If anError's delegate implements this method, the announceWithPanel method will include a
button labelled "Help..." on its panel.    If the user presses this button, the delegate will be notified
via this message, and is expected to respond by providing the user with some help.
See also: - announceWithPanel

Macros

FC_ASSERTION()
FC_ASSERTION(conditional , string)

If conditional is FALSE, announce string using the pre-registered FCError bugCustomAssertionFailed
; or, if string is NULL , announce "Assertion failed: File __FILE__ , line __LINE__ " using the pre-
registered FCError bugDefaultAssertionFailed. The method used to announce the message is the
default announcer for __FILE__.    If no announcer is assigned to __FILE__ , the FCError's preferred

announcer will be used.

(__FILE__ and __LINE__ are compiler directives which will be replaced with the filename and line
number in which they occur.)
See also: FC_BASE_ASSERTION(), FC_PRECONDITION(), FC_POSTCONDITION(),
FC_CLAIM(), - announcerForFile:, - announce, - preferredAnnouncer

FC_CLAIM()
FC_CLAIM(conditional , string)

If conditional is FALSE, announce string using the pre-registered FCError bugCustomAssertionFailed
; or, if string is NULL , announce "Claim failed: File __FILE__ , line __LINE__ " using the pre-
registered FCError bugDefaultAssertionFailed. The method used to announce the message is the
default announcer for __FILE__.    If no announcer is assigned to __FILE__ , the FCError's preferred
announcer will be used.

(__FILE__ and __LINE__ are compiler directives which will be replaced with the filename and line
number in which they occur.)

The messages generated by this macro can be disabled by compiling with -D FC_BLOCKCLAIMS.
See also: FC_BASE_ASSERTION(), FC_ASSERTION(), FC_PRECONDITION(),
FC_POSTCONDITION(), - announcerForFile:, - announce, - preferredAnnouncer

FC_EXCEPTION_RAISED()
FC_EXCEPTION_RAISED

Call this macro in the NX_HANDLER part of an exception handler to get the id of the FCError object
that raised the exception.    If the exception wasn't raised by an FCError object, nil is returned.

FC_POSTCONDITION()
FC_POSTCONDITION(conditional , string)

If conditional is FALSE, announce string using the pre-registered FCError bugCustomAssertionFailed
; or, if string is NULL , announce "Postcondition failed: File __FILE__ , line __LINE__ " using the pre-
registered FCError bugDefaultAssertionFailed. The method used to announce the message is the
default announcer for __FILE__.    If no announcer is assigned to __FILE__ , the FCError's preferred
announcer will be used.

(__FILE__ and __LINE__ are compiler directives which will be replaced with the filename and line
number in which they occur.)
See also: FC_BASE_ASSERTION(), FC_ASSERTION(), FC_PRECONDITION(), FC_CLAIM(), -
announcerForFile:, - announce, - preferredAnnouncer

FC_PRECONDITION()
FC_PRECONDITION(conditional , string)

If conditional is FALSE, announce string using the pre-registered FCError bugCustomAssertionFailed
; or, if string is NULL , announce "Precondition failed: File __FILE__ , line __LINE__ " using the pre-
registered FCError bugDefaultAssertionFailed. The method used to announce the message is the
default announcer for __FILE__.    If no announcer is assigned to __FILE__ , the FCError's preferred
announcer will be used.

(__FILE__ and __LINE__ are compiler directives which will be replaced with the filename and line
number in which they occur.)
See also: FC_BASE_ASSERTION(), FC_ASSERTION(), FC_POSTCONDITION(), FC_CLAIM(), -
announcerForFile:, - announce, - preferredAnnouncer

_FC_BASE_ASSERTION()
_FC_BASE_ASSERTION(conditional , string , type)

If conditional is FALSE, announce string using the pre-registered FCError bugCustomAssertionFailed
; or, if string is NULL , announce "type failed: File __FILE__ , line __LINE__ " using the pre-
registered FCError bugDefaultAssertionFailed . The method used to announce the message is the
default announcer for __FILE__.    If no announcer is assigned to __FILE_, the FCError's preferred
announcer will be used.

(__FILE__ and __LINE__ are compiler directives which will be replaced with the filename and line
number in which they occur.)
See also: FC_ASSERTION(), FC_PRECONDITION(), FC_POSTCONDITION(), FC_CLAIM(), -
announcerForFile:, - announce

