
 SLAC-PUB-5520
April 1991

(E)

* Work supported by Department of Energy, contract DE-AC03-76SF00515.

ESTABLISHED
1962

Physics Analysis Tools*

Paul F. Kunz

Stanford Linear Accelerator Center

Stanford University, Stanford CA 94309

pology hypotheses. The output of this stage is in the form

of histograms and n-tuples.

Finally the display and fit stage displays statistical data

accumulated in the preceding stages in the form of histo-

grams, scatter plots, etc. Fitting the data to known functions

is also done in this stage.

The remainder of this paper will consider what anal-

ysis tools are available today, and what one might expect in

the future. In each stage, the integration of the tools with

other stages and the portability of the tool will be analyzed.

Particle
Generation

Particle
Generation

Particle
Generation

Detector
Simulation

Particle
Generation

Track
Reconstruction

Particle
Generation

Event
Reconstruction

Particle
Generation

Display
and Fit

Particle
Generation

Detector

“n-tuples”

“DST”

Raw Data

Generation

Reconstruction

Analysis

Figure 1 . The analysis chain.

1.0 Introduction

There are many tools used in analysis in High Energy

Physics (HEP). They range from low level tools such as a

programming language to high level such as a detector sim-

ulation package. This paper will discuss some aspects of

these tools that are directly associated with the process of

analyzing HEP data.

Physics analysis tools cover the whole range from the

simulation of the interactions of particles to the display and

fitting of statistical data. For purposes of this paper, the

stages of analysis is broken down to five main stages as

shown in Figure 1 . The categories are also classified as ar-

eas of generation, reconstruction, and analysis. Different

detector groups use different terms for these stages thus it is

useful to define what is meant by them in this paper.

The particle generation stage is a simulation of the ini-

tial interaction, the production of particles, and the decay of

the short lived particles. Its output is the 4-vectors of the

long lived particles. An example of such an analysis tool is

the Lund Monte Carlo [1] .

The detector simulation stage simulates the behavior

of an event in a detector. It propagates particles through the

detector, generates the space points, and writes its output in

a form expected from the real detector.

The track reconstruction stage does pattern recogni-

tion on the measured or simulated space points, calorimeter

information, etc., and reconstructs track segments of the

original event. Some form of particle identification is usu-

ally also done and summarized as a list of probabilities that

a track is a certain kind of particle.

The event reconstruction stage takes the reconstructed

tracks, along with particle identification information and

assigns masses to produce 4-vectors. It also takes combi-

nations of these 4-vectors to form vertices and the event to-

 Invited talk presented at Conference on Computing in High Energy Physics, Tsukuba, Japan, 11-15 March 1991.

Physics Analysis Tools

 2 SLAC-PUB-5520

2.0 Current Tools

 Figure 2 gives a summary of some commonly used

tools and the areas they cover. They are grouped by those

originating at and/or distributed by three laboratories.

From CERN, there are tools at the top and bottom of

the analysis chain. At the top is the LUND Monte Carlo and

similar programs [2] which cover the particle generation,

while the GEANT package [3] simulates the detector re-

sponse. At the bottom of the analysis chain is the PAW pro-

gram. The black arrow indicates that PAW in its native form

is limited to display and fitting, while the gray arrow indi-

cates that by using user written code one can extend PAW’s

capabilities upward towards event reconstruction. Note

there is a large gap from where GEANT leaves off and PAW

begins.

DESY also has some tools at the bottom of the analysis

chain. The GEP package [4] introduced the concept of n-tu-

ples to HEP in the late 1970s. The KAL package [5] , al-

though not widely used, is included because it is the only

example of an event reconstruction which is in the form of

an analysis tool.

Particle
Generation

Particle
Generation

Particle
Generation

Detector
Simulation

Particle
Generation

Track
Reconstruction

Particle
Generation

Event
Reconstruction

Particle
Generation

Display
and Fit

Figure 2 . Commonly used analysis tools.

LUND,
etc.

GEANT

PAW GEP IDA

KAL

CERN DESY SLAC

From SLAC, the IDA package [6] also covers the bot-

tom part of the analysis chain. Because its input format al-

lows structured data, its reach is higher than PAW’s or

GEP’s. It too has the capability of user written extension

which extends it reach upwards as is shown in gray. Shown

is the original IDA, the Mark III version. The SLD version is

used as a shell in which the whole analysis chain can be

placed.

