
About FORM

FORM is a symbolic manipulation program that has been de-
signed for large scale formula manipulation. The formulae that
can be handled by FORM are in principle only limited in size
by the available disk space. In addition FORM is optimized for
speed, enabling it to deal with these giant formulae in relatively
little time.

Programs like Macsyma, Maple, Mathematica and Reduce
contain many ready made algorithms for a variety of operations.
The nature of those operations is often of a ‘non local’ nature. An
operation is called non local if it has to combine the input of more
than one term at a time. A good example of a non local operation
is factorisation. The disadvantage of most non local operations is
that they can only work efficiently if all the terms of the expres-
sion they are acting upon are inside the physical memory. This
puts a natural restriction on the size of such expressions.

Local operations take the terms one after each other and pro-
cess them to obtain an output expression. Only at some specific
moments are these output expressions normalised (sorted, same
terms are added, etc.). This sorting operation is currently the
only non local operation in FORM and sorting can be executed
very efficiently, even when disks are involved.

The lack of some of the popular non local expressions isn’t
quite as bad as may seem. Large research problems require usu-
ally special algorithms before it is possible to obtain an answer.
Typical integration problems require fewer than 20 different inte-
grals which can be programmed easily. The one or two integrals
that the computer algebra program cannot solve would have to
be fed in anyway. The much higher execution speed pays back

FORM 1



Chapter 1 About FORM

handsomely on the programmers investment. One popular mode
of operation is to let a computer algebra program do a small ver-
sion of the problem or provide the integrals, and then let FORM

deal with the entire problem, using the partial results of the other
program. This shows that FORM is actually complimentary to
the computer algebra programs.

Another feature of FORM is its ability to deal with vectors,
tensors and indices. There are many built in properties that have
been developed over the past 25 years in programs like Ashmedai,
Reduce and Schoonschip. In addition there are extra properties
that were either missing or considered user unfriendly in these
programs.

The core of the FORM operations is the matching of patterns
and making substitutions based on such patterns. This system is
very versatile and contains types of wildcarding that are entirely
new. In addition there are some built in operations and there
is a number of built in objects (like theta functions, summation
functions, etc.).

The language of FORM has been designed for user friendly-
ness. It is rather simple to use, especially if the user has studied
the tutorial part of the manual first.

FORM runs on most systems as a batch program. Nowadays
the advantage of an interactive program isn’t as great anymore as
it used to be. Small programs can get a decent turn around, and
big programs shouldn’t be run interactively anyway. This makes
it possible to use ones favorite editor for preparing the input.
In addition FORM has become much simpler and can easily be
ported to a large variety of computers, acting the same on each of
them. Currently FORM is available for SUN 4, Apollo (DN3000
and DN10000), Atari ST, VAX (VMS and ultrix), MacIntosh,
Gould (NP1 and 9080) and Alliant. More systems will be added
to this list. There is an extensive manual.

FORM 2



About FORM Some examples

1.1 Some examples

The first example shows some very trivial use:

Symbols a,b;

Local F = (a+b)^10;

print;

.end

Time = 0.13 sec Generated terms = 11

F Terms left = 11

Bytes used = 214

F =

a^10 + 10*a^9*b + 45*a^8*b^2 + 120*a^7*b^3

+ 210*a^6*b^4 + 252*a^5*b^5 + 210*a^4*b^6 + 120*

a^3*b^7 + 45*a^2*b^8 + 10*a*b^9 + b^10;

The variables in FORM have to be declared. In the above pro-
gram a and b are declared as regular objects (called symbols). F
is a local expression. FORM tells then what it did and prints the
answer as we asked for it.

Vectors are used as they are written. If a function has an index
which is contracted with the index of a vector we don’t write the
indices but we write the vector at the position of the index:

Vectors p1,p2,p3,p4,p5,p6;

Indices m1,m2,m3,m4,m5,m6;

Local F = e_(m1,m2,m3)*p1(m1)*p2(m2)*p3(m3)

*e_(m4,m5,m6)*p4(m4)*p5(m5)*p6(m6);

print;

.sort

Time = 0.05 sec Generated terms = 1

F Terms left = 1

Bytes used = 30

FORM 3



About FORM Some examples

F =

e_(p1,p2,p3)*e_(p4,p5,p6);

contract;

print;

.end

Time = 0.08 sec Generated terms = 6

F Terms left = 6

Bytes used = 182

F =

p1.p4*p2.p5*p3.p6 - p1.p4*p2.p6*p3.p5 - p1.p5*

p2.p4*p3.p6 + p1.p5*p2.p6*p3.p4 + p1.p6*p2.p4*

p3.p5 - p1.p6*p2.p5*p3.p4;

We see here that FORM does indeed rewrite the index contrac-
tions. The tensor e_ is the built in Levi-Civita tensor which is used
for external products. —FORM knows how to contract them into
scalar products if there is more than one. This is only done on
request.

Finally we have an example of a medium sized expression. It
is an evaluation of a trace in a Dirac algebra.

Indices m1,m2,m3,m4,m5,m6,m7,m8,m9,ma,mb,mc,md,me;

Local F =

g_(1,m1,m2,m3,m4,m5,m6,m7,m8,m9,ma,mb,mc,md,me);

Trace4,1;

.end

Time = 57.33 sec Generated terms = 31599

F Terms in output = 26931

Bytes used = 1077242

This program was run on an Apollo DN3500 (68030).

FORM 4


