
The C Preprocessor

Last revised July 1990
for GCC version 2

Richard M. Stallman

Copyright c© 1987, 1989 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

1

1.1 Transformations Made Globally

Most C preprocessor features are inactive unless you give specific commands to request
their use. (Preprocessor commands are lines starting with ‘#’; see Section 1.2 [Commands],
page 2). But there are three transformations that the preprocessor always makes on all the
input it receives, even in the absence of commands.

• All C comments are replaced with single spaces.

• Backslash-Newline sequences are deleted, no matter where. This feature allows you to
break long lines for cosmetic purposes without changing their meaning.

• Predefined macro names are replaced with their expansions (see Section 1.4.3 [Prede-
fined], page 8).

The first two transformations are done before nearly all other parsing and before pre-
processor commands are recognized. Thus, for example, you can split a line cosmetically
with Backslash-Newline anywhere (except when trigraphs are in use; see below).

/*

/ # /

*/ defi\

ne FO\

O 10\

20

is equivalent into ‘#define FOO 1020’. You can split even an escape sequence with
Backslash-Newline. For example, you can split "foo\bar" between the ‘\’ and the ‘b’ to
get

"foo\\

bar"

This behavior is unclean: in all other contexts, a Backslash can be inserted in a string con-
stant as an ordinary character by writing a double Backslash, and this creates an exception.
But the ANSI C standard requires it. (Strict ANSI C does not allow Newlines in string
constants, so they do not consider this a problem.)

But there are a few exceptions to all three transformations.

• C comments and predefined macro names are not recognized inside a ‘#include’ com-
mand in which the file name is delimited with ‘<’ and ‘>’.

• C comments and predefined macro names are never recognized within a character or
string constant. (Strictly speaking, this is the rule, not an exception, but it is worth
noting here anyway.)

• Backslash-Newline may not safely be used within an ANSI “trigraph”. Trigraphs are
converted before Backslash-Newline is deleted. If you write what looks like a trigraph
with a Backslash-Newline inside, the Backslash-Newline is deleted as usual, but it is
then too late to recognize the trigraph.

This exception is relevant only if you use the ‘-trigraphs’ option to enable trigraph
processing. See Section 1.9 [Invocation], page 25.

2 The C Preprocessor

1.2 Preprocessor Commands

Most preprocessor features are active only if you use preprocessor commands to request
their use.

Preprocessor commands are lines in your program that start with ‘#’. The ‘#’ is followed
by an identifier that is the command name. For example, ‘#define’ is the command that
defines a macro. Whitespace is also allowed before and after the ‘#’.

The set of valid command names is fixed. Programs cannot define new preprocessor
commands.

Some command names require arguments; these make up the rest of the command line
and must be separated from the command name by whitespace. For example, ‘#define’
must be followed by a macro name and the intended expansion of the macro.

A preprocessor command cannot be more than one line in normal circumstances. It
may be split cosmetically with Backslash-Newline, but that has no effect on its meaning.
Comments containing Newlines can also divide the command into multiple lines, but the
comments are changed to Spaces before the command is interpreted. The only way a
significant Newline can occur in a preprocessor command is within a string constant or
character constant. Note that most C compilers that might be applied to the output from
the preprocessor do not accept string or character constants containing Newlines.

The ‘#’ and the command name cannot come from a macro expansion. For example,
if ‘foo’ is defined as a macro expanding to ‘define’, that does not make ‘#foo’ a valid
preprocessor command.

1.3 Header Files

A header file is a file containing C declarations and macro definitions (see Section 1.4
[Macros], page 5) to be shared between several source files. You request the use of a header
file in your program with the C preprocessor command ‘#include’.

1.3.1 Uses of Header Files

Header files serve two kinds of purposes.

• System header files declare the interfaces to parts of the operating system. You include
them in your program to supply the definitions and declarations you need to invoke
system calls and libraries.

• Your own header files contain declarations for interfaces between the source files of your
program. Each time you have a group of related declarations and macro definitions all
or most of which are needed in several different source files, it is a good idea to create
a header file for them.

Including a header file produces the same results in C compilation as copying the header
file into each source file that needs it. But such copying would be time-consuming and
error-prone. With a header file, the related declarations appear in only one place. If they
need to be changed, they can be changed in one place, and programs that include the header
file will automatically use the new version when next recompiled. The header file eliminates
the labor of finding and changing all the copies as well as the risk that a failure to find one
copy will result in inconsistencies within a program.

The usual convention is to give header files names that end with .h.

3

1.3.2 The ‘#include’ Command

Both user and system header files are included using the preprocessor command ‘#include’.
It has three variants:

#include <file>

This variant is used for system header files. It searches for a file named file in a
list of directories specified by you, then in a standard list of system directories.
You specify directories to search for header files with the command option
‘-I’ (see Section 1.9 [Invocation], page 25). The option ‘-nostdinc’ inhibits
searching the standard system directories; in this case only the directories you
specify are searched.

The parsing of this form of ‘#include’ is slightly special because comments are
not recognized within the ‘<...>’. Thus, in ‘#include <x/*y>’ the ‘/*’ does
not start a comment and the command specifies inclusion of a system header
file named x/*y. Of course, a header file with such a name is unlikely to exist
on Unix, where shell wildcard features would make it hard to manipulate.

The argument file may not contain a ‘>’ character. It may, however, contain a
‘<’ character.

#include "file"

This variant is used for header files of your own program. It searches for a file
named file first in the current directory, then in the same directories used for
system header files. The current directory is the directory of the current input
file. It is tried first because it is presumed to be the location of the files that the
current input file refers to. (If the ‘-I-’ option is used, the special treatment
of the current directory is inhibited.)

The argument file may not contain ‘"’ characters. If backslashes occur within
file, they are considered ordinary text characters, not escape characters. None
of the character escape sequences appropriate to string constants in C are pro-
cessed. Thus, ‘#include "x\n\\y"’ specifies a filename containing three back-
slashes. It is not clear why this behavior is ever useful, but the ANSI standard
specifies it.

#include anything else

This variant is called a computed #include. Any ‘#include’ command whose
argument does not fit the above two forms is a computed include. The text
anything else is checked for macro calls, which are expanded (see Section 1.4
[Macros], page 5). When this is done, the result must fit one of the above two
variants.

This feature allows you to define a macro which controls the file name to be
used at a later point in the program. One application of this is to allow a site-
configuration file for your program to specify the names of the system include
files to be used. This can help in porting the program to various operating
systems in which the necessary system header files are found in different places.

1.3.3 How ‘#include’ Works

The ‘#include’ command works by directing the C preprocessor to scan the specified file as
input before continuing with the rest of the current file. The output from the preprocessor

4 The C Preprocessor

contains the output already generated, followed by the output resulting from the included
file, followed by the output that comes from the text after the ‘#include’ command. For
example, given two files as follows:

/* File program.c */

int x;

#include "header.h"

main ()

{

printf (test ());

}

/* File header.h */

char *test ();

the output generated by the C preprocessor for program.c as input would be

int x;

char *test ();

main ()

{

printf (test ());

}

Included files are not limited to declarations and macro definitions; those are merely the
typical uses. Any fragment of a C program can be included from another file. The include
file could even contain the beginning of a statement that is concluded in the containing file,
or the end of a statement that was started in the including file. However, a comment or a
string or character constant may not start in the included file and finish in the including
file. An unterminated comment, string constant or character constant in an included file is
considered to end (with an error message) at the end of the file.

The line following the ‘#include’ command is always treated as a separate line by the
C preprocessor even if the included file lacks a final newline.

1.3.4 Once-Only Include Files

Very often, one header file includes another. It can easily result that a certain header file
is included more than once. This may lead to errors, if the header file defines structure
types or typedefs, and is certainly wasteful. Therefore, we often wish to prevent multiple
inclusion of a header file.

