
Release 2.1    Copyright ã1993-1994 by Lighthouse Design, Ltd.    All Rights Reserved.

FCCollection

Inherits From: Object
Declared In: FCCollection.h

Class Description
FCCollection is the ultimate superclass for a family of classes that provide capabilities to
manipulate collections of objects.

FCCollection is conceptually analogous to the List class.    Both contain collections of id s, and allow
you to add and remove objects.    Both add objects to the collection by reference, rather than
actually copying the objects.    Neither class allows nil objects to be inserted into the collection.

FCCollection implements many of the same methods as List, and wherever applicable duplicates
List's method interfaces exactly.

FCCollection, however, provides more methods for controlling the contents of the collection (e.g.,
± uniqueElements and ± setContentClass:), manipulating the objects in the collection (e.g., ±
addObjectsFrom:), and creating related collections (e.g., ± selectObjects: and ±

collectObjects:).    Further, its subclasses add features beyond List's, and have more efficient
internal implementations for specific applications.

FCCollection is an abstract superclass.    You cannot instantiate it directly; in fact, some of its
methods are simply stubs in the superclass and return errors when invoked.    Its basic purpose is
to provide common methods and an orthogonal interface to its eight instantiable subclasses, all of
which fully adhere to the interface described here.    In the documentation below, the term
"collection" refers to any non-abstract subclass of FCCollection.

To determine which FCCollection subclass you should use in a particular situation, refer first to the
'Foundation Classes and Function' introduction document, and then to the class documentation for
the appropriate subclasses.

Instance Variables
Inherited from Object
None declared in this class.

Declared in FCCollection
id _fc_contents ;
Class _fc_class ;
SEL _fc_sortSelector ;
BOOL _fc_archiveByReference ;

_fc_contents contents of the collection
_fc_class class of the content objects

_fc_sortSelector selector used for sorting in subclasses
_fc_archiveByReference archiving mode

Method Types

Initializing the Class +initialize
Creating instances +alloc

+allocFromZone:
Initializing a Collection -init

-initCount:
-initForClass:

Freeing the Collection -free
-freeObjects

Copying Methods -copy
-copyFromZone:
-copyAs:
-copyAs:fromZone:
-deepCopy
-deepCopyFromZone:
-copyAs:fromZone:deep:

Accessing the Behavior of the Collection
-archiveByReference
-setArchiveByReference:
-contentClass
-setContentClass:

-uniqueElements
-isOrdered
-isSorted

Asking About the Contents -count
-isEmpty
-contains:
-equalObject:
-containsEqualObject:
-occurrencesOf:
-isDisjointFrom:
-containsSubset:
-trueForAll:
-trueForAny:

Changing the Contents -addObject:
-addObjectsFrom:
-removeObject:
-removeObjectsFrom:
-removeObjectsNotContainedIn:
-removeAllOccurrencesOfObject:
-empty
-replaceObject:with:

Making Related Collections -selectObjects:
-rejectObjects:
-collectObjects:
-collectObjects:as:

Iterating -startLoop:
-nextObject:

-peekNextObject:
Comparing and Sorting -isEqual:

-compare:
Sending Messages to the Objects -makeObjectsPerform:

-makeObjectsPerform:with:
Archiving -write:

-read:

Class Methods

alloc
+ alloc;

This method cannot be used to create an FCCollection object. FCCollection is an abstract
superclass, you should call alloc only on its instantiable subclasses. The method is implemented
only to prevent you from using it; if you do use it, it generates an error message.

allocFromZone:
+ allocFromZone:(NXZone *)zone;

This method cannot be used to create an FCCollection object. FCCollection is an abstract
superclass, you should call allocFromZone: only on its instantiable subclasses. The method is
implemented only to prevent you from using it; if you do use it, it generates an error message.

initialize
+ initialize;

Sets the version of the class for use in Objective-C archiving. You should not use this method
directly, it is called for you when the class is first used.

Instance Methods

addObject:
- addObject:anObject;

Subclasses should implement this method to add anObject into the collection.    Ordered subclasses
will add anObject to the end of the list.    Subclasses with unique objects will fail and return nil if
anObject is already present in the collection. If the programmer has set a content class,
addObject: will fail if anObject isn't a kind of that class.

