
ChangeManager
INHERITS FROM Responder : Object
DECLARED IN ChangeManager.h

CLASS DESCRIPTION
The ChangeManager class is the part of the undo mechanism that
collects change objects and manipulates the undo and redo menu
items. This class works with the Change class to provide a simple
way to implement multi-level undo. Change managers communicate
with change objects through the responder chain. By deriving
window delegates from ChangeManager you can easily implement
document-level undo. By installing a change manager as an
application delegate you can also implement application wide undo.

INSTANCE VARIABLES
Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Declared in ChangeManager List*_changesList;
Change *_lastChange;

Change *_nextChange;
Change *_changeInProgress;
int

_numberOfDoneChanges;
int

_numberOfUndoneChanges;
int

_numberOfDoneChangesAtLastClean;
BOOL

_someChangesForgotten;
int _changesDisabled;

_changesList A list of changes that have been
made.

_lastChange The id of the change that can be
undone.

_nextChange The id of the change that can be
redone.

_changeInProgress The id of the change which is
currently underway.

_numberOfDoneChanges The number of changes made.

_numberOfUndoneChanges The number of changes that have

been undone.

_numberofDoneChangesAtLastClean A count of
changes made when clean was
last called.

_someChangesForgotten YES if some changes have been
thrown away

_changesDisabled The number of nested calls to
disableChanges:.

METHOD TYPES
Initializing and freeing - init

± free

Disabling undo ± disableChanges:
± enableChanges:

Examining state ± canUndo
± canRedo
± isDirty

Setting state ± dirty:
± clean:
± reset:

Validating Menu Commands ± validateCommand:

Undoing and Redoing ± undoOrRedoChange:

± undoChange:
± redoChange:

Tracking change progress ± changeInProgress:
± changeComplete:

Subclass notification ± changeWasDone
± changeWasUndone
± changeWasRedone

INSTANCE METHODS

canRedo
- (BOOL)canRedo
Returns YES if there is a Change that can be redone. The name of
this Change will be visible in the redo or undo/redo menu item. You
should not need to override this method.
See also:    ± validateCommand:

canUndo
- (BOOL)canUndo
Returns YES if there is a Change that can be undone. The name of
this Change will be visible in the undo or undo/redo menu item. You
should not override this method.
See also:    ± validateCommand:

changeComplete:
- changeComplete:change

Called by Change objects to signify that change is done. The
receiving ChangeManager will then ask change to save the new
state information via saveAfterChange. Just before returning, the
changeComplete: method sends a changeWasDone message to
self, which provides subclasses of ChangeManager with an
opportunity to react to the change. You should never call
changeComplete: directly, nor should you override it.
See also:    ± changeInProgress:, ± changeWasDone, ±
saveAfterChange (Change)

changeInProgress:
- changeInProgress:change

Called by Change objects to signify that a change is about to be
made. If changes have been disabled using disableChanges: then
changeInProgress: will send a disable message to change and
immediately return. If changes have not been disabled, the
receiving ChangeManager tries to find a home for change. If
another Change is already in progress that Change is sent an
incorporateChange: message with change as the argument. If the
Change in progress returns YES then change is sent a
saveBeforeChange message, otherwise it is sent a disable
message. If there is no Change already in progress, but there is a
previous completed Change then the previous Change is sent a
subsumeChange: message with change as the argument. If the
previous Change returns YES then change is sent a disable
message. If the previous Change returns NO, or if there is no
previous Change, change is sent a saveBeforeChange message
and set to be the current Change in progress, and the previous
Change, if there is one, is sent a finishChange message. You
should never need to call changeInProgress: directly, nor should

you need to override it.
See also:    ± changeComplete:, ± saveBeforeChange (Change),
± incorporateChange: (Change), ± subsumeChange: (Change),
± finishChange (Change)

changeWasDone
- changeWasDone
Override this method if your subclass needs to know when a change
has been made. For example, this hook can be used to update the
close box on a document window to reflect the dirty state of the
ChangeManager. You should not call this method directly.
See also:    ± changeWasRedone, ± changeWasUndone, ±
isDirty

changeWasRedone
- changeWasRedone
Override this method if your subclass needs to know when a change
has been redone. For example, this hook can be used to update the
close box on a document window to reflect the dirty state of the
ChangeManager. You should not call this method directly.
See also:    ± changeWasDone, ± changeWasUndone, ± isDirty

changeWasUndone
- changeWasUndone
Override this method if your subclass needs to know when a change
has been undone. For example, this hook can be used to update the
close box on a document window to reflect the dirty state of the
ChangeManager. You should not call this method directly.

