
Change 
INHERITS FROM Object
DECLARED IN Change.h

CLASS DESCRIPTION
The Change class is an abstract superclass that is part of the undo 
mechanism. Create subclasses of Change to represent user actions
that should be undoable. Each time the user performs one of these
actions, your application should create a change object (an 
instance of a subclass of Change).

INSTANCE VARIABLES
Inherited from Object Class isa;

Declared in Changestruct {
unsigned int disabled:1;
unsigned int hasBeenDone:1;
unsigned int

changeInProgress:1;
unsigned int padding:29;



} _changeFlags;
id _changeManager;

_changeFlags.disabled YES if this change should not be 
remembered.

_changeFlags.hasBeenDone YES after the change has been 
originally made or redone.

_changeFlags.changeInProgress YES if the change has not yet been
done the first time.

_changeManager The id of the ChangeManager that 
owns this change.

METHOD TYPES
Initializing a Change - init

Called by application code ± startChange
± startChangeIn:
± endChange
± changeManager

Called by ChangeManager ± disable
± disabled
± hasBeenDone
± changeInProgress
± changeName



Used exclusively by ChangeManager ± 
saveBeforeChange

± saveAfterChange
± undoChange
± redoChange
± subsumeChange:
± incorporateChange:
± finishChange

INSTANCE METHODS

changeInProgress
- (BOOL)changeInProgress
Returns YES if the receiving Change has been sent a startChange 
or startChangeIn: message but has not yet received an 
endChange message. You should not need to override this 
method.
See also:    ± startChange, ± endChange

changeManager
- changeManager
Returns the ChangeManager responsible for handling the receiving 
Change. This method will return nil until either a startChange or 
startChangeIn: message has been sent to the Change, at which 
point the Change will find the responsible ChangeManager by 
searching up the responder chain for the nearest ChangeManager. 
You should not need to override this method.
See also:    ± startChange



changeName
- (const char *)changeName
Override this method to return the name to be used by the 
ChangeManager in the Undo and Redo menu items. This method is 
called by validateCommand: in the ChangeManager class.
See also:    ± validateCommand: (ChangeManager)

disable
- disable
This method is called to tell the receiving Change that it won't be 
recorded as an explicit change, and won't ever be asked to 
undoChange or redoChange. The actual changes represented by
the change object will still take place, but the ChangeManager 
won't record them as a separate action. ChangeManager does not 
send saveBeforeChange and saveAfterChange messages to 
disabled Change objects. A Change object will be disabled by its 
ChangeManager if any of the following conditions are true: changes
have been explicitly disabled in the ChangeManager; the Change 
was initiated while another Change was already in progress and 
the Change in progress declined to incorporateChange: the new 
change; or the previous (complete) Change elects to 
subsumeChange: the new Change. You should not need to 
override this method.
See also:    ± saveBeforeChange, ± saveAfterChange, ± 
incorporateChange:, ± subsumeChange:, ± disableChanges:
(ChangeManager)



disabled
- (BOOL)disabled
Returns YES if the change object has received a disable message.
See also:    ± disable

endChange
- endChange
Signals that a change is complete. This method should be called 
after the startChange method or startChangeIn: method has 
been sent to the same Change. If the receiver has not been 
disabled, the endChange method will send a changeComplete: 
message to the receiver's ChangeManager. Before this method 
returns, the ChangeManager will send a saveAfterChange 
message back to the Change. If the receiver has been disabled or 
was unable to find a ChangeManager when it started then 
endChange will cause the receiver to free itself. You should not 
need to override this method.
See also:    ± saveAfterChange, ± startChange, ± 
changeComplete: (ChangeManager)

finishChange
- finishChange
The vast majority of all subclasses of Change will not need to use 
this method. The finishChange method is intended to be 
overridden only in subclasses who's instances subsume other 
Change instances, and only then by subclasses that need to 
perform some special action after the last subsumable Change has 
been subsumed. ChangeManager sends finishChange just before 



the receiving Change is asked to undoChange or just after the 
receiving Change declines to subsumeChange: another Change. 
If a change is repeatedly undone and redone, the ChangeManager 
will repeatedly send the finishChange message to the same 
Change, so it is important that the Change keep track of whether 
this method has already been called.
See also:    ± subsumeChange:

hasBeenDone
- (BOOL)hasBeenDone
Returns YES if the Change has been done for the first time or if the 
change has been redone. Specifically, hasBeenDone returns NO if
the receiver has never been sent an endChange message or if the
receiver has been sent an undoChange message more recently 
than a redoChange message.

incorporateChange:
- (BOOL)incorporateChange:change

The incorporateChange: method is called by the ChangeManager
if the receiving Change is in progress when a new change is 
initiated. The receiving Change is given the opportunity to 
incorporate the new change. This mechanism can be used when 
one user action would create multiple Change objects. For 
example, a paste command might implemented using two 
independent, Change producing methods, one for deleting the 
current selection and one for creating the new selection. In this 
case, both the deletion Change and the creation Change should 
really be part of a single paste Change, which will incorporate them
as sub-changes. Unlike subsumeChange:, this method is called 



only when a Change is in progress. 