FCCollection's implementation of this method prints an error message and aborts. Existing
subclasses override this to provide the correct behavior.
See also: - removeObject:, - addObjectsFrom:, - isOrdered, - uniqueElements, -
setContentClass:

addObjectsFrom:
- addObjectsFrom:otherCollection;

Adds all the objects in otherCollection to this collection.    The objects are not removed from
otherCollection .    The objects are added with the - addObject: method, so any objects that fail
that method's tests will be skipped.
See also: - addObject:

archiveByReference
- (BOOL)archiveByReference;

Returns YES if the objects in the collection will be archived using NXWriteObjectByReference ,
and NO if the objects will be archived with NXWriteObject . The default is NO; you can change
this with the - setArchiveByReference: method.
See also: - setArchiveByReference:, NXWriteObjectByReference, NXWriteObject   
(Common Functions)

collectObjects:
- collectObjects:(SEL)idSelector;

Returns a new collection of the same class as the receiver that contains the collected return values
from every object being sent the idSelector message.

The idSelector method should take no arguments, and return either an id or nil .    Every object in
the collection must respond to idSelector .

See also: - collectObjects:as:, - selectObjects:, - rejectObjects:

collectObjects:as:
- collectObjects:(SEL)idSelector as:newClass;

Returns a new FCCollection subclass of type newClass that contains the collected return values
from every object being sent the idSelector message.

The idSelector method should take no arguments, and return either an id or nil .    Every object in
the collection must respond to idSelector .
See also: - collectObjects:, - selectObjects:, - rejectObjects:

compare:
- (FCCompareType)compare:anObject;

Returns FC_COMPARE_EQUAL_TO if the receiver is of the same class, contains the same elements,
and has the same instance variables as anObject . Returns FC_COMPARE_NOT_EQUAL_TO if the
element collections differ. Returns FC_COMPARE_CANT_COMPARE if the class or instance variables
differ (e.g., the contentClasses are different).

Note that this routine is only partially implemented in FCCollection; it checks the instance variables
of the two collection objects, but doesn't check that the contents are the same.    This latter duty is
the subclasses' responsibility; both FCOrderedCollection and FCUnorderedCollection subclass this
method correctly.
See also: - isEqual:

contains:
- (BOOL)contains:anObject;

Returns YES if anObject is a member of the collection.
See also: - containsEqualObject:

containsEqualObject:
- (BOOL)containsEqualObject:anObject;

Returns YES if an object which thinks itself equal to anObject is a member of the collection.   
Equality is tested by sending the isEqual: message to all the elements in the collection.
See also: - equalObject:, - contains:

containsSubset:
- (BOOL)containsSubset:otherCollection;

Returns YES if this collection contains all the elements in otherCollection .
See also: - isDisjointFrom:

contentClass
- contentClass;

Returns the class of the objects contained in the collection, if the collection's class has been

explicitly set. Returns nil if no class checking is in force (e.g., the collection may be
heterogeneous).    The default is nil .
See also: - setContentClass:, - init, - initForClass:

copy
- copy;

Returns a new collection object with the same contents and instance variables (e.g., contentClass,
sortSelector) as the receiver. The objects in the receiving collection aren't copied; therefore, both
collections contain pointers to the same set of objects.
See also: - copyFromZone:, - copyAs:, - deepCopy

copyAs:
- copyAs:aClass;

Returns a new FCCollection subclass object of type aClass with the same contents as the receiver.
The objects in the receiving collection aren't copied; therefore, both collections contain pointers to
the same set of objects.

Note that copying from some subclasses to some others may give unexpected results; for
example, copying an FCBag with duplicates into an FCSet will result in a new set with the
duplicates missing.
See also: - copyAs:fromZone:, - copy, - deepCopy

copyAs:fromZone:
- copyAs:aClass fromZone:(NXZone *)zone;

Returns a new FCCollection subclass object of type aClass with the same contents as the receiver.
The objects in the receiving collection aren't copied; therefore, both collections contain pointers to
the same set of objects. Memory for the new collection is allocated from zone .