The standard way to do this is to enclose the entire real contents of the file in a condi-
tional, like this:

#ifndef __FILE_FOO_SEEN__

#define __FILE_FOO_SEEN__

the entire file

5

#endif /* __FILE_FOO_SEEN__ */

The macro __FILE_FOO_SEEN__ indicates that the file has been included once already;
its name should begin with ‘__’ to avoid conflicts with user programs, and it should contain
the name of the file and some additional text, to avoid conflicts with other header files.

One drawback of this method is that the preprocessor must scan the input file completely
in order to determine that all of it is to be ignored. This makes compilation slower. You
can avoid the delay by inserting the following command near the beginning of the file in
addition to the conditionals described above:

#pragma once

This command tells the GNU C preprocessor to ignore any future commands to include
the same file (whichever file the ‘#pragma’ appears in).

You should not rely on ‘#pragma once’ to prevent multiple inclusion of the file. It is just
a hint, and a nonstandard one at that. Most C compilers will ignore it entirely. For this
reason, you still need the conditionals if you want to make certain that the file’s contents
are not included twice.

Note that ‘#pragma once’ works by file name; if a file has more than one name, it can
be included once under each name, even in GNU CC, despite ‘#pragma once’.

1.4 Macros

A macro is a sort of abbreviation which you can define once and then use later. There are
many complicated features associated with macros in the C preprocessor.

1.4.1 Simple Macros

A simple macro is a kind of abbreviation. It is a name which stands for a fragment of code.
Some people refer to these as manifest constants.

Before you can use a macro, you must define it explicitly with the ‘#define’ command.
‘#define’ is followed by the name of the macro and then the code it should be an abbrevi-
ation for. For example,

#define BUFFER_SIZE 1020

defines a macro named ‘BUFFER_SIZE’ as an abbreviation for the text ‘1020’. Therefore, if
somewhere after this ‘#define’ command there comes a C statement of the form

foo = (char *) xmalloc (BUFFER_SIZE);

then the C preprocessor will recognize and expand the macro ‘BUFFER_SIZE’, resulting in

foo = (char *) xmalloc (1020);

the definition must be a single line; however, it may not end in the middle of a multi-line
string constant or character constant.

The use of all upper case for macro names is a standard convention. Programs are easier
to read when it is possible to tell at a glance which names are macros.

Normally, a macro definition must be a single line, like all C preprocessor commands.
(You can split a long macro definition cosmetically with Backslash-Newline.) There is one
exception: Newlines can be included in the macro definition if within a string or character
constant. By the same token, it is not possible for a macro definition to contain an unbal-
anced quote character; the definition automatically extends to include the matching quote

6 The C Preprocessor

character that ends the string or character constant. Comments within a macro definition
may contain Newlines, which make no difference since the comments are entirely replaced
with Spaces regardless of their contents.

Aside from the above, there is no restriction on what can go in a macro body. Parentheses
need not balance. The body need not resemble valid C code. (Of course, you might get
error messages from the C compiler when you use the macro.)

The C preprocessor scans your program sequentially, so macro definitions take effect at
the place you write them. Therefore, the following input to the C preprocessor

foo = X;

#define X 4

bar = X;

produces as output

foo = X;

bar = 4;

After the preprocessor expands a macro name, the macro’s definition body is appended
to the front of the remaining input, and the check for macro calls continues. Therefore, the
macro body can contain calls to other macros. For example, after

#define BUFSIZE 1020

#define TABLESIZE BUFSIZE

the name ‘TABLESIZE’ when used in the program would go through two stages of expansion,
resulting ultimately in ‘1020’.

This is not at all the same as defining ‘TABLESIZE’ to be ‘1020’. The ‘#define’ for
‘TABLESIZE’ uses exactly the body you specify—in this case, ‘BUFSIZE’—and does not check
to see whether it too is the name of a macro. It’s only when you use ‘TABLESIZE’ that the
result of its expansion is checked for more macro names. See Section 1.4.8.7 [Cascaded
Macros], page 19.

1.4.2 Macros with Arguments

A simple macro always stands for exactly the same text, each time it is used. Macros can
be more flexible when they accept arguments. Arguments are fragments of code that you
supply each time the macro is used. These fragments are included in the expansion of the
macro according to the directions in the macro definition.

To define a macro that uses arguments, you write a ‘#define’ command with a list of
argument names in parentheses after the name of the macro. The argument names may
be any valid C identifiers, separated by commas and optionally whitespace. The open-
parenthesis must follow the macro name immediately, with no space in between.

For example, here is a macro that computes the minimum of two numeric values, as it
is defined in many C programs:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

(This is not the best way to define a “minimum” macro in GNU C. See Section 1.4.8.4 [Side
Effects], page 16, for more information.)

To use a macro that expects arguments, you write the name of the macro followed by
a list of actual arguments in parentheses. separated by commas. The number of actual

7

arguments you give must match the number of arguments the macro expects. Examples of
use of the macro ‘min’ include ‘min (1, 2)’ and ‘min (x + 28, *p)’.

The expansion text of the macro depends on the arguments you use. Each of the ar-
gument names of the macro is replaced, throughout the macro definition, with the corre-
sponding actual argument. Using the same macro ‘min’ defined above, ‘min (1, 2)’ expands
into

((1) < (2) ? (1) : (2))

where ‘1’ has been substituted for ‘X’ and ‘2’ for ‘Y’.

Likewise, ‘min (x + 28, *p)’ expands into

((x + 28) < (*p) ? (x + 28) : (*p))

Parentheses in the actual arguments must balance; a comma within parentheses does
not end an argument. However, there is no requirement for brackets or braces to balance,
and they do not prevent a comma from separating arguments. Thus,

macro (array[x = y, x + 1])

passes two arguments to macro: ‘array[x = y’ and ‘x + 1]’. If you want to supply ‘array[x
= y, x + 1]’ as an argument, you must write it as ‘array[(x = y, x + 1)]’, which is equiv-
alent C code.

After the actual arguments are substituted into the macro body, the entire result is
appended to the front of the remaining input, and the check for macro calls continues.
Therefore, the actual arguments can contain calls to other macros, either with or without
arguments, or even to the same macro. The macro body can also contain calls to other
macros. For example, ‘min (min (a, b), c)’ expands into this text:

((((a) < (b) ? (a) : (b))) < (c)

? (((a) < (b) ? (a) : (b)))

: (c))

(Line breaks shown here for clarity would not actually be generated.)

If you use the macro name followed by something other than an open-parenthesis (after
ignoring any spaces, tabs and comments that follow), it is not a call to the macro, and the
preprocessor does not change what you have written. Therefore, it is possible for the same
name to be a variable or function in your program as well as a macro, and you can choose
in each instance whether to refer to the macro (if an actual argument list follows) or the
variable or function (if an argument list does not follow).

Such dual use of one name could be confusing and should be avoided except when the
two meanings are effectively synonymous: that is, when the name is both a macro and a
function and the two have similar effects. You can think of the name simply as a function;
use of the name for purposes other than calling it (such as, to take the address) will refer
to the function, while calls will expand the macro and generate better but equivalent code.
For example, you can use a function named ‘min’ in the same source file that defines the
macro. If you write ‘&min’ with no argument list, you refer to the function. If you write
‘min (x, bb)’, with an argument list, the macro is expanded. If you write ‘(min) (a, bb)’,
where the name ‘min’ is not followed by an open-parenthesis, the macro is not expanded,
so you wind up with a call to the function ‘min’.

It is not allowed to define the same name as both a simple macro and a macro with
arguments.