The remaining part of this section discusses some of

these tools in more detail.

2.1 LUND, etc.

It may seem strange to consider a program like the

LUND Monte Carlo to be a physics analysis tool. But it is an

essential tool with many uses. First of all, in designing a de-

tector, it provides a source of simulated events to study the

response of the detector. Then after the detector is built and

running, it provides a source of simulated events with

known properties to compare with experimental results. In

the rest of this paper, where ever we refer to LUND, we also

mean most of the other event simulation packages such as

ISAJET, etc.

The LUND Monte Carlo and similar programs are not a

tool in the sense of a fully packaged interactive program.

Rather, it is a package, callable from a user supplied main

program. To customize what one wants to simulate, one has

two choices. The first is to set some parameters via FOR-

TRAN routines that have been supplied as part of the pack-

age. The set of parameters that can be changed this way is

rather limited. The other choice is to rewrite some of the

physics routines. This is rather painful and difficult because

one has to understand the details of how the program and its

internal data are organized.

The input to LUND is a random number seed. Since

support for random numbers is not part of the FORTRAN

language, the LUND package supplies its own random

function in which the user can supply the random functions

supported at his site. The output of LUND is in one of its

FORTRAN COMMON blocks. It’s up to the user to copy this

data into his preferred means of feeding the data to the next

tool in the chain.

The LUND package is written in FORTRAN 77 and

doesn’t need support from other packages apart from a ran-

dom number function. It has thus attained a very high de-

gree of portability across many platforms.

One integrates the LUND packages with the rest of the

analysis chain in one of two ways. First one can incorporate

it as part of a larger program, as discussed above. The other

 SLAC-PUB-5520 3

Physics Analysis Tools

is to provide a main program to drive it and a set of routines

to copy its output to a disk or tape file.

Thus we see that although LUND is an analysis tool in

the sense that it is a very important part of the analysis

chain, it is not a tool in the sense of a program ready to run

with an interactive dialogue with its user.

2.2 GEANT

GEANT is a analysis tool for both detector design and

for measuring detector response. However, from the user’s

point of view, it is much more a toolkit than a package. Like

LUND, the user supplies the main program driver and the

set of output routines. To define the detector geometry, the

user supplies calls to a set of routines from the package

from his driver program. Essentially any type of volume

that is needed to describe a detector can be defined. Once so

defined, the user makes a call to generate an event (which

he must supply or use LUND), then the GEANT package can

propagate the particles in the detector, taking into account

the physics processes that will alter the path. However, the

user must also supply routines to take the spatial informa-

tion thus calculated and save it in his desired format.

Designing a detector this way is rather tedious and it

usually takes a long time to implement. However, one can

simulate detector response to a very high level of detail.

The tracking can also consume a large amount of CPU time.

Presumably, the generality of the code has forced some

trade-offs.

There is no standard detector response output in the

GEANT package. The user supplies his own code to record

it. However, storing the detector definition to a file is sup-

ported in ZEBRA format. Thus, the user integrates GEANT

with the rest of his analysis chain by writing custom code.

GEANT itself is written in portable FORTRAN 77 lan-

guage with few exceptions. However, its portability is lim-

ited to those platforms to which its underlying support

packages have already been ported. These support pack-

ages include CERNLIB, ZEBRA, HBOOK4, and GKS. For-

tunately, these packages have been ported to most of the

platforms considered for use in HEP.

2.3 PAW: Physics Analysis Workstation

Although the name of this program contains the word

physics, the PAW program contains no physics. However,

PAW is an important tool to visualize physics in the form of

histograms and scatter plots as well as to fit these distri-

butions to known functions.

The input to PAW is limited to HBOOK4 files. These in-

clude 1D and 2D binned histograms and n-tuples. Thus the

common use of PAW is for some external program to do

track and/or event reconstruction, with imbedded calls to

the HBOOK4 package to generate data to be displayed by

PAW. The use of n-tuples to transfer information from the

physics analysis packages to PAW is an important aspect of

the success of PAW, because the actual histograms can be

interactively generated and displayed from data in the n-tu-

ples. However, it is all too frequent that the n-tuples do not

contain enough data, so the user must go back to his ex-

ternal physics analysis program to generate another n-tuple

set. PAW’s inability to accepted an input file with structured

event information is thus a serious limitation.