Note that copying from some subclasses to some others may give unexpected results; for
example, copying an FCBag with duplicates into an FCSet will result in a new set with the
duplicates missing.
See also: - copyAs:, - copyFromZone:, - deepCopyFromZone:

copyAs:fromZone:deep:
- copyAs:aClass fromZone:(NXZone *)zone deep:(BOOL)deep;

Returns a new FCCollection subclass object of type aClass with the same contents as the receiver.
If deep is YES, the objects in the receiving collection are copies of the ones in the original
collection; otherwise both collections contain pointers to the same set of objects. Memory for the
new collection is allocated from zone .

Note that copying from some subclasses to some others may give unexpected results; for
example, copying an FCBag with duplicates into an FCSet will result in a new set with the
duplicates missing.

Subclasses that need to customize their copying behavior should override this method.
See also: - copyAs:, - copyFromZone:, - deepCopyFromZone:

copyFromZone:
- copyFromZone:(NXZone *)zone;

Returns a new collection object with the same contents and instance variables (e.g., contentClass,
sortSelector) as the receiver. The objects in the receiving collection aren't copied; therefore, both
collections contain pointers to the same set of objects. Memory for the new collection is allocated
from zone .
See also: - copy, - copyAs:fromZone:, - deepCopyFromZone:

count
- (unsigned)count;

Returns the number of objects currently in the collection.    In a non-unique collection, this will
count multiple instances of the same object multiple times.

deepCopy
- deepCopy;

Returns a new collection object with the same contents as the receiver. The objects in the receiving
collection are copied by sending them the - copy method; therefore, the new collection contains a
different set of objects than the receiver.

Note that the objects in the collection must properly implement the - copy method in order for -
deepCopy to work.
See also: - copy, - copyAs:, - copy    (Object)

deepCopyFromZone:
- deepCopyFromZone:(NXZone *)zone;

Returns a new collection object with the same contents as the receiver. The objects in the receiving
collection are copied by sending them the - copy method; therefore, the new collection contains a
different set of objects than the receiver. Memory for the new collection is allocated from zone .

Note that the objects in the collection must properly implement the - copy method in order for -
deepCopy to work.
See also: - deepCopy, - copyFromZone:, - copyAs:fromZone:, - copyFromZone:    (Object)

empty
- empty;

Empties the collection of all its objects without freeing them, and returns self.
See also: - freeObjects

equalObject:
- equalObject:anObject;

Returns an object which thinks itself equal to anObject if there is such an object in the collection.
Equality is tested by sending the isEqual: message to all the elements in the collection.

If there are several objects that think themselves equal, one is picked at random. Returns nil if no

objects think themselves equal.
See also: - containsEqualObject:, - contains:

free
- free;

Deallocates the FCCollection object and the memory it allocated for the array of object ids.   
However, the objects contained in the collection aren't freed.
See also: - freeObjects, - empty

freeObjects
- freeObjects;

Removes every object from the collection, sends each one of them a free message, and returns
self .    Even if an object appears twice in the collection it will only receive one free message. The
FCCollection object itself isn't free d; this method returns a valid self .

The methods that free the objects should not modify the collection.
See also: - empty, - free

init
- init;

Initializes the receiver, a new FCCollection object, but doesn't allocate any memory for its

collection of objects. The initial capacity of the collection will be 0.    Minimal amounts of memory
will be allocated when objects are added.

The init method does not set a content class for the collection; it allows you to add objects of any
type.    If you wish to restrict the type of objects you can add use initForClass: instead, or send
setContentClass: to the receiver.

Because FCCollection is an abstract superclass, you will only send this message to subclasses of
FCCollection, rather than FCCollection directly.
See also: - initCount:, - initForClass:, - setContentClass

initCount:
- initCount:(unsigned)numSlots;

Initializes the receiver, a new FCCollection object, and allocates enough memory for it to hold
numSlots objects.

The initCount: method does not set a content class for the collection; it allows you to add objects
of any type.    If you wish to restrict the type of objects you can add use initForClass: instead, or
send setContentClass: to the receiver.

Because FCCollection is an abstract superclass, you will send this message to subclasses of
FCCollection, rather than FCCollection directly.
See also: - init, - initForClass:, - setContentClass

initForClass:

- initForClass:theClass;

Initializes the receiver, a new FCCollection object, and sets it to only allow objects that are a kind
of theClass to be added to its collection. The initial capacity of the collection will be 0.    Minimal
amounts of memory will be allocated when objects are added.