8 The C Preprocessor

In the definition of a macro with arguments, the list of argument names must follow
the macro name immediately with no space in between. If there is a space after the macro
name, the macro is defined as taking no arguments, and all the rest of the name is taken
to be the expansion. The reason for this is that it is often useful to define a macro that
takes no arguments and whose definition begins with an identifier in parentheses. This rule
about spaces makes it possible for you to do either this:

#define FOO(x) - 1 / (x)

(which defines ‘FOO’ to take an argument and expand into minus the reciprocal of that
argument) or this:

#define BAR (x) - 1 / (x)

(which defines ‘BAR’ to take no argument and always expand into ‘(x) - 1 / (x)’).

Note that the uses of a macro with arguments can have spaces before the left parenthesis;
it’s the definition where it matters whether there is a space.

1.4.3 Predefined Macros

Several simple macros are predefined. You can use them without giving definitions for them.
They fall into two classes: standard macros and system-specific macros.

1.4.3.1 Standard Predefined Macros

The standard predefined macros are available with the same meanings regardless of the
machine or operating system on which you are using GNU C. Their names all start and
end with double underscores. Those preceding __GNUC__ in this table are standardized by
ANSI C; the rest are GNU C extensions.

__FILE__ This macro expands to the name of the current input file, in the form of a C
string constant. The precise name returned is the one that was specified in
‘#include’ or as the input file name argument.

__BASE_FILE__

This macro expands to the name of the main input file, in the form of a C string
constant. This is the source file that was specified as an argument when the C
compiler was invoked.

__LINE__ This macro expands to the current input line number, in the form of a decimal
integer constant. While we call it a predefined macro, it’s a pretty strange
macro, since its “definition” changes with each new line of source code.

This and ‘__FILE__’ are useful in generating an error message to report an
inconsistency detected by the program; the message can state the source line
at which the inconsistency was detected. For example,

fprintf (stderr, "Internal error: negative string length "

"%d at %s, line %d.",

length, __FILE__, __LINE__);

A ‘#include’ command changes the expansions of ‘__FILE__’ and ‘__LINE__’ to
correspond to the included file. At the end of that file, when processing resumes
on the input file that contained the ‘#include’ command, the expansions of
‘__FILE__’ and ‘__LINE__’ revert to the values they had before the ‘#include’

9

(but ‘__LINE__’ is then incremented by one as processing moves to the line
after the ‘#include’).

The expansions of both ‘__FILE__’ and ‘__LINE__’ are altered if a ‘#line’
command is used. See Section 1.6 [Combining Sources], page 23.

__DATE__ This macro expands to a string constant that describes the date on which the
preprocessor is being run. The string constant contains eleven characters and
looks like ‘"Jan 29 1987"’ or ‘"Apr 1 1905"’.

__TIME__ This macro expands to a string constant that describes the time at which the
preprocessor is being run. The string constant contains eight characters and
looks like ‘"23:59:01"’.

__STDC__ This macro expands to the constant 1, to signify that this is ANSI Standard
C. (Whether that is actually true depends on what C compiler will operate on
the output from the preprocessor.)

__GNUC__ This macro is defined if and only if this is GNU C. This macro is defined
only when the entire GNU C compiler is in use; if you invoke the preprocessor
directly, ‘__GNUC__’ is undefined.

__STRICT_ANSI__

This macro is defined if and only if the ‘-ansi’ switch was specified when GNU
C was invoked. Its definition is the null string. This macro exists primarily to
direct certain GNU header files not to define certain traditional Unix constructs
which are incompatible with ANSI C.

__VERSION__

This macro expands to a string which describes the version number of GNU
C. The string is normally a sequence of decimal numbers separated by periods,
such as ‘"1.18"’. The only reasonable use of this macro is to incorporate it
into a string constant.

__OPTIMIZE__

This macro is defined in optimizing compilations. It causes certain GNU header
files to define alternative macro definitions for some system library functions.
It is unwise to refer to or test the definition of this macro unless you make very
sure that programs will execute with the same effect regardless.

__CHAR_UNSIGNED__

This macro is defined if and only if the data type char is unsigned on the target
machine. It exists to cause the standard header file limit.h to work correctly.
It is bad practice to refer to this macro yourself; instead, refer to the standard
macros defined in limit.h.

1.4.3.2 Nonstandard Predefined Macros

The C preprocessor normally has several predefined macros that vary between machines
because their purpose is to indicate what type of system and machine is in use. This
manual, being for all systems and machines, cannot tell you exactly what their names are;
instead, we offer a list of some typical ones.

10 The C Preprocessor

Some nonstandard predefined macros describe the operating system in use, with more
or less specificity. For example,

unix ‘unix’ is normally predefined on all Unix systems.

BSD ‘BSD’ is predefined on recent versions of Berkeley Unix (perhaps only in version
4.3).

Other nonstandard predefined macros describe the kind of CPU, with more or less speci-
ficity. For example,

vax ‘vax’ is predefined on Vax computers.

mc68000 ‘mc68000’ is predefined on most computers whose CPU is a Motorola 68000,
68010 or 68020.

m68k ‘m68k’ is also predefined on most computers whose CPU is a 68000, 68010
or 68020; however, some makers use ‘mc68000’ and some use ‘m68k’. Some
predefine both names. What happens in GNU C depends on the system you
are using it on.

M68020 ‘M68020’ has been observed to be predefined on some systems that use 68020
CPUs—in addition to ‘mc68000’ and ‘m68k’, which are less specific.

ns32000 ‘ns32000’ is predefined on computers which use the National Semiconductor
32000 series CPU.

Yet other nonstandard predefined macros describe the manufacturer of the system. For
example,

sun ‘sun’ is predefined on all models of Sun computers.

pyr ‘pyr’ is predefined on all models of Pyramid computers.

sequent ‘sequent’ is predefined on all models of Sequent computers.

These predefined symbols are not only nonstandard, they are contrary to the ANSI
standard because their names do not start with underscores. Therefore, the option ‘-ansi’
inhibits the definition of these symbols.

This tends to make ‘-ansi’ useless, since many programs depend on the customary
nonstandard predefined symbols. Even system header files check them and will generate
incorrect declarations if they do not find the names that are expected. You might think
that the header files supplied for the Uglix computer would not need to test what machine
they are running on, because they can simply assume it is the Uglix; but often they do, and
they do so using the customary names. As a result, very few C programs will compile with
‘-ansi’. We intend to avoid such problems on the GNU system.

What, then, should you do in an ANSI C program to test the type of machine it will
run on?

GNU C offers a parallel series of symbols for this purpose, whose names are made from
the customary ones by adding ‘__’ at the beginning and end. Thus, the symbol __vax__
would be available on a vax, and so on.

The set of nonstandard predefined names in the GNU C preprocessor is controlled by
the macro ‘CPP_PREDEFINES’, which should be a string containing ‘-D’ options, separated
by spaces. For example, on the Sun 3, we use the following definition:

#define CPP_PREDEFINES "-Dmc68000 -Dsun -Dunix -Dm68k"

11

1.4.4 Stringification

Stringification means turning a code fragment into a string constant whose contents are the
text for the code fragment. For example, stringifying ‘foo (z)’ results in ‘"foo (z)"’.

In the C preprocessor, stringification is an option available when macro arguments are
substituted into the macro definition. In the body of the definition, when an argument
name appears, the character ‘#’ before the name specifies stringification of the corresponding
actual argument when it is substituted at that point in the definition. The same argument
may be substituted in other places in the definition without stringification if the argument
name appears in those places with no ‘#’.

Here is an example of a macro definition that uses stringification:

#define WARN_IF(EXP) \

do { if (EXP) fprintf (stderr, "Warning: " #EXP "\n"); } while (0)

Here the actual argument for ‘EXP’ is substituted once as given, into the ‘if’ statement, and
once as stringified, into the argument to ‘fprintf’. The ‘do’ and ‘while (0)’ are a kludge
to make it possible to write ‘WARN_IF (arg);’, which the resemblance of ‘WARN_IF’ to a
function would make C programmers want to do; see Section 1.4.8.3 [Swallow Semicolon],
page 15).