PAW has achieved a high degree of portability to other

platforms where its underlying packages have already been

ported. This is essentially the same set of CERNLIB pack-

ages as GEANT. On most platforms, PAW is command line

driven and is considered by most users as awkward. The

command lines are parsed with the KUIP package which

probably contributes to this problem as well as causing

poor consistency between the commands. Development is

underway to add an OSF/Motif graphical user interface

(GUI) to PAW [7] . In spite of its lack of structured input data

and its difficulty of use, PAW is used regularly by perhaps a

thousand people.

2.4 KAL: Kinematics Analysis Language

The KAL package was developed for use by the AR-

GUS collaboration at DESY. To use KAL, one writes a com-

mand file in its language and runs the program to produce

histograms and n-tuples.

 An example command file is shown in Figure 3 . The

language is like an extension to FORTRAN. However, certain

constructs have a lot more power behind them. For example,

“SELECT K+PI-” means to take all pairs of tracks iden-

DATA CHMAX 16.0

CUT CHI2VX 64

CUT COSTHETA 0.92

HYPOTH E+ MU+ PI+ 3 K+ PR 1

IDENT PI+ PI-

IDENT K+ K-

SELECT K+ PI-

 IF 1.3 <= M < 2.5 THEN

 FITV0 CHI2 3.

 IF ACCEPT THEN

 SAVE D0=
 ENDIF

 ENDIF

ENDSEL

Figure 3. KAL command script example.

Physics Analysis Tools

 4 SLAC-PUB-5520

tified as K+ and π- and calculate vertex parameters. This not

only invokes the physics calculation, but also does all the

looping and conditional constructs that would be necessary

to achieve the same effect in FORTRAN. Also the “AC-

CEPT” construct not only saves the results for reuse in fur-

ther vertices, but also insures that the input tracks used in

this vertex will not be used for another vertex.

KAL is clearly a very powerful physics analysis tool

and one could ask why we haven’t seen more examples of

such tools. KAL itself has not been used outside of the AR-

GUS collaboration for at least two important reasons. The

first is that its input is tied to the ARGUS mini-DST format

and the second is that it is also hard wired to the ARGUS

particle identification capabilities. This inhibits the reuse of

KAL in other environments. That is, to incorporate KAL

into the analysis chain of another collaboration, major por-

tions of it would have to be rewritten. This has been done

for the ALEPH collaboration in the form of the ALPHA

package [8] where KAL is a package of FORTRAN callable

routines.

The output of KAL is in the form of n-tuples for use by

GEP. Recently output in the form of HBOOK4 files has been

added.

3.0 Future Tools

Nobody can predict the future with any certainty, es-

pecially in the area of computing technology since it is

moving so rapidly in both hardware and software. The key

question in the author’s mind is whether the future will fol-

low an evolutionary or revolutionary approach. The evolu-

tionary approach would mean the gradual migration to

FORTRAN ’90 for its significant new features that should

ease the task of writing physics analysis codes as well as

writing analysis tools [9] . It will also see the addition of a

GUI to existing tools. Of course, improvements to perfor-

mance by using better algorithms and methods are also ex-

pected.

A revolutionary approach is starting to take shape

amongst a few pioneers in HEP. This approach is charac-

terized by a change of the programming language and the

use of the object oriented paradigm. Also, there are analysis

tools beginning to emerge that were designed from the start

with the GUI in mind.

3.1 The First Tool: Programming

Up to the present time, nearly all of the physics anal-

ysis tools have been based on the FORTRAN programming

language. It is commonly thought that HEP uses just FOR-

TRAN. However, HEP most frequently uses FORTRAN plus

some other package to make up for the limitations of FOR-

TRAN. Examples of such packages are numerous and have

been discussed in these proceedings and in previous con-

ferences. GEANT, for example, is written in FORTRAN plus

ZEBRA as are many track and event reconstruction pro-

grams for large collaborations. The reasons for these ad-

ditional packages are simple. First there is the need to move

data between memory of the running program and disk that

FORTRAN alone is very messy at doing. Another reason is

the need to handle data, such as tracks and vertices, as

structured entities which FORTRAN alone does not support.

