
Undo

U-2 Statement of Purpose
U-2 What is Undo?
U-2 Change Objects
U-3 Implementing a Change Class
U-4 Using Change Objects
U-6 Change Manager
U-7 The Undo/Redo Menu Items
U-7 Updating Menu Items
U-8 Making Your Application Undoable

Statement of Purpose

The purpose of this chapter is to explain how the undo feature 
was added to the Draw example application. Our goal is to enable
you, an experienced NeXT application developer, to use the ideas 
presented here to add Undo to your own application. We've 
designed the Undo code so that the parts not directly concerned 
with Draw can be easily incorporated into your application.

What is Undo?

Undo enables a user to reverse or rollback the effects of previous 
and potentially destructive operations. This feature is most often 
used to undo an unintended or unexpected action, but it also lets 
users experiment with different commands to see how they work. 



Users can also re-issue an action that was previously undone. This
is called ªredo.º

The most obvious manifestation of undo capability in Draw are 
two new menu items in the Edit menu. These menu items contain 
the name of actions that can be undone and redone. In this case, 
actions are things like moving a Graphic, deleting a Graphic, or 
creating a new Graphic. In the version of Draw that we've 
compiled for you, two menu items implement multiple-undo. Later
on we'll show you how to easily implement single-level undo.

Change Objects

Before we go on, we should formalize the notion of a user action. 
There are many different kinds of user actions, but we're only 
interested in the ones that cause the state of a document or an 
important part of the application to change. If your application 
uses documents like Draw, then any operation which would 
normally cause the document to become ªdirtyº should be 
undoable. Even if your application doesn't use documents, you 
can still make the editing in your text fields undoable.

From now on, instead of talking about user actions, we'll refer to 
undoable user actions as ªchanges.º In fact, there's a class called 
Change that is used to represent changes. Each time the user 
does something that's undoable, the application will create an 
instance of a subclass of Change, which we'll call a ªchange 
object.º

Each change object encapsulates all the information necessary to 
undo and redo its corresponding user action. A simple example is 
a change that represents a modification to the floating point value



of a control. The change object for this action would need to 
record which view got modified, the value before the change, and 
the new value after the change. Undoing the change is a simple 
matter of copying the old value back into the control, while 
undoing the undo (redo) requires that you re-copy the new value 
into the control.

Implementing a Change Class

To see how this works, lets implement a simple Change class 
called FloatValueChange. Here's the interface:

@interface FloatValueChange : Change
{

id myView;
float oldValue;
float newValue;

}

- initView:changedView;
- saveBeforeChange;
- saveAfterChange;
- undoChange;
- redoChange;
- (const char *)changeName;

@end

As described above, the instance variables record the view which 
will be modified, the original value and the new value. The 
initView: method is the designated initializer for our class, and 
the following four methods override standard methods found in 
the Change class. The last method returns a name string that 
appears in the undo/redo menu items.



The saveBeforeChange method is used to set the oldValue 
variable, while saveAfterChange sets the newValue. When the 
user wants to undo this operation, undoChange will be called to 
restore the oldValue. Similarly, redoChange copies newValue into
myView. Here are the implementations:

@implementation FloatValueChange

- initView:changedView
{

[super init];
myView = changedView;
return self;

}

- saveBeforeChange
{

oldValue = [myView floatValue];
return self;

}

- saveAfterChange
{

newValue = [myView floatValue];
return self;

}

- undoChange
{

[myView setFloatValue:oldValue];
return self;

}

- redoChange
{

[myView setFloatValue:newValue];
return self;

}



- (const char *)changeName
{

return("Float");
}

@end

All change classes follow the same pattern as the simple one we 
just created. The change object is responsible for saving the state 
of the document, view, or whatever object is about to be 
modified, before and after the modification. It also needs to be 
able to restore the state to the way it was either before or after 
the modification.

You might have noticed that FloatValueChange doesn't know what
the actual change is. The reason for this is that if the change was 
a complicated calculation, it could be too expensive or even 
impossible to duplicate the same calculation twice. So, in general,
change objects have no knowledge about how changes are made 
in the first place, but do understand how to save and restore state
information.

Using Change Objects

Obviously, things do change in a running application, so let's 
examine how modifications are made using change objects. The 
only method of our undoable control that we need to modify is the
one that sets the floatValue. Here it is:

@implementation MyUndoControl

- setFloatValue:(float)value
{



id change;

change = [[FloatValueChange alloc] initView:self];
[change startChange];

floatValue = value;
[change endChange];

return self;
}

@end

When setFloatValue: is called, we know that some other part of 
the application wants to update the value of the control. The 
implementation above first allocates a blank change object and 
then initializes it. The call to startChange lets the change object 
know that the control is about to modify itself. The call to 
startChange will eventually result in a call to 
saveBeforeChange. We didn't have to implement startChange 
in our change class above because it was inherited from the 
generic Change class.