The stringification feature is limited to transforming one macro argument into one string
constant: there is no way to combine the argument with other text and then stringify it
all together. But the example above shows how an equivalent result can be obtained in
ANSI Standard C using the feature that adjacent string constants are concatenated as one
string constant. The preprocessor stringifies ‘EXP’’s actual argument into a separate string
constant, resulting in text like

do { if (x == 0) fprintf (stderr, "Warning: " "x == 0" "\n"); } while (0)

but the C compiler then sees three consecutive string constants and concatenates them into
one, producing effectively

do { if (x == 0) fprintf (stderr, "Warning: x == 0\n"); } while (0)

Stringification in C involves more than putting doublequote characters around the frag-
ment; it is necessary to put backslashes in front of all doublequote characters, and all back-
slashes in string and character constants, in order to get a valid C string constant with the
proper contents. Thus, stringifying ‘p = "foo\n";’ results in ‘"p = \"foo\\n\";"’. How-
ever, backslashes that are not inside of string or character constants are not duplicated:
‘\n’ by itself stringifies to ‘"\n"’.

Whitespace (including comments) in the text being stringified is handled according to
precise rules. All leading and trailing whitespace is ignored. Any sequence of whitespace in
the middle of the text is converted to a single space in the stringified result.

1.4.5 Concatenation

Concatenation means joining two strings into one. In the context of macro expansion,
concatenation refers to joining two lexical units into one longer one. Specifically, an actual
argument to the macro can be concatenated with another actual argument or with fixed
text to produce a longer name. The longer name might be the name of a function, variable
or type, or a C keyword; it might even be the name of another macro, in which case it will
be expanded.

12 The C Preprocessor

When you define a macro, you request concatenation with the special operator ‘##’ in
the macro body. When the macro is called, after actual arguments are substituted, all ‘##’
operators are deleted, and so is any whitespace next to them (including whitespace that
was part of an actual argument). The result is to concatenate the syntactic tokens on either
side of the ‘##’.

Consider a C program that interprets named commands. There probably needs to be a
table of commands, perhaps an array of structures declared as follows:

struct command

{

char *name;

void (*function) ();

};

struct command commands[] =

{

{ "quit", quit_command},

{ "help", help_command},

...

};

It would be cleaner not to have to give each command name twice, once in the string
constant and once in the function name. A macro which takes the name of a command as
an argument can make this unnecessary. The string constant can be created with stringi-
fication, and the function name by concatenating the argument with ‘_command’. Here is
how it is done:

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =

{

COMMAND (quit),

COMMAND (help),

...

};

The usual case of concatenation is concatenating two names (or a name and a number)
into a longer name. But this isn’t the only valid case. It is also possible to concatenate
two numbers (or a number and a name, such as ‘1.5’ and ‘e3’) into a number. Also, multi-
character operators such as ‘+=’ can be formed by concatenation. In some cases it is even
possible to piece together a string constant. However, two pieces of text that don’t together
form a valid lexical unit cannot be concatenated. For example, concatenation with ‘x’ on one
side and ‘+’ on the other is not meaningful because those two characters can’t fit together
in any lexical unit of C. The ANSI standard says that such attempts at concatenation are
undefined, but in the GNU C preprocessor it is well defined: it puts the ‘x’ and ‘+’ side by
side with no particular special results.

Keep in mind that the C preprocessor converts comments to whitespace before macros
are even considered. Therefore, you cannot create a comment by concatenating ‘/’ and ‘*’:
the ‘/*’ sequence that starts a comment is not a lexical unit, but rather the beginning of

13

a “long” space character. Also, you can freely use comments next to a ‘##’ in a macro
definition, or in actual arguments that will be concatenated, because the comments will be
converted to spaces at first sight, and concatenation will later discard the spaces.

1.4.6 Undefining Macros

To undefine a macro means to cancel its definition. This is done with the ‘#undef’ command.
‘#undef’ is followed by the macro name to be undefined.

Like definition, undefinition occurs at a specific point in the source file, and it applies
starting from that point. The name ceases to be a macro name, and from that point on it
is treated by the preprocessor as if it had never been a macro name.

For example,

#define FOO 4

x = FOO;

#undef FOO

x = FOO;

expands into

x = 4;

x = FOO;

In this example, ‘FOO’ had better be a variable or function as well as (temporarily) a macro,
in order for the result of the expansion to be valid C code.

The same form of ‘#undef’ command will cancel definitions with arguments or definitions
that don’t expect arguments. The ‘#undef’ command has no effect when used on a name
not currently defined as a macro.

1.4.7 Redefining Macros

Redefining a macro means defining (with ‘#define’) a name that is already defined as a
macro.

A redefinition is trivial if the new definition is transparently identical to the old one.
You probably wouldn’t deliberately write a trivial redefinition, but they can happen au-
tomatically when a header file is included more than once (see Section 1.3 [Header Files],
page 2), so they are accepted silently and without effect.

Nontrivial redefinition is considered likely to be an error, so it provokes a warning message
from the preprocessor. However, sometimes it is useful to change the definition of a macro
in mid-compilation. You can inhibit the warning by undefining the macro with ‘#undef’
before the second definition.

In order for a redefinition to be trivial, the new definition must exactly match the one
already in effect, with two possible exceptions:

• Whitespace may be added or deleted at the beginning or the end.

• Whitespace may be changed in the middle (but not inside strings). However, it may
not be eliminated entirely, and it may not be added where there was no whitespace at
all.

Recall that a comment counts as whitespace.

14 The C Preprocessor

1.4.8 Pitfalls and Subtleties of Macros

In this section we describe some special rules that apply to macros and macro expansion,
and point out certain cases in which the rules have counterintuitive consequences that you
must watch out for.

1.4.8.1 Improperly Nested Constructs

Recall that when a macro is called with arguments, the arguments are substituted into the
macro body and the result is checked, together with the rest of the input file, for more
macro calls.

It is possible to piece together a macro call coming partially from the macro body and
partially from the actual arguments. For example,

#define double(x) (2*(x))

#define call_with_1(x) x(1)

would expand ‘call_with_1 (double)’ into ‘(2*(1))’.

Macro definitions do not have to have balanced parentheses. By writing an unbalanced
open parenthesis in a macro body, it is possible to create a macro call that begins inside
the macro body but ends outside of it. For example,

#define strange(file) fprintf (file, "%s %d",

...

strange(stderr) p, 35)

This bizarre example expands to ‘fprintf (stderr, "%s %d", p, 35)’!

1.4.8.2 Unintended Grouping of Arithmetic

You may have noticed that in most of the macro definition examples shown above, each
occurrence of a macro argument name had parentheses around it. In addition, another pair
of parentheses usually surround the entire macro definition. Here is why it is best to write
macros that way.

Suppose you define a macro as follows,

#define ceil_div(x, y) (x + y - 1) / y

whose purpose is to divide, rounding up. (One use for this operation is to compute how
many ‘int’’s are needed to hold a certain number of ‘char’’s.) Then suppose it is used as
follows:

a = ceil_div (b & c, sizeof (int));

This expands into

a = (b & c + sizeof (int) - 1) / sizeof (int);

which does not do what is intended. The operator-precedence rules of C make it equivalent
to this:

a = (b & (c + sizeof (int) - 1)) / sizeof (int);

But what we want is this:

a = ((b & c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as

#define ceil_div(x, y) ((x) + (y) - 1) / (y)

15

provides the desired result.

However, unintended grouping can result in another way. Consider ‘sizeof
ceil_div(1, 2)’. That has the appearance of a C expression that would compute the size
of the type of ‘ceil_div (1, 2)’, but in fact it means something very different. Here is
what it expands to:

sizeof ((1) + (2) - 1) / (2)

This would take the size of an integer and divide it by two. The precedence rules have put
the division outside the ‘sizeof’ when it was intended to be inside.