The use of such packages has a number of drawbacks.

Amongst them are that one might lose access to data by

name, one may lose portability of the code if the package

hasn’t been ported yet, and one may limit the usability of

the symbolic debugger. Fortunately, none of the existing

packages suffers from all the drawbacks.

FORTRAN also needs help with controlling changes in

the source code that may be different for different plat-

forms. This is known as configuration control and it is not

supported in the language. Thus in HEP, where portability is

desired, one has to use some external system, such as

PATCHY [10] or EXPAND [11] .

The C programming language is much better than

FORTRAN for both data structures and configuration con-

trol. Shown in Figure 4 are some segments of C code that

one might use in dealing with a track entity. Note the ex-

pressive power of the language in that access to variables is

by full name. Also, the C language deals directly with the

dynamic memory allocation of such structures since the

memory allocation functions are part of its standard library.

Finally, there’s nothing lost in using a symbolic debugger

because structures are part of the language, thus known to

the existing debugger.

Clearly, C is much better at handling data structures

then FORTRAN plus some additional package. Although

struct track {

 float px;

 float py;

 float pz;

};

… … …

struct track **mctrack;

… … …

px = mctrack[it]->px;

Figure 4. Segments of C code.

 SLAC-PUB-5520 5

Physics Analysis Tools

many large collaborations have discussed abandoning FOR-

TRAN, none has done so (yet). One reason they stayed with

FORTRAN is reluctance to learn a new language, which is

ironic since in each case they had to learn a big system to

complement FORTRAN.

C alone, however, doesn’t answer the problem of input

and output of the data structures. A prototype that does

such input and output for C structures is the Cheetah sys-

tem [12] . It also provides a user friendly set of C functions

to manage these structures. In addition, Cheetah writes a

full dictionary of the data structures at the head of the file.

This dictionary is useful for analysis tools that will read the

files. The dictionary contains the names of the structure

types, the names of the family of pointers to them, the

name, type, size of the members of the structures, and even

comment strings on each member. The Cheetah system is

also network wise in that it can move data to memory either

from a local file or over the network from a remote server.

For all the power and flexibility of Cheetah, the pack-

age itself is only about 2,500 lines of C code (about 1/10 the

size of ZEBRA). Cheetah makes use of only the C standard

library and has been ported to such diverse platforms as

UNIX, VMS, and VM without a single line of code change. It

is a relatively easy system to learn and was written by a

novice C programmer working part time over the course of

a year.

Cheetah is just one example of the additional power

and flexibility that can be gained by taking a revolutionary

approach and changing the base programming language.

The C language offers other features as well, such as con-

figuration control. As HEP moves towards greater use of

UNIX, one will find that the C language will become in-

creasingly important for dealing with the operating, win-

dowing and networking systems. It has also become the

language of choice of many physicists involved with data

acquisition systems. Thus, one big question for the future,

in the author’s opinion, is will FORTRAN ’90 be good

enough to stop the migration to C?

Many researchers outside of HEP have found the object

oriented programming (OOP) approach an even better par-

adigm for writing simulation and analysis tools. It is a real

revolution in constructing programs. The OOP paradigm is

not tied to a specific language. The languages of Objective-

C, C++, SmallTalk and Eiffel have all been used in various

analyses outside of HEP.

The advantages of OOP are many and can not be fully

explained in the limited space of this paper [13] . OOP tech-

niques organize both program and data into blocks. OOP in-

herently does the memory management that needs to be

done explicitly with procedural languages. Customizing is

done by inheritance techniques whose power should not be

underestimated. The polymorphism, which can be used in

both the function and data naming space, is also of great

value.

In general, the OOP paradigm allows for code that is

easier to maintain, expand and modify; all goals of various

software engineering techniques and tools. OOP code is

also much easier to reuse in different applications. Given

the difficulty HEP has had in integration of analysis tools, as

described in section 2.0 , a revolutionary approach such as

OOP may be just what HEP needs.

In the following sections, prototypes of potential rev-

olutionary new physics analysis tools will be described.

