
About Undo in Draw

This new version of Draw implements a multi-level undo feature. The purpose of this
example is to demonstrate how to add undo to an already existing application. We've
designed the undo code so that the parts not directly concerned with Draw can be
easily incorporated into your application. This document focuses on the Draw specific
details of the undo code, rather than the reusable undo components. Before reading
this document you should read the more general Undo documentation and maybe
look over the reference documentation for the Change and ChangeManager classes.
If you are not already familiar with the Draw example you will probably also want to
read the more general Draw README document before diving in here.

Structure
This example is broken up into one main project and three subprojects, as follows:

Draw project RW`original Draw example classes, slightly modified to
work with the undo system.

undo.subproj The reusable Change and ChangeManager classes.
textUndo.subproj The reusable UndoText class and its supporting classes.
graphicsUndo.subprojThe custom subclasses of Change created for Draw specific

changes such as resizing a graphic.

This example is broken up into one main project and three subprojects.

Classes in the Draw project

Responder
 Application
 DrawApp
 PageLayout
 DrawPageLayout
 View

 GraphicView
 GridView
 Ruler
 ScrollView
 SyncScrollView

Responder
 ChangeManager
 DrawDocument

Inspector
Graphic
 Circle
 Group
 Image
 PSGraphic
 Rectangle
 TextGraphic
 Tiff
 Scribble
 Polygon
 Line
 Curve

Classes in undo.subproj
Change

MultipleChange
Responder
 ChangeManager

Classes in textUndo.subproj
Responder
 View

Text
 UndoText
Change
 TextChange
 TextSelChange

 DeleteTextChange
 PasteTextChange
 TextSelColorChange
 WholeTextChange

 TypingTextChange
TextSelection
 CutSelection

Classes in graphicsUndo.subproj
Change
 CreateGraphicsChange
 EndEditingGraphicsChange
 GridChange
 PerformTextGraphicsChange
 StartEditingGraphicsChange
 UngroupGraphicsChange -- uses OrderChangeDetail
 GraphicsChange
 DeleteGraphicsChange -- uses OrderChangeDetail
 CutGraphicsChange -- uses OrderChangeDetail
 GroupGraphicsChange -- uses OrderChangeDetail
 LockGraphicsChange
 PasteGraphicsChange
 ReorderGraphicsChange -- uses OrderChangeDetail
 BringToFrontGraphicsChange RWases OrderChangeDetail
 SendToBackGraphicsChange -- uses OrderChangeDetail
 ResizeGraphicsChange
 UnlockGraphicsChange
 SimpleGraphicsChange
 AlignGraphicsChange -- uses DimensionsChangeDetail
 AspectRatioGraphicsChange -- uses DimensionsChangeDetail
 DimensionsGraphicsChange -- uses DimensionsChangeDetail
 MoveGraphicsChange -- uses MoveChangeDetail
 ArrowGraphicsChange -- uses ArrowChangeDetail
 FillGraphicsChange -- uses FillChangeDetail
 LineCapGraphicsChange -- uses LineCapChangeDetail
 LineColorGraphicsChange -- uses LineColorChangeDetail
 LineJoinGraphicsChange -- uses LineJoinChangeDetail
 LineWidthGraphicsChange -- uses LineWidthChangeDetail
 TextColorGraphicsChange -- uses TextColorChangeDetail

ChangeDetail
 ArrowChangeDetail -- uses hierarchical ChangeDetails
 DimensionsChangeDetail
 FillChangeDetail -- uses hierarchical ChangeDetails
 LineCapChangeDetail -- uses hierarchical ChangeDetails
 LineColorChangeDetail -- uses hierarchical ChangeDetails
 LineJoinChangeDetail -- uses hierarchical ChangeDetails

 LineWidthChangeDetail -- uses hierarchical ChangeDetails
 MoveChangeDetail
 OrderChangeDetail
 TextColorChangeDetail -- uses hierarchical ChangeDetails

The graphicsUndo subproject
The remainder of this document focuses on the undoing graphics changes. As we
mentioned, the original Draw classes and the reusable undo classes are discussed in
other documents.