Parentheses around the entire macro definition can prevent such problems. Here, then,
is the recommended way to define ‘ceil_div’:

#define ceil_div(x, y) (((x) + (y) - 1) / (y))

1.4.8.3 Swallowing the Semicolon

Often it is desirable to define a macro that expands into a compound statement. Consider,
for example, the following macro, that advances a pointer (the argument ‘p’ says where to
find it) across whitespace characters:

#define SKIP_SPACES (p, limit) \

{ register char *lim = (limit); \

while (p != lim) { \

if (*p++ != ’ ’) { \

p--; break; }}}

Here Backslash-Newline is used to split the macro definition, which must be a single line,
so that it resembles the way such C code would be laid out if not part of a macro definition.

A call to this macro might be ‘SKIP_SPACES (p, lim)’. Strictly speaking, the call ex-
pands to a compound statement, which is a complete statement with no need for a semicolon
to end it. But it looks like a function call. So it minimizes confusion if you can use it like
a function call, writing a semicolon afterward, as in ‘SKIP_SPACES (p, lim);’

But this can cause trouble before ‘else’ statements, because the semicolon is actually a
null statement. Suppose you write

if (*p != 0)

SKIP_SPACES (p, lim);

else ...

The presence of two statements—the compound statement and a null statement—in between
the ‘if’ condition and the ‘else’ makes invalid C code.

The definition of the macro ‘SKIP_SPACES’ can be altered to solve this problem, using a
‘do ... while’ statement. Here is how:

#define SKIP_SPACES (p, limit) \

do { register char *lim = (limit); \

while (p != lim) { \

if (*p++ != ’ ’) { \

p--; break; }}} \

while (0)

Now ‘SKIP_SPACES (p, lim);’ expands into

do {...} while (0);

16 The C Preprocessor

which is one statement.

1.4.8.4 Duplication of Side Effects

Many C programs define a macro ‘min’, for “minimum”, like this:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you use this macro with an argument containing a side effect, as shown here,

next = min (x + y, foo (z));

it expands as follows:

next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));

where ‘x + y’ has been substituted for ‘X’ and ‘foo (z)’ for ‘Y’.

The function ‘foo’ is used only once in the statement as it appears in the program, but
the expression ‘foo (z)’ has been substituted twice into the macro expansion. As a result,
‘foo’ might be called two times when the statement is executed. If it has side effects or if
it takes a long time to compute, the results might not be what you intended. We say that
‘min’ is an unsafe macro.

The best solution to this problem is to define ‘min’ in a way that computes the value of
‘foo (z)’ only once. The C language offers no standard way to do this, but it can be done
with GNU C extensions as follows:

#define min(X, Y) \

({ typeof (X) __x = (X), __y = (Y); \

(__x < __y) ? __x : __y; })

If you do not wish to use GNU C extensions, the only solution is to be careful when
using the macro ‘min’. For example, you can calculate the value of ‘foo (z)’, save it in a
variable, and use that variable in ‘min’:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

...

{

int tem = foo (z);

next = min (x + y, tem);

}

(where I assume that ‘foo’ returns type ‘int’).

1.4.8.5 Self-Referential Macros

A self-referential macro is one whose name appears in its definition. A special feature of
ANSI Standard C is that the self-reference is not considered a macro call. It is passed into
the preprocessor output unchanged.

Let’s consider an example:

#define foo (4 + foo)

where ‘foo’ is also a variable in your program.

Following the ordinary rules, each reference to ‘foo’ will expand into ‘(4 + foo)’; then
this will be rescanned and will expand into ‘(4 + (4 + foo))’; and so on until it causes a
fatal error (memory full) in the preprocessor.

17

However, the special rule about self-reference cuts this process short after one step, at
‘(4 + foo)’. Therefore, this macro definition has the possibly useful effect of causing the
program to add 4 to the value of ‘foo’ wherever ‘foo’ is referred to.

In most cases, it is a bad idea to take advantage of this feature. A person reading the
program who sees that ‘foo’ is a variable will not expect that it is a macro as well. The
reader will come across the identifier ‘foo’ in the program and think its value should be
that of the variable ‘foo’, whereas in fact the value is four greater.

The special rule for self-reference applies also to indirect self-reference. This is the case
where a macro x expands to use a macro ‘y’, and ‘y’’s expansion refers to the macro ‘x’. The
resulting reference to ‘x’ comes indirectly from the expansion of ‘x’, so it is a self-reference
and is not further expanded. Thus, after

#define x (4 + y)

#define y (2 * x)

‘x’ would expand into ‘(4 + (2 * x))’. Clear?

But suppose ‘y’ is used elsewhere, not from the definition of ‘x’. Then the use of ‘x’
in the expansion of ‘y’ is not a self-reference because ‘x’ is not “in progress”. So it does
expand. However, the expansion of ‘x’ contains a reference to ‘y’, and that is an indirect
self-reference now because ‘y’ is “in progress”. The result is that ‘y’ expands to ‘(2 * (4 +

y))’.

It is not clear that this behavior would ever be useful, but it is specified by the ANSI C
standard, so you need to understand it.

1.4.8.6 Separate Expansion of Macro Arguments

We have explained that the expansion of a macro, including the substituted actual argu-
ments, is scanned over again for macro calls to be expanded.

What really happens is more subtle: first each actual argument text is scanned separately
for macro calls. Then the results of this are substituted into the macro body to produce
the macro expansion, and the macro expansion is scanned again for macros to expand.

The result is that the actual arguments are scanned twice to expand macro calls in them.

Most of the time, this has no effect. If the actual argument contained any macro calls,
they are expanded during the first scan. The result therefore contains no macro calls, so the
second scan does not change it. If the actual argument were substituted as given, with no
prescan, the single remaining scan would find the same macro calls and produce the same
results.

You might expect the double scan to change the results when a self-referential macro is
used in an actual argument of another macro (see Section 1.4.8.5 [Self-Reference], page 16):
the self-referential macro would be expanded once in the first scan, and a second time in
the second scan. But this is not what happens. The self-references that do not expand in
the first scan are marked so that they will not expand in the second scan either.

The prescan is not done when an argument is stringified or concatenated. Thus,

#define str(s) #s

#define foo 4

str (foo)

18 The C Preprocessor

expands to ‘"foo"’. Once more, prescan has been prevented from having any noticeable
effect.

More precisely, stringification and concatenation use the argument as written, in un-
prescanned form. The same actual argument would be used in prescanned form if it is
substituted elsewhere without stringification or concatenation.

#define str(s) #s lose(s)

#define foo 4

str (foo)

expands to ‘"foo" lose(4)’.

You might now ask, “Why mention the prescan, if it makes no difference? And why not
skip it and make the preprocessor faster?” The answer is that the prescan does make a
difference in three special cases:

• Nested calls to a macro.

• Macros that call other macros that stringify or concatenate.

• Macros whose expansions contain unshielded commas.

We say that nested calls to a macro occur when a macro’s actual argument contains a
call to that very macro. For example, if ‘f’ is a macro that expects one argument, ‘f (f

(1))’ is a nested pair of calls to ‘f’. The desired expansion is made by expanding ‘f (1)’
and substituting that into the definition of ‘f’. The prescan causes the expected result to
happen. Without the prescan, ‘f (1)’ itself would be substituted as an actual argument,
and the inner use of ‘f’ would appear during the main scan as an indirect self-reference and
would not be expanded. Here, the prescan cancels an undesirable side effect (in the medical,
not computational, sense of the term) of the special rule for self-referential macros.