 Figure 5 gives an overview of these tools. These tools cover

the whole range from particle generation to display and fit.

The technologies used in each of these tools are OOP

techniques and languages. The following sections will de-

scribe some highlights of each of these with the exception

of the CABS package which is presented elsewhere in these

proceedings [14] .

3.2 Lund++

Lund++ is an acronym invented by this author for early

investigations into using an OOP language to do particle

generation simulations [15] [16] . The original prototype was

Particle
Generation

Particle
Generation

Particle
Generation

Detector
Simulation

Particle
Generation

Track
Reconstruction

Particle
Generation

Event
Reconstruction

Particle
Generation

Display
and Fit

Figure 5 . New tools of the early ‘90s.

Gismo

CABS

Reason

Lund++

Physics Analysis Tools

 6 SLAC-PUB-5520

written by Richard Blankenbecler at SLAC using the Ob-

jective-C language. It was later rewritten and generalized

by Leif Lonnblad at SLAC with the C++ language. These

prototypes have shown that the OOP approach is extremely

powerful for this kind of simulation.

The design of the program revolves around a particle

data table (PDT) that is composed of a set of Storage ob-

jects. The master Storage object contains a list of particles

used in the simulation. For each, the properties such as

mass, charge, lifetime, etc. are stored. A key part of the de-

sign is that each particle has a pointer to another Storage

object which contains a list of branching ratios. In this list,

one not only has the branching fractions, but also two

pointers; one to a function to calculate the decay, and an-

other to a third type of Storage object. The latter Storage

object has for each particle in the decay, an index into the

top level Storage object.

The PDT is thus a completely general way of keeping

all the needed information for the particle generation. For

particles with measured properties, one should be able to

upload them from the master database maintained by the

Particle Data Group [17] . The PDT can also be used for

strings, gluons, quark jets, etc. Thus, in principal, further

development could lead to a replacement of the current

JETSET, ISAJET, etc. This work was done on a NeXT com-

puter, but it is entirely written in portable C++ with no

graphics or other NeXT system dependencies.

Future work on Lund++ is being planned. It will op-

tionally use the Cheetah system to put its result into a file,

or it will be integrated into a detector simulation program

such as the one described in the next section. At the time of

this writing, Lund++ is still an investigation into OOP tech-

niques. It is not an official project of either SLAC or Uni-

versity of Lund.

3.3 Gismo

Gismo is a detector simulation and track reconstruc-

tion package described in detail elsewhere in these pro-

ceedings [18] . A screen dump of it is shown in Figure 6 .

Like Lund++, it is an investigation into applying OOP tech-

Figure 6. Screen dump of Gismo showing PDT for test beam.

 SLAC-PUB-5520 7

Physics Analysis Tools

nology to an HEP simulation problem. The results so far

look very encouraging and it is far more advanced towards

being ready to use then Lund++. It has been developed on

NeXT computer, but its computational kernel has no de-

pendencies on the NeXT environment. Its graphics display

is PostScript called from Objective-C. Only its user input

panels depend on the NextStep environment.

Gismo takes as particle input either its internal test

beam object, a Cheetah formatted file, or by incorporating

the Lund++ set of objects. The output of Gismo can be the

original particles generated, the swum tracks, the resultant

track segments, and/or the reconstructed tracks. The output

subsystem uses Cheetah to write the data to a file for further

analysis.

Gismo will also use the same PDT set of objects as

Lund++ in order to handle the decay of longer lived par-

ticles. This not only demonstrates the reusability of objects,

but also a seamless integration particle generation and de-

cay in the detector.

Gismo is more of an object oriented environment for

detector design, simulation, and reconstruction then pack-

age. It consists of an extendable object oriented toolkit to

create a detector design. If the right kind of volume for a

new detector doesn’t exist, the user can either use an ex-

isting kind as a prototype for his own code, or subclass an

existing design. The use of OOP makes this much easier

than the procedural language based environment of exist-

ing packages such as GEANT.

3.4 Reason

The Reason project was started in the summer of 1989

to investigate applying visual programming techniques to

physics analysis [19] . The work was done on a NeXT com-

puter, thus the investigators needed to learn OOP technol-

ogy. From this learning sprang the application of OOP to

other areas described in this paper. A screen dump of Rea-

son is show in Figure 7 .

