
Reproduced with permission from NeXT Computer, Inc., USA, NeXT on Campus, Summer 1990. ã 1990 NeXT Computer, Inc., USA

Tales of zilla: Adventures in distributed computation
by Richard E. Crandall
Director, Scientific Computation Group
NeXT, Inc.

I have in the last year gained a powerful new colleague: an intelligent beast equipped with a
supercomputer brain, but also possessed of a certain flair for etiquette. This creature I named "zilla",
an appellation not entirely specious. I understand that in modern Japanese folklore, Godzilla was not
fundamentally aggressive, but only attacked when the situation called for intervention. The new
creature is not of flesh and blood. It is a collection of NeXT Computers participating in distributed
computation.

The first implementation of zilla used most of the office computers in NeXT's Software Division. The
initial research success of zilla was to resolve special cases of Fermat's "Last Theorem," one of the very
oldest, but still unsolved, conjectures about numbers. I shall describe this experiment below, but first let
me turn to a description of the beast.

The zilla network is computationally powerful. We denote by one "zilla unit", or z.u., the equivalent of
50 NeXT Computers. Now one z.u. has 250 MIPS capability, which puts it roughly in the supercomputer
region (for problems not requiring Cray-type high-speed throughput). There is a total of 400 megabytes
of physical memory, and upwards from 1 gigabyte of virtual memory, the latter depending on how the
distributed programs allocate memory.

The idea is to have one master server machine with a running slave thread that scans through a list of
"permitted machines." The slave thread uses the Unix rcmd(3) library to remotely execute processes on
slave machines. In the initial experiments, each machine dealt with a separate case of Fermat's "Last
Theorem," feeding the results to destination files of choice. Usually these results would accumulate in a
specific NFS (network file system) directory, but distributed storage is also possible.

Now we come to the friendly character of zilla. Every NeXT Computer screen dims automatically if one
leaves one's machine dormant for a (settable) period of typically ten minutes. The etiquette strategy is
devilishly simple: if the screen has dimmed, for example at the end of a working day, zilla intervenes and
performs calculations; whereas if the screen is brightened via keyboard or mouse events, zilla backs off.
In this way, calculations were carried out during our initial experiments of 1989, with office personnel
noticing very little, if any, zilla intervention. The initial calculations, which I shall next describe, would
require about 500 CPU hours on a Cray-YMP. Depending on industrial rates for such time, the
conventional cost of such a calculation would be on the order of 105 dollars. Given that zilla provided
no untoward interference to office workers during the project, our cost was virtually zero.

Now to the numerical research. Pierre Fermat conjectured in 1637 that for n>2 the equation

xn + yn = zn

has no solutions in positive integers x, y, z. One learns in elementary geometry simple identities such
as the Pythagorean relation 32 + 42 = 52, but Fermat's "Last Theorem" refers to exponents greater than
2. There is romance connected with this problem for two reasons. The first is that Fermat wrote a
marginal scrawl, in his Bachet edition of the works of Diophantus, that he had a proof which the margin
was too small to contain. We shall probably never know whether he actually had a proof. The second
reason is simple: to this day, nobody has a proof, and there is no known counterexample. The "Last
Theorem" persists as sublimely difficult. I am sometimes asked what the use is for such a theorem.
For one thing, attempts to conquer it have opened whole new fields of inquiry. For another, there is no
telling where any intellectual idea may lead.

We investigated various Fermat exponents n on zilla. Each machine was given an n and had to compute
the reciprocal of a polynomial of degree (n±1)/2. So each machine had to compute an expression

1/(ao + a1 x + a2 x2 + ...)

where the denominator could have as many as half a million terms.

The allocation of a polynomial p (the denominator in the previous polynomial fraction) invokes about 4
megabytes of virtual memory. All of this for one polynomial, but each case of exponent n involved tha
allocation of a handful of such polynomials. Each machine would set up the polynomials, use Newton's
iteration and Fast Fourier Transform (FFT) multiplication to find the polynomial reciprocal, and report
either "exponent n is conquered" or "a little more proving must be done." After all primes n between 3
and 1,000,000 were checked, we had established that many n were resolved (i.e., xn + yn = zn is
impossible), with some fraction of the n values awaiting one final check which was itself "zillafied." The
resulting data, which is being prepared for publication by theoreticians on the project, so far supports the
"Last Theorem."

According to zilla, Fermat's "Last Theorem" is true for all exponents less than one million. Previous
published tables have only reached 150,000. As an exercise of virtual memory capability, some
random, very high exponents were analyzed also. For example, zilla claims that

x2000291 + y2000291 = z2000291

has no positive x, y, z solutions. The 1 z.u. zilla network can provide about fifty such results per hour.

To my mind, the superb virtual memory performance of zilla is the most important aspect for research,
followed closely by arithmetical speed. It is not difficult to simply append via TCP/IP protocol a machine
such as a Cray (provided one has an account, and time, etc.) to zilla's permission list. It is a tribute to
the beast that a single such appendage typically increases the computational power only by a small
factor.

What is more, the zilla concept is suitable for other distributed processing such as audio paging systems
and parallel ray-tracing. I am working on turnkey zilla application so that this wonderful adventure may

continue in a more practical vein.