But prescan causes trouble in certain other cases of nested macro calls. Here is an
example:

#define foo a,b

#define bar(x) lose(x)

#define lose(x) (1 + (x))

bar(foo)

We would like ‘bar(foo)’ to turn into ‘(1 + (foo))’, which would then turn into ‘(1 +

(a,b))’. But instead, ‘bar(foo)’ expands into ‘lose(a,b)’, and you get an error because
lose requires a single argument. In this case, the problem is easily solved by the same
parentheses that ought to be used to prevent misnesting of arithmetic operations:

#define foo (a,b)

#define bar(x) lose((x))

The problem is more serious when the operands of the macro are not expressions; for
example, when they are statements. Then parentheses are unacceptable because they would
make for invalid C code:

#define foo { int a, b; ... }

In GNU C you can shield the commas using the ‘({...})’ construct which turns a compound
statement into an expression:

#define foo ({ int a, b; ... })

19

Or you can rewrite the macro definition to avoid such commas:

#define foo { int a; int b; ... }

There is also one case where prescan is useful. It is possible to use prescan to expand
an argument and then stringify it—if you use two levels of macros. Let’s add a new macro
‘xstr’ to the example shown above:

#define xstr(s) str(s)

#define str(s) #s

#define foo 4

xstr (foo)

This expands into ‘"4"’, not ‘"foo"’. The reason for the difference is that the argument
of ‘xstr’ is expanded at prescan (because ‘xstr’ does not specify stringification or concate-
nation of the argument). The result of prescan then forms the actual argument for ‘str’.
‘str’ uses its argument without prescan because it performs stringification; but it cannot
prevent or undo the prescanning already done by ‘xstr’.

1.4.8.7 Cascaded Use of Macros

A cascade of macros is when one macro’s body contains a reference to another macro. This
is very common practice. For example,

#define BUFSIZE 1020

#define TABLESIZE BUFSIZE

This is not at all the same as defining ‘TABLESIZE’ to be ‘1020’. The ‘#define’ for
‘TABLESIZE’ uses exactly the body you specify—in this case, ‘BUFSIZE’—and does not check
to see whether it too is the name of a macro.

It’s only when you use ‘TABLESIZE’ that the result of its expansion is checked for more
macro names.

This makes a difference if you change the definition of ‘BUFSIZE’ at some point in
the source file. ‘TABLESIZE’, defined as shown, will always expand using the definition
of ‘BUFSIZE’ that is currently in effect:

#define BUFSIZE 1020

#define TABLESIZE BUFSIZE

#undef BUFSIZE

#define BUFSIZE 37

Now ‘TABLESIZE’ expands (in two stages) to ‘37’.

1.5 Conditionals

In a macro processor, a conditional is a command that allows a part of the program to be
ignored during compilation, on some conditions. In the C preprocessor, a conditional can
test either an arithmetic expression or whether a name is defined as a macro.

A conditional in the C preprocessor resembles in some ways an ‘if’ statement in C, but it
is important to understand the difference between them. The condition in an ‘if’ statement
is tested during the execution of your program. Its purpose is to allow your program to
behave differently from run to run, depending on the data it is operating on. The condition
in a preprocessor conditional command is tested when your program is compiled. Its purpose

20 The C Preprocessor

is to allow different code to be included in the program depending on the situation at the
time of compilation.

1.5.1 Why Conditionals are Used

Generally there are three kinds of reason to use a conditional.

• A program may need to use different code depending on the machine or operating
system it is to run on. In some cases the code for one operating system may be
erroneous on another operating system; for example, it might refer to library routines
that do not exist on the other system. When this happens, it is not enough to avoid
executing the invalid code: merely having it in the program makes it impossible to link
the program and run it. With a preprocessor conditional, the offending code can be
effectively excised from the program when it is not valid.

• You may want to be able to compile the same source file into two different pro-
grams. Sometimes the difference between the programs is that one makes frequent
time-consuming consistency checks on its intermediate data while the other does not.

• A conditional whose condition is always false is a good way to exclude code from the
program but keep it as a sort of comment for future reference.

Most simple programs that are intended to run on only one machine will not need to
use preprocessor conditionals.

1.5.2 Syntax of Conditionals

A conditional in the C preprocessor begins with a conditional command: ‘#if’, ‘#ifdef’
or ‘#ifndef’. See Section 1.5.4 [Conditionals-Macros], page 22, for info on ‘#ifdef’ and
‘#ifndef’; only ‘#if’ is explained here.

1.5.2.1 The ‘#if’ Command

The ‘#if’ command in its simplest form consists of

#if expression

controlled text

#endif /* expression */

The comment following the ‘#endif’ is not required, but it is a good practice because it
helps people match the ‘#endif’ to the corresponding ‘#if’. Such comments should always
be used, except in short conditionals that are not nested. In fact, you can put anything at
all after the ‘#endif’ and it will be ignored by the GNU C preprocessor, but only comments
are acceptable in ANSI Standard C.

expression is a C expression of integer type, subject to stringent restrictions. It may
contain

• Integer constants, which are all regarded as long or unsigned long.

• Character constants, which are interpreted according to the character set and conven-
tions of the machine and operating system on which the preprocessor is running. The
GNU C preprocessor uses the C data type ‘char’ for these character constants; there-
fore, whether some character codes are negative is determined by the C compiler used
to compile the preprocessor. If it treats ‘char’ as signed, then character codes large
enough to set the sign bit will be considered negative; otherwise, no character code is
considered negative.

21

• Arithmetic operators for addition, subtraction, multiplication, division, bitwise opera-
tions, shifts, comparisons, and ‘&&’ and ‘||’.

• Identifiers that are not macros, which are all treated as zero(!).

• Macro calls. All macro calls in the expression are expanded before actual computation
of the expression’s value begins.

Note that ‘sizeof’ operators and enum-type values are not allowed. enum-type values,
like all other identifiers that are not taken as macro calls and expanded, are treated as zero.

The text inside of a conditional can include preprocessor commands. Then the commands
inside the conditional are obeyed only if that branch of the conditional succeeds. The text
can also contain other conditional groups. However, the ‘#if’’s and ‘#endif’’s must balance.

1.5.2.2 The ‘#else’ Command

The ‘#else’ command can be added to a conditional to provide alternative text to be used
if the condition is false. This is what itlooks like:

#if expression

text-if-true

#else /* Not expression */

text-if-false

#endif /* Not expression */

If expression is nonzero, and the text-if-true is considered included, then ‘#else’ acts like
a failing conditional and the text-if-false is ignored. Contrariwise, if the ‘#if’ conditional
fails, the text-if-false is considered included.

1.5.2.3 The ‘#elif’ Command

One common case of nested conditionals is used to check for more than two possible alter-
natives. For example, you might have

#if X == 1

...

#else /* X != 1 */

#if X == 2

...

#else /* X != 2 */

...

#endif /* X != 2 */

#endif /* X != 1 */

Another conditional command, ‘#elif’, allows this to be abbreviated as follows:

#if X == 1

...

#elif X == 2

...

#else /* X != 2 and X != 1*/

...

#endif /* X != 2 and X != 1*/

22 The C Preprocessor

‘#elif’ stands for “else if”. Like ‘#else’, it goes in the middle of a ‘#if’-‘#endif’ pair
and subdivides it; it does not require a matching ‘#endif’ of its own. Like ‘#if’, the ‘#elif’
command includes an expression to be tested.

The text following the ‘#elif’ is processed only if the original ‘#if’-condition failed
and the ‘#elif’ condition succeeeds. More than one ‘#elif’ can go in the same ‘#if’-
‘#endif’ group. Then the text after each ‘#elif’ is processed only if the ‘#elif’ condition
succeeds after the original ‘#if’ and any previous ‘#elif’’s within it have failed. ‘#else’ is
equivalent to ‘#elif 1’, and ‘#else’ is allowed after any number of ‘#elif’’s, but ‘#elif’
may not follow a ‘#else’.

1.5.3 Keeping Deleted Code for Future Reference

If you replace or delete a part of the program but want to keep the old code around as a
comment for future reference, the easy way to do this is to put ‘#if 0’ before it and ‘#endif’
after it.