An important decision made early on in the Reason

project was that its input data format should allow struc-

tured data such as a mini-DST used by many collaborations.

From this decision, the Cheetah system was born. Unlike

the PAW program, n-tuple input to Reason is a subset of

Figure 7. Screen dump with view of Reason.

Physics Analysis Tools

 8 SLAC-PUB-5520

what it can handle. Using Cheetah format as input has al-

lowed Reason to extend its usability beyond simple display

and fitting.

Reason uses OOP not only for its GUI but also for its

display and its internal computation kernel. Adding event

reconstruction features was thus relatively easy within this

OOP framework. For its track and vertex reconstruction, for

example, Reason uses the same set of PDT objects as

Lund++ and Gismo, demonstrating again the reusability of

objects. The output of calculations done with Reason is in

the form of Cheetah files or n-tuples.

Because the NextStep environment under which Rea-

son was developed makes the GUI programming so quick

and easy, the developers of Reason have concentrated their

time in exploring new ways of visualizing the data. The in-

teractive re-binning feature, where a slider is connected to

the number of bins used to display a histogram, is but one

of many new features found in Reason. It should be noted

that by interactive in the Reason context, one means that

the histogram is constantly re-binned as the slider is

dragged with the mouse. This is a new level of interactive

computing not seen anywhere else before.

Although usable today to do physics analysis, Reason

is still considered a prototype. Work needs to be done in

three areas: do some of the obvious display options such as

changing the scales from linear to logarithmic, go beyond

the obvious such as the interactive re-binning, and to in-

corporate more physics capability to demonstrate real anal-

ysis. A lot of this work will be done in the context of a

possible B-Factory at SLAC [20] .

3.5 Minuit

MINUIT (spelled with all capital letters) is a well

known multiparameter minimization program used in HEP

for many years [21] . Its algorithms are well known, but its

user interface is not known for ease of use. Minuit (spelled

with only initial capital letter) is a NextStep application that

uses the same MINUIT program for its computational ker-

nel, but puts a GUI layer for user input and control. A

screen dump of Minuit is shown in Figure 8 . This appli-

Figure 8. Screen dump with view of Minuit.

 SLAC-PUB-5520 9

Physics Analysis Tools

cation also uses a package of FORTRAN functions, com-

monly used for HEP fitting, called BWGNEW [22] .

Via Minuit’s GUI, the user first selects or writes a

function in the expression panel. He then has control over

the initial parameters via a scroll-able parameter panel.

Each parameter can in turn be connected to a slider to

change its value. While the slider is being dragged, the

current value of the function is displayed on top of the his-

togram to be fit. Thus, all guess work is taken out of set-

ting up the initial conditions.

 Various types of fits are available including chi-

squared or likelihood, binned, non-binned, or integral,

etc., are all clearly displayed on a panel of selection but-

tons. Options that are incompatible are interactively dis-

abled. While a fit is in progress, the values of the function

calculated by MINUIT are updated continuously, thus if

the fit is not converging, the user can stop it. After the fit is

done, the range of the slider is set to ±1σ so that the user

can drag the slider to see the effect of changing the pa-

rameters by this range.

The Minuit application uses OOP only for its GUI; the

internal calculations are all done in FORTRAN that had

been developed previously. Nevertheless, the OOP tech-

nology has allowed a truly new user interface to existing

code. A new level of interaction with the same code has

been achieved.

3.6 Frequently Asked Questions

The people involved in the approaches described in

the previous sections are obviously seeking a revolution

in the ways of doing physics analysis. There work raises

many questions which need some comments.

First of all, it would appear that these people are pro-

posing to rewrite all the analysis programs starting from

scratch. However, this is not at all the case. They are using

the methods and the algorithms of the past and are simply

putting them in a new and more productive environment.

They will reuse any existing FORTRAN functions that are

sufficiently modular, which generally means functions

that do not depend on packages such as ZEBRA.

It would also appear that they are writing in language

that precludes them from running their analysis tools on a

mainframe. While this may be the case for the moment, it

is also true that much production processing today, is and

probably to a greater degree in the future, will be done on

farms of UNIX workstations where the OOP languages are

available.