See also:    ± changeWasDone, ± changeWasRedone, ± isDirty

clean:
- clean:sender

Tells the receiving ChangeManager to consider its current state to
be clean. Calls to isDirty will return NO until further change activity
occurs. In ChangeManagers that correspond to documents, you
should call clean: each time the document is saved. By doing this,
the isDirty method can be used to tell whether the saved
representation of the document matches the internal memory
representation. When overriding this method you should begin your
method with ª[super clean:sender]º.
See also:    ± dirty:, ± reset:, ± isDirty

dirty:
- dirty:sender

Forces the receiving ChangeManager to appear dirty. Call this
method when your code as made a change that wasn't recorded
with a Change object. After a dirty message is received the isDirty
method will return YES until a clean: or reset: message is received.
When overriding this method you should begin your method with
ª[super dirty:sender]º.
See also:    ± clean:, ± reset:, ± isDirty

disableChanges:
- disableChanges:sender

This method increments the receiver's changesDisabled instance
variable. As long as changesDisabled is non-zero, new change

objects will be disabled. You should not need to override this
method.
See also: ± enableChanges, ± disable (Change)

enableChanges:
- enableChanges:sender

Decrements the receiver's changesDisabled instance variable. You
should not need to override this method.
See also:    ± disableChanges

free
- free
Calls reset: to clean out any change objects and frees the
ChangeManager object.

init
- init
Initializes the receiver, a newly allocated ChangeManager object.

isDirty
- (BOOL)isDirty
Returns NO if no net change activity has occurred since the
ChangeManager was initialized or since the last clean: or reset:
message was received. For example, if a single Change has been
undone and then redone since the last clean: message, then isDirty
will return NO. The completion of the next new, non-disabled
Change will cause isDirty to return YES. You should not need to
override this method.

See also:    ± disableChanges:, ± clean:, ± dirty:, ± reset:

redoChange:
- redoChange:sender

This method should be the action performed by the redo menu item
in an application with multiple-undo. The redoChange: method
sends a redoChange message to the last Change that was undone.
The name of this Change will then appear in the undo menu item.
Your application should not use both redoChange: and
undoOrRedoChange: at the same time. You should not need to
override this method.
See also:    ± undoChange:, ± undoOrRedoChange:

reset:
- reset:sender

Causes the receiving ChangeManager to free all the Change objects
that it is managing. The state of the ChangeManager is re-initialized
to the state after it first received the init message. When overriding
this method you should begin your method with ª[super
reset:sender]º.

undoChange:
- undoChange:sender

This method should be the action performed by the undo menu item
in an application with multiple-undo. The undoChange: method
sends an undoChange message to the last Change that was done
or redone. The name of this Change will then appear in the redo
menu item. Your application should not use both undoChange: and
undoOrRedoChange: at the same time. You should not need to

override this method.
See also:    ± redoChange:, ± undoOrRedoChange:

undoOrRedoChange:
- undoOrRedoChange:sender

This method should be the action performed by the undo menu item
in an application offering single-level undo. If the last change has
already been done, then it will be undone. If was just undone, then
it will be redone. In order to make your application use single-level
undo you must edit ChangeManager.m and define the
N_LEVEL_UNDO constant to be 1. Your application should not use
both undoChange: and undoOrRedoChange: at the same time.
You should not need to override this method.

Although undoOrRedoChange: is really intended for applications
with single-level undo, it will attempt to do something reasonable in
applications with multiple-undo. If there is a Change that can be
undone undoOrRedoChange: sends an undoChange message to
the Change. If there is no Change that can be undone, but there is a
Change that can be redone then undoOrRedoChange: sends a
redoChange message to the Change.
See also:    ± undoChange:, ± redoChange:

validateCommand:
- (BOOL)validateCommand:menuCell

This method can be used to change the state of menu items
corresponding to undo, redo and undo/redo. Use this method as the
update action for menu cells that invoke undoChange:,
redoChange:, or undoOrRedoChange:. The value returned is YES

if the command specified in the update action of menuCell is valid.

Independent of whether the command is valid or not, the change
manager may update the title of menuCell to contain the correct
name of the current changes.
See also:    ± undoChange:, ± redoChange:, ±
undoOrRedoChange:, ± setUpdateAction:forMenu: (MenuCell)