Most subclasses of Change will not need to use this method. You 
should never need to call this method directly, although you may 
occasionally want to override it. Your implementation should return
YES if the specified change should be incorporated into the 
receiving Change. By returning YES, the receiving Change accepts 
responsibility for the incorporated change, and the 
ChangeManager will not keep track of it nor free it. Your 
implementation should return NO when change can't or shouldn't 
be incorporated in the receiving Change. In this case, change will 
be disabled and ignored. The default implementation always 
returns NO. Note that in either case the receiving Change must still
be able to undo any changes in state that happen from the time it 
receives a startChange message until it receives an endChange 
message. 
See also:    ± disable, ± subsumeChange:

init
- init
Initializes the receiver, a newly allocated Change object.

redoChange
- redoChange
Called by the change manager to re-issue a change after it has 
been undone. This is accomplished by restoring the state of the 
application using the state information recorded by 
saveAfterChange. You should not need to call this method 
directly. When overriding this method you should end your method 



with ªreturn [super redoChange]º.
See also:    ± undoChange, ± saveAfterChange

saveAfterChange
- saveAfterChange
Called by the ChangeManager after the receiving Change is sent 
an endChange message, provided the Change is not disabled. 
Override this method to save any state information modified during
the course of the change. This state information can be used by 
the redoChange method to redo a change after it has been 
undone. You should not need to call this method directly. 
See also:    ± saveBeforeChange, ± redoChange

saveBeforeChange
- saveBeforeChange
Called by the ChangeManager after the receiving Change is sent a 
startChange or startChangeIn: message, provided the Change 
is not disabled. Override this method to save any state information 
necessary to undo the change later on. For example, if a change 
causes a variable to be updated, the saveBeforeChange method 
could save the current value of the variable for later use by 
undoChange. You should not need to call this method directly.
See also:    ± saveAfterChange, ± undoChange

startChange
- startChange
This method, or its sibling method startChangeIn:, is called once 



per Change by your application code to signal that a change is 
about to take place. The Change will open a connection to the 
nearest ChangeManager on the responder chain. The id of this 
ChangeManager will be saved in the changeManager instance 
variable. If the application is not active startChange will fail to 
find a ChangeManager. Use startChangeIn: instead of 
startChange if the application is not active. The startChange 
method will return nil if no ChangeManager is found. If a 
ChangeManager is found, it will be sent a changeInProgress: 
message and it will either send the Change either a disable 
message or a saveBeforeChange message before startChange 
returns. The code for causing the change should follow a call to 
startChange and should be followed directly by a call to 
endChange. You should not need to override this method.
See also:    ± endChange, ± saveBeforeChange, ± 
startChangeIn:, ± isActive (Application)

startChangeIn:
- startChangeIn:aView

This method is identical to the startChange method, except that 
startChangeIn: may successfully locate a ChangeManager even if
the application is not the active application, which startChange 
will not. In order to find a ChangeManager startChangeIn: must 
be passed aView in which the change is occurring, which it will use 
to find the beginning of the responder chain. You should not need 
to override this method.
See also:    ± endChange, ± saveBeforeChange, ± 
startChange, ± isActive (Application)



subsumeChange:
- (BOOL)subsumeChange:change

This method is called by the ChangeManager to offer the receiver 
(which is the last completed Change) the opportunity to subsume 
the next Change about to be performed by the application. 
Override this method when you want to coalesce a series of similar
Changes into one large Change. For example, a series of cursor 
movements could be collapsed into a single Change. The first 
Change created by cursor movement would subsume all cursor 
Changes following it directly. The ChangeManager only calls this 
method on completed Changes.

Most subclasses of Change will not need to use this method. You 
should never need to call this method directly, although you may 
occasionally want to override it. Your implementation should return
YES if you wish to signal that change should be subsumed. In this 
case, change will be disabled and will be freed as soon as it 
receives an endChange message. Note that the current change is 
expected to be able to undo any changes in state that occur before
change receives the endChange message. You should return NO 
when change cannot be subsumed by the current change. When 
this happens, the ChangeManager will send the receiver a 
finishChange message and then record change as an 
independent change The default implementation always returns 
NO.
See also:    ± disable, ± incorporateChange:

undoChange
- undoChange



This method tells the receiving Change to restore the state 
information first saved when saveBeforeChange was called. This 
information should be sufficient to restore the state of the 
application to the way it was before the change took place. This 
method may either be called to undo the Change after the first 
time the Change was made, or after a Change has been redone. 
You should not need to call this method directly. When overriding 
this method you should end your method with ªreturn [super 
undoChange]º.
See also:    ± redoChange, ± saveBeforeChange


