
for Release 2.0    written by C. L. Oei, NeXT Computer, Inc.

Subprocess
INHERITS FROM Object

REQUIRES HEADER FILES Subprocess.h

DEFINED IN NextDeveloper/Examples/Subprocess,
release 2.0

CLASS DESCRIPTION

Subprocess facilitates the management of concurrent, asynchronous UNIX processes 
within a NeXTstep application.    Methods are provided for the creation, termination and 
communication with the underlying UNIX process.    The UNIX subprocess 
communicates with its parent NeXTstep application through delegation.    Three delegate
methods provide notification of pending output, termination and errors from the UNIX 
subprocess.    It is the responsibility of the Subprocess instantiator to implement the three
delegate methods and decide what to do with the resulting data.    In addition to 
providing a controlled NeXTstep interface to standard UNIX utilities (i.e., ls, find, 
man,rdist), the Subprocess can also provide, on request, the environment necessary for 
UNIX processes requiring pseudo terminal (or pty) support.    Some UNIX applications 
that require pty support include ftp, gdb, sh, csh, kermit, and tip.

INSTANCE VARIABLES



Inherited from Object Class isa;

Declared in Subprocess id delegate;
FILE *fpToChild;
int fromChild;
int childPid;

delegate The object that receives notification messages 
from th&C#bprocess.

fpToChild File pointer to the standard input of the child 
subprocess.

fromChild File descriptor from the standard output of the 
child subprocess.

childPid The process id number of the child subprocess.

METHOD TYPES

Initializing a Subprocess - init:
- init:withDelegate:andPtySupport:andStdError:

Terminating a Subprocess - terminate:

Sending Data to a Subprocess - send: 
- send:withNewline:
- terminateInput

Assigning a Delegate - setDelegate: 



- delegate 

Messages Implemented by the Delegate
- subprocessDone
- subprocessError: 
- subprocessOutput: 

INSTANCE METHODS

init:
- init:(const char *)subprocessString

Spawns the subprocess as specified in subprocessString.    This method applies the 
init:withDelegate:andPtySupport:andStdError: method with no delegate, no pseudo 
terminal support, and requests that standard error for the subprocess be returned with the
standard output buffer.

See also:    - init:withDelegate:andPtySupport:andStdError:, ± terminate:

&C$:withDelegate:andPtySupport:andStdError:
- init:(const char *)subprocessString
        withDelegate:theDelegate
        andPtySupport:(BOOL)wantsPty
        andStdErr:(BOOL)wantsStdErr;

Spawns the subprocess as specified in subprocessString as a separate UNIX process and



attaches the subprocess' standard input and standard output to the Subprocess instance 
for future operations.    If wantsStdErr is YES, then the subprocess' standard error will 
be returned with the standard output buffer.    Set wantsPty to YES if the UNIX 
subprocess requires pseudo terminal support (see the UNIX manual page pty(4) for 
more information on pseudo terminals).    TheDelegate should be able to respond to any 
of the three methods described below.

See also:    - init:, ± terminate:

INSTANCE METHODS

delegate
- delegate

Returns the Subprocess object's delegate.

See also:    ± setDelegate:

send:withNewline:
- (BOOL)send:(const char *)string withNewline:(BOOL)wantNewline

Sends string to the UNIX subprocess.    If wantNewline is YES, a newline is also sent to 
the subprocess. 

See also:    ± send:



send:
- send:(const char *)string

Sends string to the UNIX subprocess automatically appending a newline.    This method 
applies the send:withNewline: method.

See also:    ± send:withNewline:

setDelegate:
- setDelegate:anObject

Makes anObject the Subprocess' delegate.    The delegate should be able to (but is not 
necessaril&C%quired to) respond to the messages subprocessDone, subprocessError:,
and subprocessOutput:.    See methods implemented by the delegate below.

See also:    ± delegate:

terminate:
- terminate:sender

Forces the subprocess to terminate gracefully.    Closes all communication connections 
to the subprocess and sends a terminate signal (SIGTERM) to the subprocess.    Sending 
this message implies sending the terminateInput message.

You should terminate a subprocess instance before your application terminates.    One 
way would be to override the Application object's delegate appWillTerminate: method 
with an intervening message to terminate the subprocess object.



Sending terminate: multiple times will not cause undesirable effects.

See also:    ± terminateInput, subprocessDone:

terminateInput
- terminateInput

Closes the standard input communication connection to the subprocess, which 
effectively sends an end-of-file (EOF) to the subprocess.

METHODS IMPLEMENTED BY THE DELEGATE

subprocessDone:
- subprocessDone

Sent to the delegate, if any, when the subprocess has terminated.    You will have to 
decide whether termination of the subprocess warrants the termination of your 
application.    Implies that the actions of sending a terminate: message has completed.

See also:    ± terminate:

subprocessError:
- subprocessOutput:(const char *)errorString;

Sent to the delegate, if any, when a fatal error occurs during the management of the 
subprocess.    If a fatal error occurs, it is usually during subprocess creation.    It is up to 
the delegate to decide if an error warrants termination of the application. Possible errors 



include, but are not limited to

± "Error grabbing ptys for subprocess."
± "Error starting UNIX pipes to subprocess."
± "Error starting UNIX vfork of subprocess."

subprocessOutput:
- subprocessOutput:(char *)buffer;

Sent to the delegate, if any, when there is output data available from the subprocess.    
Buffer is only valid until the next time a subprocessOutput: message is sent, so make a 
copy of buffer if future processing is necessary.    You should choose carefully when 
deciding whether or not to send a send: message to the subprocess in this delegate 
method implementation.    Sending a message may create a deadlock situation in your 
application. 
C"