Because FCCollection is an abstract superclass, you will send this message to subclasses of
FCCollection, rather than FCCollection directly.
See also: - init, - initCount:, - setContentClass

isDisjointFrom:
- (BOOL)isDisjointFrom:otherCollection;

Returns YES if this collection shares no elements with otherCollection .
See also: - containsSubset:

isEmpty
- (BOOL)isEmpty;

Returns YES if there are no objects in the collection.
See also: - empty

isEqual:
- (BOOL)isEqual:anObject;

Returns YES if the receiver is of the same class, contains the same elements, and has the same
content class (if any) and archiving mode as anObject .
See also: - compare:

isOrdered
- (BOOL)isOrdered;

FCCollection instances return YES to indicate that objects in their collections are ordered. Ordered
collections have a unique, sequential index for each object in the collection.

Some subclasses (e.g., FCUnorderedCollection) override this method to return NO to indicate they
maintain no ordering.
See also: - isSorted, - isOrdered    (FCUnorderedCollection)

isSorted
- (BOOL)isSorted;

FCCollection instances return NO to indicate that objects in their collections are not sorted. Sorted
collections keep all their objects constantly in a programmer-specified sorted order.

Some subclasses (e.g., FCSortedCollection) override this method to return YES to indicate they are
sorted.
See also: - isOrdered, - isSorted    (FCSortedCollection)

makeObjectsPerform:
- makeObjectsPerform:(SEL)aSelector;

Sends the aSelector message to each object in the collection. Ordered collections will send the
message to the objects in reverse order, unordered collections will send the message in random
order. The aSelector method must be one that takes no arguments. It should not modify the
collection.
See also: - makeObjectsPerform:with:

makeObjectsPerform:with:
- makeObjectsPerform:(SEL)aSelector with:anObject;

Sends the aSelector message to each object in the collection. Ordered collections will send the
message to the objects in reverse order, unordered collections will send the message in random
order. The message is sent each time with anObject as an argument, so the aSelector method
must be one that takes a single argument of type id .    The aSelector method should not modify
the collection.
See also: - makeObjectsPerform:

nextObject:
- nextObject:(FCLoopState *)loopState;

Subclasses implement this method to return the next object in the collection according to the
opaque loop counter loopState . loopState is incremented. No modification of the collection should
be done while iterating through it. This method will return nil if there are no more elements in the

collection.

Both ordered and unordered subclasses of FCCollection can be stepped through sequentially with
this method; with unordered subclasses this is the only way to step through all the objects.

FCCollection's implementation of this method prints an error message and aborts. Existing
subclasses override this to provide the correct behavior.

Note that for simple loops, it's much more efficient to use FOR_EACH() or one of its variations to
loop through all objects, as they don't do a method call for - nextObject: every time through the
loop.
See also: - startLoop:, - peekNextObject:, FOR_EACH(), FOR_EACH_EXCEPT_FIRST(),
FOR_EACH_SELECTED(), FOR_EACH_BACKWARDS()    (FCOrderedCollection)

occurrencesOf:
- (unsigned)occurrencesOf:anObject;

Returns the number of times anObject appears in the collection. For FCCollection this will always
be 0 or 1, but for subclasses which respond NO to uniqueElements this method can return any
non-negative integer.
See also: - contains, - containsEqualObject:

peekNextObject:
- peekNextObject:(FCLoopState *)loopState;

Subclasses implement this method to return the next object in the collection according to the

opaque loop counter loopState . loopState is unmodified. This method will return nil if there are no
more elements in the collection.

FCCollection's implementation of this method prints an error message and aborts. Existing
subclasses override this to provide the correct behavior.
See also: - startLoop:, - nextObject:, FOR_EACH(), FOR_EACH_EXCEPT_FIRST(),
FOR_EACH_SELECTED()

read:
- read:(NXTypedStream *)stream;

Reads the FCCollection from the typed stream stream . Used by the Objective-C archiving
functions. You should not call this method directly.
See also: - setArchiveByReference:, - archiveByReference, - write:

rejectObjects:
- rejectObjects:(SEL)booleanSelector;

Returns a new collection object which contains all the objects from the current collection except
those which respond YES to the message booleanSelector .