The graphicsUndo subproject contains a couple dozen subclasses of Change which
together undo almost everything that a user can do to the graphics in DrawÐthings
like grouping graphics and changing their fill color. They don't undo things that the
user does to documents, windows, or the applicationÐthings like bringing up the
inspector, changing the page layout, changing the contents of the pasteboard, or
showing the ruler. In general the things that users do to the graphics change their
state and irreversible without an undo feature, whereas actions like showing the ruler
are easily reversible anyway.

One common action which is noRWbdoable is changing which graphics are selected.
We decided not to make this action undoable because it happens so frequently, is
non-destructive, and the user probably wouldn't want to have to explicitly undo it in
order to undo other ªrealº changes. In hindsight the undo code might have been
somewhat shorter and simpler if we had made selection actions undoable. As it is we
must always explicitly record the graphics that were currently selected when an
action was performed, whereas if selections changes were undoable we would
always be able to simply act on the current selection when undoing and redoing
changes. A general rule of thumb is that your code will be simpler if you make
everything undoable so that you don't have to worry about side effects caused by
changes in state in the application since the change was originally done.

The graphics changes
Most of the undoable user actions have their own special subclass of Change. For
instance the FillColorGraphicsChange class does nothing but handle changes to the
fill color of the currently selected graphics. A few of the classes are more general. For

instance DeleteGraphicsChange handles explicit user deletions but is also used by
ServicesGraphicsChange when a services call results in the deletion of the currently
selected graphics.

GraphicsChange and ChangeDetail
Most of the classes that handle graphics changes are subclasses of the abstract
superclass GraphicsChange. GraphicsChange works hand in hand with the
ChangeDetail class. GraphicsChange assumes that the change may need to keep
track of state information for each and every graphic involved in the change. For
example, if the user changes the fill color of a selection of graphics then every
graphic involved will need an instance of ChangeDetail to remember what its color
was before the change. Just as there is a particular subclass of GraphicsChange that
knows about fill color changes (FillColorGraphicsChange) there is also a particular
subclass of ChangeDetail that knows about fill color changes (FillColorChangeDetail).

GraphicsChange provides a few basic services to its subclasses. It maintains a list of
the graphics involved in the change and a list of the changeDetails associated with
these graphics. The GraphicsChange saveBeforeChange method creates the list of
graphics and initializes its contents to match the GraphicView's slist. The
saveBeforeChange method creates the list ofRWPngeDetails and inserts one newly
created ChangeDetail for each graphic in the graphics list. The particular subclass of
ChangeDetail that's instantiated is chosen using [self changeDetailClass], so that
FillColorGraphicsChange can override changeDetailClass to specify that it wants to
use FillColorChangeDetail instances.

The default undoChange method will work for most subclasses of GraphicsChange.
The undoChange method notes the bounds of the graphics before and after the
change is actually undone and then redisplays the affected bounds and updates the
inspector. To actually undo the change the undoChange method calls the
undoDetails method, which subclasses must override to restore the state of the
graphics and the graphicView. The default redoChange method is identical to the
undoChange method except that it calls redoDetails instead of undoDetails.

SimpleGraphicsChange

Many of the graphics change classes are derived from the SimpleGraphicsChange
class. SimpleGraphicsChange is a subclass of GraphicsChange, which provides a
saveBeforeChange method to initialize the change with a set of graphics and
changeDetails, and provides undoChange and redoChange methods that handle
redisplaying the affected graphics. For many changes all that remains is to simply
record the state of each graphic before the change and then toggle the state of each
graphic with every undo and redo. The methods in SimpleGraphicsChange do just
that. The saveBeforeChange method gives every changeDetail a chance to record
the state of its graphic before the change. The undoDetails and redoDetails
methods are called by the GraphicsChange undoChange and redoChange methods
and they simply tell every changeDetail to toggle the state of its graphic. The
subclasses of SimpleGraphicsChange can be alarmingly short. See
ArrowGraphicsChange for typical example.

Diving in
You should now have enough background to be comfortable diving into the source.
We suggest starting with ArrowGraphicsChange because it's a simple, representative
change. Have a look at the ArrowGraphicsChange class, its superclasses
SimpleGraphicsChange and GraphicsChange, and its ChangeDetail class
ARWQChangeDetail. You may then want to move on to the change classes that don't
descend from GraphicsChange. They're more complicated but demonstrate the use
of features like the incorporateChange: and subsumeChange: methods. Good
luck!