It would also seem that by basing their GUI work on

the NeXT platform one precludes ever running these pro-

grams on another machine. Their answer is that for the mo-

ment, it is much too hard to port their GUI to a more

commonly available window system, such as X11, because

of the severe lack of high quality and easy to use develop-

ment tools. However, they fully expect that this situation

will change someday at which point the code could be port-

ed.

One is left for the immediate future, however, with the

need to buy a computer with the NextStep environment in

order to use these physics analysis tools. NextStep is, of

course, available on all computers from NeXT and expected

soon to be released on IBM’s RISC System/6000 worksta-

tions. In the case of NeXT at least, a machine to run any of

the tools mentioned in this paper costs as little as US$3,000.

Thus for less than the cost of a physicist’s secretary’s ma-

chine for word processing, one can buy a reasonable phys-

ics analysis workstation.

4.0 Conclusion

Of the standard physics analysis tools that are in use

today, there’s a big gap between GEANT and PAW. The only

tool that fills that gap is KAL but it is tied to the ARGUS col-

laboration. In some cases the lack of integration from one

tool to another is due to lack of input and output formats

that can be used. Although many tools are highly devel-

oped, their integration with each other remains poor. How-

ever, we can expect these tools to continue to evolve.

The use of the C language and object oriented lan-

guages may lead to a revolution in physics analysis tools.

Early prototypes cover all the needs from particle genera-

tion to display and fit. Development of these prototypes has

been amazingly quick. They have also shown what a dif-

ference the object oriented paradigm and a good GUI makes

in the development environment. Time will tell if these pro-

totypes represent the wave of the future or a passing fad.

5.0 References

[1] T. Sjostrand, Mats Bengtsson, Comput. Phys.

Commun. 43 (1987) 367.

[2] A. P. T. Palounek, S. Youssef, Monte Carlo

Programs And Other Utilities For High-Energy

Physics, LBL-29115-mc (May 1990.)

[3] R. Brun, R. Hagelberg, M. Hansroul, J. C. Lassalle,

GEANT: Simulation Program for Particle Physics

Experiments. User Guide and Reference Manual,

CERN-DD/78/2 Rev. (July 1978.)

Physics Analysis Tools

 10 SLAC-PUB-5520

[4] E. Bassler, Comput. Physics Commun. 45 (1987)

201.

[5] Hartwick Albrecht (DESY), private communication.

[6] T. H. Burnett, Comput. Physics Commun. 45

(1987) 195.

[7] R. Brun, Proc. Computing in High Energy Physics,

Tsukuba (March 1991.)

[8] H. Albrecht and F. Blucher, ALPHA User’s Guide,

ALEPH 89-151 (September 1989.)

[9] M. Metcalf,Proc. Computing in High Energy

Physics, Tsukuba (March 1991.)

[10] H. J. Klein, J. Zohl, PATCHY: Reference Manual

Revised For Version 4.09, CERN-23 (October 1983.)

[11] The CDF Collaboration, private communication.

[12] P. Kunz and G. Word, Proc. of the Workshop on

Data Structures for Particle Physics Experiments,

Erice (November 1990.)

[13] P. Kunz, Proc. Computing for High Luminosity and

High Intensity Facilities, Santa Fe (April 1990.)

[14] N. Katayama, Proc. Computing in High Energy

Physics, Tsukuba (March 1991.)

[15] W. B. Atwood, et al, Proc. Symposium on Detector

Research and Development for the Supercollider,

Fort Worth (October 1990.)

[16] L. Lonnblad, University of Lund, private

communication.

[17] Particle Data Group, Physics Letters B 239, April

1990.

[18] W. B. Atwood, T. H. Burnett et al, Proc.

Computing in High Energy Physics, Tsukuba

(March 1991.)

[19] W. B. Atwood et al, Proc. Computing for High

Luminosity and High Intensity Facilities, Santa Fe

(April 1990.)

[20] T. Glanzman, Proc. Computing in High Energy

Physics, Tsukuba (March 1991.)

[21] F. James, M. Roos, Compu. Physics Commun. 10

(1975) 343.

[22] W. Lockman, BWGNEW 2.0 User’s Guide, SCIPP

89/08 (March 1989.)