This works even if the code being turned off contains conditionals, but they must be
entire conditionals (balanced ‘#if’ and ‘#endif’).

1.5.4 Conditionals and Macros

Conditionals are rarely useful except in connection with macros. A ‘#if’ command whose
expression uses no macros is equivalent to ‘#if 1’ or ‘#if 0’; you might as well determine
which one, by computing the value of the expression yourself, and then simplify the program.
But when the expression uses macros, its value can vary from compilation to compilation.

For example, here is a conditional that tests the expression ‘BUFSIZE == 1020’, where
‘BUFSIZE’ must be a macro.

#if BUFSIZE == 1020

printf ("Large buffers!\n");

#endif /* BUFSIZE is large */

The special operator ‘defined’ may be used in ‘#if’ expressions to test whether a certain
name is defined as a macro. Either ‘defined name’ or ‘defined (name)’ is an expression
whose value is 1 if name is defined as macro at the current point in the program, and 0
otherwise. For the ‘defined’ operator it makes no difference what the definition of the
macro is; all that matters is whether there is a definition. Thus, for example,

#if defined (vax) || defined (ns16000)

would include the following code if either of the names ‘vax’ and ‘ns16000’ is defined as a
macro.

If a macro is defined and later undefined with ‘#undef’, subsequent use of the ‘defined’
operator will return 0, because the name is no longer defined. If the macro is defined again
with another ‘#define’, ‘defined’ will recommence returning 1.

Conditionals that test just the definedness of one name are very common, so there are
two special short conditional commands for this case. They are

#ifdef name

is equivalent to ‘#if defined (name)’.

#ifndef name

is equivalent to ‘#if ! defined (name)’.

23

Macro definitions can vary between compilations for several reasons.

• Some macros are predefined on each kind of machine. For example, on a Vax, the name
‘vax’ is a predefined macro. On other machines, it would not be defined.

• Many more macros are defined by system header files. Different systems and machines
define different macros, or give them different values. It is useful to test these macros
with conditionals to avoid using a system feature on a machine where it is not imple-
mented.

• Macros are a common way of allowing users to customize a program for different ma-
chines or applications. For example, the macro ‘BUFSIZE’ might be defined in a config-
uration file for your program that is included as a header file in each source file. You
would use ‘BUFSIZE’ in a preprocessor conditional in order to generate different code
depending on the chosen configuration.

• Macros can be defined or undefined with ‘-D’ and ‘-U’ command options when you
compile the program. You can arrange to compile the same source file into two differ-
ent programs by choosing a macro name to specify which program you want, writing
conditionals to test whether or how this macro is defined, and then controlling the state
of the macro with compiler command options. See Section 1.9 [Invocation], page 25.

1.5.5 The ‘#error’ and ‘#warning’ Commands

The command ‘#error’ causes the preprocessor to report a fatal error. The rest of the line
that follows ‘#error’ is used as the error message.

You would use ‘#error’ inside of a conditional that detects a combination of parameters
which you know the program does not properly support. For example, if you know that the
program will not run properly on a Vax, you might write

#ifdef vax

#error Won’t work on Vaxen. See comments at get_last_object.

#endif

See Section 1.4.3.2 [Nonstandard Predefined], page 9, for why this works.

If you have several configuration parameters that must be set up by the installation in
a consistent way, you can use conditionals to detect an inconsistency and report it with
‘#error’. For example,

#if HASH_TABLE_SIZE % 2 == 0 || HASH_TABLE_SIZE % 3 == 0 \

|| HASH_TABLE_SIZE % 5 == 0

#error HASH_TABLE_SIZE should not be divisible by a small prime

#endif

The command ‘#warning’ is like the command ‘#error’, but causes the preprocessor to
issue a warning and continue preprocessing. The rest of the line that follows ‘#warning’ is
used as the warning message.

You might use ‘#warning’ in obsolete header files, with a message directing the user to
the header file which should be used instead.

1.6 Combining Source Files

One of the jobs of the C preprocessor is to inform the C compiler of where each line of C
code came from: which source file and which line number.

24 The C Preprocessor

C code can come from multiple source files if you use ‘#include’; both ‘#include’ and
the use of conditionals and macros can cause the line number of a line in the preprocessor
output to be different from the line’s number in the original source file. You will appreciate
the value of making both the C compiler (in error messages) and symbolic debuggers such
as GDB use the line numbers in your source file.

The C preprocessor builds on this feature by offering a command by which you can
control the feature explicitly. This is useful when a file for input to the C preprocessor is
the output from another program such as the bison parser generator, which operates on
another file that is the true source file. Parts of the output from bison are generated from
scratch, other parts come from a standard parser file. The rest are copied nearly verbatim
from the source file, but their line numbers in the bison output are not the same as their
original line numbers. Naturally you would like compiler error messages and symbolic
debuggers to know the original source file and line number of each line in the bison output.

bison arranges this by writing ‘#line’ commands into the output file. ‘#line’ is a
command that specifies the original line number and source file name for subsequent input
in the current preprocessor input file. ‘#line’ has three variants:

#line linenum

Here linenum is a decimal integer constant. This specifies that the line number
of the following line of input, in its original source file, was linenum.

#line linenum filename

Here linenum is a decimal integer constant and filename is a string constant.
This specifies that the following line of input came originally from source file
filename and its line number there was linenum. Keep in mind that filename is
not just a file name; it is surrounded by doublequote characters so that it looks
like a string constant.

#line anything else

anything else is checked for macro calls, which are expanded. The result should
be a decimal integer constant followed optionally by a string constant, as de-
scribed above.

‘#line’ commands alter the results of the ‘__FILE__’ and ‘__LINE__’ predefined macros
from that point on. See Section 1.4.3.1 [Standard Predefined], page 8.

1.7 Miscellaneous Preprocessor Commands

This section describes three additional preprocessor commands. They are not very useful,
but are mentioned for completeness.

The null command consists of a ‘#’ followed by a Newline, with only whitespace (includ-
ing comments) in between. A null command is understood as a preprocessor command but
has no effect on the preprocessor output. The primary significance of the existence of the
null command is that an input line consisting of just a ‘#’ will produce no output, rather
than a line of output containing just a ‘#’. Supposedly some old C programs contain such
lines.

The ‘#pragma’ command is specified in the ANSI standard to have an arbitrary
implementation-defined effect. In the GNU C preprocessor, ‘#pragma’ commands are
ignored, except for ‘#pragma once’ (see Section 1.3.4 [Once-Only], page 4).

25

The ‘#ident’ command is supported for compatibility with certain other systems. It is
followed by a line of text. On certain systems, the text is copied into a special place in the
object file; on most systems, the text is ignored and this directive has no effect.

1.8 C Preprocessor Output

The output from the C preprocessor looks much like the input, except that all preprocessor
command lines have been replaced with blank lines and all comments with spaces. White-
space within a line is not altered; however, a space is inserted after the expansions of most
macro calls.

Source file name and line number information is conveyed by lines of the form

linenum filename flag

which are inserted as needed into the middle of the input (but never within a string or
character constant). Such a line means that the following line originated in file filename at
line linenum.

The third field, flag, may be a number, or may be absent. It is ‘1’ for the beginning of
a new source file, and ‘2’ for return to an old source file at the end of an included file. It is
absent otherwise.

1.9 Invoking the C Preprocessor

Most often when you use the C preprocessor you will not have to invoke it explicitly:
the C compiler will do so automatically. However, the preprocessor is sometimes useful
individually.

The C preprocessor expects two file names as arguments, infile and outfile. The prepro-
cessor reads infile together with any other files it specifies with ‘#include’. All the output
generated by the combined input files is written in outfile.

Either infile or outfile may be ‘-’, which as infile means to read from standard input
and as outfile means to write to standard output. Also, if outfile or both file names are
omitted, the standard output and standard input are used for the omitted file names.