The next step is to update the internal data structures, with an 
assignment statement in this case. Finally, we let the change 
know that we're done by calling endChange which ends up 
calling saveAfterChange. This is the basic pattern for any 
modification to a data structure that should be undoable. Simply 
create an instance of the appropriate kind of change object and 
give it control before and after the modification is to be made.

You can write your own classes to know about change objects 
from the start, but it is often more convenient to create a subclass
that adds the change object code. This makes it very easy to add 
undo functionality to an application that already exists, because 



you only have to think about undo when everything else already 
works.

Change Manager

Change objects do most of the work for you in terms of 
implementing undo. However, there's another part to the story. 
Whenever the startChange method of a change object is called, 
a search is made up the responder chain to find the nearest 
change manager.

A change manager is an object that collects the individual change
objects and makes them available to the user via the undo/redo 
menu items. The change manager is also responsible for freeing 
change objects when they're no longer needed.

As an application runs, its change managers wait for changes to 
be passed to them via the responder chain. Typically, a view deep
in the view hierarchy for a window will create a change object and
then call startChange. The change object then broadcasts the 
changeInProgress: method on the responder chain. The search 
up the chain eventually reaches a change manager which replies 
with a saveBeforeChange message.

In document oriented applications, like Draw, it is very easy to 
derive your document class from the ChangeManager class. Since
document objects are typically installed as the delegate of their 
window, the ChangeManager will govern all changes that occur 
within that particular document.

If you would rather implement application-wide undo, simply 
install a ChangeManager as the delegate of your application, so 



that all change objects are governed by the same 
ChangeManager. You can also add ChangeManagers in other 
places in the responder chain if you need to. However, it might be
difficult to determine which ChangeManager should control the 
undo and redo menu items.

The Undo/Redo Menu Items

The ChangeManager class implements three target-action 
methods that can be connected to menu items. The first, 
undoOrRedoChange: implements single-level undo. This means 
that only the last change will be undoable, and after it is undone, 
the menu shows Redo with the same change. For most 
applications, its just as easy to implement multiple-undo as it is 
single-undo. 

You might consider using single-level undo if it greatly simplifies 
the user interface of your application. Also, if you choose not to 
make the creation and deletion of objects undoable, then you 
should consider using single-level undo. The reason for this is if 
you try to redo a modification to an object that doesn't exist 
(because it couldn't be re-created), either your application or the 
user could become very confused.

The other two methods, undoChange: and redoChange: work 
as a pair. Together these implement multiple-undo. This means 
that every change going back in time is either undoable or 
redoable, and there are separate menu items for undo and redo. 
Connect the undo menu item to undoChange: and the redo 
menu item to redoChange:.

Multiple-undo is much nicer for the user, and you should 



implement it if you can. You'll need to make the creation and 
deletion of objects undoable for the reasons mentioned above. 
You should also make sure that none of your change objects 
depend on global variables that might be modified between the 
time the change object was created than the time the user wants 
to undo or redo a change.

The file ChangeManager.m defines a constant N_LEVEL_UNDO 
which tells the ChangeManager how many levels of changes to 
keep track of. To get single-level undo simply set this constant to 
1. For multiple-undo set it to any number you like, but give some 
thought to how large your change objects are likely to be and how
much memory you can afford to spend on your undo history.

Updating the Menu Items

The ChangeManager class supports the validateMenuItem: 
method to automatically update the undo menu items after each 
change. This method is passed the id of the menu item to be 
validate. It examines the action field of the menu item to 
determine which menu item is being validated and will update the
title of the menu item to reflect the name of the change to be 
undone or redone.

The title of the menu cells are calculated from the changeName 
method of the change objects. The ChangeManager prepends 
either ªUndoº or ªRedoº as appropriate.

Making your Application Undoable

Once you understand how the undo mechanism works, it's 
straightforward to make your application undoable. Here are the 



steps involved:

1) Examine your application and determine which modifications
should be undoable. Then create your subclasses of Change to 
represent these changes.

2) Decide where your ChangeManagers should be located. For 
document-level undo, make them delegates of your document 
objects or derive your document class from ChangeManager. 
For application-wide undo, put a ChangeManager behind the 
application object. The important thing is to make sure each 
ChangeManager is located on the responder chain above any 
views where change objects will be created.

3) Modify your existing code to create change objects for each 
user action to be undoable. The easiest way to do this may be 
to create an undoable subclass of each view that causes 
changes. Then you can simply override the methods that 
update data structures to be like setFloatValue: above. 
Another option is to add change code directly to each view 
class, which is what we did with GraphicView in the Draw 
example. 

4) Decide whether you want single-level undo or multiple-undo.
For single-level, add one new menu item and connect it to your 
ChangeManager with the undoOrRedoChange: method. Do 
this in Interface Builder. If you want multiple-undo, create two 
new menu items that are connected to the undoChange: and 
redoChange: methods. Make sure that the update actions of 
these menu items are set to validateMenuItem:.

5) Make sure that the Change and ChangeManager classes 



along with all your new change classes are linked into the 
application. After you recompile, you application will have 
undo!