The booleanSelector method should take no arguments and return YES or NO. Objects which don't
respond to booleanSelector are included in the new collection. It is the programmer's responsibility
to free the new collection.
See also: - selectObjects:, - collectObjects:, - collectObjects:as:

removeAllOccurrencesOfObject:
- removeAllOccurrencesOfObject:anObject;

Removes all occurrences of anObject from this collection.    This is equivalent to calling
removeObject: in subclasses which have unique elements.
See also: - removeObject:, - uniqueElements

removeObject:
- removeObject:anObject;

Subclasses should implement this method to remove anObject from the collection and return it.
Subclasses with non-unique elements will only remove a single reference if multiples exist.    If
anObject isn't in the collection, this method will return nil .

FCCollection's implementation of this method prints an error message and aborts. Existing
subclasses override this to provide the correct behavior.
See also: - addObject:, - removeObjectsFrom:, - removeAllOccurrencesOfObject:

removeObjectsFrom:
- removeObjectsFrom:otherCollection;

Removes from this collection all the objects in otherCollection that appear in this collection.
otherCollection is not affected.    The objects are removed with the - removeObject: method.
See also: - removeObject:, - removeObjectsNotContainedIn:, - empty

removeObjectsNotContainedIn:
- removeObjectsNotContainedIn:otherCollection;

Removes all the objects in this collection, except those which also appear in otherCollection .   
otherCollection is not affected.
See also: - removeObject:, - removeObjectsFrom:, - empty

replaceObject:with:
- replaceObject:anObject with:newObject;

Removes the first occurrence of anObject from the collection and adds newObject, returning
anObject .    However, if newObject is nil or anObject isn't in the collection, nothing is done and nil
is returned. If a subclass of FCCollection requires unique elements and newObject is already in the
collection, the replace will fail and nil will be returned.

Ordered, unsorted subclasses will put newObject in the spot where anObject was; other subclasses
don't define where newObject will appear.
See also: - removeObject:, - addObject:

selectObjects:
- selectObjects:(SEL)booleanSelector;

Returns a new collection object which contains only those objects from the current collection that
respond YES to the message booleanSelector .

The booleanSelector method should take no arguments and return YES or NO. Objects which don't
respond to booleanSelector are left out of the new collection. It is the programmer's responsibility
to free the new collection.
See also: - rejectObjects:, - collectObjects:, - collectObjects:as:

setArchiveByReference:
- setArchiveByReference:(BOOL)flag;

Determines whether the objects in the collection will be archived using
NXWriteObjectByReference (YES) or NXWriteObject (NO). The default is NXWriteObject .
See also: - archiveByReference, NXWriteObjectByReference, NXWriteObject    (Common
Functions)

setContentClass:
- setContentClass:theClass;

Sets the class of the objects that will be contained in the collection. This does not change the class
of existing objects in the collection, it merely tells the collection to enforce that only objects that
are a kind of theClass may be added to the collection.

If theClass is nil no class checking is done, and the collection may be heterogeneous.    This is the
default behavior for collections not initialized with - initForClass: .
See also: - init, - initForClass:, - setContentClass:

startLoop:
- startLoop:(FCLoopState *)loopState;

Subclasses implement this method to initialize loopState , an FCLoopState structure that's required
when iterating through the collection. Iterating through all elements of a collection involves
initializing an iteration state, conceptually private to FCCollection, and then progressing until all
entries have been visited.    An example of sending the doSomething message to all elements in a
collection follows:

unsigned int count = 0;
FCLoopState state;
id element;

[collection startLoop:&state];
while (element = [collection nextObject: &loopState])
 [element doSomething];
}

FCCollection's implementation of this method prints an error message and aborts. Existing
subclasses override this to provide the correct behavior.
See also: - nextObject:, - peekNextObject:, FOR_EACH(), FOR_EACH_EXCEPT_FIRST(),
FOR_EACH_SELECTED()

trueForAll:
- (BOOL)trueForAll:(SEL)booleanSelector;

Returns YES if all of the elements in this collection return YES when sent the method
booleanSelector . The booleanSelector method should take no arguments and return YES or NO.
Also returns NO if any of the elements don't respond to booleanSelector .