Here is a table of command options accepted by the C preprocessor. Most of them can
also be given when compiling a C program; they are passed along automatically to the
preprocessor when it is invoked by the compiler.

‘-P’ Inhibit generation of ‘#’-lines with line-number information in the output from
the preprocessor (see Section 1.8 [Output], page 25). This might be useful when
running the preprocessor on something that is not C code and will be sent to a
program which might be confused by the ‘#’-lines.

‘-C’ Do not discard comments: pass them through to the output file. Comments
appearing in arguments of a macro call will be copied to the output before the
expansion of the macro call.

‘-trigraphs’
Process ANSI standard trigraph sequences. These are three-character
sequences, all starting with ‘??’, that are defined by ANSI C to stand for
single characters. For example, ‘??/’ stands for ‘\’, so ‘’??/n’’ is a character
constant for a newline. Strictly speaking, the GNU C preprocessor does not

26 The C Preprocessor

support all programs in ANSI Standard C unless ‘-trigraphs’ is used, but if
you ever notice the difference it will be with relief.

You don’t want to know any more about trigraphs.

‘-pedantic’
Issue warnings required by the ANSI C standard in certain cases such as when
text other than a comment follows ‘#else’ or ‘#endif’.

‘-I directory’
Add the directory directory to the end of the list of directories to be searched
for header files (see Section 1.3.2 [Include Syntax], page 3). This can be used
to override a system header file, substituting your own version, since these
directories are searched before the system header file directories. If you use
more than one ‘-I’ option, the directories are scanned in left-to-right order; the
standard system directories come after.

‘-I-’ Any directories specified with ‘-I’ options before the ‘-I-’ option are searched
only for the case of ‘#include "file"’; they are not searched for ‘#include
<file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives.

In addition, the ‘-I-’ option inhibits the use of the current directory as the
first search directory for ‘#include "file"’. Therefore, the current directory
is searched only if it is requested explicitly with ‘-I.’. Specifying both ‘-I-’
and ‘-I.’ allows you to control precisely which directories are searched before
the current one and which are searched after.

‘-nostdinc’
Do not search the standard system directories for header files. Only the di-
rectories you have specified with ‘-I’ options (and the current directory, if
appropriate) are searched.

‘-D name’ Predefine name as a macro, with definition ‘1’.

‘-D name=definition’
Predefine name as a macro, with definition definition. There are no restrictions
on the contents of definition, but if you are invoking the preprocessor from a
shell or shell-like program you may need to use the shell’s quoting syntax to
protect characters such as spaces that have a meaning in the shell syntax.

‘-U name’ Do not predefine name. If both ‘-U’ and ‘-D’ are specified for one name, the
‘-U’ beats the ‘-D’ and the name is not predefined.

‘-undef’ Do not predefine any nonstandard macros.

‘-d’ Instead of outputting the result of preprocessing, output a list of ‘#define’
commands for all the macros defined during the execution of the preprocessor.

‘-M’ Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and

27

the names of all the included files. If there are many included files then the rule
is split into several lines using ‘\’-newline.

This feature is used in automatic updating of makefiles.

‘-MM’ Like ‘-M’ but mention only the files included with ‘#include "file"’. System
header files included with ‘#include <file>’ are omitted.

‘-i file’ Process file as input, discarding the resulting output, before processing the
regular input file. Because the output generated from file is discarded, the only
effect of ‘-i file’ is to make the macros defined in file available for use in the
main input.

29

Concept Index

C
cascaded macros . 19
commands . 2
concatenation . 11
conditionals . 19

H
header file . 2

L
line control . 23

M
macro body uses macro . 19

N
null command . 24

O
options . 25
output format . 25

P
predefined macros . 8
preprocessor commands . 2

R
redefining macros . 13
repeated inclusion . 4

S
self-reference . 16
semicolons (after macro calls) 15
side effects (in macro arguments) 16
stringification . 11

U
undefining macros . 13
unsafe macros . 16

31

Index of Commands, Macros and Options

#
#elif . 21
#else . 21
#error . 23
#ident . 24
#if . 20
#ifdef . 22
#ifndef . 22
#include . 3
#line . 23
#pragma . 24
#warning . 23

–
-C . 25
-d . 26
-D . 26
-i . 27
-I . 26
-M . 26
-MM . 27
-pedantic . 26
-P . 25
-trigraphs . 25
-undef . 26
-U . 26

__BASE_FILE__ . 8
__DATE__ . 9
__FILE__ . 8
__LINE__ . 8
__STDC__ . 9
__TIME__ . 9

B
BSD . 10

D
defined . 22

M
m68k . 10
M68020 . 10
mc68000 . 10

N
ns32000 . 10

P
pyr . 10

S
sequent . 10
sun . 10
system header files . 2

U
unix . 10

V
vax . 10

i

Table of Contents

1.1 Transformations Made Globally . 1
1.2 Preprocessor Commands . 2
1.3 Header Files . 2

1.3.1 Uses of Header Files . 2
1.3.2 The ‘#include’ Command . 3
1.3.3 How ‘#include’ Works . 3
1.3.4 Once-Only Include Files . 4

1.4 Macros . 5
1.4.1 Simple Macros . 5
1.4.2 Macros with Arguments . 6
1.4.3 Predefined Macros . 8

1.4.3.1 Standard Predefined Macros . 8
1.4.3.2 Nonstandard Predefined Macros . 9

1.4.4 Stringification . 11
1.4.5 Concatenation . 11
1.4.6 Undefining Macros . 13
1.4.7 Redefining Macros . 13
1.4.8 Pitfalls and Subtleties of Macros . 14

1.4.8.1 Improperly Nested Constructs . 14
1.4.8.2 Unintended Grouping of Arithmetic 14
1.4.8.3 Swallowing the Semicolon . 15
1.4.8.4 Duplication of Side Effects . 16
1.4.8.5 Self-Referential Macros . 16
1.4.8.6 Separate Expansion of Macro Arguments 17
1.4.8.7 Cascaded Use of Macros . 19

1.5 Conditionals . 19
1.5.1 Why Conditionals are Used . 20
1.5.2 Syntax of Conditionals . 20

1.5.2.1 The ‘#if’ Command . 20
1.5.2.2 The ‘#else’ Command . 21
1.5.2.3 The ‘#elif’ Command . 21

1.5.3 Keeping Deleted Code for Future Reference 22
1.5.4 Conditionals and Macros . 22
1.5.5 The ‘#error’ and ‘#warning’ Commands 23

1.6 Combining Source Files . 23
1.7 Miscellaneous Preprocessor Commands . 24
1.8 C Preprocessor Output . 25
1.9 Invoking the C Preprocessor . 25

Concept Index . 29

Index of Commands, Macros and Options 31

	Transformations Made Globally
	Preprocessor Commands
	Header Files
	Uses of Header Files
	The #include Command
	How #include Works
	Once-Only Include Files

	Macros
	Simple Macros
	Macros with Arguments
	Predefined Macros
	Standard Predefined Macros
	Nonstandard Predefined Macros

	Stringification
	Concatenation
	Undefining Macros
	Redefining Macros
	Pitfalls and Subtleties of Macros
	Improperly Nested Constructs
	Unintended Grouping of Arithmetic
	Swallowing the Semicolon
	Duplication of Side Effects
	Self-Referential Macros
	Separate Expansion of Macro Arguments
	Cascaded Use of Macros

	Conditionals
	Why Conditionals are Used
	Syntax of Conditionals
	The #if Command
	The #else Command
	The #elif Command

	Keeping Deleted Code for Future Reference
	Conditionals and Macros
	The #error and #warning Commands

	Combining Source Files
	Miscellaneous Preprocessor Commands
	C Preprocessor Output
	Invoking the C Preprocessor
	Concept Index
	Index of Commands, Macros and Options