See also: - trueForAny:

trueForAny:
- (BOOL)trueForAny:(SEL)booleanSelector;

Returns YES if any of the elements in this collection return YES when sent the method
booleanSelector . The booleanSelector method should take no arguments and return YES or NO.
This method does not require that all the elements respond to booleanSelector .
See also: - trueForAll:

uniqueElements
- (BOOL)uniqueElements;

FCCollection instances return NO to indicate that a single object may appear multiple times in their
collections.

Some subclasses (e.g., sets) override this method to return YES to indicate objects can only appear
once in their collections.
See also: - uniqueElements    (FCSet, FCOrderedSet, FCSortedSet)

write:
- write:(NXTypedStream *)stream;

Writes the FCCollection and all the objects it contains to the typed stream stream . The objects are

written using either NXWriteObject or NXWriteObjectByReference , depending on whether the
collection is set to archiveByReference .

This method is only used by the Objective-C archiving functions. You should not call this method
directly.
See also: - setArchiveByReference:, - archiveByReference, - read:

Macros

FOR_EACH()
FOR_EACH(item , collection , block)

Loops forward through collection one object at a time, placing each object in item , then executing
block . Here is an example of increasing each employee's salary by 10%:

 FOR_EACH(person, employees, {
 [person setSalary:[[person salary] * 1.10]];
})

FOR_EACH() loops can be nested to arbitrary depth.    You should not modify the collection inside
this loop; if you add objects you may loop over the added objects as well and loop infinitely, and if
you delete objects you'll modify the meaning of the loop counter and end up skipping objects.    If
you wish to step through a collection and add or delete objects, you must use a subclass of
FCOrderedCollection and the FOR_EACH_BACKWARDS() macro.
See also: - startLoop:, - nextObject:, FOR_EACH_EXCEPT_FIRST(),
FOR_EACH_FIRST_REST(), FOR_EACH_SELECTED(), FOR_EACH_BACKWARDS()   
(FCOrderedCollection)

FOR_EACH_EXCEPT_FIRST()
FOR_EACH_EXCEPT_FIRST(item , collection , block)

Loops through all but the first object in collection , placing each object in item , then executing
block . In ordered collections this object will be [collection objectAt:0], on unordered collections the
first object is chosen randomly (making this macro a bad idea for unordered collections).

FOR_EACH_EXCEPT_FIRST() loops can be nested to arbitrary depth. You should not modify the
collection inside this loop (see the discussion in FOR_EACH() , above).
See also: - startLoop:, - nextObject:, FOR_EACH(), FOR_EACH_FIRST_REST(),
FOR_EACH_SELECTED(), FOR_EACH_BACKWARDS()    (FCOrderedCollection)

FOR_EACH_FIRST_REST()
FOR_EACH_FIRST_REST(item , collection , firstBlock , restBlock)

First executes firstBlock with item set to the first object in collection .    In ordered collections the
object will be [collection objectAt:0], on unordered collections the first object is chosen randomly.

FOR_EACH_FIRST_REST() then loops through all but the first object in collection , placing each
object in item , then executing block . FOR_EACH_FIRST_REST() loops can be nested to arbitrary
depth. You should not modify the collection inside this loop (see the discussion in FOR_EACH() ,
above).

Here is an example of finding the minimum salary of all employees:
 FOR_EACH_FIRST_REST(person, employees, {
 smallestSalary = [person salary];
},{

 smallestSalary = MIN(smallestSalary, [person salary]);
})

See also: - startLoop:, - nextObject:, FOR_EACH(), FOR_EACH_EXCEPT_FIRST(),
FOR_EACH_SELECTED(), FOR_EACH_BACKWARDS()    (FCOrderedCollection)

FOR_EACH_SELECTED()
FOR_EACH_SELECTED(item , collection , condition , block)

Loops through collection one object at a time, placing each object in item . For every iteration, if
condition is TRUE , executes block . Here is an example of increasing by 10% the salary of all
employees making less than $10,000:

 FOR_EACH_SELECTED(person, employees, ([person salary] < 10000), {
 [person setSalary:[[person salary] * 1.10]];
})

FOR_EACH_SELECTED() loops can be nested to arbitrary depth. You should not modify the
collection inside this loop (see the discussion in FOR_EACH() , above).
See also: - startLoop:, - nextObject:, FOR_EACH(), FOR_EACH_EXCEPT_FIRST(),
FOR_EACH_FIRST_REST(), FOR_EACH_BACKWARDS()    (FCOrderedCollection)

